WO2012043879A1 - Phosphor and method for producing same - Google Patents

Phosphor and method for producing same Download PDF

Info

Publication number
WO2012043879A1
WO2012043879A1 PCT/JP2011/073035 JP2011073035W WO2012043879A1 WO 2012043879 A1 WO2012043879 A1 WO 2012043879A1 JP 2011073035 W JP2011073035 W JP 2011073035W WO 2012043879 A1 WO2012043879 A1 WO 2012043879A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
metal
phosphor
yellow phosphor
less
Prior art date
Application number
PCT/JP2011/073035
Other languages
French (fr)
Japanese (ja)
Inventor
義貴 川上
鉄 梅田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012043879A1 publication Critical patent/WO2012043879A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/42Fluorescent layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates

Definitions

  • the present invention relates to a method for producing a yellow phosphor and a yellow phosphor.
  • a white LED is a combination of an LED chip that emits light in the ultraviolet to blue region, that is, light having a wavelength of about 380 to 500 nm, and a phosphor that emits light when excited by the light emitted from the LED chip. Composed.
  • the white LED can realize white of various color temperatures by a combination of the LED chip and the phosphor.
  • a phosphor that emits light by being excited by light in the ultraviolet to blue region that is, a phosphor that can be used for a white LED, for example, in JP-A-10-242513, it is represented by Y 3 Al 5 O 12 : Ce 3+ .
  • a phosphor represented by Li 2 SrSiO 4 : Eu 2+ is disclosed in WO 03/80763 pamphlet and JP 2006-237113 A.
  • Y 3 Al 5 O 12 Ce 3+
  • Y 3 Al 5 O 12 is a host crystal of the phosphor
  • Ce 3+ is a luminescent ion that activates the host crystal.
  • Li 2 SrSiO 4 : Eu 2+ Li 2 SrSiO 4 is a host crystal of the phosphor, and Eu 2+ is a luminescent ion that activates the host crystal.
  • the phosphor represented by Li 2 SrSiO 4 : Eu 2+ efficiently absorbs blue light emitted from the blue LED chip, shows a broad yellow emission having an emission peak near 570 nm, and was exposed to a high temperature. It is known that it has a characteristic capable of sufficiently maintaining the emission intensity even in a state.
  • yellow light emission means that the peak wavelength has an emission peak in the vicinity of 560 nm to 590 nm.
  • Li 2 SrSiO 4 : Eu 2+ is synthesized at a low temperature of 800 to 900 ° C. It can be synthesized by firing. Therefore, Li 2 SrSiO 4 : Eu 2+ is advantageous in terms of production cost.
  • Eu ions widely used as luminescent ions in phosphors exist stably as Eu 3+ in air.
  • a phosphor containing Eu ions if firing at a high temperature of, for example, 1000 ° C. or higher in a reducing atmosphere, Eu 3+ is reduced to Eu 2+ , so that the phosphor contains Eu 2+ as the luminescent ions. Is obtained.
  • the phosphor represented by Li 2 SrSiO 4 : Eu 2+ is synthesized by firing at a low temperature of 800 to 900 ° C., there is a problem that the reduction from Eu 3+ to Eu 2+ does not proceed sufficiently. It was.
  • An object of the present invention is to provide a method for producing a yellow phosphor that can be efficiently reduced from Eu 3+ to Eu 2+ even when the firing temperature is low, and a yellow phosphor.
  • the present invention provides the following ⁇ 1> to ⁇ 17>.
  • a method for producing a yellow phosphor comprising a step of firing a first mixture of a metal halide and an Eu-containing compound to produce a solid solution, and a step of firing a second mixture of the solid solution and the metal compound.
  • the metal halide is at least one compound selected from the group consisting of alkali metal halides, alkaline earth metal halides, and rare earth halides.
  • ⁇ 3> The method according to ⁇ 2>, wherein the metal halide is an alkali metal halide and / or an alkaline earth metal halide.
  • ⁇ 4> The method according to ⁇ 3>, wherein the metal halide is strontium halide.
  • ⁇ 5> The method according to ⁇ 4>, wherein the strontium halide is strontium chloride.
  • the metal compound includes (i) a Si compound and / or Ge compound, and (ii) a metal different from at least the metal contained in the metal halide among the alkali metal compound and the alkaline earth metal compound.
  • the metal compound further comprises (iii) at least one compound selected from the group consisting of a rare earth element compound, a Zn compound, a Bi compound, and a Mn compound.
  • the molar ratio of the metal element contained in the metal halide to the Eu contained in the Eu-containing compound is 0.05 or more, 20
  • ⁇ 9> A yellow phosphor produced by the method according to any one of ⁇ 1> to ⁇ 8>.
  • M 1 is at least one element selected from the group consisting of alkali metals
  • M 2 is at least one element selected from the group consisting of alkaline earth metals and Zn
  • M 3 is at least one element selected from the group consisting of Si and Ge
  • L is at least one element selected from the group consisting of rare earth elements, Bi and Mn
  • L includes at least Eu, Of the Eu, the ratio of divalent Eu is 25 mol% or more and 100 mol% or less, a is 0.9 or more and 1.1 or less, b is 0.8 or more and 1.2 or less, c is 0.005 or more and 0.2 or less, d is 0.8 or more and 1.2 or less.
  • ⁇ 12> a yellow phosphor according to ⁇ 10> or ⁇ 11>, wherein a is 0.9 or more and 1.1 or less.
  • ⁇ 14> Any one of ⁇ 10> to ⁇ 13>, wherein M 2 is Ca, Ba, Mg, or Zn, or at least two elements selected from the group consisting of Ca, Sr, Ba, Mg, and Zn The yellow phosphor according to crab.
  • ⁇ 16> A light emitting device using the yellow phosphor according to any one of ⁇ 10> to ⁇ 15>.
  • ⁇ 17> A white LED using the yellow phosphor according to any one of ⁇ 10> to ⁇ 15>.
  • the method for producing a yellow phosphor according to the present invention includes a step of firing a first mixture of a metal halide and an Eu-containing compound serving as an Eu source to obtain a solid solution, and firing a second mixture of the solid solution and the metal compound.
  • the process of carrying out the phosphor is produced by mixing the weighed raw material compounds and firing the obtained mixture so that the target phosphor has a desired composition.
  • a first mixture of a metal halide and an Eu-containing compound is fired to obtain a solid solution, and a second mixture of the obtained solid solution and a metal compound is further fired.
  • a phosphor is manufactured.
  • the metal halide is preferably at least one selected from the group consisting of alkali metal halides, alkaline earth metal halides and rare earth halides, and may be alkali metal halides and / or alkaline earth metal halides. More preferably, it is more preferably an alkaline earth halide, particularly preferably alkaline earth chloride.
  • alkaline earth chloride include strontium halide, and examples of the strontium halide include strontium chloride (SrCl 2 ).
  • the molar ratio between the metal halide and the Eu-containing compound is preferably 0.05 or more and 20 or less, more preferably 0.1 or more and 10 or less, More preferably, it is 0.5 or more and 5 or less.
  • the molar ratio of the metal element contained in the metal halide to the Eu contained in the Eu-containing compound is 0.05 or more and 20 or less. Is preferably 0.1 or more and 10 or less, more preferably 0.5 or more and 5 or less.
  • the SrCl 2 and Eu-containing compound is adjusted so that the molar ratio of Sr to Eu (Sr / Eu) is preferably 0.5 to 3, more preferably 1.0.
  • the mixing ratio (for example, Eu 2 O 3 ) can be determined.
  • the mixing of the metal halide and the Eu-containing compound may be performed wet or dry.
  • a normal apparatus such as a ball mill, a V-type mixer, or a stirrer can be used.
  • the firing of the first mixture is preferably performed in a reducing atmosphere.
  • the atmosphere, temperature, and time of the first firing can be appropriately changed according to the composition of the metal halide, the mixing ratio of the metal halide and the Eu-containing compound, and the like.
  • the atmosphere of the first firing can be a reducing gas atmosphere, and examples thereof include an inert gas (nitrogen, argon, etc.) containing 0.1 to 10% by volume of hydrogen, and ammonia.
  • the first firing atmosphere is preferably an N 2 atmosphere containing 5% by volume of H 2 .
  • the firing temperature for the first firing can be, for example, 500 to 700 ° C.
  • the firing time for the first firing can be, for example, 1 to 24 hours.
  • the second mixture of the solid solution and the metal compound is fired (hereinafter also referred to as “second firing”).
  • the metal compound include oxides, hydroxides, carbonates, nitrates, halides, oxalates, and the like that can be decomposed and / or oxidized at high temperatures to become oxides.
  • the “metal compound” refers to a compound containing a metal element as a constituent element.
  • the metal compound includes (i) a Si compound and / or a Ge compound, and (ii) a compound containing at least a metal different from a metal contained in the metal halide among the alkali metal and alkaline earth metal compounds. It is preferable to include.
  • the metal compound includes semimetals such as Si and Ge.
  • the metal compound may include at least an alkaline earth metal compound among an alkali metal compound and an alkaline earth metal compound.
  • the metal compound preferably contains at least an alkali metal compound among the alkali metal compound and the alkaline earth metal compound.
  • the metal compound further includes (iii) at least one compound selected from the group consisting of rare earth element compounds, Zn compounds, Bi compounds, and Mn compounds.
  • the mixing of the metal compound and the mixing of the metal compound and the solid solution may be performed by a wet method or a dry method.
  • a normal apparatus such as a ball mill, a V-type mixer, or a stirrer can be used.
  • the atmosphere, temperature, and time of the second firing can be appropriately changed depending on the composition of the solid solution, the composition of the metal compound, the mixing ratio of the solid solution and the metal compound, and the like.
  • the firing atmosphere of the second firing may be any of an inert gas atmosphere, an oxidizing gas atmosphere, and a reducing gas atmosphere.
  • the inert gas include nitrogen and argon.
  • the oxidizing gas include air, oxygen, and an inert gas (nitrogen, argon, etc.) containing more than 0% by volume and less than 100% by volume.
  • the reducing gas include an inert gas (nitrogen, argon, etc.) containing 0.1 to 10% by volume of hydrogen, and ammonia.
  • the firing atmosphere is preferably an N 2 atmosphere containing 5% by volume of H 2 .
  • an appropriate amount of carbon may be added to the metal compound and fired.
  • the firing temperature for the second firing can be, for example, 700 to 1000 ° C., and the firing time for the second firing can be, for example, 1 to 100 hours. If the second mixture contains a compound such as hydroxide, carbonate, nitrate, halide, oxalate, etc.
  • the second mixture is calcined by holding at a temperature lower than the second firing temperature (for example, 500 to 800 ° C.) for a predetermined time (for example, 1 to 100 hours). It is also possible to remove crystal water from these compounds. Moreover, you may grind
  • the yellow phosphor obtained by the method of the present invention contains Eu as an activator.
  • Eu contained in the yellow phosphor obtained by the method of the present invention is derived from an Eu-containing compound.
  • Eu contained in the yellow phosphor obtained by the method of the present invention includes Eu-containing compound and Eu halogen. Derived from compounds and / or Eu compounds.
  • the yellow phosphor obtained by the method of the present invention is at least one element selected from the group consisting of rare earth elements, Mn and Bi (hereinafter also referred to as other activator elements). It is preferable to contain.
  • the metal halide and / or metal compound contains other activator elements.
  • the yellow phosphor obtained by the method of the present invention preferably has a single crystal phase. Therefore, it is preferable to add a reaction accelerator to the second mixture at the time of calcination or second baking. By adding a reaction accelerator, the emission intensity of the resulting yellow phosphor can be further increased.
  • the reaction accelerator include alkali metal halides such as LiF, NaF, KF, LiCl, NaCl, and KCl, alkali metal carbonates such as Li 2 CO 3 , Na 2 CO 3 , and K 2 CO 3 , and alkalis such as NaHCO 3. Examples thereof include metal hydrogen carbonates, ammonium halides such as NH 4 Cl and NH 4 I, oxides of earth metals such as B 2 O 3, and oxo acids of earth metals such as H 3 BO 3 .
  • the yellow phosphor obtained by the method of the present invention contains a halogen element derived from a raw material such as a metal halide or a reaction accelerator, that is, at least one element selected from the group consisting of F, Cl, Br and I. You may go out.
  • the total content of halogen elements contained in the yellow phosphor obtained by the method of the present invention may be equal to or less than the total amount of halogen elements contained in the raw material, preferably 50% or less, more preferably Is 25% or less.
  • the second mixture after calcination and / or the yellow phosphor of the present invention may be pulverized, washed, or classified using, for example, a ball mill, a jet mill or the like.
  • the yellow phosphor of the present invention represented by the formula M 1 2a (M 2 b L c ) M 3 d O 4 can be produced.
  • the yellow phosphor of the present invention is represented by the formula M 1 2a (M 2 b L c ) M 3 d O 4 .
  • M 1 is at least one element selected from the group consisting of alkali metals
  • M 2 is at least one element selected from the group consisting of alkaline earth metals and Zn
  • M 3 is Si And at least one element selected from the group consisting of Ge.
  • M 1 is preferably at least one element selected from the group consisting of Li, Na and K, and more preferably Li.
  • M 3 is preferably Si.
  • M 2 is preferably not only Sr. That is, M 2 is preferably Ca, Ba, Mg or Zn, or preferably at least two elements selected from the group consisting of Mg, Ca, Sr, Ba and Zn, and is Ca and Sr. It is more preferable.
  • L is a luminescent ion that activates the host crystal.
  • L contains at least Eu, and may further contain at least one element selected from the group consisting of rare earth elements, Bi and Mn.
  • the proportion of divalent Eu is 25 mol% or more and 100 mol% or less.
  • the ratio of divalent Eu is preferably 30 mol% or more, more preferably 40 mol% or more, and further preferably 50 mol% or more.
  • a is 0.1 or more and 1.5 or less
  • b is 0.8 or more and 1.2 or less
  • c is 0.005 or more and 0.2 or less
  • d is 0.8 or more, 1 or less .2 or less.
  • a is preferably 0.8 or more and 1.2 or less, and more preferably 0.9 or more and 1.1 or less.
  • Both b and d are preferably 0.8 or more and 1.0 or less, and more preferably 0.9 or more and 1.0 or less.
  • the crystal system of the yellow phosphor of the present invention is preferably hexagonal.
  • the mixing ratio of the solid solution and the metal compound is ( M 1 element) :( M 2 element) :( Eu and other activator elements) :( M 3 ratios of the elements) is 2a: b: c: is defined so as d.
  • a phosphor represented by the formula Li 1.96 Sr 0.98 Eu 0.02 SiO 4 which is one of the preferred compositions of the yellow phosphor of the present invention, for example, as a metal halide
  • SrCl 2 is used
  • Eu 2 O 3 is used as the Eu-containing compound
  • SrCO 3 , Li 2 CO 3 , SiO 2 and Eu 2 O 3 are used as the metal compound
  • the mixing ratio of the solid solution and the metal compound may be determined so that the molar ratio of Li: Sr: Eu: Si is 1.96: 0.98: 0.02: 1.0.
  • the yellow phosphor of the present invention can be suitably used for a light emitting device.
  • the light emitting device of the present invention includes the yellow phosphor of the present invention.
  • a white LED is mentioned as a light-emitting device.
  • a white LED can be generally manufactured by a method disclosed in, for example, Japanese Patent Application Laid-Open Nos. 11-31845 and 2002-226846. That is, by sealing a light-emitting element that emits light having a wavelength of 200 nm or more and 550 nm or less with a light-transmitting resin such as an epoxy resin or a silicone resin, and arranging the phosphor so as to cover the surface of the sealing body A white LED can be manufactured. What is necessary is just to set the quantity of fluorescent substance suitably so that white LED can light-emit desired white.
  • the yellow phosphor of the present invention may be used alone, or the yellow phosphor of the present invention and another phosphor may be used in combination.
  • Other phosphors include BaMgAl 10 O 17 : Eu, (Ba, Sr, Ca) (Al, Ga) 2 S 4 : Eu, BaMgAl 10 O 17 : (Eu, Mn), BaAl 12 O 19 : (Eu , Mn), (Ba, Sr, Ca) S: (Eu, Mn), YBO 3 : (Ce, Tb), Y 2 O 3 : Eu, Y 2 O 2 S: Eu, YVO 4 : Eu, (Ca Sr) S: Eu, SrY 2 O 4 : Eu, Ca—Al—Si—O—N: Eu, Li— (Ca, Mg) —Ln—Al—O—N: Eu, (Ba, Sr, Ca ) Si 2 O 2 N 2
  • Examples of the light emitting element that emits light having a wavelength of 200 nm or more and 550 nm or less include an ultraviolet LED and a blue LED.
  • the ultraviolet LED and the blue LED GaN, In i Ga 1-i N (0 ⁇ i ⁇ 1), In i Al j Ga 1-jj N (0 ⁇ i ⁇ 1, 0 ⁇ j ⁇ ) are used as the light emitting layer.
  • a semiconductor having a layer such as 1, i + j ⁇ 1) is used.
  • the emission wavelength can be changed by changing the composition of the light emitting layer.
  • the light emitting device of the present invention is a light emitting device in which the phosphor excitation source such as PDP is a vacuum ultraviolet ray, a backlight for a liquid crystal display, a phosphor excitation source such as a three-wavelength fluorescent lamp, and the like.
  • the phosphor excitation source is an electron beam, such as a device, a CRT, or an FED.
  • the measurement of the emission intensity of the phosphor was performed using a fluorescence spectrometer (FP-6500 manufactured by JASCO Corporation).
  • X-ray diffraction (XRD) measurement of the phosphor was performed using an X-ray diffractometer (RINT2000 manufactured by Rigaku).
  • Evaluation of the valence ratio of Eu in the phosphor was performed by X-ray absorption fine structure (XAFS) measurement.
  • XAFS measurement was performed by the transmission method using the beam line BL14B2 in SPring-8. Measurement was carried out as a 6650-7600 eV measurement region which is the Eu-L3 absorption edge.
  • BaMgAl 10 O 17 : Eu 2+ (BAM) was used as a standard sample for Eu 2+ (6972 eV), and europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%) was used as a standard sample for Eu 3+ (6980 eV). .
  • the XAFS data of each sample was processed based on the background to obtain an X-ray absorption near edge structure (XANES) spectrum, and then Eu + standard sample and Eu 3 + standard sample XANES Using the spectrum, pattern fitting of the XANES spectrum of each sample was performed, and the ratio of Eu 2+ in the sample was calculated from the ratio of Eu 2+ peaks.
  • XANES X-ray absorption near edge structure
  • Comparative Example 1 Lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%), and dioxide
  • Each raw material of silicon (manufactured by Nippon Aerosil Co., Ltd .: purity 99.99%) is weighed so that the molar ratio of Li: Sr: Eu: Si is 1.96: 0.98: 0.02: 1.0. These were mixed by a dry ball mill for 6 hours to obtain a metal compound mixture.
  • the metal compound mixture was calcined by holding at a temperature of 800 ° C. for 24 hours in an N 2 atmosphere containing 5% by volume of H 2 , and then gradually cooled to room temperature to obtain the formula Li 1.96 (Sr 0. A phosphor containing a compound represented by 98 Eu 0.02 ) SiO 4 was obtained.
  • the ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 14 mol%.
  • Comparative Example 2 Lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%), and dioxide
  • Each raw material of silicon (manufactured by Nippon Aerosil Co., Ltd .: purity 99.99%) is weighed so that the molar ratio of Li: Sr: Eu: Si is 1.96: 0.98: 0.02: 1.0. These were mixed by a dry ball mill for 6 hours to obtain a metal compound mixture.
  • the metal compound mixture was fired in an N 2 atmosphere containing 5% by volume of H 2 at a temperature of 800 ° C. for 24 hours and then gradually cooled to room temperature to obtain a fired product.
  • the fired product obtained was pulverized, and the pulverized product was further refired by holding it at a temperature of 800 ° C. for 24 hours in an N 2 atmosphere containing 5% by volume of H 2 , and then cooled to room temperature.
  • a phosphor containing a compound represented by Li 1.96 (Sr 0.98 Eu 0.02 ) SiO 4 was obtained.
  • the ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 17 mol%.
  • the obtained second mixture was calcined by holding at a temperature of 800 ° C. for 24 hours in an N 2 atmosphere containing 5% by volume of H 2 , and then gradually cooled to room temperature to obtain the formula Li 1.96 (Sr 0 .98 Eu 0.02 ) A phosphor containing a compound represented by SiO 4 was obtained.
  • the obtained phosphor had an emission peak at 571 nm.
  • the ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 25 mol%.
  • Example 2 Solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd.) : 99.99% purity) was measured so that the molar ratio of Li: Sr: Eu: Si was 1.96: 0.98: 0.02: 1.0, and these were mixed for 6 hours by a dry ball mill. A second mixture was obtained.
  • Second mixture of N 2 atmosphere containing 5 vol% H 2 obtained calcined by holding at a temperature of 800 ° C. 24 hours, then gradually cooled to room temperature to obtain a calcined product.
  • the fired product obtained was pulverized, re-fired by holding at a temperature of 800 ° C. for 24 hours in an N 2 atmosphere containing 5% by volume of H 2 , gradually cooled to room temperature, and then expressed by the formula Li 1.96.
  • a phosphor containing a compound represented by (Sr 0.98 Eu 0.02 ) SiO 4 was obtained.
  • the obtained phosphor had an emission peak at 571 nm.
  • the ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 46.3 mol%.
  • Example 3 Solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd.) : 99.99% purity) was measured so that the molar ratio of Li: Sr: Eu: Si was 1.96: 0.98: 0.02: 1.0, and these were mixed for 6 hours by a dry ball mill. A second mixture was obtained.
  • the obtained second mixture was calcined by holding at a temperature of 800 ° C. for 24 hours in an N 2 atmosphere containing 5% by volume of H 2 , and then gradually cooled to room temperature to obtain the formula Li 0.96 (Sr A phosphor containing a compound represented by 0.98 Eu 0.02 ) SiO 4 was obtained.
  • the obtained phosphor had an emission peak at 571 nm.
  • the ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 54.1 mol%.
  • Example 4 Solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd.) : 99.99% purity) and the molar ratio of Li: Sr: Eu: Si is 1.96: 0.97: 0.03: 1.0, and these are mixed for 6 hours by a dry ball mill. To obtain a second mixture.
  • the resulting second mixture was calcined by holding in a N 2 atmosphere containing 5% by volume of H 2 at a temperature of 800 ° C. for 24 hours and then gradually cooled to room temperature to obtain the formula Li 1.96 (Sr A phosphor containing a compound represented by 0.98 Eu 0.02 ) SiO 4 was obtained.
  • the obtained phosphor had an emission peak at 571 nm.
  • the ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 54.0 mol%.
  • Example 5 Solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd.) : 99.99% purity) was measured so that the molar ratio of Li: Sr: Eu: Si was 1.96: 0.95: 0.05: 1.0, and these were mixed by a dry ball mill for 6 hours. A second mixture was obtained.
  • the resulting second mixture was calcined by holding in a N 2 atmosphere containing 5% by volume of H 2 at a temperature of 800 ° C. for 24 hours and then gradually cooled to room temperature to obtain the formula Li 1.96 (Sr 0.95 Eu 0.05 ) A phosphor containing a compound represented by SiO 4 was obtained.
  • the obtained phosphor had an emission peak at 571 nm.
  • the ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 28.0 mol%.
  • Example 6 Solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd.) : Purity 99.99%) was measured so that the molar ratio of Li: Sr: Eu: Si was 1.96: 0.97: 0.03: 1.0, and these were mixed by a dry ball mill for 6 hours. A second mixture was obtained.
  • the resulting second mixture was calcined by holding in a N 2 atmosphere containing 5% by volume of H 2 at a temperature of 800 ° C. for 24 hours and then gradually cooled to room temperature to obtain the formula Li 1.96 (Sr A phosphor containing a compound represented by 0.97 Eu 0.03 ) SiO 4 was obtained.
  • the obtained phosphor had an emission peak at 571 nm.
  • the ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 64.3 mol%.
  • Example 7 Solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd.) : 99.99% purity) was measured so that the molar ratio of Li: Sr: Eu: Si was 1.96: 0.95: 0.05: 1.0, and these were mixed by a dry ball mill for 6 hours. A second mixture was obtained.
  • the resulting second mixture was calcined by holding in a N 2 atmosphere containing 5% by volume of H 2 at a temperature of 800 ° C. for 24 hours and then gradually cooled to room temperature to obtain the formula Li 1.96 (Sr 0.95 Eu 0.05 ) A phosphor containing a compound represented by SiO 4 was obtained.
  • the obtained phosphor had an emission peak at 571 nm.
  • the ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 56.0 mol%.
  • Example 8 Solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd.) : Purity 99.99%) was measured so that the molar ratio of Li: Sr: Eu: Si was 1.96: 0.93: 0.07: 1.0, and these were mixed for 6 hours by a dry ball mill. A second mixture was obtained.
  • the resulting second mixture was calcined by holding in a N 2 atmosphere containing 5% by volume of H 2 at a temperature of 800 ° C. for 24 hours and then gradually cooled to room temperature to obtain the formula Li 1.96 (Sr 0.93 Eu 0.07 ) A phosphor containing a compound represented by SiO 4 was obtained.
  • the obtained phosphor had an emission peak at 571 nm.
  • the ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 50.0 mol%.
  • the first mixture of the metal halide and the Eu-containing compound is fired to produce a solid solution, and then the second mixture of the solid solution and the metal compound is fired.
  • Eu 2+ can be stably generated. Therefore, a yellow phosphor having a high Eu 2+ content ratio can be obtained. That is, according to the method of the present invention, even when the firing temperature is low, the Eu raw material can be efficiently reduced, and the ratio of Eu 2+ in the total Eu of the obtained phosphor can be improved. A phosphor can be manufactured at low cost.

Abstract

The present invention provides a method for producing a yellow phosphor, which comprises: a step wherein a first mixture of a metal halide and an Eu-containing compound is fired, thereby producing a solid solution; and a step wherein a second mixture of the solid solution and a metal compound is fired.

Description

蛍光体およびその製造方法Phosphor and method for producing the same
 本発明は、黄色蛍光体の製造方法、および、黄色蛍光体に関する。 The present invention relates to a method for producing a yellow phosphor and a yellow phosphor.
 白色LEDは、紫外から青色の領域の光、すなわち、380~500nm程度の波長を有する光を放出するLEDチップと、前記LEDチップから放出される光で励起されて発光する蛍光体とを組み合わせて構成される。白色LEDは、LEDチップと蛍光体との組み合わせによって様々な色温度の白色を実現することができる。 A white LED is a combination of an LED chip that emits light in the ultraviolet to blue region, that is, light having a wavelength of about 380 to 500 nm, and a phosphor that emits light when excited by the light emitted from the LED chip. Composed. The white LED can realize white of various color temperatures by a combination of the LED chip and the phosphor.
 紫外から青色の領域の光によって励起され発光する蛍光体、すなわち白色LEDに用いることのできる蛍光体として、例えば、特開平10−242513号公報には、YAl12:Ce3+で表される蛍光体が開示されており、国際公開第03/80763号パンフレット、および、特開2006−237113号公報には、LiSrSiO:Eu2+で表される蛍光体が開示されている。YAl12:Ce3+において、YAl12が蛍光体の母体結晶であり、Ce3+が母体結晶を賦活する発光イオンである。LiSrSiO:Eu2+において、LiSrSiOが蛍光体の母体結晶であり、Eu2+が母体結晶を賦活する発光イオンである。 As a phosphor that emits light by being excited by light in the ultraviolet to blue region, that is, a phosphor that can be used for a white LED, for example, in JP-A-10-242513, it is represented by Y 3 Al 5 O 12 : Ce 3+ . A phosphor represented by Li 2 SrSiO 4 : Eu 2+ is disclosed in WO 03/80763 pamphlet and JP 2006-237113 A. In Y 3 Al 5 O 12 : Ce 3+ , Y 3 Al 5 O 12 is a host crystal of the phosphor, and Ce 3+ is a luminescent ion that activates the host crystal. In Li 2 SrSiO 4 : Eu 2+ , Li 2 SrSiO 4 is a host crystal of the phosphor, and Eu 2+ is a luminescent ion that activates the host crystal.
 LiSrSiO:Eu2+で表される蛍光体は、青色LEDチップから放出される青色光を効率よく吸収し、570nm付近に発光ピークを有するブロードな黄色発光を示すとともに、高温に曝された状態でも発光強度を十分に維持できる特性を有することが知られている。なお、本願明細書において黄色発光とは、ピーク波長が560nm~590nm付近に発光ピークを有することを意味する。 The phosphor represented by Li 2 SrSiO 4 : Eu 2+ efficiently absorbs blue light emitted from the blue LED chip, shows a broad yellow emission having an emission peak near 570 nm, and was exposed to a high temperature. It is known that it has a characteristic capable of sufficiently maintaining the emission intensity even in a state. In the present specification, yellow light emission means that the peak wavelength has an emission peak in the vicinity of 560 nm to 590 nm.
 また、白色LED用蛍光体として、YAG:Ce3+等は、約1500℃という高温での焼成によって合成されるのに対して、LiSrSiO:Eu2+は、800~900℃という低温での焼成によって合成されることが可能である。そのため、LiSrSiO:Eu2+は、生産コストの面で有利である。 Further, as a phosphor for white LED, YAG: Ce 3+ and the like are synthesized by firing at a high temperature of about 1500 ° C., whereas Li 2 SrSiO 4 : Eu 2+ is synthesized at a low temperature of 800 to 900 ° C. It can be synthesized by firing. Therefore, Li 2 SrSiO 4 : Eu 2+ is advantageous in terms of production cost.
 蛍光体において、発光イオンとして広く用いられているEuイオンは、空気中ではEu3+として安定に存在することが知られている。Euイオンを含む蛍光体を合成する際、還元雰囲気にて、例えば、1000℃以上の高温での焼成を行うと、Eu3+がEu2+に還元されるため、発光イオンとしてEu2+を含む蛍光体が得られる。しかしながら、LiSrSiO:Eu2+で表される蛍光体は、800~900℃という低温での焼成によって合成されることから、Eu3+からEu2+への還元が十分に進行しないという問題があった。 It is known that Eu ions widely used as luminescent ions in phosphors exist stably as Eu 3+ in air. When synthesizing a phosphor containing Eu ions, if firing at a high temperature of, for example, 1000 ° C. or higher in a reducing atmosphere, Eu 3+ is reduced to Eu 2+ , so that the phosphor contains Eu 2+ as the luminescent ions. Is obtained. However, since the phosphor represented by Li 2 SrSiO 4 : Eu 2+ is synthesized by firing at a low temperature of 800 to 900 ° C., there is a problem that the reduction from Eu 3+ to Eu 2+ does not proceed sufficiently. It was.
 本発明は、焼成温度が低温である場合でも、Eu3+からEu2+へ効率的に還元可能な黄色蛍光体の製造方法、および、黄色蛍光体を提供することを目的とする。 An object of the present invention is to provide a method for producing a yellow phosphor that can be efficiently reduced from Eu 3+ to Eu 2+ even when the firing temperature is low, and a yellow phosphor.
 本発明は、下記<1>~<17>を提供する。
<1>金属ハロゲン化物とEu含有化合物との第一混合物を焼成し、固溶体を作製する工程と、前記固溶体と金属化合物との第二混合物を焼成する工程を具備する黄色蛍光体の製造方法。
The present invention provides the following <1> to <17>.
<1> A method for producing a yellow phosphor comprising a step of firing a first mixture of a metal halide and an Eu-containing compound to produce a solid solution, and a step of firing a second mixture of the solid solution and the metal compound.
<2>前記金属ハロゲン化物が、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物および希土類ハロゲン化物からなる群より選ばれる少なくとも1種の化合物である<1>に記載の方法。 <2> The method according to <1>, wherein the metal halide is at least one compound selected from the group consisting of alkali metal halides, alkaline earth metal halides, and rare earth halides.
<3>前記金属ハロゲン化物が、アルカリ金属ハロゲン化物および/またはアルカリ土類金属ハロゲン化物である<2>に記載の方法。 <3> The method according to <2>, wherein the metal halide is an alkali metal halide and / or an alkaline earth metal halide.
<4>前記金属ハロゲン化物がハロゲン化ストロンチウムである<3>に記載の方法。
<5>前記ハロゲン化ストロンチウムが塩化ストロンチウムである<4>に記載の方法。
<4> The method according to <3>, wherein the metal halide is strontium halide.
<5> The method according to <4>, wherein the strontium halide is strontium chloride.
<6>前記金属化合物が、(i)Si化合物および/またはGe化合物と、(ii)アルカリ金属化合物およびアルカリ土類金属の化合物のうち、少なくとも前記金属ハロゲン化物に含まれる金属と異なる金属を含む化合物とを含む<1>~<5>のいずれかに記載の方法。 <6> The metal compound includes (i) a Si compound and / or Ge compound, and (ii) a metal different from at least the metal contained in the metal halide among the alkali metal compound and the alkaline earth metal compound. The method according to any one of <1> to <5>, comprising a compound.
<7>前記金属化合物が、更に(iii)希土類元素化合物、Zn化合物、Bi化合物およびMn化合物からなる群より選ばれる少なくとも1種の化合物を含む<6>に記載の方法。 <7> The method according to <6>, wherein the metal compound further comprises (iii) at least one compound selected from the group consisting of a rare earth element compound, a Zn compound, a Bi compound, and a Mn compound.
<8>前記Eu含有化合物に含まれるEuに対する、前記金属ハロゲン化物に含まれる金属元素のモル比(金属ハロゲン化物に含まれる金属元素/Eu含有化合物に含まれるEu)が0.05以上、20以下である<1>~<7>のいずれかに記載の方法。 <8> The molar ratio of the metal element contained in the metal halide to the Eu contained in the Eu-containing compound (metal element contained in the metal halide / Eu contained in the Eu-containing compound) is 0.05 or more, 20 The method according to any one of <1> to <7>, which is as follows.
<9><1>~<8>のいずれかに記載の方法によって製造される黄色蛍光体。 <9> A yellow phosphor produced by the method according to any one of <1> to <8>.
<10>式M 2a(M )M で表される黄色蛍光体。
式中、Mはアルカリ金属からなる群より選ばれる少なくとも1種の元素であり、
はアルカリ土類金属およびZnからなる群より選ばれる少なくとも1種の元素であり、
はSiおよびGeからなる群より選ばれる少なくとも1種の元素であり、
Lは希土類元素、BiおよびMnからなる群より選ばれる少なくとも1種の元素であり、かつ、Lは少なくともEuを含み、
前記Euのうち、2価のEuの割合が25モル%以上、100モル%以下であり、
aは0.9以上、1.1以下、
bは0.8以上、1.2以下、
cは0.005以上、0.2以下、
dは0.8以上、1.2以下である。
<10> A yellow phosphor represented by the formula M 1 2a (M 2 b L c ) M 3 d O 4 .
In the formula, M 1 is at least one element selected from the group consisting of alkali metals,
M 2 is at least one element selected from the group consisting of alkaline earth metals and Zn,
M 3 is at least one element selected from the group consisting of Si and Ge;
L is at least one element selected from the group consisting of rare earth elements, Bi and Mn, and L includes at least Eu,
Of the Eu, the ratio of divalent Eu is 25 mol% or more and 100 mol% or less,
a is 0.9 or more and 1.1 or less,
b is 0.8 or more and 1.2 or less,
c is 0.005 or more and 0.2 or less,
d is 0.8 or more and 1.2 or less.
<11>MがLiであり、MがSiである<10>に記載の黄色蛍光体。 <11> The yellow phosphor according to <10>, wherein M 1 is Li and M 3 is Si.
<12>aが0.9以上、1.1以下である<10>または<11>に記載の黄色蛍光体。 <12> a yellow phosphor according to <10> or <11>, wherein a is 0.9 or more and 1.1 or less.
<13>b、cおよびdが、b+c=1、かつ、d=1の関係を満たす<10>~<12>のいずれかに記載の黄色蛍光体。。 <13> The yellow phosphor according to any one of <10> to <12>, wherein b, c, and d satisfy a relationship of b + c = 1 and d = 1. .
<14>MがCa、Ba、MgもしくはZnであるか、または、Ca、Sr、Ba、MgおよびZnからなる群より選ばれる少なくとも2種の元素である<10>~<13>のいずれかに記載の黄色蛍光体。 <14> Any one of <10> to <13>, wherein M 2 is Ca, Ba, Mg, or Zn, or at least two elements selected from the group consisting of Ca, Sr, Ba, Mg, and Zn The yellow phosphor according to crab.
<15>黄色蛍光体の結晶系が六方晶である<10>~<14>のいずれかに記載の黄色蛍光体。 <15> The yellow phosphor according to any one of <10> to <14>, wherein the crystal system of the yellow phosphor is hexagonal.
<16>請求項<10>~<15>のいずれかに記載の黄色蛍光体を用いた発光装置。 <16> A light emitting device using the yellow phosphor according to any one of <10> to <15>.
<17>請求項<10>~<15>のいずれかに記載の黄色蛍光体を用いた白色LED。 <17> A white LED using the yellow phosphor according to any one of <10> to <15>.
<黄色蛍光体の製造方法>
 本発明の黄色蛍光体の製造方法は、金属ハロゲン化物と、Eu源となるEu含有化合物との第一混合物を焼成し、固溶体を得る工程と、その固溶体と金属化合物との第二混合物を焼成する工程を有する。従来の方法では、目的とする蛍光体が所望の組成となるように、秤量された原料となる化合物を混合し、得られた混合物を焼成することによって、蛍光体は製造される。これに対して、本発明の方法では、まず金属ハロゲン化物とEu含有化合物との第一混合物を焼成して固溶体を得、得られた固溶体と金属化合物との第二混合物を更に焼成することによって、蛍光体が製造される。
<Method for producing yellow phosphor>
The method for producing a yellow phosphor according to the present invention includes a step of firing a first mixture of a metal halide and an Eu-containing compound serving as an Eu source to obtain a solid solution, and firing a second mixture of the solid solution and the metal compound. The process of carrying out. In the conventional method, the phosphor is produced by mixing the weighed raw material compounds and firing the obtained mixture so that the target phosphor has a desired composition. On the other hand, in the method of the present invention, first, a first mixture of a metal halide and an Eu-containing compound is fired to obtain a solid solution, and a second mixture of the obtained solid solution and a metal compound is further fired. A phosphor is manufactured.
 前記金属ハロゲン化物は、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物および希土類ハロゲン化物からなる群より選ばれる少なくとも1種であることが好ましく、アルカリ金属ハロゲン化物および/またはアルカリ土類金属ハロゲン化物であることがより好ましく、アルカリ土類ハロゲン化物であることが更に好ましく、アルカリ土類塩化物であることが特に好ましい。アルカリ土類塩化物としては、ハロゲン化ストロンチウムなどが挙げられ、ハロゲン化ストロンチウムとしては、塩化ストロンチウム(SrCl)などが挙げられる。 The metal halide is preferably at least one selected from the group consisting of alkali metal halides, alkaline earth metal halides and rare earth halides, and may be alkali metal halides and / or alkaline earth metal halides. More preferably, it is more preferably an alkaline earth halide, particularly preferably alkaline earth chloride. Examples of the alkaline earth chloride include strontium halide, and examples of the strontium halide include strontium chloride (SrCl 2 ).
 金属ハロゲン化物と、Eu含有化合物とのモル比(金属ハロゲン化物/Eu含有化合物)は、0.05以上、20以下であることが好ましく、0.1以上、10以下であることがより好ましく、0.5以上、5以下であることが更に好ましい。
 金属ハロゲン化物に含まれる金属元素と、Eu含有化合物に含まれるEuのモル比(金属ハロゲン化物に含まれる金属元素/Eu含有化合物に含まれるEu)は、0.05以上、20以下であることが好ましく、0.1以上、10以下であることがより好ましく、0.5以上、5以下であることが更に好ましい。例えば金属ハロゲン化物としてSrClを用いる場合は、SrとEuのモル比(Sr/Eu)を、好ましくは0.5~3、より好ましくは1.0となるように、SrClとEu含有化合物(例えば、Eu)の混合比率を定められる。
The molar ratio between the metal halide and the Eu-containing compound (metal halide / Eu-containing compound) is preferably 0.05 or more and 20 or less, more preferably 0.1 or more and 10 or less, More preferably, it is 0.5 or more and 5 or less.
The molar ratio of the metal element contained in the metal halide to the Eu contained in the Eu-containing compound (the metal element contained in the metal halide / Eu contained in the Eu-containing compound) is 0.05 or more and 20 or less. Is preferably 0.1 or more and 10 or less, more preferably 0.5 or more and 5 or less. For example, when SrCl 2 is used as the metal halide, the SrCl 2 and Eu-containing compound is adjusted so that the molar ratio of Sr to Eu (Sr / Eu) is preferably 0.5 to 3, more preferably 1.0. The mixing ratio (for example, Eu 2 O 3 ) can be determined.
 金属ハロゲン化物とEu含有化合物との混合は、湿式で行ってもよく、乾式で行ってもよい。混合には、ボールミル、V型混合機、攪拌機等の通常の装置を用いることができる。 The mixing of the metal halide and the Eu-containing compound may be performed wet or dry. For mixing, a normal apparatus such as a ball mill, a V-type mixer, or a stirrer can be used.
 第一混合物の焼成(以下、「第一の焼成」とも呼ぶ)は還元雰囲気下で行うことが好ましい。
 第一の焼成の雰囲気、温度および時間は、金属ハロゲン化物の組成、金属ハロゲン化物とEu含有化合物の混合比率等に応じて適宜変更されうる。
 第一の焼成の雰囲気は、還元性ガス雰囲気とすることができ、例えば、水素を0.1~10体積%含有する不活性ガス(窒素、アルゴンなど)、アンモニアが挙げられる。第一の焼成の雰囲気は、5体積%のHを含有するN雰囲気であることが好ましい。第一の焼成の焼成温度は、例えば、500~700℃とすることができ、第一の焼成の焼成時間は、例えば、1~24時間とすることができる。
The firing of the first mixture (hereinafter also referred to as “first firing”) is preferably performed in a reducing atmosphere.
The atmosphere, temperature, and time of the first firing can be appropriately changed according to the composition of the metal halide, the mixing ratio of the metal halide and the Eu-containing compound, and the like.
The atmosphere of the first firing can be a reducing gas atmosphere, and examples thereof include an inert gas (nitrogen, argon, etc.) containing 0.1 to 10% by volume of hydrogen, and ammonia. The first firing atmosphere is preferably an N 2 atmosphere containing 5% by volume of H 2 . The firing temperature for the first firing can be, for example, 500 to 700 ° C., and the firing time for the first firing can be, for example, 1 to 24 hours.
 次に、固溶体と金属化合物との第二混合物を焼成(以下、「第二の焼成」とも呼ぶ。)する。
 前記金属化合物としては、例えば、酸化物、水酸化物、炭酸塩、硝酸塩、ハロゲン化物、シュウ酸塩など、高温で分解および/または酸化して酸化物になり得る化合物が挙げられる。なお、本明細書において「金属化合物」とは、構成元素として金属元素を含む化合物をいう。
 前記金属化合物は、(i)Si化合物および/またはGe化合物と、(ii)アルカリ金属およびアルカリ土類金属の化合物のうち、少なくとも前記金属ハロゲン化物に含まれる金属とは異なる金属を含む化合物とを含むことが好ましい。
 なお、本明細書において「金属」とは、Si、Geなどの半金属を含む。
 前記(ii)に関して、例えば、前記金属ハロゲン化物としてアルカリ金属ハロゲン化物を用いた場合は、金属化合物は、アルカリ金属化合物およびアルカリ土類金属の化合物のうち、少なくともアルカリ土類金属化合物を含むことが好ましく、また、前記金属ハロゲン化物としてアルカリ土類金属ハロゲン化物を用いた場合は、金属化合物は、アルカリ金属化合物およびアルカリ土類金属の化合物のうち、少なくともアルカリ金属化合物を含むことが好ましい。前記金属化合物は、更に(iii)希土類元素化合物、Zn化合物、Bi化合物およびMn化合物からなる群より選ばれる少なくとも1種の化合物を含むことがより好ましい。
Next, the second mixture of the solid solution and the metal compound is fired (hereinafter also referred to as “second firing”).
Examples of the metal compound include oxides, hydroxides, carbonates, nitrates, halides, oxalates, and the like that can be decomposed and / or oxidized at high temperatures to become oxides. In the present specification, the “metal compound” refers to a compound containing a metal element as a constituent element.
The metal compound includes (i) a Si compound and / or a Ge compound, and (ii) a compound containing at least a metal different from a metal contained in the metal halide among the alkali metal and alkaline earth metal compounds. It is preferable to include.
In the present specification, “metal” includes semimetals such as Si and Ge.
Regarding (ii), for example, when an alkali metal halide is used as the metal halide, the metal compound may include at least an alkaline earth metal compound among an alkali metal compound and an alkaline earth metal compound. Preferably, when an alkaline earth metal halide is used as the metal halide, the metal compound preferably contains at least an alkali metal compound among the alkali metal compound and the alkaline earth metal compound. More preferably, the metal compound further includes (iii) at least one compound selected from the group consisting of rare earth element compounds, Zn compounds, Bi compounds, and Mn compounds.
 金属化合物の混合、および、金属化合物と固溶体との混合は、湿式で行ってもよく、乾式で行ってもよい。混合には、ボールミル、V型混合機、攪拌機等の通常の装置を用いることができる。 The mixing of the metal compound and the mixing of the metal compound and the solid solution may be performed by a wet method or a dry method. For mixing, a normal apparatus such as a ball mill, a V-type mixer, or a stirrer can be used.
 第二の焼成の雰囲気、温度および時間は、固溶体の組成、金属化合物の組成、固溶体と金属化合物との混合比率等によって適宜変更されうる。
 第二の焼成の焼成雰囲気は、不活性ガス雰囲気、酸化性ガス雰囲気、還元性ガス雰囲気のいずれでもよい。不活性ガスとしては、例えば、窒素、アルゴンが挙げられる。酸化性ガスとしては、例えば、空気、酸素、酸素を0体積%超、100体積%未満含有する不活性ガス(窒素、アルゴンなど)が挙げられる。還元性ガスとしては、例えば、水素を0.1~10体積%含有する不活性ガス(窒素、アルゴンなど)、アンモニアが挙げられる。焼成雰囲気は、5体積%のHを含有するN雰囲気であることが好ましい。また、強い還元性雰囲気で焼成する場合には、金属化合物に適量の炭素を添加して焼成してもよい。
 第二の焼成の焼成温度は、例えば、700~1000℃とすることができ、第二の焼成の焼成時間は、例えば、1~100時間とすることができる。第二混合物が水酸化物、炭酸塩、硝酸塩、ハロゲン化物、シュウ酸塩等の、高温で分解および/または酸化して酸化物になる化合物を含む場合、第一の焼成後であって第二の焼成前に、第二混合物を第二の焼成温度よりも低い温度(例えば、500~800℃)で所定時間(例えば、1~100時間)保持して仮焼し、これらの化合物を酸化物としたり、これらの化合物から結晶水を除去したりすることも可能である。また、仮焼後に粉砕を行ってもよい。
The atmosphere, temperature, and time of the second firing can be appropriately changed depending on the composition of the solid solution, the composition of the metal compound, the mixing ratio of the solid solution and the metal compound, and the like.
The firing atmosphere of the second firing may be any of an inert gas atmosphere, an oxidizing gas atmosphere, and a reducing gas atmosphere. Examples of the inert gas include nitrogen and argon. Examples of the oxidizing gas include air, oxygen, and an inert gas (nitrogen, argon, etc.) containing more than 0% by volume and less than 100% by volume. Examples of the reducing gas include an inert gas (nitrogen, argon, etc.) containing 0.1 to 10% by volume of hydrogen, and ammonia. The firing atmosphere is preferably an N 2 atmosphere containing 5% by volume of H 2 . When firing in a strong reducing atmosphere, an appropriate amount of carbon may be added to the metal compound and fired.
The firing temperature for the second firing can be, for example, 700 to 1000 ° C., and the firing time for the second firing can be, for example, 1 to 100 hours. If the second mixture contains a compound such as hydroxide, carbonate, nitrate, halide, oxalate, etc. that decomposes and / or oxidizes at high temperature to an oxide, after the first calcination, Before firing, the second mixture is calcined by holding at a temperature lower than the second firing temperature (for example, 500 to 800 ° C.) for a predetermined time (for example, 1 to 100 hours). It is also possible to remove crystal water from these compounds. Moreover, you may grind | pulverize after calcination.
 本発明の方法によって得られる黄色蛍光体は、賦活剤としてEuを含む。本発明の方法によって得られる黄色蛍光体が含むEuは、Eu含有化合物に由来する。金属ハロゲン化物としてEuハロゲン化物を用いた場合、および/または、金属化合物としてEu化合物を用いた場合には、本発明の方法によって得られる黄色蛍光体が含むEuは、Eu含有化合物と、Euハロゲン化物および/またはEu化合物とに由来する。
 本発明の方法によって得られる黄色蛍光体は、賦活剤としてEuに加えて、希土類元素、MnおよびBiからなる群より選ばれる少なくとも1種の元素(以下、その他の賦活剤元素、ともいう。)を含むことが好ましい。この場合、金属ハロゲン化物および/または金属化合物が、その他の賦活剤元素を含む。
The yellow phosphor obtained by the method of the present invention contains Eu as an activator. Eu contained in the yellow phosphor obtained by the method of the present invention is derived from an Eu-containing compound. When Eu halide is used as the metal halide and / or when Eu compound is used as the metal compound, Eu contained in the yellow phosphor obtained by the method of the present invention includes Eu-containing compound and Eu halogen. Derived from compounds and / or Eu compounds.
In addition to Eu as an activator, the yellow phosphor obtained by the method of the present invention is at least one element selected from the group consisting of rare earth elements, Mn and Bi (hereinafter also referred to as other activator elements). It is preferable to contain. In this case, the metal halide and / or metal compound contains other activator elements.
 本発明の方法によって得られる黄色蛍光体は、単一の結晶相を有することが好ましい。そのために、仮焼時または第二の焼成時に、第二混合物に反応促進剤を添加することが好ましい。反応促進剤を添加することによって、得られる黄色蛍光体の発光強度をより高くすることができる。反応促進剤としては、LiF、NaF、KF、LiCl、NaCl、KClなどのアルカリ金属ハロゲン化物、LiCO、NaCO、KCOなどのアルカリ金属炭酸塩、NaHCOなどのアルカリ金属炭酸水素塩、NHCl、NHIなどのハロゲン化アンモニウム、Bなどの土類金属の酸化物、HBOなどの土類金属のオキソ酸などが挙げられる。 The yellow phosphor obtained by the method of the present invention preferably has a single crystal phase. Therefore, it is preferable to add a reaction accelerator to the second mixture at the time of calcination or second baking. By adding a reaction accelerator, the emission intensity of the resulting yellow phosphor can be further increased. Examples of the reaction accelerator include alkali metal halides such as LiF, NaF, KF, LiCl, NaCl, and KCl, alkali metal carbonates such as Li 2 CO 3 , Na 2 CO 3 , and K 2 CO 3 , and alkalis such as NaHCO 3. Examples thereof include metal hydrogen carbonates, ammonium halides such as NH 4 Cl and NH 4 I, oxides of earth metals such as B 2 O 3, and oxo acids of earth metals such as H 3 BO 3 .
 本発明の方法によって得られる黄色蛍光体は、金属ハロゲン化物、反応促進剤等の原料に由来するハロゲン元素、すなわち、F、Cl、BrおよびIからなる群より選ばれる少なくとも1種の元素を含んでいてもよい。本発明の方法によって得られる黄色蛍光体が含むハロゲン元素の合計含有量は、原料中に含有されるハロゲン元素の合計量に対して同量以下であればよく、好ましくは50%以下、さらに好ましくは25%以下である。 The yellow phosphor obtained by the method of the present invention contains a halogen element derived from a raw material such as a metal halide or a reaction accelerator, that is, at least one element selected from the group consisting of F, Cl, Br and I. You may go out. The total content of halogen elements contained in the yellow phosphor obtained by the method of the present invention may be equal to or less than the total amount of halogen elements contained in the raw material, preferably 50% or less, more preferably Is 25% or less.
 仮焼後の第二混合物、および/または、本発明の黄色蛍光体は、例えば、ボールミル、ジェットミル等を用いて粉砕されてもよく、洗浄されてもよく、分級されてもよい。 The second mixture after calcination and / or the yellow phosphor of the present invention may be pulverized, washed, or classified using, for example, a ball mill, a jet mill or the like.
 本発明の方法によって、式M 2a(M )M で表される本発明の黄色蛍光体を製造することができる。 By the method of the present invention, the yellow phosphor of the present invention represented by the formula M 1 2a (M 2 b L c ) M 3 d O 4 can be produced.
<黄色蛍光体>
 本発明の黄色蛍光体は、式M 2a(M )M で表される。
<Yellow phosphor>
The yellow phosphor of the present invention is represented by the formula M 1 2a (M 2 b L c ) M 3 d O 4 .
 式中、Mはアルカリ金属からなる群より選ばれる少なくとも1種の元素であり、Mはアルカリ土類金属およびZnからなる群より選ばれる少なくとも1種の元素であり、Mは、SiおよびGeからなる群より選ばれる少なくとも1種の元素である。Mは、Li、NaおよびKからなる群より選ばれる少なくとも1種の元素であることが好ましく、Liであることがより好ましい。MはSiであることが好ましい。Mは、Srのみでないことが好ましい。すなわち、Mは、Ca、Ba、MgもしくはZnであるか、または、Mg、Ca、Sr、BaおよびZnからなる群より選ばれる少なくとも2種の元素であることが好ましく、CaおよびSrであることがより好ましい。
 Lは、母体結晶を賦活する発光イオンである。Lは、少なくともEuを含み、更に希土類元素、BiおよびMnからなる群より選ばれる少なくとも1種の元素を含んでもよい。
 Lに含まれるEuのうち、2価のEuの割合は25モル%以上100モル%以下である。2価のEuの割合は、30モル%以上であることが好ましく、40モル%以上であることがより好ましく、50モル%以上であることが更に好ましい。
In the formula, M 1 is at least one element selected from the group consisting of alkali metals, M 2 is at least one element selected from the group consisting of alkaline earth metals and Zn, and M 3 is Si And at least one element selected from the group consisting of Ge. M 1 is preferably at least one element selected from the group consisting of Li, Na and K, and more preferably Li. M 3 is preferably Si. M 2 is preferably not only Sr. That is, M 2 is preferably Ca, Ba, Mg or Zn, or preferably at least two elements selected from the group consisting of Mg, Ca, Sr, Ba and Zn, and is Ca and Sr. It is more preferable.
L is a luminescent ion that activates the host crystal. L contains at least Eu, and may further contain at least one element selected from the group consisting of rare earth elements, Bi and Mn.
Of the Eu contained in L, the proportion of divalent Eu is 25 mol% or more and 100 mol% or less. The ratio of divalent Eu is preferably 30 mol% or more, more preferably 40 mol% or more, and further preferably 50 mol% or more.
 aは0.1以上、1.5以下であり、bは0.8以上、1.2以下であり、cは0.005以上、0.2以下であり、dは0.8以上、1.2以下である。aは、0.8以上、1.2以下であることが好ましく、0.9以上、1.1以下であることがより好ましい。bおよびdは、いずれも0.8以上、1.0以下であることが好ましく、0.9以上、1.0以下であることがより好ましい。cは、0.01以上、0.1以下であることが好ましい。
 b、cおよびdが、b+c=1、かつ、d=1の関係を満たすことが好ましい。本発明の黄色蛍光体の結晶系は、六方晶であることが好ましい。
a is 0.1 or more and 1.5 or less, b is 0.8 or more and 1.2 or less, c is 0.005 or more and 0.2 or less, d is 0.8 or more, 1 or less .2 or less. a is preferably 0.8 or more and 1.2 or less, and more preferably 0.9 or more and 1.1 or less. Both b and d are preferably 0.8 or more and 1.0 or less, and more preferably 0.9 or more and 1.0 or less. c is preferably 0.01 or more and 0.1 or less.
It is preferable that b, c, and d satisfy the relationship of b + c = 1 and d = 1. The crystal system of the yellow phosphor of the present invention is preferably hexagonal.
 式M 2a(M )M で表される本発明の黄色蛍光体を製造するためには、本発明の方法において、固溶体と金属化合物との混合割合は、(M元素):(M元素):(Euおよびその他の賦活剤元素):(M元素)の比率が2a:b:c:dとなるように定められる。すなわち、例えば、本発明の黄色蛍光体の好ましい組成の一つである式Li1.96Sr0.98Eu0.02SiOで表される蛍光体を得るために、例えば、金属ハロゲン化物としてSrClを用い、Eu含有化合物としてEuを用い、SrClとEuを含む固溶体を得、金属化合物としてSrCO、LiCO、SiOおよびEuを用いる場合、Li:Sr:Eu:Siのモル比が1.96:0.98:0.02:1.0となるように、固溶体と金属化合物の混合比率を定めればよい。 In order to produce the yellow phosphor of the present invention represented by the formula M 1 2a (M 2 b L c ) M 3 d O 4 , in the method of the present invention, the mixing ratio of the solid solution and the metal compound is ( M 1 element) :( M 2 element) :( Eu and other activator elements) :( M 3 ratios of the elements) is 2a: b: c: is defined so as d. That is, for example, in order to obtain a phosphor represented by the formula Li 1.96 Sr 0.98 Eu 0.02 SiO 4 , which is one of the preferred compositions of the yellow phosphor of the present invention, for example, as a metal halide When SrCl 2 is used, Eu 2 O 3 is used as the Eu-containing compound, a solid solution containing SrCl 2 and Eu 2 O 3 is obtained, and SrCO 3 , Li 2 CO 3 , SiO 2 and Eu 2 O 3 are used as the metal compound The mixing ratio of the solid solution and the metal compound may be determined so that the molar ratio of Li: Sr: Eu: Si is 1.96: 0.98: 0.02: 1.0.
 本発明の黄色蛍光体は、発光装置に好適に用いることができる。 The yellow phosphor of the present invention can be suitably used for a light emitting device.
<発光装置>
 本発明の発光装置は、本発明の黄色蛍光体を含む。発光装置としては、白色LEDが挙げられる。
<Light emitting device>
The light emitting device of the present invention includes the yellow phosphor of the present invention. A white LED is mentioned as a light-emitting device.
 白色LEDは、一般に、例えば、特開平11−31845号公報、特開2002−226846号公報等に開示の方法によって製造することができる。すなわち、200nm以上、550nm以下の波長の光を発する発光素子を、エポキシ樹脂、シリコーン樹脂等の透光性樹脂で封止し、その封止体の表面を覆うように蛍光体を配置することによって、白色LEDを製造することができる。白色LEDが所望の白色を発光できるように、蛍光体の量を適宜設定すればよい。 A white LED can be generally manufactured by a method disclosed in, for example, Japanese Patent Application Laid-Open Nos. 11-31845 and 2002-226846. That is, by sealing a light-emitting element that emits light having a wavelength of 200 nm or more and 550 nm or less with a light-transmitting resin such as an epoxy resin or a silicone resin, and arranging the phosphor so as to cover the surface of the sealing body A white LED can be manufactured. What is necessary is just to set the quantity of fluorescent substance suitably so that white LED can light-emit desired white.
 本発明の発光装置では、蛍光体として、本発明の黄色蛍光体が単独で用いられてもよいし、本発明の黄色蛍光体と他の蛍光体とが併用されてもよい。他の蛍光体としては、BaMgAl1017:Eu、(Ba,Sr,Ca)(Al,Ga):Eu、BaMgAl1017:(Eu,Mn)、BaAl1219:(Eu,Mn)、(Ba,Sr,Ca)S:(Eu,Mn)、YBO:(Ce,Tb)、Y:Eu、YS:Eu、YVO:Eu、(Ca,Sr)S:Eu、SrY:Eu、Ca−Al−Si−O−N:Eu、Li−(Ca,Mg)−Ln−Al−O−N:Eu、(Ba,Sr,Ca)Si:Eu、β−サイアロン、CaSc:Ce(ただし、LnはEu以外の希土類金属元素を表す)などが挙げられる。 In the light emitting device of the present invention, as the phosphor, the yellow phosphor of the present invention may be used alone, or the yellow phosphor of the present invention and another phosphor may be used in combination. Other phosphors include BaMgAl 10 O 17 : Eu, (Ba, Sr, Ca) (Al, Ga) 2 S 4 : Eu, BaMgAl 10 O 17 : (Eu, Mn), BaAl 12 O 19 : (Eu , Mn), (Ba, Sr, Ca) S: (Eu, Mn), YBO 3 : (Ce, Tb), Y 2 O 3 : Eu, Y 2 O 2 S: Eu, YVO 4 : Eu, (Ca Sr) S: Eu, SrY 2 O 4 : Eu, Ca—Al—Si—O—N: Eu, Li— (Ca, Mg) —Ln—Al—O—N: Eu, (Ba, Sr, Ca ) Si 2 O 2 N 2 : Eu, β-sialon, CaSc 2 O 4 : Ce (where Ln represents a rare earth metal element other than Eu).
 200nm以上、550nm以下の波長の光を発する発光素子としては、紫外LED、青色LED等が挙げられる。紫外LEDおよび青色LEDでは、発光層として、GaN、InGa1−iN(0<i<1)、InAlGa1−i−jN(0<i<1、0<j<1、i+j<1)等の層を有する半導体が用いられる。発光層の組成を変化させることによって、発光波長を変化させることができる。 Examples of the light emitting element that emits light having a wavelength of 200 nm or more and 550 nm or less include an ultraviolet LED and a blue LED. In the ultraviolet LED and the blue LED, GaN, In i Ga 1-i N (0 <i <1), In i Al j Ga 1-jj N (0 <i <1, 0 <j <) are used as the light emitting layer. A semiconductor having a layer such as 1, i + j <1) is used. The emission wavelength can be changed by changing the composition of the light emitting layer.
 本発明の発光装置は、白色LED以外にも、PDPなどの蛍光体励起源が真空紫外線である発光装置、液晶ディスプレイ用バックライト、三波長形蛍光ランプなどの蛍光体励起源が紫外線である発光装置、CRT、FEDなどの蛍光体励起源が電子線である発光装置を含む。 In addition to the white LED, the light emitting device of the present invention is a light emitting device in which the phosphor excitation source such as PDP is a vacuum ultraviolet ray, a backlight for a liquid crystal display, a phosphor excitation source such as a three-wavelength fluorescent lamp, and the like. A light emitting device in which the phosphor excitation source is an electron beam, such as a device, a CRT, or an FED.
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples.
 蛍光体の発光強度の測定は、蛍光分光測定装置(日本分光(株)製FP−6500)を用いて行った。蛍光体のX線回折(XRD)測定は、X線回折装置(リガク製RINT2000)を用いて行った。蛍光体中のEuの価数割合評価は、X線吸収微細構造(XAFS)測定により行った。 The measurement of the emission intensity of the phosphor was performed using a fluorescence spectrometer (FP-6500 manufactured by JASCO Corporation). X-ray diffraction (XRD) measurement of the phosphor was performed using an X-ray diffractometer (RINT2000 manufactured by Rigaku). Evaluation of the valence ratio of Eu in the phosphor was performed by X-ray absorption fine structure (XAFS) measurement.
XAFS測定は、SPring−8において、ビームラインBL14B2を用いて、透過法により行った。Eu−L3吸収端である6650~7600eV測定領域として測定を行った。Eu2+(6972eV)の標準試料としてBaMgAl1017:Eu2+(BAM)を用い、Eu3+(6980eV)の標準試料として酸化ユウロピウム(信越化学工業株式会社製、純度99.99%)を用いた。 XAFS measurement was performed by the transmission method using the beam line BL14B2 in SPring-8. Measurement was carried out as a 6650-7600 eV measurement region which is the Eu-L3 absorption edge. BaMgAl 10 O 17 : Eu 2+ (BAM) was used as a standard sample for Eu 2+ (6972 eV), and europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%) was used as a standard sample for Eu 3+ (6980 eV). .
 解析プログラム(リガク製REX2000)を用い、各試料のXAFSデータをバックグラウンドに基づいて処理し、X線吸収端近傍構造(XANES)スペクトルを得た後、Eu2+標準試料およびEu3+標準試料のXANESスペクトルを用いて、各試料のXANESスペクトルのパターンフィッティングを行い、Eu2+ピークの割合から試料中のEu2+の割合を算出した。 Using an analysis program (Rigaku REX2000), the XAFS data of each sample was processed based on the background to obtain an X-ray absorption near edge structure (XANES) spectrum, and then Eu + standard sample and Eu 3 + standard sample XANES Using the spectrum, pattern fitting of the XANES spectrum of each sample was performed, and the ratio of Eu 2+ in the sample was calculated from the ratio of Eu 2+ peaks.
比較例1
 炭酸リチウム(関東化学株式会社製、純度99%)、炭酸ストロンチウム(堺化学工業株式会社製、純度99%以上)、酸化ユウロピウム(信越化学工業株式会社製、純度99.99%)、および、二酸化珪素(日本アエロジル株式会社製:純度99.99%)の各原料をLi:Sr:Eu:Siのモル比が1.96:0.98:0.02:1.0となるように秤量し、これらを乾式ボールミルにより6時間混合して金属化合物混合物を得た。
Comparative Example 1
Lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%), and dioxide Each raw material of silicon (manufactured by Nippon Aerosil Co., Ltd .: purity 99.99%) is weighed so that the molar ratio of Li: Sr: Eu: Si is 1.96: 0.98: 0.02: 1.0. These were mixed by a dry ball mill for 6 hours to obtain a metal compound mixture.
 前記金属化合物混合物を5体積%のHを含有するN雰囲気中で、800℃の温度で24時間保持して焼成し、その後室温まで徐冷して、式Li1.96(Sr0.98Eu0.02)SiOで表される化合物を含有する蛍光体を得た。 The metal compound mixture was calcined by holding at a temperature of 800 ° C. for 24 hours in an N 2 atmosphere containing 5% by volume of H 2 , and then gradually cooled to room temperature to obtain the formula Li 1.96 (Sr 0. A phosphor containing a compound represented by 98 Eu 0.02 ) SiO 4 was obtained.
 得られた蛍光体の全Eu中の2価のEu(Eu2+)の割合は14モル%であった。 The ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 14 mol%.
比較例2
 炭酸リチウム(関東化学株式会社製、純度99%)、炭酸ストロンチウム(堺化学工業株式会社製、純度99%以上)、酸化ユウロピウム(信越化学工業株式会社製、純度99.99%)、および、二酸化珪素(日本アエロジル株式会社製:純度99.99%)の各原料をLi:Sr:Eu:Siのモル比が1.96:0.98:0.02:1.0となるように秤量し、これらを乾式ボールミルにより6時間混合して金属化合物混合物を得た。
Comparative Example 2
Lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%), and dioxide Each raw material of silicon (manufactured by Nippon Aerosil Co., Ltd .: purity 99.99%) is weighed so that the molar ratio of Li: Sr: Eu: Si is 1.96: 0.98: 0.02: 1.0. These were mixed by a dry ball mill for 6 hours to obtain a metal compound mixture.
 前記金属化合物混合物を5体積%のHを含有するN雰囲気中で、800℃の温度で24時間保持して焼成し、その後室温まで徐冷して、焼成物を得た。得られた焼成物を粉砕し、粉砕物をさらに5体積%のHを含有するN雰囲気中で、800℃の温度で24時間保持して再焼成し、その後室温まで冷却して、式Li1.96(Sr0.98Eu0.02)SiOで表される化合物を含有する蛍光体を得た。 The metal compound mixture was fired in an N 2 atmosphere containing 5% by volume of H 2 at a temperature of 800 ° C. for 24 hours and then gradually cooled to room temperature to obtain a fired product. The fired product obtained was pulverized, and the pulverized product was further refired by holding it at a temperature of 800 ° C. for 24 hours in an N 2 atmosphere containing 5% by volume of H 2 , and then cooled to room temperature. A phosphor containing a compound represented by Li 1.96 (Sr 0.98 Eu 0.02 ) SiO 4 was obtained.
 得られた蛍光体の全Eu中の2価のEu(Eu2+)の割合は17モル%であった。 The ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 17 mol%.
実施例1
 塩化ストロンチウム(堺化学工業株式会社製、純度99%以上)、および、酸化ユウロピウム(信越化学工業株式会社製、純度99.99%)をSr/Euのモル比が1となるように秤量して混合し(SrCl/Euのモル比=2)、得られた第一混合物を5体積%のHを含有するN雰囲気にて、650℃、12時間焼成することで固溶体を得た。
Example 1
Strontium chloride (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more) and europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%) were weighed so that the molar ratio of Sr / Eu was 1. (Molar ratio of SrCl 2 / Eu 2 O 3 = 2), and the obtained first mixture was baked at 650 ° C. for 12 hours in an N 2 atmosphere containing 5% by volume of H 2 to obtain a solid solution. Obtained.
 得られた固溶体と、炭酸リチウム(関東化学株式会社製、純度99%)と、炭酸ストロンチウム(堺化学工業株式会社製、純度99%以上)と、二酸化珪素(日本アエロジル株式会社製:純度99.99%)を、Li:Sr:Eu:Siのモル比が1.96:0.98:0.02:1.0となるように秤量し、これらを乾式ボールミルにより6時間混合して第二混合物を得た。 The obtained solid solution, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd .: purity 99.000). 99%) to a Li: Sr: Eu: Si molar ratio of 1.96: 0.98: 0.02: 1.0, and these are mixed for 6 hours by a dry ball mill. A mixture was obtained.
 得られた第二混合物を5体積%のHを含有するN雰囲気中、800℃の温度で24時間保持して焼成し、その後室温まで徐冷して、式Li1.96(Sr0.98Eu0.02)SiOで表される化合物を含有する蛍光体を得た。 The obtained second mixture was calcined by holding at a temperature of 800 ° C. for 24 hours in an N 2 atmosphere containing 5% by volume of H 2 , and then gradually cooled to room temperature to obtain the formula Li 1.96 (Sr 0 .98 Eu 0.02 ) A phosphor containing a compound represented by SiO 4 was obtained.
 得られた蛍光体は、571nmに発光ピークを有することを確認した。得られた蛍光体の全Eu中の2価のEu(Eu2+)の割合は25モル%であった。 It was confirmed that the obtained phosphor had an emission peak at 571 nm. The ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 25 mol%.
実施例2
 実施例1で得られた固溶体と、炭酸リチウム(関東化学株式会社製、純度99%)と、炭酸ストロンチウム(堺化学工業株式会社製、純度99%以上)と、二酸化珪素(日本アエロジル株式会社製:純度99.99%)を、Li:Sr:Eu:Siのモル比が1.96:0.98:0.02:1.0となるように秤量し、これらを乾式ボールミルにより6時間混合して第二混合物を得た。
Example 2
Solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd.) : 99.99% purity) was measured so that the molar ratio of Li: Sr: Eu: Si was 1.96: 0.98: 0.02: 1.0, and these were mixed for 6 hours by a dry ball mill. A second mixture was obtained.
 得られた第二混合物を5体積%のHを含有するN雰囲気中、800℃の温度で24時間保持して焼成し、その後室温まで徐冷して、焼成物を得た。得られた焼成物を粉砕し、さらに5体積%のHを含有するN雰囲気中、800℃の温度で24時間保持して再焼成し、室温まで徐冷して、式Li1.96(Sr0.98Eu0.02)SiOで表される化合物を含有する蛍光体を得た。 Second mixture of N 2 atmosphere containing 5 vol% H 2 obtained, calcined by holding at a temperature of 800 ° C. 24 hours, then gradually cooled to room temperature to obtain a calcined product. The fired product obtained was pulverized, re-fired by holding at a temperature of 800 ° C. for 24 hours in an N 2 atmosphere containing 5% by volume of H 2 , gradually cooled to room temperature, and then expressed by the formula Li 1.96. A phosphor containing a compound represented by (Sr 0.98 Eu 0.02 ) SiO 4 was obtained.
 得られた蛍光体は、571nmに発光ピークを有することを確認した。得られた蛍光体の全Eu中の2価のEu(Eu2+)の割合は46.3モル%であった。 It was confirmed that the obtained phosphor had an emission peak at 571 nm. The ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 46.3 mol%.
実施例3
 実施例1で得られた固溶体と、炭酸リチウム(関東化学株式会社製、純度99%)と、炭酸ストロンチウム(堺化学工業株式会社製、純度99%以上)と、二酸化珪素(日本アエロジル株式会社製:純度99.99%)を、Li:Sr:Eu:Siのモル比が1.96:0.98:0.02:1.0となるように秤量し、これらを乾式ボールミルにより6時間混合して第二混合物を得た。
Example 3
Solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd.) : 99.99% purity) was measured so that the molar ratio of Li: Sr: Eu: Si was 1.96: 0.98: 0.02: 1.0, and these were mixed for 6 hours by a dry ball mill. A second mixture was obtained.
 得られた第二混合物を、5体積%のHを含有するN雰囲気中、800℃の温度で24時間保持して焼成し、その後室温まで徐冷して、式Li0.96(Sr0.98Eu0.02)SiOで表される化合物を含有する蛍光体を得た。 The obtained second mixture was calcined by holding at a temperature of 800 ° C. for 24 hours in an N 2 atmosphere containing 5% by volume of H 2 , and then gradually cooled to room temperature to obtain the formula Li 0.96 (Sr A phosphor containing a compound represented by 0.98 Eu 0.02 ) SiO 4 was obtained.
 得られた蛍光体は、571nmに発光ピークを有することを確認した。得られた蛍光体の全Eu中の2価のEu(Eu2+)の割合は54.1モル%であった。 It was confirmed that the obtained phosphor had an emission peak at 571 nm. The ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 54.1 mol%.
実施例4
 実施例1で得られた固溶体と、炭酸リチウム(関東化学株式会社製、純度99%)と、炭酸ストロンチウム(堺化学工業株式会社製、純度99%以上)と、二酸化珪素(日本アエロジル株式会社製:純度99.99%)を、Li:Sr:Eu:Siのモル比が1.96:0.97:0.03:1.0となるように秤量しこれらを乾式ボールミルにより6時間混合して第二混合物を得た。
Example 4
Solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd.) : 99.99% purity) and the molar ratio of Li: Sr: Eu: Si is 1.96: 0.97: 0.03: 1.0, and these are mixed for 6 hours by a dry ball mill. To obtain a second mixture.
 得られた第二混合物を、5体積%のHを含有するN雰囲気中、800℃の温度で24時間保持して焼成し、その後室温まで徐冷して、式Li1.96(Sr0.98Eu0.02)SiOで表される化合物を含有する蛍光体を得た。 The resulting second mixture was calcined by holding in a N 2 atmosphere containing 5% by volume of H 2 at a temperature of 800 ° C. for 24 hours and then gradually cooled to room temperature to obtain the formula Li 1.96 (Sr A phosphor containing a compound represented by 0.98 Eu 0.02 ) SiO 4 was obtained.
 得られた蛍光体は、571nmに発光ピークを有することを確認した。得られた蛍光体の全Eu中の2価のEu(Eu2+)の割合は54.0モル%であった。 It was confirmed that the obtained phosphor had an emission peak at 571 nm. The ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 54.0 mol%.
実施例5
 実施例1で得られた固溶体と、炭酸リチウム(関東化学株式会社製、純度99%)と、炭酸ストロンチウム(堺化学工業株式会社製、純度99%以上)と、二酸化珪素(日本アエロジル株式会社製:純度99.99%)を、Li:Sr:Eu:Siのモル比が1.96:0.95:0.05:1.0となるように秤量し、これらを乾式ボールミルにより6時間混合して第二混合物を得た。
Example 5
Solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd.) : 99.99% purity) was measured so that the molar ratio of Li: Sr: Eu: Si was 1.96: 0.95: 0.05: 1.0, and these were mixed by a dry ball mill for 6 hours. A second mixture was obtained.
 得られた第二混合物を、5体積%のHを含有するN雰囲気中、800℃の温度で24時間保持して焼成し、その後室温まで徐冷して、式Li1.96(Sr0.95Eu0.05)SiOで表される化合物を含有する蛍光体を得た。 The resulting second mixture was calcined by holding in a N 2 atmosphere containing 5% by volume of H 2 at a temperature of 800 ° C. for 24 hours and then gradually cooled to room temperature to obtain the formula Li 1.96 (Sr 0.95 Eu 0.05 ) A phosphor containing a compound represented by SiO 4 was obtained.
 得られた蛍光体は、571nmに発光ピークを有することを確認した。得られた蛍光体の全Eu中の2価のEu(Eu2+)の割合は28.0モル%であった。 It was confirmed that the obtained phosphor had an emission peak at 571 nm. The ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 28.0 mol%.
実施例6
 実施例1で得られた固溶体と、炭酸リチウム(関東化学株式会社製、純度99%)と、炭酸ストロンチウム(堺化学工業株式会社製、純度99%以上)と、二酸化珪素(日本アエロジル株式会社製:純度99.99%)を、Li:Sr:Eu:Siのモル比が1.96:0.97:0.03:1.0となるように秤量し、これらを乾式ボールミルにより6時間混合して第二混合物を得た。
Example 6
Solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd.) : Purity 99.99%) was measured so that the molar ratio of Li: Sr: Eu: Si was 1.96: 0.97: 0.03: 1.0, and these were mixed by a dry ball mill for 6 hours. A second mixture was obtained.
 得られた第二混合物を、5体積%のHを含有するN雰囲気中、800℃の温度で24時間保持して焼成し、その後室温まで徐冷して、式Li1.96(Sr0.97Eu0.03)SiOで表される化合物を含有する蛍光体を得た。 The resulting second mixture was calcined by holding in a N 2 atmosphere containing 5% by volume of H 2 at a temperature of 800 ° C. for 24 hours and then gradually cooled to room temperature to obtain the formula Li 1.96 (Sr A phosphor containing a compound represented by 0.97 Eu 0.03 ) SiO 4 was obtained.
 得られた蛍光体は、571nmに発光ピークを有することを確認した。得られた蛍光体の全Eu中の2価のEu(Eu2+)の割合は64.3モル%であった。 It was confirmed that the obtained phosphor had an emission peak at 571 nm. The ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 64.3 mol%.
実施例7
 実施例1で得られた固溶体と、炭酸リチウム(関東化学株式会社製、純度99%)と、炭酸ストロンチウム(堺化学工業株式会社製、純度99%以上)と、二酸化珪素(日本アエロジル株式会社製:純度99.99%)を、Li:Sr:Eu:Siのモル比が1.96:0.95:0.05:1.0となるように秤量し、これらを乾式ボールミルにより6時間混合して第二混合物を得た。
Example 7
Solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd.) : 99.99% purity) was measured so that the molar ratio of Li: Sr: Eu: Si was 1.96: 0.95: 0.05: 1.0, and these were mixed by a dry ball mill for 6 hours. A second mixture was obtained.
 得られた第二混合物を、5体積%のHを含有するN雰囲気中、800℃の温度で24時間保持して焼成し、その後室温まで徐冷して、式Li1.96(Sr0.95Eu0.05)SiOで表される化合物を含有する蛍光体を得た。 The resulting second mixture was calcined by holding in a N 2 atmosphere containing 5% by volume of H 2 at a temperature of 800 ° C. for 24 hours and then gradually cooled to room temperature to obtain the formula Li 1.96 (Sr 0.95 Eu 0.05 ) A phosphor containing a compound represented by SiO 4 was obtained.
 得られた蛍光体は、571nmに発光ピークを有することを確認した。得られた蛍光体の全Eu中の2価のEu(Eu2+)の割合は56.0モル%であった。 It was confirmed that the obtained phosphor had an emission peak at 571 nm. The ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 56.0 mol%.
実施例8
 実施例1で得られた固溶体と、炭酸リチウム(関東化学株式会社製、純度99%)と、炭酸ストロンチウム(堺化学工業株式会社製、純度99%以上)と、二酸化珪素(日本アエロジル株式会社製:純度99.99%)を、Li:Sr:Eu:Siのモル比が1.96:0.93:0.07:1.0となるように秤量し、これらを乾式ボールミルにより6時間混合して第二混合物を得た。
Example 8
Solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), and silicon dioxide (manufactured by Nippon Aerosil Co., Ltd.) : Purity 99.99%) was measured so that the molar ratio of Li: Sr: Eu: Si was 1.96: 0.93: 0.07: 1.0, and these were mixed for 6 hours by a dry ball mill. A second mixture was obtained.
 得られた第二混合物を、5体積%のHを含有するN雰囲気中、800℃の温度で24時間保持して焼成し、その後室温まで徐冷して、式Li1.96(Sr0.93Eu0.07)SiOで表される化合物を含有する蛍光体を得た。 The resulting second mixture was calcined by holding in a N 2 atmosphere containing 5% by volume of H 2 at a temperature of 800 ° C. for 24 hours and then gradually cooled to room temperature to obtain the formula Li 1.96 (Sr 0.93 Eu 0.07 ) A phosphor containing a compound represented by SiO 4 was obtained.
 得られた蛍光体は、571nmに発光ピークを有することを確認した。得られた蛍光体の全Eu中の2価のEu(Eu2+)の割合は50.0モル%であった。 It was confirmed that the obtained phosphor had an emission peak at 571 nm. The ratio of divalent Eu (Eu 2+ ) in the total Eu of the obtained phosphor was 50.0 mol%.
 また、XRD測定の結果、実施例1~8で得られた蛍光体は、いずれも六方晶であることを確認した。 As a result of XRD measurement, it was confirmed that all the phosphors obtained in Examples 1 to 8 were hexagonal.
 本発明の方法によれば、金属ハロゲン化物とEu含有化合物との第一混合物を焼成し、固溶体を作製した後、前記固溶体と金属化合物との第二混合物を焼成するため、低温還元焼成においてもEu2+を安定的に生成することができる。そのため、Eu2+の含有割合の高い黄色蛍光体を得ることができる。
 すなわち、本発明の方法によれば、焼成温度が低い場合でもEu原料を効率よく還元して、得られる蛍光体の全Eu中のEu2+の割合を向上させることができ、低環境負荷かつ低コストで蛍光体を製造することができる。
According to the method of the present invention, the first mixture of the metal halide and the Eu-containing compound is fired to produce a solid solution, and then the second mixture of the solid solution and the metal compound is fired. Eu 2+ can be stably generated. Therefore, a yellow phosphor having a high Eu 2+ content ratio can be obtained.
That is, according to the method of the present invention, even when the firing temperature is low, the Eu raw material can be efficiently reduced, and the ratio of Eu 2+ in the total Eu of the obtained phosphor can be improved. A phosphor can be manufactured at low cost.

Claims (17)

  1. 金属ハロゲン化物とEu含有化合物との第一混合物を焼成し、固溶体を作製する工程と、前記固溶体と金属化合物との第二混合物を焼成する工程を含む黄色蛍光体の製造方法。 A method for producing a yellow phosphor, comprising: firing a first mixture of a metal halide and an Eu-containing compound to produce a solid solution; and firing a second mixture of the solid solution and the metal compound.
  2. 前記金属ハロゲン化物が、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物および希土類ハロゲン化物からなる群より選ばれる少なくとも1種の化合物である請求項1に記載の方法。 The method according to claim 1, wherein the metal halide is at least one compound selected from the group consisting of alkali metal halides, alkaline earth metal halides, and rare earth halides.
  3. 前記金属ハロゲン化物が、アルカリ金属ハロゲン化物および/またはアルカリ土類金属ハロゲン化物である請求項2に記載の方法、 The method according to claim 2, wherein the metal halide is an alkali metal halide and / or an alkaline earth metal halide.
  4. 前記金属ハロゲン化物がハロゲン化ストロンチウムである請求項3に記載の方法。 4. The method of claim 3, wherein the metal halide is strontium halide.
  5. 前記ハロゲン化ストロンチウムが塩化ストロンチウムである請求項4に記載の方法。 The method of claim 4, wherein the strontium halide is strontium chloride.
  6. 前記金属化合物が、(i)Si化合物および/またはGe化合物と、(ii)アルカリ金属化合物およびアルカリ土類金属の化合物のうち、少なくとも前記金属ハロゲン化物に含まれる金属と異なる金属を含む化合物とを含む請求項1~5のいずれかに記載の方法。 The metal compound includes (i) a Si compound and / or a Ge compound, and (ii) a compound containing at least a metal different from a metal contained in the metal halide among the alkali metal compound and the alkaline earth metal compound. 6. The method according to claim 1, further comprising:
  7. 前記金属化合物が、更に(iii)希土類元素化合物、Zn化合物、Bi化合物およびMn化合物からなる群より選ばれる少なくとも1種の化合物を含む請求項6に記載の方法。 The method according to claim 6, wherein the metal compound further comprises (iii) at least one compound selected from the group consisting of a rare earth element compound, a Zn compound, a Bi compound, and a Mn compound.
  8. 前記Eu含有化合物に含まれるEuに対する、前記金属ハロゲン化物に含まれる金属元素のモル比(金属ハロゲン化物に含まれる金属元素/Eu含有化合物に含まれるEu)が0.05以上、20以下である請求項1~7のいずれかに記載の方法。 The molar ratio of the metal element contained in the metal halide to the Eu contained in the Eu-containing compound (metal element contained in the metal halide / Eu contained in the Eu-containing compound) is 0.05 or more and 20 or less. The method according to any one of claims 1 to 7.
  9. 請求項1~8のいずれかに記載の方法によって製造される黄色蛍光体。 A yellow phosphor produced by the method according to any one of claims 1 to 8.
  10. 式M 2a(M )M で表される黄色蛍光体。
    式中、Mはアルカリ金属からなる群より選ばれる少なくとも1種の元素であり、
    はアルカリ土類金属およびZnからなる群より選ばれる少なくとも1種の元素であり、
    はSiおよびGeからなる群より選ばれる少なくとも1種の元素であり、
    Lは希土類元素、BiおよびMnからなる群より選ばれる少なくとも1種の元素であり、かつ、Lは少なくともEuを含み、
    前記Euのうち、2価のEuの割合が25モル%以上、100モル%以下であり、
    aは0.9以上、1.1以下、
    bは0.8以上、1.2以下、
    cは0.005以上、0.2以下、
    dは0.8以上、1.2以下である。
    A yellow phosphor represented by the formula M 1 2a (M 2 b L c ) M 3 d O 4 .
    In the formula, M 1 is at least one element selected from the group consisting of alkali metals,
    M 2 is at least one element selected from the group consisting of alkaline earth metals and Zn,
    M 3 is at least one element selected from the group consisting of Si and Ge;
    L is at least one element selected from the group consisting of rare earth elements, Bi and Mn, and L includes at least Eu,
    Of the Eu, the ratio of divalent Eu is 25 mol% or more and 100 mol% or less,
    a is 0.9 or more and 1.1 or less,
    b is 0.8 or more and 1.2 or less,
    c is 0.005 or more and 0.2 or less,
    d is 0.8 or more and 1.2 or less.
  11. がLiであり、MがSiである請求項10に記載の黄色蛍光体。 The yellow phosphor according to claim 10, wherein M 1 is Li and M 3 is Si.
  12. aが0.9以上、1.1以下である請求項10または11に記載の黄色蛍光体。 The yellow phosphor according to claim 10 or 11, wherein a is 0.9 or more and 1.1 or less.
  13. b、cおよびdが、b+c=1、かつ、d=1の関係を満たす請求項10~12のいずれかに記載の黄色蛍光体。 The yellow phosphor according to any one of claims 10 to 12, wherein b, c, and d satisfy a relationship of b + c = 1 and d = 1.
  14. がCa、Ba、MgもしくはZnであるか、または、Ca、Sr、Ba、MgおよびZnからなる群より選ばれる少なくとも2種の元素である請求項10~13のいずれかに記載の黄色蛍光体。 The yellow color according to any one of claims 10 to 13, wherein M 2 is Ca, Ba, Mg or Zn, or at least two elements selected from the group consisting of Ca, Sr, Ba, Mg and Zn. Phosphor.
  15. 黄色蛍光体の結晶系が六方晶である請求項10~14のいずれかに記載の黄色蛍光体。 15. The yellow phosphor according to claim 10, wherein the crystal system of the yellow phosphor is hexagonal.
  16. 請求項10~15のいずれかに記載の黄色蛍光体を用いた発光装置。 16. A light emitting device using the yellow phosphor according to claim 10.
  17. 請求項10~15のいずれかに記載の黄色蛍光体を用いた白色LED。 A white LED using the yellow phosphor according to any one of claims 10 to 15.
PCT/JP2011/073035 2010-09-30 2011-09-29 Phosphor and method for producing same WO2012043879A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-221358 2010-09-30
JP2010221358A JP2012077126A (en) 2010-09-30 2010-09-30 Phosphor and method for producing the same

Publications (1)

Publication Number Publication Date
WO2012043879A1 true WO2012043879A1 (en) 2012-04-05

Family

ID=45893309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073035 WO2012043879A1 (en) 2010-09-30 2011-09-29 Phosphor and method for producing same

Country Status (3)

Country Link
JP (1) JP2012077126A (en)
TW (1) TW201229213A (en)
WO (1) WO2012043879A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205788A (en) * 2013-04-15 2014-10-30 株式会社トクヤマ Method for producing inorganic crystals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272798A (en) * 2004-02-27 2005-10-06 Fuji Photo Film Co Ltd Method of producing phosphor particle
WO2006090865A1 (en) * 2005-02-23 2006-08-31 Sumitomo Chemical Company, Limited Phosphor, light emitting device and white light emitting diode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272798A (en) * 2004-02-27 2005-10-06 Fuji Photo Film Co Ltd Method of producing phosphor particle
WO2006090865A1 (en) * 2005-02-23 2006-08-31 Sumitomo Chemical Company, Limited Phosphor, light emitting device and white light emitting diode

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Synthesis of silicate phosphors for white LEDs", RAVE EARTHS, no. 56, 20 May 2010 (2010-05-20), pages 68 - 69 *
CHANDRAMOULI KULSHRESHTHA ET AL.: "Effect of Local Structures on the Luminescence of Li2(Sr,Ca,Ba)Si04:Eu2+", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 156, no. 3, 29 January 2009 (2009-01-29), pages J52 - J56 *
HONG HE ET AL.: "Li2SrSi04:Eu2+ phosphor prepared by the Pechini method and its application in white light emitting diode", JOURNAL OF MATERIALS RESEARCH, vol. 23, no. 12, December 2008 (2008-12-01), pages 3288 - 3294 *
M. PARDHA SARADHI ET AL.: "Photoluminescence Studies on Eu2+-activated Li2SrSi04-a Potential Orange-Yellow Phosphor for Solid-State Lighting", CHEMISTRY OF MATERIALS, vol. 18, no. 22, 3 October 2006 (2006-10-03), pages 5267 - 5272 *

Also Published As

Publication number Publication date
TW201229213A (en) 2012-07-16
JP2012077126A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP4889656B2 (en) A novel green phosphor based on aluminate
JP4899319B2 (en) White LED
KR101172143B1 (en) OXYNITRIDE-BASED PHOSPHORS COMPOSING OF SiON ELEMENT FOR WHITE LEDs, MANUFACTURING METHOD THEREOF AND LEDs USING THE SAME
TWI408210B (en) Green fluorescent materials, methods of fabricating the same and emission devices using the green fluorescent materials
JPWO2006106883A1 (en) Phosphor, phosphor sheet and method for producing the same, and light emitting device using the phosphor
CN101333440B (en) Green light-emission fluorescent material, manufacturing method thereof and lighting device using same
WO2014021006A1 (en) Alkaline earth metal silicate phosphor and method for producing same
JP2006232906A (en) Fluorescent substance and light-emitting apparatus using the same
WO2012074102A1 (en) Method for producing crystalline material
CN102154006A (en) Phosphor, light emitting device and white light emitting diode
WO2012074103A1 (en) Crystalline material, and light-emitting device and white led using same
WO2012043879A1 (en) Phosphor and method for producing same
US6960310B2 (en) Phosphor for vacuum ultraviolet ray-excited light-emitting element
KR101136744B1 (en) Flake type silicon-oxynitride phosphor and its manufacturing method
WO2012074105A1 (en) Yellow phosphor and method for manufacturing same
WO2012063685A1 (en) Yellow phosphor and manufacturing method therefor
JP2006028480A (en) Phosphor and light-emitting element using the same
JP5385961B2 (en) Phosphor and light emitting device using the same
JP2015048415A (en) Fluophor
KR20160111463A (en) Fluorescent material and light-emitting device
JP2012177030A (en) Method for producing phosphor
JP2012132001A (en) Method for producing phosphor
JP2014109005A (en) Alkaline earth metal silicate-based fluorescent material and white led made from the same
KR20160055216A (en) Method for producing silicate phosphor
EP3216841A1 (en) Phosphor and light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829429

Country of ref document: EP

Kind code of ref document: A1