WO2012074105A1 - Yellow phosphor and method for manufacturing same - Google Patents

Yellow phosphor and method for manufacturing same Download PDF

Info

Publication number
WO2012074105A1
WO2012074105A1 PCT/JP2011/077952 JP2011077952W WO2012074105A1 WO 2012074105 A1 WO2012074105 A1 WO 2012074105A1 JP 2011077952 W JP2011077952 W JP 2011077952W WO 2012074105 A1 WO2012074105 A1 WO 2012074105A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
sio
raw material
yellow phosphor
production method
Prior art date
Application number
PCT/JP2011/077952
Other languages
French (fr)
Japanese (ja)
Inventor
戸田 健司
和義 上松
峰夫 佐藤
雅 石垣
義貴 川上
鉄 梅田
Original Assignee
国立大学法人新潟大学
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人新潟大学, 住友化学株式会社 filed Critical 国立大学法人新潟大学
Publication of WO2012074105A1 publication Critical patent/WO2012074105A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7736Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7741Sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • C09K11/7789Oxysulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7794Vanadates; Chromates; Molybdates; Tungstates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a yellow phosphor and a method for producing the same.
  • the white LED is composed of a combination of an LED chip that emits light in the ultraviolet to blue region (wavelength of about 380 to 500 nm) and a phosphor that emits light when excited by the light emitted from the LED chip.
  • White colors having various color temperatures can be realized based on the combination of the LED chip and the phosphor.
  • Patent Document 1 discloses a phosphor represented by Y 3 Al 5 O 12 : Ce (YAG: Ce).
  • Y 3 Al 5 O 12 is a host crystal of the phosphor
  • Ce is a luminescent ion activated by the host crystal.
  • Patent Documents 2 and 3 disclose phosphors represented by Li 2 SrSiO 4 : Eu.
  • the phosphor represented by Li 2 SrSiO 4 : Eu is excellent in emission color.
  • the phosphor represented by Li 2 SrSiO 4 : Eu efficiently absorbs blue light emitted from a blue LED and exhibits a broad yellow light emission having a peak near 570 nm.
  • the phosphor represented by Li 2 SrSiO 4 : Eu can sufficiently maintain the emission intensity even when exposed to high temperatures.
  • a phosphor such as Li 2 SrSiO 4 : Eu is required to further improve the emission intensity.
  • An object of the present invention is to obtain a yellow phosphor having higher emission intensity (high luminance).
  • a raw material mixture containing M 1 , M 2 , and L and SiO are mixed and fired, and yellow fluorescence represented by M 1 2a (M 2 b L c ) M 3 d O 4
  • a method for producing a yellow phosphor comprising a step of generating a body.
  • another aspect of the present invention is a method for producing a yellow phosphor represented by M 1 2a (M 2 b L c ) M 3 d O 4 , wherein the yellow phosphor comprises at least M 1 , It is manufactured by firing a mixture of a raw material mixture containing M 2 and L and SiO.
  • the raw material mixture further contains an M 3 -containing raw material different from SiO, and the ratio of the Si element derived from the SiO to the total amount of the element M 3 in the yellow phosphor is 0.00. It may be from 001 to 50 atomic%. That is, the raw material mixture containing a substance different from SiO as an M 3 -containing raw material may be mixed with SiO and fired. In this case, 0.001 atomic% or more and 50 atomic% of the element M 3 in the phosphor The following may be derived from SiO.
  • the L may be at least one element including Eu selected from rare earth elements, Bi and Mn, and the Eu may include divalent Eu.
  • M 1 may be Li and M 3 may be Si.
  • M 2 may be only Sr, Sr and Ba, or Sr and Ca.
  • the a may be 0.9 to 1.1 (0.9 or more and 1.1 or less).
  • Another aspect of the present invention provides a yellow phosphor that can be produced by the above production method, and a light emitting device or a white LED having the yellow phosphor.
  • the emission intensity (luminance) of the obtained yellow phosphor can be further increased.
  • the present embodiment relates to a phosphor that emits yellow light (yellow phosphor).
  • Yellow light emission refers to light emission having a peak in the vicinity of a wavelength of 560 nm to 590 nm.
  • the yellow phosphor that is the target of the present embodiment is represented by the formula M 1 2a (M 2 b L c ) M 3 d O 4 (wherein M 1 represents at least one element selected from alkali metals, and M 2 Represents at least one element selected from alkaline earth metals (Ca, Sr, Ba), M 3 represents at least one element selected from Si and Ge, and L comprises a rare earth element, Bi and Mn. Represents at least one element selected from the group, a is from 0.1 to 1.5, b is from 0.8 to 1.2, and c is from 0.005 to 0.2. , D is 0.8 to 1.2).
  • the M 1 is preferably one or more (particularly one) element selected from Li, Na, and K, and more preferably Li.
  • M 2 is preferably one or more (especially one) element selected from Ca, Sr and Ba, and more preferably Sr.
  • M 2 preferably further contains Ba and / or Ca, and more preferably contains Ca.
  • L is an element that is activated in the host crystal as a luminescent ion, and preferably contains at least Eu.
  • L is Eu alone or a combination with one or more elements of L elements (rare earth elements, Bi, Mn) other than Eu and Eu.
  • Particularly preferred L is Eu.
  • Eu as L preferably contains at least divalent Eu (Eu 2+ ).
  • M 3 is preferably Si.
  • M 1 is Li.
  • the lower limit of a is preferably 0.5 or more, more preferably 0.8 or more, still more preferably 0.9 or more, and particularly preferably 0.95 or more.
  • the upper limit of a is preferably 1.2 or less, more preferably 1.1 or less, and particularly preferably 1.05 or less.
  • the lower limit of b is preferably 0.8 or more, and more preferably 0.9 or more.
  • the upper limit of b is preferably 1.1 or less, and more preferably 1.05 or less. In other words, the b is preferably 0.8 to 1.1, more preferably 0.9 to 1.05.
  • the lower limit of c is preferably 0.01 or more, and more preferably 0.015 or more.
  • the upper limit of c is preferably 0.1 or less, more preferably 0.05 or less. In other words, the c is preferably 0.01 to 0.1, and more preferably 0.015 to 0.05.
  • the value of b + c and the lower limit of d may be the same or different, and are preferably 0.9 or more, more preferably 0.95 or more.
  • the value of b + c and the upper limit of d may be the same or different, and are preferably 1.1 or less, more preferably 1.05 or less. In other words, the value of b + c and d may be the same or different, preferably 0.9 to 1.1, more preferably 0.95 to 1.05, and even more preferably. 1.
  • the ratio of a to b + c (a / (b + c)), the ratio of a to d (a / d), and the ratio of b + c to d ((b + c) / d) may be the same or different. For example, it is 0.9 to 1.1, preferably 0.95 to 1.05.
  • the phosphor is preferably hexagonal or trigonal.
  • the phosphor can be manufactured by firing a mixture of a raw material mixture containing at least M 1 , M 2 , and L and SiO. That is, the phosphor is a yellow fluorescent material represented by M 1 2a (M 2 b L c ) M 3 d O 4 by mixing and baking a raw material mixture containing M 1 , M 2 , and L and SiO. It can be manufactured by a method including a step of generating a body.
  • SiO 2 is generally used as a raw material for the Si component of the silicate phosphor.
  • the manufacturing method according to the present embodiment is different from a normal method in that SiO is used as a raw material for the Si component.
  • SiO acts as a source of M 3 components.
  • SiO has an action of efficiently reducing the L component (especially europium). Therefore, the L component can be sufficiently reduced, and the luminance of the yellow phosphor can be increased.
  • the SiO is preferably powdered SiO.
  • the metal element-containing substance may be an oxide of each metal M 1 , M 2 , L, or M 3 , or a substance that decomposes or oxidizes at a high temperature (particularly the firing temperature) to form an oxide. May be.
  • Substances that form this oxide include hydroxides, nitrides, oxynitrides, acid derivatives, salts (such as carbonates, nitrates, and oxalates).
  • the first raw material is preferably selected from hydroxides, oxides and carbonates of metal M 1 (particularly lithium).
  • a particularly preferable first raw material contains lithium hydroxide (LiOH), lithium oxide (Li 2 O), or lithium carbonate (Li 2 CO 3 ). These 1st raw materials may be used individually by 1 type, and may combine multiple.
  • the second raw material include a hydroxide, oxide or carbonate of metal M 2 (especially strontium, barium, calcium, etc.). More specifically, the second raw material is selected from, for example, strontium hydroxide (Sr (OH) 2 ), strontium oxide (SrO), and strontium carbonate (SrCO 3 ). These 2nd raw materials may be used individually by 1 type, and may combine multiple.
  • the third raw material is preferably a hydroxide, oxide, carbonate or chloride of metal L (especially europium).
  • the third raw material includes, for example, europium hydroxide (Eu (OH) 2 , Eu (OH) 3 ), europium oxide (EuO, Eu 2 O 3 ), europium carbonate (EuCO 3 , Eu 2 (CO 3 ) 3 ), It is selected from europium chloride (EuCl 2 , EuCl 3 ) and europium nitrate (Eu (NO 3 ) 2 , Eu (NO 3 ) 3 ). These third raw materials may be used alone or in combination.
  • Preferred examples of the fourth raw material include oxides, acid derivatives, and salts of metal M 3 (particularly silicon).
  • a preferable fourth raw material includes, for example, silicon dioxide, silicic acid, or silicate.
  • the atomic ratio of the elements M 1 , M 2 , L, and M 3 supplied from each raw material is expressed by the formula M 1 2a (M 2 b L c ) M 3 d O 4.
  • M 1 2a (M 2 b L c ) M 3 d O 4. Are mixed within a range satisfying the relationship of a, b, c and d.
  • the amount is preferably such that That is, of the element M 3 in the phosphor, 0.001 atomic% or more and 50 atomic% or less, preferably 0.005 atomic% or more and 20 atomic% or less of SiO is used in such an amount. It is recommended.
  • Li 1.96 Sr 0.98 Eu 0.02 SiO 4 which is one of the preferred compositions of the phosphor obtained by the manufacturing method according to the present embodiment, the following may be performed.
  • SiO is used so that the usage ratio is 1.0 atomic% with respect to the total Si-containing material.
  • the mixing ratio of SrCO 3 , Li 2 CO 3 , SiO 2 and Eu 2 O 3 contained in the raw material mixture (metal compound mixture) is such that the molar ratio of Li: Sr: Eu: Si is 1.96: 0.98: 0. .02: 1.0 may be set.
  • the first to third raw materials (preferably the first to fourth raw materials) and SiO may be mixed by a wet method or a dry method.
  • general-purpose devices such as a ball mill, a V-type mixer and a stirrer can be used.
  • the firing chamber atmosphere that is, the firing atmosphere
  • the firing atmosphere may be any of an inert gas atmosphere, an oxidizing gas atmosphere, and a reducing gas atmosphere.
  • an appropriate amount of carbon may be added to the raw material mixture (metal compound mixture) and fired.
  • FIG. 1 is a schematic view showing an embodiment of a firing processing apparatus for firing a raw material mixture. The firing is performed by, for example, putting the mixture 5 of the raw material mixture and SiO in the firing chamber 30 and heating.
  • Examples of the inert gas include nitrogen and argon.
  • Examples of the oxidizing gas include oxygen, oxygen-containing inert gas (nitrogen, argon, etc.), and air.
  • Examples of the reducing gas include a mixed gas of 0.1 to 10% by volume of hydrogen and an inert gas (nitrogen, argon, etc.), or 10 to 100% by volume (preferably 50 to 100% by volume) of NH. 3 and an inert gas (nitrogen, argon, etc.). These gases may be pressurized as necessary.
  • a preferable firing atmosphere is a mixed gas of 0.1 to 10% by volume (more preferably 2 to 8% by volume, particularly preferably 4 to 6% by volume) hydrogen and an inert gas (particularly nitrogen).
  • Calcination may be repeated a plurality of times.
  • the firing atmosphere may be changed between the first firing and the second firing, and the firing atmosphere may be changed in the third and subsequent firings.
  • calcination when calcination is performed in an inert gas atmosphere or an oxidizing gas atmosphere, it is preferable to perform calcination in a reducing gas atmosphere thereafter.
  • Calcination temperature is usually 700 to 1000 ° C., preferably 750 to 950 ° C., more preferably 800 to 900 ° C.
  • the firing time is usually 1 to 100 hours, preferably 10 to 90 hours, and more preferably 20 to 80 hours.
  • the method according to the present embodiment includes a raw material mixture, if necessary, at a temperature lower than the calcination (eg, 500 to 800 ° C.) for a predetermined time (eg, 1 to 100 hours, preferably 10 to 90 hours). And a step of calcining the raw material mixture may be further included.
  • a temperature lower than the calcination eg, 500 to 800 ° C.
  • a predetermined time eg, 1 to 100 hours, preferably 10 to 90 hours.
  • reaction accelerator is selected from, for example, alkali metal halides, alkali metal carbonates, alkali metal hydrogen carbonates, ammonium halides, boron oxides (B 2 O 3 ), and boron oxo acids (H 3 BO 3 ).
  • the alkali metal halide is preferably an alkali metal fluoride or an alkali metal chloride, such as LiF, NaF, KF, LiCl, NaCl, or KCl.
  • the alkali metal carbonate is, for example, Li 2 CO 3 , Na 2 CO 3 or K 2 CO 3 .
  • the alkali metal bicarbonate is, for example, NaHCO 3 .
  • the ammonium halide is, for example, NH 4 Cl or NH 4 I.
  • the phosphor obtained by the manufacturing method according to the present embodiment may contain a halogen element derived from the raw material mixture, that is, one or more elements of F, Cl, Br, or I.
  • the total content of halogen elements may be equal to or less than the total content of halogen elements contained in the raw material, preferably 50% or less, and more preferably 25% or less.
  • the calcined product or the fired product may be subjected to any one or more of pulverization, mixing, washing, and classification.
  • pulverization and mixing for example, a ball mill, a V-type mixer, a stirrer, a jet mill or the like can be used.
  • a high-luminance phosphor can be obtained.
  • a phosphor is a yellow phosphor represented by M 1 2a (M 2 b L c ) M 3 d O 4 . Since the yellow phosphor obtained by the above production method has high emission intensity, it can be suitably used in a light emitting device (for example, white LED).
  • a white LED is composed of a light emitting element (LED chip) that emits ultraviolet to blue light (having a wavelength of about 200 to 550 nm, preferably about 380 to 500 nm), and a fluorescent layer containing a phosphor.
  • This white LED can be manufactured by a method disclosed in, for example, Japanese Patent Application Laid-Open Nos. 11-31845 and 2002-226846. That is, for example, a white LED can be manufactured by a method in which the light emitting element is sealed with a translucent resin such as an epoxy resin or a silicone resin, and the surface thereof is covered with a phosphor. If the amount of the phosphor is appropriately set, the white LED emits a desired white color.
  • a translucent resin such as an epoxy resin or a silicone resin
  • FIG. 2 is a cross-sectional view showing an embodiment of a light emitting device.
  • the light emitting device 1 illustrated in FIG. 2 includes a light emitting element 10 and a fluorescent layer 20 provided on the light emitting element 10.
  • the phosphor forming the fluorescent layer 20 receives the light from the light emitting element 10 and is excited to emit fluorescence.
  • White light emission can be obtained by appropriately setting the type, amount, and the like of the phosphor constituting the phosphor layer 20. That is, a white LED can be configured.
  • the light emitting device or the white LED according to this embodiment is not limited to the form shown in FIG. 2 and can be appropriately modified without departing from the gist of the present invention.
  • the yellow fluorescent substance obtained by the manufacturing method which concerns on this embodiment may be included independently, and the other fluorescent substance may be further included.
  • Other phosphors include, for example, BaMgAl 10 O 17 : Eu, (Ba, Sr, Ca) (Al, Ga) 2 S 4 : Eu, BaMgAl 10 O 17 : (Eu, Mn), BaAl 12 O 19 :( Eu, Mn), (Ba, Sr, Ca) S: (Eu, Mn), YBO 3 : (Ce, Tb), Y 2 O 3 : Eu, Y 2 O 2 S: Eu, YVO 4 : Eu, ( Ca, Sr) S: Eu, SrY 2 O 4 : Eu, Ca—Al—Si—O—N: Eu, (Ba, Sr, Ca) Si 2 O 2 N 2 : Eu, ⁇ -sialon, CaSc 2 O 4 : Selected from Ce and Li— (Ca, Mg) —Ln—A
  • Examples of the light emitting element that emits light having a wavelength of 200 nm to 550 nm include an ultraviolet LED chip and a blue LED chip.
  • GaN, In i Ga 1-i N (0 ⁇ i ⁇ 1), In i Al j Ga 1- jN (0 ⁇ i ⁇ 1, 0 ⁇ j ⁇ 1, i + j) are used as light emitting layers.
  • a semiconductor having a layer such as ⁇ 1) is used.
  • the emission wavelength can be changed by changing the composition of the light emitting layer.
  • the phosphor obtained by the manufacturing method according to the present embodiment is a light emitting device other than a white LED, for example, a light emitting device whose phosphor excitation source is vacuum ultraviolet light (for example, PDP); a light emitting device whose phosphor excitation source is ultraviolet light (For example, a backlight for a liquid crystal display, a three-wavelength fluorescent lamp); It can also be used for a light emitting device (for example, CRT or FED) in which the phosphor excitation source is an electron beam.
  • a light emitting device whose phosphor excitation source is vacuum ultraviolet light (for example, PDP); a light emitting device whose phosphor excitation source is ultraviolet light (For example, a backlight for a liquid crystal display, a three-wavelength fluorescent lamp); It can also be used for a light emitting device (for example, CRT or FED) in which the phosphor excitation source is an electron beam.
  • a light emitting device for example, a light emitting device
  • the emission intensity of the phosphors obtained in the following examples was determined using a fluorescence spectrometer (FP-6500 manufactured by JASCO Corporation).
  • An X-ray diffractometer (RINT2000 manufactured by Rigaku) was used for X-ray diffraction (XRD) measurement of the phosphor.
  • XRD X-ray diffraction
  • the valence ratio of Eu in the phosphor was evaluated by X-ray absorption fine structure (XAFS) measurement.
  • XAFS measurement was performed by the transmission method using the beam line BL14B2 at SPring-8.
  • BaMgAl 10 O 17 : Eu 2+ (BAM) was used as a standard sample of Eu 2+ (6792 eV).
  • Eu 3+ (6980 eV) europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%) was used.
  • the X-ray absorption near edge structure (XANES) spectrum was obtained by processing the XAFS data of each sample based on the background using an analysis program (Rigaku REX2000). Thereafter, pattern fitting of the XANES spectrum of each sample was performed using the XANES spectra of the Eu 2+ standard sample and Eu 3+ standard sample, and the ratio of Eu 2+ in the sample was calculated from the ratio of Eu 2+ peaks.
  • the content of oxygen in the crystalline substance was measured using EMGA-920 manufactured by Horiba.
  • the non-dispersive infrared absorption method was used for the oxygen content.
  • Comparative Example 1 Lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%), and silicon dioxide (Nippon Aerosil Co., Ltd .: purity 99.99%) were weighed so that the atomic ratio of Li: Sr: Eu: Si was 1.96: 0.98: 0.02: 1.0. Were mixed by a dry ball mill for 6 hours to obtain a metal compound mixture.
  • the metal compound mixture was heated (baked) for 24 hours at a temperature of 800 ° C. in an N 2 atmosphere containing 5% by volume of H 2 . This was gradually cooled to room temperature to obtain a phosphor containing a compound represented by the formula Li 1.96 (Sr 0.98 Eu 0.02 ) SiO 4 .
  • the ratio of divalent Eu (Eu 2+ ) in the total Eu of the phosphor was 14%.
  • Comparative Example 2 Lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%), and silicon dioxide (Nippon Aerosil Co., Ltd .: purity 99.99%) were weighed so that the atomic ratio of Li: Sr: Eu: Si was 1.96: 0.98: 0.02: 1.0. Were mixed by a dry ball mill for 6 hours to obtain a metal compound mixture.
  • the metal compound mixture was heated (baked) at a temperature of 800 ° C. for 24 hours and gradually cooled to room temperature.
  • the obtained fired product is pulverized, and further heated (fired) at a temperature of 800 ° C. for 24 hours in an N 2 atmosphere containing 5% by volume of H 2 to obtain the formula Li 1.96 (Sr 0.98 Eu 0 0.02 )
  • a phosphor containing a compound represented by SiO 4 was obtained.
  • the ratio of divalent Eu (Eu 2+ ) in the total Eu of the phosphor was 17%.
  • SYMBOLS 1 Light-emitting device, 5 ... Mixture of raw material mixture and SiO, 10 ... Light emitting element, 20 ... Fluorescent layer, 30 ... Baking chamber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention pertains to a method for manufacturing a yellow phosphor, including a step for generating a yellow phosphor represented by M1 2a(M2 bLc)M3 dO4 by mixing and firing SiO and a raw mixture containing M1, M2 and L.

Description

黄色蛍光体及びその製造方法Yellow phosphor and method for producing the same
 本発明は黄色蛍光体及びその製造方法に関するものである。 The present invention relates to a yellow phosphor and a method for producing the same.
 白色LEDは、紫外から青色の領域の光(波長が380~500nm程度)を放出するLEDチップと、該LEDチップから放出される光で励起されて発光する蛍光体との組み合わせから構成される。LEDチップと蛍光体との組み合わせ基づいて様々な色温度の白色を実現することができる。 The white LED is composed of a combination of an LED chip that emits light in the ultraviolet to blue region (wavelength of about 380 to 500 nm) and a phosphor that emits light when excited by the light emitted from the LED chip. White colors having various color temperatures can be realized based on the combination of the LED chip and the phosphor.
 紫外から青色の領域の光によって励起され発光する蛍光体は、白色LEDに好適に用いることができる。白色LED用の蛍光体として、例えば、特許文献1にはYAl12:Ce(YAG:Ce)で示される蛍光体が開示されている。この蛍光体は、YAl12が蛍光体の母体結晶であり、Ceが母体結晶に賦活される発光イオンである。 A phosphor that emits light when excited by light in the ultraviolet to blue region can be suitably used for a white LED. As a phosphor for white LED, for example, Patent Document 1 discloses a phosphor represented by Y 3 Al 5 O 12 : Ce (YAG: Ce). In this phosphor, Y 3 Al 5 O 12 is a host crystal of the phosphor, and Ce is a luminescent ion activated by the host crystal.
 特許文献2、3には、LiSrSiO:Euで示される蛍光体が開示されている。LiSrSiO:Euで示される蛍光体は、発光色に優れる。LiSrSiO:Euで示される蛍光体は、青色LEDから放出される青色光を効率よく吸収し、570nm付近にピークを有するブロードな黄色発光を示す。さらに、LiSrSiO:Euで示される蛍光体は、高温に曝された状態でも発光強度を十分に維持できる。 Patent Documents 2 and 3 disclose phosphors represented by Li 2 SrSiO 4 : Eu. The phosphor represented by Li 2 SrSiO 4 : Eu is excellent in emission color. The phosphor represented by Li 2 SrSiO 4 : Eu efficiently absorbs blue light emitted from a blue LED and exhibits a broad yellow light emission having a peak near 570 nm. Furthermore, the phosphor represented by Li 2 SrSiO 4 : Eu can sufficiently maintain the emission intensity even when exposed to high temperatures.
特開平10-242513号公報Japanese Patent Laid-Open No. 10-242513 国際公開第03/80763号International Publication No. 03/80763 特開2006-237113号公報JP 2006-237113 A
 しかし、例えば、LiSrSiO:Euのような蛍光体に関して、さらなる発光強度の向上が求められている。 However, for example, a phosphor such as Li 2 SrSiO 4 : Eu is required to further improve the emission intensity.
 本発明の目的は、発光強度がより高い(高輝度)黄色蛍光体を得ることにある。 An object of the present invention is to obtain a yellow phosphor having higher emission intensity (high luminance).
 本発明の一側面は、M、M、及びLを含む原料混合物とSiOとを混合し焼成して、M 2a(M )M で表される黄色蛍光体を生成させる工程を含む、黄色蛍光体の製造方法を提供する。言い換えると、本発明の別の側面は、M 2a(M )M で表される黄色蛍光体を製造する方法あって、上記黄色蛍光体は、少なくともM、M、及びLを含む原料混合物とSiOとを混合したものを焼成することによって製造される。但し、Mはアルカリ金属から選択される少なくとも一種の元素であり、Mはアルカリ土類金属から選択される少なくとも一種の元素であり、MはSiである、又は、Si及びGe(Si及びGeから選択される少なくとも一種の元素)であり、Lは希土類元素、Bi及びMnから選択される少なくとも一種の元素である。aは、0.1~1.5(0.1以上、1.5以下)であり、bは、0.8~1.2(0.8以上、1.2以下)であり、cは、0.005~0.2(0.005以上、0.2以下)であり、dは、0.8~1.2(0.8以上、1.2以下)である。前記製造方法は、前記原料混合物が、SiOとは異なるM含有原料を更に含有し、前記黄色蛍光体中の元素Mの全量に対して、前記SiOに由来するSi元素の割合が0.001~50原子%であってもよい。すなわちSiOとは異なる物質をM含有原料として含む前記原料混合物をSiOと混合して焼成してもよく、この場合、蛍光体中の元素Mのうち0.001原子%以上、50原子%以下が、SiOに由来してもよい。前記Lが、希土類元素、Bi及びMnから選択される、Euを含む少なくとも一種の元素であってもよく、このEuは2価のEuを含むことができる。また、MがLiであり、MがSiであってもよい。Mは、Srのみである、Sr及びBaである、又は、Sr及びCaであってもよい。前記aは0.9~1.1(0.9以上、1.1以下)であってもよい。b、c及びdは、b+c=1、d=1を満たしてもよい。 According to one aspect of the present invention, a raw material mixture containing M 1 , M 2 , and L and SiO are mixed and fired, and yellow fluorescence represented by M 1 2a (M 2 b L c ) M 3 d O 4 Provided is a method for producing a yellow phosphor, comprising a step of generating a body. In other words, another aspect of the present invention is a method for producing a yellow phosphor represented by M 1 2a (M 2 b L c ) M 3 d O 4 , wherein the yellow phosphor comprises at least M 1 , It is manufactured by firing a mixture of a raw material mixture containing M 2 and L and SiO. Where M 1 is at least one element selected from alkali metals, M 2 is at least one element selected from alkaline earth metals, and M 3 is Si, or Si and Ge (Si And at least one element selected from Ge) and L is at least one element selected from rare earth elements, Bi and Mn. a is 0.1 to 1.5 (0.1 or more and 1.5 or less), b is 0.8 to 1.2 (0.8 or more and 1.2 or less), and c is 0.005 to 0.2 (0.005 or more and 0.2 or less), and d is 0.8 to 1.2 (0.8 or more and 1.2 or less). In the manufacturing method, the raw material mixture further contains an M 3 -containing raw material different from SiO, and the ratio of the Si element derived from the SiO to the total amount of the element M 3 in the yellow phosphor is 0.00. It may be from 001 to 50 atomic%. That is, the raw material mixture containing a substance different from SiO as an M 3 -containing raw material may be mixed with SiO and fired. In this case, 0.001 atomic% or more and 50 atomic% of the element M 3 in the phosphor The following may be derived from SiO. The L may be at least one element including Eu selected from rare earth elements, Bi and Mn, and the Eu may include divalent Eu. Further, M 1 may be Li and M 3 may be Si. M 2 may be only Sr, Sr and Ba, or Sr and Ca. The a may be 0.9 to 1.1 (0.9 or more and 1.1 or less). b, c and d may satisfy b + c = 1 and d = 1.
 本発明の別の側面は上記製造方法によって製造することのできる黄色蛍光体及び上記黄色蛍光体を有する発光装置又は白色LEDを提供する。 Another aspect of the present invention provides a yellow phosphor that can be produced by the above production method, and a light emitting device or a white LED having the yellow phosphor.
 本発明によれば、得られる黄色蛍光体の発光強度(輝度)をより高めることができる。 According to the present invention, the emission intensity (luminance) of the obtained yellow phosphor can be further increased.
原料混合物を焼成する焼成処理装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the baking processing apparatus which bakes a raw material mixture. 発光装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a light-emitting device.
 以下、本発明の好適な実施形態について詳細に説明する。本明細書において、用語「金属元素」は、Si、Geなどの半金属元素も含む意味で使用される。 Hereinafter, preferred embodiments of the present invention will be described in detail. In the present specification, the term “metal element” is used to include a semi-metal element such as Si or Ge.
 本実施形態は黄色発光を示す蛍光体(黄色蛍光体)に関する。黄色発光とは波長560nm~590nm付近にピークがある発光を指す。本実施形態の対象となる黄色蛍光体は、式M 2a(M )M (式中、Mはアルカリ金属から選択される少なくとも一種の元素を示し、Mはアルカリ土類金属(Ca、Sr、Ba)から選択される少なくとも一種の元素を示し、MはSi及びGeから選択される少なくとも一種の元素を示し、Lは希土類元素、Bi及びMnからなる群から選択される少なくとも一種の元素を示す。aは、0.1~1.5であり、bは、0.8~1.2であり、cは、0.005~0.2であり、dは、0.8~1.2である)で表される。 The present embodiment relates to a phosphor that emits yellow light (yellow phosphor). Yellow light emission refers to light emission having a peak in the vicinity of a wavelength of 560 nm to 590 nm. The yellow phosphor that is the target of the present embodiment is represented by the formula M 1 2a (M 2 b L c ) M 3 d O 4 (wherein M 1 represents at least one element selected from alkali metals, and M 2 Represents at least one element selected from alkaline earth metals (Ca, Sr, Ba), M 3 represents at least one element selected from Si and Ge, and L comprises a rare earth element, Bi and Mn. Represents at least one element selected from the group, a is from 0.1 to 1.5, b is from 0.8 to 1.2, and c is from 0.005 to 0.2. , D is 0.8 to 1.2).
 前記Mは、好ましくはLi、Na、及びKから選択される一種又は二種以上(特に一種)の元素であり、より好ましくはLiである。 The M 1 is preferably one or more (particularly one) element selected from Li, Na, and K, and more preferably Li.
 Mは、好ましくはCa、Sr及びBaから選択される一種又は二種以上(特に一種)の元素であり、より好ましくはSrである。MがSrを含む場合、MはさらにBa及び/又はCaを含むことが好ましく、Caを含むことがより好ましい。 M 2 is preferably one or more (especially one) element selected from Ca, Sr and Ba, and more preferably Sr. When M 2 contains Sr, M 2 preferably further contains Ba and / or Ca, and more preferably contains Ca.
 Lは発光イオンとして母体結晶に賦活される元素であり、少なくともEuを含むことが好ましい。例えば、Lは、Eu単独、又はEu及びEu以外のL元素(希土類元素、Bi、Mn)の一種以上の元素との組合せである。特に好ましいLは、Euである。さらに、LとしてのEuが少なくとも2価のEu(Eu2+)を含むことが好ましい。 L is an element that is activated in the host crystal as a luminescent ion, and preferably contains at least Eu. For example, L is Eu alone or a combination with one or more elements of L elements (rare earth elements, Bi, Mn) other than Eu and Eu. Particularly preferred L is Eu. Further, Eu as L preferably contains at least divalent Eu (Eu 2+ ).
 Mは、好ましくはSiである。MがSiであるとき、MがLiであることが好ましい。 M 3 is preferably Si. When M 3 is Si, it is preferable that M 1 is Li.
 前記aの下限は、好ましくは0.5以上であり、より好ましくは0.8以上であり、さらに好ましくは0.9以上であり、特に好ましくは0.95以上である。またaの上限は、好ましくは1.2以下であり、さらに好ましくは1.1以下であり、特に好ましくは1.05以下である。 The lower limit of a is preferably 0.5 or more, more preferably 0.8 or more, still more preferably 0.9 or more, and particularly preferably 0.95 or more. The upper limit of a is preferably 1.2 or less, more preferably 1.1 or less, and particularly preferably 1.05 or less.
 前記bの下限は、好ましくは0.8以上であり、より好ましくは0.9以上である。前記bの上限は、好ましくは1.1以下であり、より好ましくは1.05以下である。言い換えると、前記bは、好ましくは0.8~1.1であり、より好ましくは0.9~1.05である。 The lower limit of b is preferably 0.8 or more, and more preferably 0.9 or more. The upper limit of b is preferably 1.1 or less, and more preferably 1.05 or less. In other words, the b is preferably 0.8 to 1.1, more preferably 0.9 to 1.05.
 前記cの下限は、好ましくは0.01以上であり、より好ましくは0.015以上である。前記cの上限は、好ましくは0.1以下であり、より好ましくは0.05以下である。言い換えると、前記cは、好ましくは0.01~0.1であり、より好ましくは0.015~0.05である。 The lower limit of c is preferably 0.01 or more, and more preferably 0.015 or more. The upper limit of c is preferably 0.1 or less, more preferably 0.05 or less. In other words, the c is preferably 0.01 to 0.1, and more preferably 0.015 to 0.05.
 b+cの値及びdの下限は、同一であっても、異なってもよく、好ましくは0.9以上であり、より好ましくは0.95以上である。b+cの値及びdの上限は、同一であっても、異なってもよく、好ましくは1.1以下であり、より好ましくは1.05以下である。言い換えると、b+cの値及びdは、同一であっても、異なってもよく、好ましくは0.9~1.1であり、より好ましくは0.95~1.05であり、更により好ましくは1である。 The value of b + c and the lower limit of d may be the same or different, and are preferably 0.9 or more, more preferably 0.95 or more. The value of b + c and the upper limit of d may be the same or different, and are preferably 1.1 or less, more preferably 1.05 or less. In other words, the value of b + c and d may be the same or different, preferably 0.9 to 1.1, more preferably 0.95 to 1.05, and even more preferably. 1.
 aとb+cとの比(a/(b+c))、aとdとの比(a/d)、b+cとdとの比((b+c)/d)は、同一であっても、異なってもよく、例えば、0.9~1.1であり、好ましくは0.95~1.05である。 The ratio of a to b + c (a / (b + c)), the ratio of a to d (a / d), and the ratio of b + c to d ((b + c) / d) may be the same or different. For example, it is 0.9 to 1.1, preferably 0.95 to 1.05.
 本実施形態に係る製造方法によって得られる蛍光体の組成は、a、b+c、dの値がいずれも1±0.03の範囲内にあることが好ましく、1であることが特に好ましい。MがLiであり、MがSiであり、かつMがSr単独である、又はSr及びCaであることが好ましい。 In the composition of the phosphor obtained by the manufacturing method according to this embodiment, the values of a, b + c, and d are all preferably in the range of 1 ± 0.03, and particularly preferably 1. It is preferable that M 1 is Li, M 3 is Si, and M 2 is Sr alone, or Sr and Ca.
 前記蛍光体は、六方晶又は三方晶であることが好ましい。 The phosphor is preferably hexagonal or trigonal.
 前記蛍光体は、少なくともM、M、及びLを含む原料混合物とSiOとを混合したものを焼成することによって製造できる。すなわち、前記蛍光体は、M、M、及びLを含む原料混合物とSiOとを混合し焼成して、M 2a(M )M で表される黄色蛍光体を生成させる工程を含む方法によって製造できる。通常シリケート系蛍光体のSi成分の原料としては、SiOが一般的である。本実施形態に係る製造方法は、Si成分の原料としてSiOを用いる点で通常の方法とは異なる。SiOは、M成分の供給源として作用する。更にSiOは、L成分(特にユウロピウム)を効率的に還元する作用も有している。そのためL成分を十分に還元することができ、黄色蛍光体の輝度を高めることができる。前記SiOは、粉末状のSiOであることが好ましい。 The phosphor can be manufactured by firing a mixture of a raw material mixture containing at least M 1 , M 2 , and L and SiO. That is, the phosphor is a yellow fluorescent material represented by M 1 2a (M 2 b L c ) M 3 d O 4 by mixing and baking a raw material mixture containing M 1 , M 2 , and L and SiO. It can be manufactured by a method including a step of generating a body. Usually, SiO 2 is generally used as a raw material for the Si component of the silicate phosphor. The manufacturing method according to the present embodiment is different from a normal method in that SiO is used as a raw material for the Si component. SiO acts as a source of M 3 components. Furthermore, SiO has an action of efficiently reducing the L component (especially europium). Therefore, the L component can be sufficiently reduced, and the luminance of the yellow phosphor can be increased. The SiO is preferably powdered SiO.
 前記原料混合物は、より詳細には、元素Mを含む物質(第1原料)、元素Mを含む物質(第2原料)、元素Lを含む物質(第3原料)の混合物である。M成分はSiOから供給されるため、原料混合物は必ずしもMを含む物質(M含有原料;第4原料)を含む必要はない。好ましくは原料混合物は、第4原料(ただしSiOは除く)を含む。前記元素M、M、L、及びMはいずれも金属元素(半金属元素を含む)である。そのため、本明細書では前記第1~第4原料を金属元素含有物質と称する場合があり、それらの混合物を金属化合物混合物と称する場合がある。前記金属元素含有物質は、各金属M、M、L、又はMの酸化物であってもよいし、高温(特に焼成温度)で分解又は酸化して酸化物を形成する物質であってもよい。この酸化物を形成する物質には、水酸化物、窒化物、酸窒化物、酸誘導体、塩(炭酸塩、硝酸塩、シュウ酸塩など)などが含まれる。 The raw material mixture, more particularly, material (first material) containing an element M 1, material (second material) containing the element M 2, which is a mixture of substances (third material) containing an element L. Since M 3 components supplied from the SiO, the raw material mixture is not necessarily material containing M 3; need not include (M 3 containing feedstock fourth raw material). Preferably, the raw material mixture includes a fourth raw material (excluding SiO). All of the elements M 1 , M 2 , L, and M 3 are metal elements (including metalloid elements). Therefore, in the present specification, the first to fourth raw materials may be referred to as metal element-containing substances, and a mixture thereof may be referred to as a metal compound mixture. The metal element-containing substance may be an oxide of each metal M 1 , M 2 , L, or M 3 , or a substance that decomposes or oxidizes at a high temperature (particularly the firing temperature) to form an oxide. May be. Substances that form this oxide include hydroxides, nitrides, oxynitrides, acid derivatives, salts (such as carbonates, nitrates, and oxalates).
 第1原料は、好ましくは金属M(特にリチウム)の水酸化物、酸化物、及び炭酸塩から選ばれる。特に好ましい第1原料は、水酸化リチウム(LiOH)、酸化リチウム(LiO)又は炭酸リチウム(LiCO)を含む。これら第1原料は、1種を単独で使用してもよく、複数を組み合わせてもよい。 The first raw material is preferably selected from hydroxides, oxides and carbonates of metal M 1 (particularly lithium). A particularly preferable first raw material contains lithium hydroxide (LiOH), lithium oxide (Li 2 O), or lithium carbonate (Li 2 CO 3 ). These 1st raw materials may be used individually by 1 type, and may combine multiple.
 第2原料の好ましい例には、金属M(特にストロンチウム、バリウム、カルシウムなど)の水酸化物、酸化物又は炭酸塩が含まれる。より具体的には、第2原料は、例えば、水酸化ストロンチウム(Sr(OH))、酸化ストロンチウム(SrO)及び炭酸ストロンチウム(SrCO)から選ばれる。これら第2原料は、1種を単独で使用してもよく、複数を組み合わせてもよい。 Preferable examples of the second raw material include a hydroxide, oxide or carbonate of metal M 2 (especially strontium, barium, calcium, etc.). More specifically, the second raw material is selected from, for example, strontium hydroxide (Sr (OH) 2 ), strontium oxide (SrO), and strontium carbonate (SrCO 3 ). These 2nd raw materials may be used individually by 1 type, and may combine multiple.
 第3原料は、金属L(特にユウロピウム)の水酸化物、酸化物、炭酸塩又は塩化物であることが好ましい。第3原料は、例えば、水酸化ユウロピウム(Eu(OH)、Eu(OH))、酸化ユウロピウム(EuO、Eu)、炭酸ユウロピウム(EuCO、Eu(CO)、塩化ユウロピウム(EuCl、EuCl)及び硝酸ユウロピウム(Eu(NO、Eu(NO)から選ばれる。これら第3原料は、1種を単独で使用してもよく、複数を組み合わせてもよい。 The third raw material is preferably a hydroxide, oxide, carbonate or chloride of metal L (especially europium). The third raw material includes, for example, europium hydroxide (Eu (OH) 2 , Eu (OH) 3 ), europium oxide (EuO, Eu 2 O 3 ), europium carbonate (EuCO 3 , Eu 2 (CO 3 ) 3 ), It is selected from europium chloride (EuCl 2 , EuCl 3 ) and europium nitrate (Eu (NO 3 ) 2 , Eu (NO 3 ) 3 ). These third raw materials may be used alone or in combination.
 第4原料(M含有原料)としては、好ましくは金属M(特に珪素)の酸化物、酸誘導体及び塩などが挙げられる。好ましい第4原料には、例えば、二酸化珪素、珪酸又は珪酸塩が含まれる。 Preferred examples of the fourth raw material (M 3 -containing raw material) include oxides, acid derivatives, and salts of metal M 3 (particularly silicon). A preferable fourth raw material includes, for example, silicon dioxide, silicic acid, or silicate.
 第1原料~第4原料、及びSiOは、各原料から供給される元素M、M、L、Mの原子比が、式M 2a(M )M におけるa、b、c、dの関係を満足する範囲内で混合する。 In the first to fourth raw materials and SiO, the atomic ratio of the elements M 1 , M 2 , L, and M 3 supplied from each raw material is expressed by the formula M 1 2a (M 2 b L c ) M 3 d O 4. Are mixed within a range satisfying the relationship of a, b, c and d.
 またSiOの使用量は、還元剤として使用する場合には、原料混合物の質量を1とした場合、0.001~1(0.001以上、1以下)であり、好ましくは0.005~0.5(0.005以上、0.5以下)であり、さらに好ましくは0.1~0.3(0.1以上、0.3以下)である。SiOを原料として使用する場合、SiOとは異なる物質もM含有原料として原料混合物に配合することができる。この場合、SiOの使用量は、黄色蛍光体中の元素Mの全量に対して、前記SiOに由来するSi元素の割合が0.001~50原子%、好ましくは0.005~20原子%となるような量とすることが好ましい。すなわち、蛍光体中の元素Mのうち、0.001原子%以上、50原子%以下、好ましくは0.005原子%以上、20原子%以下がSiOに由来する程度の量のSiOを使用することが推奨される。 When used as a reducing agent, the amount of SiO used is 0.001 to 1 (0.001 or more and 1 or less), preferably 0.005 to 0 when the mass of the raw material mixture is 1. 0.5 (0.005 or more and 0.5 or less), more preferably 0.1 to 0.3 (0.1 or more and 0.3 or less). When SiO is used as a raw material, a substance different from SiO can be blended in the raw material mixture as an M 3 -containing raw material. In this case, the amount of SiO used is such that the proportion of Si element derived from SiO is 0.001 to 50 atomic%, preferably 0.005 to 20 atomic%, with respect to the total amount of element M 3 in the yellow phosphor. The amount is preferably such that That is, of the element M 3 in the phosphor, 0.001 atomic% or more and 50 atomic% or less, preferably 0.005 atomic% or more and 20 atomic% or less of SiO is used in such an amount. It is recommended.
 例えば、本実施形態に係る製造方法によって得られる蛍光体の好ましい組成の一つであるLi1.96Sr0.98Eu0.02SiOを得るためには以下のようにすればよい。例えば、SiOは、使用割合が全Si含有物質に対して1.0原子%となるように用いる。原料混合物(金属化合物混合物)に含まれるSrCO、LiCO、SiO及びEuの混合比率は、Li:Sr:Eu:Siのモル比が1.96:0.98:0.02:1.0となるように定めればよい。このとき、SiOの使用割合は、全Si含有物質に対して1.0原子%であるので、SiO:SiO=0.99:0.01となればよい。 For example, in order to obtain Li 1.96 Sr 0.98 Eu 0.02 SiO 4 , which is one of the preferred compositions of the phosphor obtained by the manufacturing method according to the present embodiment, the following may be performed. For example, SiO is used so that the usage ratio is 1.0 atomic% with respect to the total Si-containing material. The mixing ratio of SrCO 3 , Li 2 CO 3 , SiO 2 and Eu 2 O 3 contained in the raw material mixture (metal compound mixture) is such that the molar ratio of Li: Sr: Eu: Si is 1.96: 0.98: 0. .02: 1.0 may be set. At this time, since the use ratio of SiO is 1.0 atomic% with respect to the total Si-containing material, it may be SiO 2 : SiO = 0.99: 0.01.
 前記第1~第3原料(好ましくは第1~第4原料)及びSiOは、湿式の方法で混合してもよく、乾式の方法で混合してもよい。この混合には、例えば、ボールミル、V型混合機及び攪拌機などの汎用装置が使用できる。 The first to third raw materials (preferably the first to fourth raw materials) and SiO may be mixed by a wet method or a dry method. For this mixing, for example, general-purpose devices such as a ball mill, a V-type mixer and a stirrer can be used.
 原料混合物とSiOとの混合物を焼成する場合、通常のM 2a(M )M で表される蛍光体を焼成する場合に採用されている条件と同等の条件を採用できる。例えば、焼成室の雰囲気、すなわち焼成雰囲気は、不活性ガス雰囲気、酸化性ガス雰囲気、還元性ガス雰囲気のいずれでもよい。なお強い還元性雰囲気下で原料混合物とSiOとの混合物を焼成する場合には、上記原料混合物(金属化合物混合物)に適量の炭素を添加して焼成してもよい。図1は、原料混合物を焼成する焼成処理装置の一実施形態を示す模式図である。上記焼成は、例えば、原料混合物とSiOとの混合物5を焼成室30に入れて加熱することによって行われる。 When firing a mixture of a raw material mixture and SiO, conditions equivalent to those employed when firing a phosphor represented by ordinary M 1 2a (M 2 b L c ) M 3 d O 4 are used. Can be adopted. For example, the firing chamber atmosphere, that is, the firing atmosphere, may be any of an inert gas atmosphere, an oxidizing gas atmosphere, and a reducing gas atmosphere. When firing the mixture of the raw material mixture and SiO in a strong reducing atmosphere, an appropriate amount of carbon may be added to the raw material mixture (metal compound mixture) and fired. FIG. 1 is a schematic view showing an embodiment of a firing processing apparatus for firing a raw material mixture. The firing is performed by, for example, putting the mixture 5 of the raw material mixture and SiO in the firing chamber 30 and heating.
 前記不活性ガスは、窒素、アルゴンが例示できる。前記酸化性ガスは、例えば、酸素、酸素を含有する不活性ガス(窒素、アルゴンなど)及び空気が挙げられる。前記還元性ガスには、例えば、0.1~10体積%の水素と不活性ガス(窒素、アルゴンなど)との混合ガス、又は10~100体積%(好ましくは50~100体積%)のNHと不活性ガス(窒素、アルゴンなど)との混合ガスが含まれる。これらガスは、必要に応じて、加圧されていてもよい。 Examples of the inert gas include nitrogen and argon. Examples of the oxidizing gas include oxygen, oxygen-containing inert gas (nitrogen, argon, etc.), and air. Examples of the reducing gas include a mixed gas of 0.1 to 10% by volume of hydrogen and an inert gas (nitrogen, argon, etc.), or 10 to 100% by volume (preferably 50 to 100% by volume) of NH. 3 and an inert gas (nitrogen, argon, etc.). These gases may be pressurized as necessary.
 好ましい焼成雰囲気は、0.1~10体積%(より好ましくは2~8体積%、特に好ましくは4~6体積%)水素と不活性ガス(特に窒素)との混合ガスである。 A preferable firing atmosphere is a mixed gas of 0.1 to 10% by volume (more preferably 2 to 8% by volume, particularly preferably 4 to 6% by volume) hydrogen and an inert gas (particularly nitrogen).
 焼成は、複数回繰り返し行ってもよい。このとき、第一回目の焼成と、第二回目の焼成とで焼成雰囲気を変更してもよく、第三回目以降の焼成でも焼成雰囲気を変更してもよい。例えば、不活性ガス雰囲気下又は酸化性ガス雰囲気下で焼成した場合は、その後さらに還元性ガス雰囲気下で焼成を行うことが好ましい。 Calcination may be repeated a plurality of times. At this time, the firing atmosphere may be changed between the first firing and the second firing, and the firing atmosphere may be changed in the third and subsequent firings. For example, when calcination is performed in an inert gas atmosphere or an oxidizing gas atmosphere, it is preferable to perform calcination in a reducing gas atmosphere thereafter.
 焼成温度は、通常、700~1000℃であり、好ましくは750~950℃であり、より好ましくは800~900℃である。焼成時間は、通常、1~100時間であり、好ましくは10~90時間であり、より好ましくは20~80時間である。 Calcination temperature is usually 700 to 1000 ° C., preferably 750 to 950 ° C., more preferably 800 to 900 ° C. The firing time is usually 1 to 100 hours, preferably 10 to 90 hours, and more preferably 20 to 80 hours.
 本実施形態に係る方法は、前記焼成に先立って、必要に応じて、焼成よりも低温(例えば500~800℃)で所定時間(例えば1~100時間、好ましくは10~90時間)、原料混合物を保持して、原料混合物を仮焼する工程を更に含んでいてもよい。 Prior to the calcination, the method according to the present embodiment includes a raw material mixture, if necessary, at a temperature lower than the calcination (eg, 500 to 800 ° C.) for a predetermined time (eg, 1 to 100 hours, preferably 10 to 90 hours). And a step of calcining the raw material mixture may be further included.
 本実施形態に係る方法では、必要により、反応促進剤の存在下で仮焼又は焼成を行ってもよい。反応促進剤を用いることによって、得られる蛍光体の発光強度をより向上できる。反応促進剤は、例えばアルカリ金属ハロゲン化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、ハロゲン化アンモニウム、ホウ素の酸化物(B)及びホウ素のオキソ酸(HBO)から選ばれる。前記アルカリ金属ハロゲン化物は、好ましくはアルカリ金属のフッ化物又はアルカリ金属の塩化物であり、例えば、LiF、NaF、KF、LiCl、NaCl又はKClである。前記アルカリ金属炭酸塩は、例えば、LiCO、NaCO又はKCOである。前記アルカリ金属炭酸水素塩は、例えば、NaHCOである。前記ハロゲン化アンモニウムは、例えば、NHCl又はNHIである。 In the method according to this embodiment, if necessary, calcination or baking may be performed in the presence of a reaction accelerator. By using the reaction accelerator, the emission intensity of the obtained phosphor can be further improved. The reaction accelerator is selected from, for example, alkali metal halides, alkali metal carbonates, alkali metal hydrogen carbonates, ammonium halides, boron oxides (B 2 O 3 ), and boron oxo acids (H 3 BO 3 ). . The alkali metal halide is preferably an alkali metal fluoride or an alkali metal chloride, such as LiF, NaF, KF, LiCl, NaCl, or KCl. The alkali metal carbonate is, for example, Li 2 CO 3 , Na 2 CO 3 or K 2 CO 3 . The alkali metal bicarbonate is, for example, NaHCO 3 . The ammonium halide is, for example, NH 4 Cl or NH 4 I.
 本実施形態に係る製造方法によって得られる蛍光体は、原料混合物に由来するハロゲン元素、すなわちF、Cl、Br又はIの1種以上の元素を含有していてもよい。ハロゲン元素の合計含有量は、原料中に含有されるハロゲン元素の合計量に対して同量以下であれば良く、好ましくは50%以下、さらに好ましくは25%以下である。 The phosphor obtained by the manufacturing method according to the present embodiment may contain a halogen element derived from the raw material mixture, that is, one or more elements of F, Cl, Br, or I. The total content of halogen elements may be equal to or less than the total content of halogen elements contained in the raw material, preferably 50% or less, and more preferably 25% or less.
 仮焼物又は焼成物に対して、必要により、粉砕、混合、洗浄及び分級のうちいずれか一つ以上の処理を施してもよい。粉砕、混合には、例えば、ボールミル、V型混合機、攪拌機、ジェットミルなどが使用できる。 If necessary, the calcined product or the fired product may be subjected to any one or more of pulverization, mixing, washing, and classification. For pulverization and mixing, for example, a ball mill, a V-type mixer, a stirrer, a jet mill or the like can be used.
 本実施形態に係る製造方法によれば、SiOを用いて焼成しているため、高輝度な蛍光体を得ることができる。このような蛍光体は、M 2a(M )M で表される黄色蛍光体である。上記製法によって得られる黄色蛍光体は高い発光強度を有するため、発光装置(例えば白色LED)において好適に用いることができる。白色LEDは、紫外から青色の光(波長が200~550nm程度、好ましくは380~500nm程度)を放出する発光素子(LEDチップ)と、蛍光体を含む蛍光層とから構成される。この白色LEDは、例えば、特開平11-31845号公報、特開2002-226846号公報等に開示の方法によって製造することができる。すなわち、例えば、前記発光素子を、エポキシ樹脂、シリコーン樹脂などの透光性樹脂で封止し、その表面を蛍光体で覆う方法により白色LEDを製造できる。蛍光体の量を適宜設定すれば、白色LEDが所望の白色を発光するようになる。 According to the manufacturing method according to the present embodiment, since it is baked using SiO, a high-luminance phosphor can be obtained. Such a phosphor is a yellow phosphor represented by M 1 2a (M 2 b L c ) M 3 d O 4 . Since the yellow phosphor obtained by the above production method has high emission intensity, it can be suitably used in a light emitting device (for example, white LED). A white LED is composed of a light emitting element (LED chip) that emits ultraviolet to blue light (having a wavelength of about 200 to 550 nm, preferably about 380 to 500 nm), and a fluorescent layer containing a phosphor. This white LED can be manufactured by a method disclosed in, for example, Japanese Patent Application Laid-Open Nos. 11-31845 and 2002-226846. That is, for example, a white LED can be manufactured by a method in which the light emitting element is sealed with a translucent resin such as an epoxy resin or a silicone resin, and the surface thereof is covered with a phosphor. If the amount of the phosphor is appropriately set, the white LED emits a desired white color.
 図2は、発光装置の一実施形態を示す断面図である。図2に示す発光装置1は、発光素子10と、発光素子10上に設けられた蛍光層20とを備える。蛍光層20を形成する蛍光体は、発光素子10からの光を受光して励起されて蛍光を発光する。蛍光層20を構成する蛍光体の種類、量等を適宜設定することにより、白色の発光を得ることができる。すなわち、白色LEDを構成することができる。本実施形態に係る発光装置又は白色LEDは、図2に示す形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変形が可能である。 FIG. 2 is a cross-sectional view showing an embodiment of a light emitting device. The light emitting device 1 illustrated in FIG. 2 includes a light emitting element 10 and a fluorescent layer 20 provided on the light emitting element 10. The phosphor forming the fluorescent layer 20 receives the light from the light emitting element 10 and is excited to emit fluorescence. White light emission can be obtained by appropriately setting the type, amount, and the like of the phosphor constituting the phosphor layer 20. That is, a white LED can be configured. The light emitting device or the white LED according to this embodiment is not limited to the form shown in FIG. 2 and can be appropriately modified without departing from the gist of the present invention.
 前記蛍光体としては、本実施形態に係る製造方法により得られる黄色蛍光体を単独で含んでいてもよいし、他の蛍光体を更に含んでいてもよい。他の蛍光体は、例えば、BaMgAl1017:Eu、(Ba,Sr,Ca)(Al,Ga):Eu、BaMgAl1017:(Eu,Mn)、BaAl1219:(Eu,Mn)、(Ba,Sr,Ca)S:(Eu,Mn)、YBO:(Ce,Tb)、Y:Eu、YS:Eu、YVO:Eu、(Ca,Sr)S:Eu、SrY:Eu、Ca-Al-Si-O-N:Eu、(Ba,Sr,Ca)Si:Eu、β-サイアロン、CaSc:Ce及びLi-(Ca,Mg)-Ln-Al-O-N:Eu(ただし、LnはEu以外の希土類金属元素を表す)から選ばれる。 As said fluorescent substance, the yellow fluorescent substance obtained by the manufacturing method which concerns on this embodiment may be included independently, and the other fluorescent substance may be further included. Other phosphors include, for example, BaMgAl 10 O 17 : Eu, (Ba, Sr, Ca) (Al, Ga) 2 S 4 : Eu, BaMgAl 10 O 17 : (Eu, Mn), BaAl 12 O 19 :( Eu, Mn), (Ba, Sr, Ca) S: (Eu, Mn), YBO 3 : (Ce, Tb), Y 2 O 3 : Eu, Y 2 O 2 S: Eu, YVO 4 : Eu, ( Ca, Sr) S: Eu, SrY 2 O 4 : Eu, Ca—Al—Si—O—N: Eu, (Ba, Sr, Ca) Si 2 O 2 N 2 : Eu, β-sialon, CaSc 2 O 4 : Selected from Ce and Li— (Ca, Mg) —Ln—Al—O—N: Eu (where Ln represents a rare earth metal element other than Eu).
 波長200nm~550nmの光を発する発光素子としては、紫外LEDチップ、青色LEDチップなどが挙げられる。これらLEDチップには発光層としてGaN、InGa1-iN(0<i<1)、InAlGa1-i-jN(0<i<1、0<j<1、i+j<1)などの層を有する半導体が用いられる。発光層の組成を変化させることにより、発光波長を変化させることができる。 Examples of the light emitting element that emits light having a wavelength of 200 nm to 550 nm include an ultraviolet LED chip and a blue LED chip. In these LED chips, GaN, In i Ga 1-i N (0 <i <1), In i Al j Ga 1- jN (0 <i <1, 0 <j <1, i + j) are used as light emitting layers. A semiconductor having a layer such as <1) is used. The emission wavelength can be changed by changing the composition of the light emitting layer.
 本実施形態に係る製造方法によって得られる蛍光体は、白色LED以外の発光装置、例えば、蛍光体励起源が真空紫外線である発光装置(例えば、PDP);蛍光体励起源が紫外線である発光装置(例えば、液晶ディスプレイ用バックライト、三波長形蛍光ランプ);蛍光体励起源が電子線である発光装置(例えば、CRTやFED)などにも使用できる。 The phosphor obtained by the manufacturing method according to the present embodiment is a light emitting device other than a white LED, for example, a light emitting device whose phosphor excitation source is vacuum ultraviolet light (for example, PDP); a light emitting device whose phosphor excitation source is ultraviolet light (For example, a backlight for a liquid crystal display, a three-wavelength fluorescent lamp); It can also be used for a light emitting device (for example, CRT or FED) in which the phosphor excitation source is an electron beam.
 以下、実施例を挙げて本発明をより具体的に説明する。本発明はもとより下記実施例によって制限を受けるものではない。前記及び後記の趣旨に適合し得る範囲で適当に変更を加えた態様により本発明を実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples. Of course, it is possible to implement the present invention in a mode appropriately modified within a range that can be adapted to the above-described and the gist of the following, all of which are included in the technical scope of the present invention.
 なお以下の実施例で得られる蛍光体の発光強度は、蛍光分光測定装置(日本分光(株)製FP-6500)を用いて決定した。蛍光体のX線回折(XRD)測定には、X線回折装置(リガク製RINT2000)を用いた。蛍光体中のEuの価数割合は、X線吸収微細構造(XAFS)測定によって評価した。 The emission intensity of the phosphors obtained in the following examples was determined using a fluorescence spectrometer (FP-6500 manufactured by JASCO Corporation). An X-ray diffractometer (RINT2000 manufactured by Rigaku) was used for X-ray diffraction (XRD) measurement of the phosphor. The valence ratio of Eu in the phosphor was evaluated by X-ray absorption fine structure (XAFS) measurement.
 XAFS測定は、SPring-8においてビームラインBL14B2を用いて透過法で行った。Eu-L3吸収端である6650~7600eVを測定領域とした。Eu2+(6972eV)の標準試料は、BaMgAl1017:Eu2+(BAM)を用いた。Eu3+(6980eV)の標準試料は、酸化ユウロピウム(信越化学工業株式会社製、純度99.99%)を用いた。X線吸収端近傍構造(XANES)スペクトルは、解析プログラム(リガク製REX2000)を用い、各試料のXAFSデータをバックグラウンドに基づいて処理することによって得た。その後、Eu2+標準試料及びEu3+標準試料のXANESスペクトルを用いて、各試料のXANESスペクトルのパターンフィッティングを行い、Eu2+ピークの割合から、試料中のEu2+の割合を算出した。 XAFS measurement was performed by the transmission method using the beam line BL14B2 at SPring-8. The Eu-L3 absorption edge, 6650-7600 eV, was used as the measurement region. BaMgAl 10 O 17 : Eu 2+ (BAM) was used as a standard sample of Eu 2+ (6792 eV). As a standard sample of Eu 3+ (6980 eV), europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%) was used. The X-ray absorption near edge structure (XANES) spectrum was obtained by processing the XAFS data of each sample based on the background using an analysis program (Rigaku REX2000). Thereafter, pattern fitting of the XANES spectrum of each sample was performed using the XANES spectra of the Eu 2+ standard sample and Eu 3+ standard sample, and the ratio of Eu 2+ in the sample was calculated from the ratio of Eu 2+ peaks.
 結晶性物質中の酸素の含有量は、堀場製作所製EMGA-920を用いて測定した。酸素の含有量については非分散型赤外吸収法を用いた。 The content of oxygen in the crystalline substance was measured using EMGA-920 manufactured by Horiba. The non-dispersive infrared absorption method was used for the oxygen content.
 比較例1
 炭酸リチウム(関東化学株式会社製、純度99%)、炭酸ストロンチウム(堺化学工業株式会社製、純度99%以上)、酸化ユウロピウム(信越化学工業株式会社製、純度99.99%)、及び二酸化珪素(日本アエロジル株式会社製:純度99.99%)を、Li:Sr:Eu:Siの原子比が1.96:0.98:0.02:1.0となるように秤取し、これらを乾式ボールミルにより6時間混合して金属化合物混合物を得た。
Comparative Example 1
Lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%), and silicon dioxide (Nippon Aerosil Co., Ltd .: purity 99.99%) were weighed so that the atomic ratio of Li: Sr: Eu: Si was 1.96: 0.98: 0.02: 1.0. Were mixed by a dry ball mill for 6 hours to obtain a metal compound mixture.
 5体積%のHを含有するN雰囲気中、前記金属化合物混合物を温度800℃で24時間加熱(焼成)した。これを室温まで徐冷して、式Li1.96(Sr0.98Eu0.02)SiOで表される化合物を含有する蛍光体を得た。蛍光体の全Eu中の2価のEu(Eu2+)の割合は14%であった。 The metal compound mixture was heated (baked) for 24 hours at a temperature of 800 ° C. in an N 2 atmosphere containing 5% by volume of H 2 . This was gradually cooled to room temperature to obtain a phosphor containing a compound represented by the formula Li 1.96 (Sr 0.98 Eu 0.02 ) SiO 4 . The ratio of divalent Eu (Eu 2+ ) in the total Eu of the phosphor was 14%.
 比較例2
 炭酸リチウム(関東化学株式会社製、純度99%)、炭酸ストロンチウム(堺化学工業株式会社製、純度99%以上)、酸化ユウロピウム(信越化学工業株式会社製、純度99.99%)、及び二酸化珪素(日本アエロジル株式会社製:純度99.99%)を、Li:Sr:Eu:Siの原子比が1.96:0.98:0.02:1.0となるように秤取し、これらを乾式ボールミルにより6時間混合して金属化合物混合物を得た。
Comparative Example 2
Lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd., purity 99% or more), europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%), and silicon dioxide (Nippon Aerosil Co., Ltd .: purity 99.99%) were weighed so that the atomic ratio of Li: Sr: Eu: Si was 1.96: 0.98: 0.02: 1.0. Were mixed by a dry ball mill for 6 hours to obtain a metal compound mixture.
 5体積%のHを含有するN雰囲気中、前記金属化合物混合物を温度800℃で24時間加熱(焼成)し、室温まで徐冷した。得られた焼成物を粉砕し、さらに5体積%のHを含有するN雰囲気中で、温度800℃で24時間加熱(焼成)することで式Li1.96(Sr0.98Eu0.02)SiOで表される化合物を含有する蛍光体を得た。蛍光体の全Eu中の2価のEu(Eu2+)の割合は17%であった。 In a N 2 atmosphere containing 5% by volume of H 2 , the metal compound mixture was heated (baked) at a temperature of 800 ° C. for 24 hours and gradually cooled to room temperature. The obtained fired product is pulverized, and further heated (fired) at a temperature of 800 ° C. for 24 hours in an N 2 atmosphere containing 5% by volume of H 2 to obtain the formula Li 1.96 (Sr 0.98 Eu 0 0.02 ) A phosphor containing a compound represented by SiO 4 was obtained. The ratio of divalent Eu (Eu 2+ ) in the total Eu of the phosphor was 17%.
 1…発光装置、5…原料混合物とSiOとの混合物、10…発光素子、20…蛍光層、30…焼成室。
 
DESCRIPTION OF SYMBOLS 1 ... Light-emitting device, 5 ... Mixture of raw material mixture and SiO, 10 ... Light emitting element, 20 ... Fluorescent layer, 30 ... Baking chamber.

Claims (11)

  1.  M、M、及びLを含む原料混合物とSiOとを混合し焼成して、M 2a(M )M で表される黄色蛍光体を生成させる工程を含み、
     Mはアルカリ金属から選択される少なくとも一種の元素であり、
     Mはアルカリ土類金属から選択される少なくとも一種の元素であり、
     MはSiである、又は、Si及びGeであり、
     Lは希土類元素、Bi及びMnから選択される少なくとも一種の元素であり、
     aは、0.1~1.5であり、
     bは、0.8~1.2であり、
     cは、0.005~0.2であり、
     dは、0.8~1.2である、
    黄色蛍光体の製造方法。
    Including a step of mixing a raw material mixture containing M 1 , M 2 , and L and SiO and firing to produce a yellow phosphor represented by M 1 2a (M 2 b L c ) M 3 d O 4 ,
    M 1 is at least one element selected from alkali metals,
    M 2 is at least one element selected from alkaline earth metals,
    M 3 is Si or Si and Ge;
    L is at least one element selected from rare earth elements, Bi and Mn,
    a is 0.1 to 1.5;
    b is 0.8 to 1.2;
    c is 0.005 to 0.2,
    d is 0.8 to 1.2,
    A method for producing a yellow phosphor.
  2.  前記原料混合物が、SiOとは異なるM含有原料を更に含有し、
     前記黄色蛍光体中の元素Mの全量に対して、前記SiOに由来するSi元素の割合が0.001~50原子%である、請求項1に記載の製造方法。
    The raw material mixture further contains an M 3 -containing raw material different from SiO,
    The production method according to claim 1, wherein the ratio of Si element derived from SiO is 0.001 to 50 atomic% with respect to the total amount of element M 3 in the yellow phosphor.
  3.  Lが、希土類元素、Bi及びMnから選択される、Euを含む少なくとも一種の元素である、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein L is at least one element including Eu selected from rare earth elements, Bi and Mn.
  4.  Lが、希土類元素、Bi及びMnから選択される、2価のEuを含む少なくとも一種の元素である、請求項3に記載の製造方法。 The production method according to claim 3, wherein L is at least one element containing divalent Eu selected from rare earth elements, Bi and Mn.
  5.  MがLiであり、MがSiである、請求項1~4のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein M 1 is Li and M 3 is Si.
  6.  Mが、Srのみである、Sr及びBaである、又は、Sr及びCaである、請求項1~5のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein M 2 is only Sr, Sr and Ba, or Sr and Ca.
  7.  aが、0.9~1.1である、請求項1~6のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein a is from 0.9 to 1.1.
  8.  b+cが1であり、dが1である、請求項1~7のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein b + c is 1 and d is 1.
  9.  請求項1~8のいずれか一項に記載の方法によって製造することのできる黄色蛍光体。 A yellow phosphor that can be produced by the method according to any one of claims 1 to 8.
  10.  請求項9に記載の黄色蛍光体を有する発光装置。 A light emitting device comprising the yellow phosphor according to claim 9.
  11.  請求項9に記載の黄色蛍光体を有する白色LED。 A white LED having the yellow phosphor according to claim 9.
PCT/JP2011/077952 2010-12-02 2011-12-02 Yellow phosphor and method for manufacturing same WO2012074105A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-269353 2010-12-02
JP2010269353A JP2012116980A (en) 2010-12-02 2010-12-02 Yellow phosphor and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2012074105A1 true WO2012074105A1 (en) 2012-06-07

Family

ID=46172026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077952 WO2012074105A1 (en) 2010-12-02 2011-12-02 Yellow phosphor and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP2012116980A (en)
TW (1) TW201241153A (en)
WO (1) WO2012074105A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2014941A (en) 2014-07-16 2016-04-12 Asml Netherlands Bv Lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090865A1 (en) * 2005-02-23 2006-08-31 Sumitomo Chemical Company, Limited Phosphor, light emitting device and white light emitting diode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090865A1 (en) * 2005-02-23 2006-08-31 Sumitomo Chemical Company, Limited Phosphor, light emitting device and white light emitting diode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KENJI TODA ET AL.: "Kitai kara Tsukuru Jisedai Shomeiyo Hakko Zairyo Retort Pack no Hogo Film kara Keikotai ga Dekita!", SHUKI THE JAPAN SOCIETY OF APPLIED PHYSICS GAKUJUTSU KOENKAI NO PREVIEW HAPPYO, 1 September 2010 (2010-09-01), Retrieved from the Internet <URL:http://www.jsap.or.jp/pressrelease/press-100901.html> *

Also Published As

Publication number Publication date
TW201241153A (en) 2012-10-16
JP2012116980A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5717075B2 (en) Phosphor, method for manufacturing the same, light emitting device, and image display device
TWI408210B (en) Green fluorescent materials, methods of fabricating the same and emission devices using the green fluorescent materials
JP5578739B2 (en) Alkaline earth metal silicate phosphor and method for producing the same
JP5706441B2 (en) Strontium oxyorthosilicate phosphor with improved stability to radiation load and resistance to atmospheric humidity
WO2012074102A1 (en) Method for producing crystalline material
JP2006232906A (en) Fluorescent substance and light-emitting apparatus using the same
JP2012531488A (en) Luminescent material with Eu2 + -doped silicate phosphor
WO2016076380A1 (en) Phosphor, light-emitting device, illumination device, and image display device
JP6421806B2 (en) Aluminate phosphor manufacturing method, aluminate phosphor and light emitting device
JP2019065112A (en) Aluminate phosphor, light-emitting device and method for producing aluminate phosphor
WO2012074103A1 (en) Crystalline material, and light-emitting device and white led using same
WO2012074105A1 (en) Yellow phosphor and method for manufacturing same
WO2012063685A1 (en) Yellow phosphor and manufacturing method therefor
JP2017186459A (en) Nitride phosphor powder and production method thereof
WO2012074104A1 (en) Phosphor manufacturing method
JP5870256B2 (en) Phosphor and light emitting device
WO2012043879A1 (en) Phosphor and method for producing same
JP7152667B2 (en) Phosphor manufacturing method and phosphor
WO2015111626A1 (en) Fluorescent material and light-emitting device
JP2016121300A (en) Phosphor
JP5385961B2 (en) Phosphor and light emitting device using the same
JP2019044159A (en) Aluminate phosphor and light emitting device
KR20160055216A (en) Method for producing silicate phosphor
JP2017066340A (en) Oxide phosphor and light emitting device prepared therewith
WO2016072407A1 (en) Phosphor and light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844954

Country of ref document: EP

Kind code of ref document: A1