JP5364486B2 - Manufacturing method of metal bond grindstone - Google Patents

Manufacturing method of metal bond grindstone Download PDF

Info

Publication number
JP5364486B2
JP5364486B2 JP2009170023A JP2009170023A JP5364486B2 JP 5364486 B2 JP5364486 B2 JP 5364486B2 JP 2009170023 A JP2009170023 A JP 2009170023A JP 2009170023 A JP2009170023 A JP 2009170023A JP 5364486 B2 JP5364486 B2 JP 5364486B2
Authority
JP
Japan
Prior art keywords
pressure
inert gas
grindstone
metal bond
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009170023A
Other languages
Japanese (ja)
Other versions
JP2011020246A (en
Inventor
正人 氏橋
俊也 平田
和彦 北中
直秀 海野
宏 杉山
規之 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009170023A priority Critical patent/JP5364486B2/en
Priority to PCT/JP2010/062258 priority patent/WO2011010671A1/en
Publication of JP2011020246A publication Critical patent/JP2011020246A/en
Application granted granted Critical
Publication of JP5364486B2 publication Critical patent/JP5364486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing technology capable of manufacturing a metal-bonded grinding wheel having long lifetime. <P>SOLUTION: A calcinated product is cooled in compressed inert gas. When the inert gas is compressed, the density is increased, the frequency of collision of gas molecules is increased, and the heat conductivity is increased. In other words, the compressed inert gas plays a role as a heat carrier for efficiently transferring the potential heat of the calcinated product to a water-cooled jacket. When the calcinated product is cooled at high temperature dropping rate, generation of brittle aggregate can be suppressed. As a result, the lifetime of the grinding wheel can be prolonged. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、プラトーホーニング加工に好適なメタルボンド砥石の製造方法に関する。   The present invention relates to a method for manufacturing a metal bond grindstone suitable for plateau honing.

近年、あらゆる分野において環境に対する取り組みがなされている。車両においても、燃費向上は取り組むべき重大な事項である。燃費向上対策の一つに、シリンダとピストンとの間の摩擦軽減がある。この摩擦軽減は、燃費向上だけでなく、運動性能の向上にも繋がる。   In recent years, environmental efforts have been made in all fields. Even in vehicles, improving fuel efficiency is an important issue to be addressed. One measure for improving fuel efficiency is to reduce friction between the cylinder and the piston. This friction reduction not only improves fuel consumption but also leads to improvement of exercise performance.

上述の摩擦軽減を実現するには、プラトーホーニング工法が有効である。
図5はプラトーホーニング加工が施されたシリンダの断面を拡大した模式図であり、プラトーホーニング加工が施されたシリンダ100の表面には、無数のプラトー(丘)101と、隣り合うプラトー101、101の間に形成される谷102とが形成される。プラトー101の頂面103は面粗さを小さくして摩耗を低減させ、谷102に溜めたオイルで頂面103とピストンとの間の潤滑を維持する。この結果、摺動性と潤滑性を両立させることができる。
The plateau honing method is effective for realizing the above-mentioned friction reduction.
FIG. 5 is an enlarged schematic view of a cross section of a cylinder subjected to plateau honing. An infinite number of plateaus (hills) 101 and adjacent plateaus 101, 101 are formed on the surface of the cylinder 100 subjected to plateau honing. And a trough 102 formed between the two. The top surface 103 of the plateau 101 reduces the surface roughness to reduce wear, and maintains the lubrication between the top surface 103 and the piston with the oil accumulated in the valley 102. As a result, both slidability and lubricity can be achieved.

以上に述べたプラトーホーニング加工に適した砥石として、メタルボンド砥石が提案されている(例えば、特許文献1参照。)。   A metal bond grindstone has been proposed as a grindstone suitable for the plateau honing process described above (see, for example, Patent Document 1).

特許文献1の段落番号[0049]に「製造条件は、硫酸バリウム(BaSO)を含む実施例の砥石の焼結温度500℃及び成型圧力15MPaであった。いずれも調合した混合粉末を同時に過熱(原文のまま。加熱が正しいと思われる)加圧(ホットプレス)して製作した。」の記載がある。 In paragraph No. [0049] of Patent Document 1, “Manufacturing conditions were a sintering temperature of 500 ° C. and a molding pressure of 15 MPa of the grindstone of the example containing barium sulfate (BaSO 4 ). (The original text. Heating seems to be correct.) It was manufactured by pressing (hot pressing). "

本発明者らは、上記焼結条件(500℃、15MPa)で、メタルボンド砥石素材を圧縮焼結した。焼結後に、特許文献1には説明されていないが、ヒータへの通電を停止して冷却することでメタルボンド砥石を得た。このときの冷却速度は5.8℃/分であった。
得られたメタルボンド砥石の断面模式図は次の通りである。
The inventors of the present invention compression-sintered a metal bond grindstone material under the above-described sintering conditions (500 ° C., 15 MPa). Although not explained in Patent Document 1 after sintering, a metal bond grindstone was obtained by stopping energization of the heater and cooling. The cooling rate at this time was 5.8 ° C./min.
The cross-sectional schematic diagram of the obtained metal bond grindstone is as follows.

図6は従来のメタルボンド砥石の断面模式図であり、このメタルボンド砥石110では、母材である金属系結合材Mb中に、コバルト(Co)粒子111と、約5μmの砥粒112と、二硫化タングステン(WS)粒子113とを分散させることを基本とするが、これに約30μmの凝集塊115が含まれていることが判明した。 FIG. 6 is a schematic cross-sectional view of a conventional metal bond grindstone. In this metal bond grindstone 110, cobalt (Co) particles 111, about 5 μm abrasive grains 112, and a metal-based binder Mb as a base material; Although it is based on the dispersion of tungsten disulfide (WS 2 ) particles 113, it has been found that this contains an aggregate 115 of about 30 μm.

この凝集塊115は、機械的特性の向上を目的に添加されるフィラーの分散が不十分であるため、母材である金属系結合材Mbの粗大な結晶中にフィラーであるコバルト粒子111と二硫化タングステン粒子113とが凝集したことにより生成される。このような凝集塊115は、周囲に較べて脆弱である。   In this agglomerate 115, the filler added for the purpose of improving the mechanical properties is insufficiently dispersed. Therefore, the agglomerate 115 and the cobalt particles 111 that are fillers in the coarse crystals of the metal-based binder Mb that is the base material are mixed. It is generated by aggregation of tungsten sulfide particles 113. Such agglomerates 115 are more fragile than the surroundings.

図7は図6の作用説明図であり、メタルボンド砥石110で暫く研削を行ったところ、凝集塊115が表面から脱落して、約30μm径の大きなポケット116ができていた。このため保持力が低下して砥粒の脱落が進行することによる研削量の低下、および、凝集塊脱落の進行による摩耗の急増が発生するので、従来のメタルボンド砥石110は寿命が短いという問題があることが分かった。   FIG. 7 is an explanatory diagram of the operation of FIG. 6. After grinding for a while with the metal bond grindstone 110, the agglomerate 115 dropped off from the surface, and a large pocket 116 with a diameter of about 30 μm was formed. For this reason, since the holding power is reduced and the amount of grinding is reduced due to the progress of falling off of the abrasive grains, and the wear is rapidly increased due to the progress of falling off of the agglomerates, the conventional metal bond grindstone 110 has a short life. I found out that

特開2008−229794公報JP 2008-229794 A

本発明は、高寿命のメタルボンド砥石を製造することができる製造技術を提供することを課題とする。   This invention makes it a subject to provide the manufacturing technique which can manufacture a long life metal bond grindstone.

請求項1に係る発明は、研削材としての砥粒と、砥石の性能を向上させるコバルト及び二硫化タングステンと、結合材とからなるメタルボンド砥石の製造方法であって、
ホットプレスにより前記砥粒、コバルト、二硫化タングステン及び結合材からなる素材にプレス圧を付与しながら、前記素材をゲージ圧力で0.92〜0.98MPaの加圧不活性ガス雰囲気中で、焼成処理することで焼成品を得る加熱処理工程と、
加熱を停止し、前記加圧不活性ガスの圧力を維持しつつ前記焼成品を冷却することで砥石を得る冷却処理工程と、からなることを特徴とする。
The invention according to claim 1 is a method for producing a metal bond grindstone comprising abrasive grains as an abrasive, cobalt and tungsten disulfide for improving the performance of the grindstone, and a binder,
Hot pressing by the abrasive grains, cobalt, while applying pressing pressure on the material consisting of tungsten disulfide and binder, the material in a pressurized inert gas atmosphere 0.92~0.98MPa a gauge pressure, firing A heat treatment step of obtaining a fired product by processing;
Heating was discontinued and the features and the cooling process step to obtain a grinding wheel by cooling the calcined product while maintaining the pressure of the pressurized inert gas, in that it consists of.

請求項1に係る発明では、焼成品を圧縮不活性ガス中で冷却するようにした。不活性ガスは圧縮されると密度が大きくなりガス分子同士の衝突頻度が増すので、伝熱性が高まる。すなわち、圧縮不活性ガスは、焼成品の保有熱を、水冷ジャケットへ効率よく伝達する、熱キャリアの役割を果たす。高い降温速度で冷却すると、脆弱な凝集塊の発生を抑制することができる。結果、砥石の寿命を延ばすことができる。焼成品を圧縮不活性ガス中で冷却すると、10℃/分以上の冷却速度が得られる。装置によっては20℃/分以上の冷却速度が得られる。冷却速度が10℃/分以上、好ましくは20℃/分以上であれば、凝集塊の発生を抑えることができる。   In the invention according to claim 1, the fired product is cooled in a compressed inert gas. When the inert gas is compressed, the density increases and the collision frequency between the gas molecules increases, so that the heat transfer property increases. That is, the compressed inert gas serves as a heat carrier that efficiently transfers the retained heat of the fired product to the water-cooled jacket. When cooled at a high temperature-decreasing rate, generation of fragile agglomerates can be suppressed. As a result, the life of the grindstone can be extended. When the fired product is cooled in a compressed inert gas, a cooling rate of 10 ° C./min or more is obtained. Depending on the apparatus, a cooling rate of 20 ° C./min or more can be obtained. If the cooling rate is 10 ° C./min or more, preferably 20 ° C./min or more, the generation of aggregates can be suppressed.

加えて、請求項に係る発明では、圧縮不活性ガスの圧力を、ゲージ圧力で0.92〜0.98MPaにした。0.98MPaを超えると高圧容器関連法令により、ホットプレスの耐圧性が強く求められ、ホットプレスが高価になる。この点、0.98MPaに留めることにより、ホットプレスの価格を抑えつつ、高い降温速度が得られる。また、0.92MPa以上であれば、高い降温速度が得られる。 In addition, in the invention according to claim 1 , the pressure of the compressed inert gas is set to 0.92 to 0.98 MPa in terms of gauge pressure. If it exceeds 0.98 MPa, the pressure resistance of the hot press is strongly required by the laws and regulations related to the high pressure vessel, and the hot press becomes expensive. In this respect, by keeping the pressure at 0.98 MPa, a high temperature drop rate can be obtained while suppressing the price of the hot press. Moreover, if it is 0.92 Mpa or more, a high temperature-fall rate will be obtained.

本発明で使用するホットプレスの断面図である。It is sectional drawing of the hot press used by this invention. 炉内圧力と降温速度の相関図である。It is a correlation diagram of a furnace pressure and a temperature drop rate. 砥石の断面を拡大した模式図である。It is the schematic diagram which expanded the cross section of the grindstone. 使用後の砥石の断面を拡大した模式図である。It is the schematic diagram which expanded the cross section of the grindstone after use. プラトーホーニング加工が施されたシリンダの断面を拡大した模式図である。It is the schematic diagram which expanded the cross section of the cylinder to which the plateau honing process was performed. 従来の砥石の断面を拡大した模式図である。It is the schematic diagram which expanded the cross section of the conventional grindstone. 使用後の砥石の断面を拡大した模式図である。It is the schematic diagram which expanded the cross section of the grindstone after use.

本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
また、圧力に関しては次の表記を採用する。減圧状態には、絶対真空をゼロとした絶対圧を使用し、単位の後に(a)を記す。加圧状態には、大気圧をゼロとしたケージ圧を使用し、単位の後に(G)を記す。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
The following notation is adopted for pressure. In the reduced pressure state, an absolute pressure with an absolute vacuum of zero is used, and (a) is written after the unit. For the pressurized state, a cage pressure with the atmospheric pressure set to zero is used, and (G) is written after the unit.

本発明の実施例を図面に基づいて説明する。
図1に示されるように、ホットプレス10は、水冷ジャケット11を備え、内圧が0.98MPa(G)まで耐える炉殻12と、この炉殻12の底から上向きに挿入された下部パンチ13と、この下部パンチ13に載せられる円筒状のダイ14と、炉殻12のトップから下向きに挿入され、ダイ14に挿入される上部パンチ15と、ダイ14の周囲に配置される黒鉛ヒータ16と、この黒鉛ヒータ16を囲う断熱室17とからなる焼結炉である。
Embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a hot press 10 includes a water cooling jacket 11, a furnace shell 12 that can withstand an internal pressure of up to 0.98 MPa (G), and a lower punch 13 that is inserted upward from the bottom of the furnace shell 12. A cylindrical die 14 placed on the lower punch 13; an upper punch 15 inserted downward from the top of the furnace shell 12; and a graphite heater 16 disposed around the die 14; This is a sintering furnace including a heat insulating chamber 17 surrounding the graphite heater 16.

下部パンチ13の下部はシリンダ18に挿入され、このシリンダ18へ油圧ポンプ19から圧油が送られると下部パンチ13は上昇する。油圧は圧力検出手段21で検出する。
水冷ジャケット11へは、水ポンプ22で給水される。この水はチラー23に排出され、温度調節がなされた後、水ポンプ22に戻される。
The lower part of the lower punch 13 is inserted into the cylinder 18, and when the pressure oil is sent from the hydraulic pump 19 to the cylinder 18, the lower punch 13 rises. The oil pressure is detected by the pressure detection means 21.
Water cooling jacket 11 is supplied with water by water pump 22. This water is discharged to the chiller 23, the temperature is adjusted, and then returned to the water pump 22.

黒鉛ヒータ16は炉温制御部25で制御される。すなわち、炉温検出手段26で検出した温度が設定値より低い場合には、黒鉛ヒータ16への給電量を増加し、温度が設定値より高い場合には、黒鉛ヒータ16への給電量を減少させることにより、昇温速度の制御を含む炉温制御が可能となる。   The graphite heater 16 is controlled by the furnace temperature control unit 25. That is, when the temperature detected by the furnace temperature detecting means 26 is lower than the set value, the power supply amount to the graphite heater 16 is increased, and when the temperature is higher than the set value, the power supply amount to the graphite heater 16 is decreased. By doing so, it is possible to control the furnace temperature including control of the rate of temperature increase.

また、炉殻12には、炉内の圧力を検出する炉圧検出手段27及び排気・加圧兼用の管28が設けられ、この管28に真空ポンプやエジェクターなどの排気手段29及び不活性ガス供給源31が接続されている。不活性ガスは、アルゴンガスや窒素ガスが入手容易である。ただし、排気手段29と不活性ガス供給源31とは同時に使用されることはない。   Further, the furnace shell 12 is provided with a furnace pressure detecting means 27 for detecting the pressure in the furnace and an exhaust / pressurizing pipe 28, and an exhaust means 29 such as a vacuum pump or an ejector and an inert gas are provided in the pipe 28. A supply source 31 is connected. As the inert gas, argon gas or nitrogen gas is easily available. However, the exhaust means 29 and the inert gas supply source 31 are not used at the same time.

また、炉圧検出手段27は減圧用と加圧用とは別々に設けることが望ましいが、ここでは便宜的に共用とした。
以上に説明したホットプレス10を用いて次に述べる実験を行った。
The furnace pressure detecting means 27 is preferably provided separately for the pressure reduction and the pressure application, but is here shared for convenience.
The following experiment was performed using the hot press 10 described above.

(実験例)
本発明に係る実験例を以下に述べる。なお、本発明は実験例に限定されるものではない。
○素材:
砥粒(平均粒径5μm):8.75体積%
コバルト:56体積%
二硫化タングステン:5.25体積%
結合材(りん青銅):30体積%
(Experimental example)
Experimental examples according to the present invention will be described below. Note that the present invention is not limited to experimental examples.
○ Material:
Abrasive grains (average grain size 5 μm): 8.75 vol%
Cobalt: 56% by volume
Tungsten disulfide: 5.25% by volume
Binder (phosphor bronze): 30% by volume

○素材充填:
上記素材を、図1のダイ14に充填した。なお、ダイ14の最大径は120mmである。
○排気:
炉内の空気を排除するために、図1の排気手段29により、炉内を20Pa(a)又はそれ以下の圧力に減圧する。これで、酸素は殆ど除去される。
○ Material filling:
The material was filled in the die 14 of FIG. The maximum diameter of the die 14 is 120 mm.
○ Exhaust:
In order to exclude the air in the furnace, the inside of the furnace is reduced to a pressure of 20 Pa (a) or lower by the exhaust means 29 of FIG. This almost removes oxygen.

○不活性ガス充填:
図1の不活性ガス供給源31からアルゴンガスを炉内へ吹き込み、炉圧を所定の圧力に維持する。
○プレス:
図1のパンチ13、15により、素材に30MPaのプレス圧を付与する。
○ Inert gas filling:
Argon gas is blown into the furnace from the inert gas supply source 31 of FIG. 1, and the furnace pressure is maintained at a predetermined pressure.
○ Press:
A press pressure of 30 MPa is applied to the material by the punches 13 and 15 in FIG.

○加熱及び昇温速度:
大気温度(25℃)から焼結温度(740℃)まで、12.5℃/分の昇温速度で加熱する。740℃で一定時間保持することにより、焼結処理がなされる。
○加熱停止:
図1の黒鉛ヒータ16を止める。これで、炉内及び素材の温度は下がる。降温の際には、炉内の不活性ガスの圧力が維持されるように、炉圧検出手段27で圧力を監視して排気手段29、及び不活性ガス供給源31を制御する。
○ Heating and heating rate:
Heat from the atmospheric temperature (25 ° C.) to the sintering temperature (740 ° C.) at a heating rate of 12.5 ° C./min. By holding at 740 ° C. for a certain time, the sintering process is performed.
○ Heating stop:
The graphite heater 16 in FIG. 1 is stopped. This lowers the temperature in the furnace and the material. When the temperature is lowered, the pressure is monitored by the furnace pressure detecting means 27 to control the exhaust means 29 and the inert gas supply source 31 so that the pressure of the inert gas in the furnace is maintained.

降温速度は、次図に示す通りであった。
図2に示すように、炉内圧力が0.01MPa(G)では、降温速度は11.9℃/分、0.10MPa(G)で12.8℃/分、0.49MPa(G)で16.0℃/分、0.69MPa(G)で17.5℃/分、0.80MPa(G)で18.7℃/分、0.92MPa(G)で、19.3℃/分であった。
なお、降温速度は740℃〜600℃までの所要時間を計測し、(740−600)/所要時間=降温速度の計算により求めた。
The cooling rate was as shown in the following figure.
As shown in FIG. 2, when the pressure in the furnace is 0.01 MPa (G), the cooling rate is 11.9 ° C./min, 0.10 MPa (G) is 12.8 ° C./min, and 0.49 MPa (G). 16.0 ° C./min, 0.69 MPa (G) at 17.5 ° C./min, 0.80 MPa (G) at 18.7 ° C./min, 0.92 MPa (G) at 19.3 ° C./min there were.
In addition, the temperature decreasing rate measured the required time from 740 degreeC to 600 degreeC, and calculated | required by calculation of (740-600) / required time = temperature decreasing rate.

降温速度の差異は、次のように説明することができる。
冷却とは温度が高い炉中心部から低い外周部に熱が伝わる(逃げる)事である。この仲介を果たす伝達物質が雰囲気となる。言い換えれば、熱の伝達は気体分子の衝突で行われる。
The difference in the temperature drop rate can be explained as follows.
Cooling means that heat is transferred (escapes) from the furnace center having a high temperature to the low outer periphery. The transmitting substance that fulfills this mediation is the atmosphere. In other words, heat transfer is performed by collision of gas molecules.

一般的なホットプレス製法は、炉内を減圧もしくはガス置換を行い、酸素分圧を下げてから焼結する。これは、酸化による劣化を防ぐ為である。減圧雰囲気では、熱を伝達する物質(気体分子)が少なくなる。また、ガス置換についても、ガスの種類が変わっても気体分子数はほとんど変わらない。よって、一般的なホットプレスの雰囲気では降温速度は向上しない。   In a general hot press manufacturing method, sintering is performed after reducing the oxygen partial pressure by reducing the pressure in the furnace or replacing the gas. This is to prevent deterioration due to oxidation. In a reduced pressure atmosphere, there are fewer substances (gas molecules) that transfer heat. In addition, regarding gas replacement, the number of gas molecules hardly changes even if the type of gas changes. Therefore, the cooling rate is not improved in a general hot press atmosphere.

本発明では、炉内の雰囲気を加圧状態でホットプレス製法を行うことにより、降温速度を向上させるものである。高圧ガスを炉に封入する事により気体の分子の数を増やす。すなわち、分子の衝突を増やして放熱を加速することに成功した。   In the present invention, the temperature drop rate is improved by performing a hot press manufacturing method in a pressurized state of the atmosphere in the furnace. Increasing the number of gaseous molecules by enclosing high pressure gas in the furnace. In other words, we succeeded in accelerating heat dissipation by increasing molecular collisions.

○ 0.92MPa(G)での評価:
炉内圧力が0.92MPa(G)で製作した砥石の断面(模式図)は次図の通りであった。
図3に示すように、砥石40は、砥粒41とコバルト粒子42と二硫化タングステン粒子43と、これらを結合する金属系結合材44とからなると共に、小さな黒点で示すコバルト粒子42と二硫化タングステン粒子43と砥粒41とが均等に分散されていた。
○ Evaluation at 0.92 MPa (G):
The cross section (schematic diagram) of the grindstone manufactured at a furnace pressure of 0.92 MPa (G) was as shown in the following figure.
As shown in FIG. 3, the grindstone 40 is composed of abrasive grains 41, cobalt particles 42, tungsten disulfide particles 43, and a metal-based binder 44 that binds them, and also includes cobalt particles 42 and disulfides indicated by small black dots. The tungsten particles 43 and the abrasive grains 41 were evenly dispersed.

図4は図3の作用図であり、このような砥石40で研削を行ったところ、表面から二硫化タングステン粒子43が脱落し、微細なポケット47ができた。   FIG. 4 is an operation diagram of FIG. 3. When grinding was performed with such a grindstone 40, the tungsten disulfide particles 43 dropped off from the surface, and fine pockets 47 were formed.

すなわち、砥粒の耐摩耗性を向上させるコバルト粒子42は砥石内にとどまって砥石摩耗抑止作用を発揮する。さらに、微細ポケット47は切粉の砥粒前面への堆積を防止し、脱落した二硫化タングステン粒子43が固体潤滑剤の役割を果たして切粉の排出性を促進するため、切粉による目詰まりが防止される。これらの作用により、良好な切削性が維持される。   That is, the cobalt particles 42 that improve the wear resistance of the abrasive grains remain in the grindstone and exhibit a grindstone wear inhibiting action. Further, the fine pocket 47 prevents the chips from accumulating on the front surface of the abrasive grains, and the dropped tungsten disulfide particles 43 serve as a solid lubricant to promote the discharge of the chips. Is prevented. By these actions, good machinability is maintained.

○大気圧(0.01MPa(G))での評価:
一方、炉内圧力が0.01MPa(G)で製作した砥石の断面(模式図)は、従来の技術で述べた図6とほぼ同一であり、図7のような問題点を有する。
○ Evaluation at atmospheric pressure (0.01 MPa (G)):
On the other hand, the cross-section (schematic diagram) of the grindstone manufactured at a furnace pressure of 0.01 MPa (G) is almost the same as FIG.

本発明のように、焼結後に、高降温速度で冷却することで、凝集塊(図6、符号115)の大きさを小さくすることができた。   As in the present invention, the size of the agglomerates (FIG. 6, reference numeral 115) could be reduced by cooling at a high cooling rate after sintering.

本発明は、プラトーホーニング加工に用いるメタルボンド砥石の製造に好適である。   The present invention is suitable for manufacturing a metal bond grindstone used for plateau honing.

10…ホットプレス、11…水冷ジャケット、31…不活性ガス供給源、40…砥石、41…砥粒、42…コバルト粒子、43…二硫化タングステン粒子、44…結合材。   DESCRIPTION OF SYMBOLS 10 ... Hot press, 11 ... Water cooling jacket, 31 ... Inert gas supply source, 40 ... Whetstone, 41 ... Abrasive grain, 42 ... Cobalt particle, 43 ... Tungsten disulfide particle, 44 ... Binder.

Claims (1)

研削材としての砥粒と、砥石の性能を向上させるコバルト及び二硫化タングステンと、結合材とからなるメタルボンド砥石の製造方法であって、
ホットプレスにより前記砥粒、コバルト、二硫化タングステン及び結合材からなる素材にプレス圧を付与しながら、前記素材をゲージ圧力で0.92〜0.98MPaの加圧不活性ガス雰囲気中で、焼成処理することで焼成品を得る加熱処理工程と、
加熱を停止し、前記加圧不活性ガスの圧力を維持しつつ前記焼成品を冷却することで砥石を得る冷却処理工程と、
からなることを特徴とするメタルボンド砥石の製造方法。
A method for producing a metal bond grindstone comprising abrasive grains as an abrasive, cobalt and tungsten disulfide for improving the performance of the grindstone, and a binder,
Hot pressing by the abrasive grains, cobalt, while applying pressing pressure on the material consisting of tungsten disulfide and binder, the material in a pressurized inert gas atmosphere 0.92~0.98MPa a gauge pressure, firing A heat treatment step of obtaining a fired product by processing;
Heating was discontinued, and the cooling process step to obtain a grinding wheel by cooling the calcined product while maintaining the pressure of the pressurized inert gas,
A method for producing a metal bond grindstone comprising:
JP2009170023A 2009-07-21 2009-07-21 Manufacturing method of metal bond grindstone Active JP5364486B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009170023A JP5364486B2 (en) 2009-07-21 2009-07-21 Manufacturing method of metal bond grindstone
PCT/JP2010/062258 WO2011010671A1 (en) 2009-07-21 2010-07-21 Process for production of metal-bonded grinding stone, and sintering furnace for production of metal-bonded grinding stone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009170023A JP5364486B2 (en) 2009-07-21 2009-07-21 Manufacturing method of metal bond grindstone

Publications (2)

Publication Number Publication Date
JP2011020246A JP2011020246A (en) 2011-02-03
JP5364486B2 true JP5364486B2 (en) 2013-12-11

Family

ID=43630745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009170023A Active JP5364486B2 (en) 2009-07-21 2009-07-21 Manufacturing method of metal bond grindstone

Country Status (1)

Country Link
JP (1) JP5364486B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046070A (en) * 2000-08-07 2002-02-12 Toshiba Mach Co Ltd Method and device for manufacturing grinding wheel
JP4964636B2 (en) * 2007-03-22 2012-07-04 株式会社ミズホ Super Abrasive Metal Bond Wheel

Also Published As

Publication number Publication date
JP2011020246A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
TWI544094B (en) Copper alloy powder, copper alloy sintered body and high-speed railway with brake lining
JP5061018B2 (en) Aluminum-graphite-silicon carbide composite and method for producing the same
CN104399970A (en) Iron-based powder metallurgy friction material and preparation method thereof
EP3305927A1 (en) Sintered friction material for high speed railway vehicles and method for manufacturing same
CN103501939B (en) Heat-radiating substrate composite and manufacture method thereof
US20140238191A1 (en) Magnesium-based alloy powder and magnesium-based alloy molded article
JP5299415B2 (en) Oxide sintered body for cylindrical sputtering target and method for producing the same
CN1555419A (en) Method for producing reduced iron compact in rotary hearth reducing furnace, reduced iron compact, and method for producing pig iron using the same
CN102601367A (en) Heat treatment method of radiation or multi-pole orientation magnet ring
JP5364485B2 (en) Manufacturing method of metal bond grindstone
WO2011010670A1 (en) Metal-bonded grinding wheel and manufacturing method thereof
JP5364486B2 (en) Manufacturing method of metal bond grindstone
WO2011010671A1 (en) Process for production of metal-bonded grinding stone, and sintering furnace for production of metal-bonded grinding stone
WO2012043660A1 (en) Method for producing metal-bonded grindstone
JP5426263B2 (en) Sintering furnace for metal bond grinding wheel production
JP5520771B2 (en) Manufacturing method of metal bond grindstone
JP5514689B2 (en) Manufacturing method of metal bond grindstone
JP2011020242A (en) Metal-bonded grinding wheel
CN106838079A (en) A kind of extremely frigid zones bullet train brake pad metallurgical friction material
CN102937143B (en) Sliding bearing sleeve sintered from copper-aluminum alloy powder and preparation method thereof
JP2011020245A (en) Metal-bonded grinding wheel, and method for manufacturing the same
JP5551040B2 (en) Metal bond grinding wheel
JP5417072B2 (en) Metal bond grinding wheel
JP2010202902A (en) Metallic composite material and method of manufacturing the same
KR101116908B1 (en) method of manufacturing copper compacts for sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5364486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250