JP5551040B2 - Metal bond grinding wheel - Google Patents

Metal bond grinding wheel Download PDF

Info

Publication number
JP5551040B2
JP5551040B2 JP2010222044A JP2010222044A JP5551040B2 JP 5551040 B2 JP5551040 B2 JP 5551040B2 JP 2010222044 A JP2010222044 A JP 2010222044A JP 2010222044 A JP2010222044 A JP 2010222044A JP 5551040 B2 JP5551040 B2 JP 5551040B2
Authority
JP
Japan
Prior art keywords
volume
grinding
cobalt
fluorine phlogopite
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010222044A
Other languages
Japanese (ja)
Other versions
JP2012076167A (en
Inventor
正人 氏橋
直秀 海野
規之 難波
慎吾 松本
和彦 北中
宏 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010222044A priority Critical patent/JP5551040B2/en
Priority to PCT/JP2011/072249 priority patent/WO2012043661A1/en
Publication of JP2012076167A publication Critical patent/JP2012076167A/en
Application granted granted Critical
Publication of JP5551040B2 publication Critical patent/JP5551040B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements

Description

本発明は、ホーニング粗加工に好適なメタルボンド砥石に関する。   The present invention relates to a metal bond grindstone suitable for honing roughing.

近年、あらゆる分野において環境に対する取り組みがなされている。車両においても、燃費向上は取り組むべき重大な事項である。燃費向上対策の一つに、シリンダとピストンとの間の摩擦軽減がある。この摩擦軽減は、燃費向上だけでなく、運動性能の向上にも繋がる。   In recent years, environmental efforts have been made in all fields. Even in vehicles, improving fuel efficiency is an important issue to be addressed. One measure for improving fuel efficiency is to reduce friction between the cylinder and the piston. This friction reduction not only improves fuel consumption but also leads to improvement of exercise performance.

上述の摩擦軽減を実現するには、プラトーホーニング工法が有効である。
図6はプラトーホーニング加工が施されたシリンダの断面を拡大した模式図であり、プラトーホーニング加工が施されたシリンダ100の表面には、無数のプラトー(丘)101と、隣り合うプラトー101、101の間に形成される谷102とが形成される。プラトー101の頂面103は面粗さを小さくして摩耗を低減させ、谷102に溜めたオイルで頂面103とピストンとの間の潤滑を維持する。この結果、摺動性と潤滑性を両立させることができる。
The plateau honing method is effective for realizing the above-mentioned friction reduction.
FIG. 6 is an enlarged schematic view of the cross section of the cylinder subjected to the plateau honing process. The surface of the cylinder 100 subjected to the plateau honing process has innumerable plateaus (hills) 101 and adjacent plateaus 101 and 101. And a trough 102 formed between the two. The top surface 103 of the plateau 101 reduces the surface roughness to reduce wear, and maintains the lubrication between the top surface 103 and the piston with the oil accumulated in the valley 102. As a result, both slidability and lubricity can be achieved.

以上に述べたプラトーホーニング加工に適した砥石として、メタルボンド砥石が提案されている(例えば、特許文献1(第2頁)参照。)。   As a grindstone suitable for the plateau honing process described above, a metal bond grindstone has been proposed (see, for example, Patent Document 1 (page 2)).

特許文献1の請求項2に「焼結性メタルボンドの組成が、金属質粒子25〜75体積%とガラス質粒子25〜75体積%である請求項1に記載の超砥粒メタルボンド砥石。」の記載がある。   Claim 2 of Patent Document 1 states that “the composition of the sinterable metal bond is 25 to 75% by volume of metal particles and 25 to 75% by volume of glassy particles. Is described.

ガラス質粒子25〜75体積%は、崩壊してチップポケットを生成する役割を果たす。チップポケットの存在により、切り屑の排出が円滑となり、ホーニング加工が安定して行える。
ところで、ガラス質粒子と金属質粒子の配合比を検討すると、ガラス質粒子/金属質粒子=(25体積%/75体積%)〜(75体積%/25体積%)=0.33〜3.0となる。
The glassy particles 25-75% by volume play a role of breaking down and generating chip pockets. Due to the presence of the chip pocket, chips are discharged smoothly and honing can be performed stably.
By the way, when the compounding ratio of the vitreous particles and the metallic particles is examined, the vitreous particles / metallic particles = (25 vol% / 75 vol%) to (75 vol% / 25 vol%) = 0.33-3. 0.

本発明者らの検討によれば、ガラス質粒子/金属質粒子が大きいほど、ガラス質粒子の崩壊、脱落が顕著になり、研削体積/摩耗体積で定義される研削比が極端に小さくなることが判明した。
チップポケットの生成が維持されつつ、研削比を高めることができる砥石が求められる。
According to the study by the present inventors, the larger the vitreous particles / metallic particles, the more conspicuous the collapse and dropout of the vitreous particles, and the grinding ratio defined by the grinding volume / wear volume becomes extremely small. There was found.
There is a need for a grindstone that can increase the grinding ratio while maintaining the generation of chip pockets.

特開2008−229794公報JP 2008-229794 A

本発明は、チップポケットの生成が維持されつつ、研削比を高めることができるメタルボンド砥石を提供することを課題とする。   An object of the present invention is to provide a metal bond grindstone capable of increasing a grinding ratio while maintaining generation of chip pockets.

請求項1に係る発明は、研削材としての砥粒と、砥石の性能を向上させるコバルト及びフッ素金雲母と、結合材とからなるメタルボンド砥石において、
前記フッ素金雲母及び前記コバルトの含有量を、フッ素金雲母:7.75〜19.75体積%、コバルト:56〜44体積%であって、前記フッ素金雲母の体積%を前記コバルトの体積%で除した値、0.14〜0.23の範囲にしたことを特徴とする。
なお、フッ素金雲母の体積%とは、メタルボンド砥石に占めるフッ素金雲母の含有率を体積%で表したものである。同様に、コバルトの体積%とは、メタルボンド砥石に占めるコバルトの含有率を体積%で表したものである。
The invention according to claim 1 is a metal bond grindstone comprising abrasive grains as a grinding material, cobalt and fluorine phlogopite for improving the performance of the grindstone, and a binder,
The fluorine phlogopite and the cobalt content are: fluorine phlogopite: 7.75 to 19.75% by volume, cobalt: 56 to 44% by volume, and the volume% of the fluorine phlogopite is the volume% of the cobalt. The value divided by is in the range of 0.14 to 0.23.
The volume% of fluorophlogopite represents the content of fluorine phlogopite in the metal bond grindstone in volume%. Similarly, the volume% of cobalt represents the content of cobalt in the metal bond grindstone in volume%.

請求項1に係る発明では、(フッ素金雲母/コバルト)=0.14〜0.23とした。   In the invention according to claim 1, (fluorine phlogopite / cobalt) = 0.14 to 0.23.

フッ素金雲母の体積%をコバルトの体積%で除した値が、0.14を下回るとチップポケットの生成が不足し、切り屑の排出性が低下するため研削能率が小さくなる。研削能率は、(研削体積/研削時間)で定義されるため、所定時間当たりの研削体積が小さくなり、研削工程が延びる。
また、フッ素金雲母の体積%をコバルトの体積%で除した値が、0.23を超えると、研削比が小さくなる。研削比は、(研削体積/摩耗体積)で定義されるため、砥石の寿命が短くなる。
When the value obtained by dividing the volume% of the fluorophlogopite by the volume% of cobalt is less than 0.14, the generation of chip pockets is insufficient and the chip dischargeability is reduced, so that the grinding efficiency is reduced. Since the grinding efficiency is defined by (grinding volume / grinding time), the grinding volume per predetermined time is reduced and the grinding process is extended.
Further, when the value obtained by dividing the volume% of fluorophlogopite by the volume% of cobalt exceeds 0.23, the grinding ratio becomes small. Since the grinding ratio is defined by (grinding volume / wear volume), the life of the grindstone is shortened.

(フッ素金雲母/コバルト)=0.14〜0.23であれば、所定の研削能率及び所定の研削比が得られ、砥石の寿命を延ばすことができると共に研削工程の短縮化を図ることができる。
すなわち、請求項1によれば、チップポケットの生成が維持されつつ、研削比を高めることができるメタルボンド砥石が提供される。
If (fluorine phlogopite / cobalt) = 0.14 to 0.23, a predetermined grinding efficiency and a predetermined grinding ratio can be obtained, the life of the grindstone can be extended and the grinding process can be shortened. it can.
That is, according to Claim 1, the metal bond grindstone which can raise a grinding ratio is provided, maintaining the production | generation of a chip pocket.

ホットプレスの断面図である。It is sectional drawing of a hot press. 砥石の断面模式図である。It is a cross-sectional schematic diagram of a grindstone. フッ素金雲母/コバルトと研削比(相対比A)の相関図である。It is a correlation diagram of fluorine phlogopite / cobalt and grinding ratio (relative ratio A). フッ素金雲母/コバルトと研削能率(相対比B)の相関図である。It is a correlation diagram of fluorine phlogopite / cobalt and grinding efficiency (relative ratio B). フッ素金雲母/コバルトと(相対比A)×(相対比B)の相関図である。FIG. 5 is a correlation diagram of fluorine phlogopite / cobalt and (relative ratio A) × (relative ratio B). プラトーホーニング加工が施されたシリンダの断面を拡大した模式図である。It is the schematic diagram which expanded the cross section of the cylinder to which the plateau honing process was performed.

本発明の実施の形態を添付図に基づいて以下に説明する。なお、圧力に関しては次の表記を採用する。減圧状態には、絶対真空をゼロとした絶対圧を使用し、単位の後に(a)を記す。加圧状態には、大気圧をゼロとしたケージ圧を使用し、単位の後に(G)を記す。   Embodiments of the present invention will be described below with reference to the accompanying drawings. The following notation is adopted for pressure. In the reduced pressure state, an absolute pressure with an absolute vacuum of zero is used, and (a) is written after the unit. For the pressurized state, a cage pressure with the atmospheric pressure set to zero is used, and (G) is written after the unit.

本発明の実施例を図面に基づいて説明する。
図1に示されるように、ホットプレス10は、水冷ジャケット11を備え、内圧が0.98MPa(G)まで耐える炉殻12と、この炉殻12の底から上向きに挿入された下部パンチ13と、この下部パンチ13に載せられる円筒状のダイ14と、炉殻12のトップから下向きに挿入され、ダイ14に挿入される上部パンチ15と、ダイ14の周囲に配置される黒鉛ヒータ16と、この黒鉛ヒータ16を囲う断熱室17とからなる焼結炉(耐加圧型ホットプレス)である。
Embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a hot press 10 includes a water cooling jacket 11, a furnace shell 12 that can withstand an internal pressure of up to 0.98 MPa (G), and a lower punch 13 that is inserted upward from the bottom of the furnace shell 12. A cylindrical die 14 placed on the lower punch 13; an upper punch 15 inserted downward from the top of the furnace shell 12; and a graphite heater 16 disposed around the die 14; This is a sintering furnace (pressure resistant hot press) comprising a heat insulating chamber 17 surrounding the graphite heater 16.

下部パンチ13の下部はシリンダ18に挿入され、このシリンダ18へ油圧ポンプ19から圧油が送られると下部パンチ13は上昇する。油圧は圧力検出手段21で検出する。
水冷ジャケット11へは、水ポンプ22で給水される。この水はチラー23に排出され、温度調節がなされた後、水ポンプ22に戻される。
The lower part of the lower punch 13 is inserted into the cylinder 18, and when the pressure oil is sent from the hydraulic pump 19 to the cylinder 18, the lower punch 13 rises. The oil pressure is detected by the pressure detection means 21.
Water cooling jacket 11 is supplied with water by water pump 22. This water is discharged to the chiller 23, the temperature is adjusted, and then returned to the water pump 22.

黒鉛ヒータ16は炉温制御部25で制御される。すなわち、炉温検出手段26で検出した温度が設定値より低い場合には、黒鉛ヒータ16への給電量を増加し、温度が設定値より高い場合には、黒鉛ヒータ16への給電量を減少させることにより、昇温速度の制御を含む炉温制御が可能となる。   The graphite heater 16 is controlled by the furnace temperature control unit 25. That is, when the temperature detected by the furnace temperature detecting means 26 is lower than the set value, the power supply amount to the graphite heater 16 is increased, and when the temperature is higher than the set value, the power supply amount to the graphite heater 16 is decreased. By doing so, it is possible to control the furnace temperature including control of the rate of temperature increase.

また、炉殻12には、炉内の圧力を検出する炉圧検出手段27及び排気・加圧兼用の管28が設けられ、この管28に真空ポンプやエジェクターなどの排気手段29及び不活性ガス供給源31が接続されている。不活性ガスは、アルゴンガスや窒素ガスが入手容易である。ただし、排気手段29と不活性ガス供給源31とは同時に使用されることはない。   Further, the furnace shell 12 is provided with a furnace pressure detecting means 27 for detecting the pressure in the furnace and an exhaust / pressurizing pipe 28, and an exhaust means 29 such as a vacuum pump or an ejector and an inert gas are provided in the pipe 28. A supply source 31 is connected. As the inert gas, argon gas or nitrogen gas is easily available. However, the exhaust means 29 and the inert gas supply source 31 are not used at the same time.

また、炉圧検出手段27は減圧用と加圧用とは別々に設けることが望ましいが、ここでは便宜的に共用とした。
以上に説明したホットプレス10を用いて次に述べる実験を行った。
The furnace pressure detecting means 27 is preferably provided separately for the pressure reduction and the pressure application, but is here shared for convenience.
The following experiment was performed using the hot press 10 described above.

(実験例)
本発明に係る実験例を以下に述べる。なお、本発明は実験例に限定されるものではない。
○素材:
砥粒(粒度170):6.25体積%
フッ素金雲母:7.75〜19.75体積%
コバルト:56〜44体積%
結合材:30体積%
(Experimental example)
Experimental examples according to the present invention will be described below. Note that the present invention is not limited to experimental examples.
○ Material:
Abrasive grains (grain size 170): 6.25% by volume
Fluorine phlogopite: 7.75 to 19.75% by volume
Cobalt: 56-44% by volume
Binder: 30% by volume

○素材充填:
上記素材を、図1のダイ14に充填した。なお、ダイ14の最大径は200mmである。
○排気:
炉内の空気を排除するために、図1の排気手段29により、炉内を20Pa(a)又はそれ以下の圧力に減圧する。これで、酸素は殆ど除去される。
○ Material filling:
The material was filled in the die 14 of FIG. The maximum diameter of the die 14 is 200 mm.
○ Exhaust:
In order to exclude the air in the furnace, the inside of the furnace is reduced to a pressure of 20 Pa (a) or lower by the exhaust means 29 of FIG. This almost removes oxygen.

○不活性ガス充填:
図1の不活性ガス供給源31からアルゴンガスを炉内へ吹き込み、炉圧を所定の圧力に維持する。
○プレス:
図1のパンチ13、15により、素材に15MPaのプレス圧を付与する。
○ Inert gas filling:
Argon gas is blown into the furnace from the inert gas supply source 31 of FIG. 1, and the furnace pressure is maintained at a predetermined pressure.
○ Press:
A press pressure of 15 MPa is applied to the material by the punches 13 and 15 shown in FIG.

○加熱及び昇温速度:
大気温度(25℃)から焼結温度(740℃)まで、12.5℃/分の昇温速度で加熱する。740℃で一定時間保持することにより、焼結処理がなされる。
○ Heating and heating rate:
Heat from the atmospheric temperature (25 ° C.) to the sintering temperature (740 ° C.) at a heating rate of 12.5 ° C./min. By holding at 740 ° C. for a certain time, the sintering process is performed.

○加熱停止及び降温速度:
図1の黒鉛ヒータ16を止める。これで、炉内及び素材の温度は下がる。降温の際には、炉内のアルゴンガスの圧力が約0.92MPa(G)に維持されるように、炉圧検出手段27で圧力を監視して排気手段29、及び不活性ガス供給源31を制御する。結果、18.0℃/分の降温速度になった。
○ Heating stop and cooling rate:
The graphite heater 16 in FIG. 1 is stopped. This lowers the temperature in the furnace and the material. When the temperature is lowered, the pressure is monitored by the furnace pressure detection means 27 so that the pressure of the argon gas in the furnace is maintained at about 0.92 MPa (G), and the exhaust means 29 and the inert gas supply source 31 are monitored. To control. As a result, the temperature decreasing rate was 18.0 ° C./min.

得られた砥石の断面図(模式図)を、図2に示す。
砥石50は、砥粒51と、コバルト粒子52と、フッ素金雲母粒子53と、これらを結合する金属系結合材54とからなる。
A sectional view (schematic diagram) of the obtained grindstone is shown in FIG.
The grindstone 50 includes abrasive grains 51, cobalt particles 52, fluorine phlogopite particles 53, and a metal-based binder 54 that binds these.

以上の条件に加えて、フッ素金雲母の体積%とコバルトの体積%を変えながら、実験01〜05の砥石を得た。結果を、表1に示す。   In addition to the above conditions, the grindstones of Experiments 01 to 05 were obtained while changing the volume% of fluorine phlogopite and the volume% of cobalt. The results are shown in Table 1.

Figure 0005551040
Figure 0005551040

すなわち、実験01では、砥粒6.25体積%とフッ素金雲母7.75体積%とコバルト粒子56体積%と結合材30体積%からなるメタルボンド砥石(ホーニング粗加工用砥石)を作製した。この砥石を用いて次の条件でホーニング粗加工を実施した。   That is, in Experiment 01, a metal bond grindstone (honing roughing grindstone) composed of 6.25 vol% abrasive grains, 7.75 vol% fluorine phlogopite, 56 vol% cobalt particles, and 30 vol% binder was produced. Using this grindstone, honing roughing was performed under the following conditions.

○ホーニング粗加工条件(実験01〜05共通):
ホーニングヘッドに取付けた砥石の数:3枚
砥石の拡張圧力:1.3MPa
ホーニングヘッドの回転数:毎分700回転
ホーニングヘッドの振動数:3.8Hz
ホーニングヘッドの送り速度:45.6m/分
○ Honing roughing conditions (common to Experiments 01 to 05):
Number of grinding wheels attached to the honing head: 3 Grinding wheel expansion pressure: 1.3 MPa
Honing head rotation speed: 700 rotations per minute Honing head vibration frequency: 3.8 Hz
Honing head feed rate: 45.6 m / min

以上の条件でホーニング粗加工を施し、研削比と研削能率を求めた。
砥石でワークを研削した場合に、ワークは所定の体積だけ研削除去される。この体積を研削体積と呼ぶ。また、砥石側もある程度の体積が摩耗する。この体積を摩耗体積と呼ぶ。
The honing roughing was performed under the above conditions, and the grinding ratio and grinding efficiency were determined.
When a workpiece is ground with a grindstone, the workpiece is ground and removed by a predetermined volume. This volume is called the grinding volume. Moreover, a certain amount of volume is worn on the grindstone side. This volume is called the wear volume.

(研削体積/摩耗体積)=研削比と定義する。研削比は砥石の寿命そのものを表すので、研削比の大きな砥石、すなわち、砥石の摩耗量が少なく、ワークの研削量が大きい砥石が望まれる。   (Grinding volume / wear volume) = defined as grinding ratio. Since the grinding ratio represents the life of the grindstone itself, a grindstone with a large grinding ratio, that is, a grindstone with a small amount of wear of the grindstone and a large amount of workpiece grinding is desired.

また、ワークを一定時間で加工する時、研削体積は大きいほど生産性が高まる。そこで、研削能率=(研削体積/加工時間)と定義する。研削能率の単位はmm/secとする。 In addition, when the workpiece is processed in a certain time, the productivity increases as the grinding volume increases. Therefore, it is defined that grinding efficiency = (grinding volume / processing time). The unit of grinding efficiency is mm 3 / sec.

実験01での研削比は24225であり、研削能率は75mm/secであった。
実験02〜実験05では、砥粒6.25体積%と結合材30体積%とは変えないで、フッ素金雲母の体積%とコバルト粒子の体積%とを変えて、研削比と研削能率を求めた。結果は表1に示す通りである。
The grinding ratio in Experiment 01 was 24225, and the grinding efficiency was 75 mm 3 / sec.
In Experiment 02 to Experiment 05, the grinding ratio and the grinding efficiency were obtained by changing the volume percentage of fluorine phlogopite and the volume percentage of cobalt particles without changing the abrasive grain 6.25 volume% and the binder 30 volume%. It was. The results are as shown in Table 1.

表1から明らかなように、フッ素金雲母及びコバルトの体積%を変えると、研削比が著しく変わり、研削能率が穏やかに変わることが分かった。この変化をより分かり易くするために、次のようにデータを処理する。   As is apparent from Table 1, it was found that when the volume percentages of fluorine phlogopite and cobalt were changed, the grinding ratio was remarkably changed and the grinding efficiency was changed gently. In order to make this change easier to understand, data is processed as follows.

フッ素金雲母の体積%をコバルトの体積%で除する(割る)ことで、フッ素金雲母/コバルトで表す指標を作る。
実験01では、フッ素金雲母が7.75体積%でコバルトが56体積%であるから、フッ素金雲母/コバルト=7.75/56=0.138の計算により、0.138となる。
By dividing (dividing) the volume% of fluorine phlogopite by the volume% of cobalt, an index represented by fluorine phlogopite / cobalt is created.
In Experiment 01, since the fluorine phlogopite is 7.75% by volume and the cobalt is 56% by volume, the calculation of fluorine phlogopite / cobalt = 7.75 / 56 = 0.138 is 0.138.

また、表1において研削比が大きく変わっているため、最小値の5307(実験05での研削比)を1.00とし、他の実験の研削比を相対比(便宜上、相対比Aと呼ぶ。)で求めることにする。具体的には、実験01は、研削比が24225であるから、5307で割ることにより、4.56を得る。すなわち、実験01の研削比は、実験05の研削比の4.56倍に相当する。   In Table 1, since the grinding ratio has changed greatly, the minimum value 5307 (grinding ratio in Experiment 05) is set to 1.00, and the grinding ratio in other experiments is referred to as relative ratio (for convenience, relative ratio A). ). Specifically, since Experiment 01 has a grinding ratio of 24225, dividing by 5307 gives 4.56. That is, the grinding ratio in Experiment 01 corresponds to 4.56 times the grinding ratio in Experiment 05.

また、表1において研削能率は変化が小さいが、最小値の75mm/sec
(実験01での研削能率)を1.00とし、他の実験の研削能率を相対比(便宜上、相対比Bと呼ぶ。)で求めることにする。具体的には、実験02は、研削能率が103であるから、75で割ることにより、1.37を得る。すなわち、実験02の研削能率は、実験01の研削能率の1.37倍に相当する。
In Table 1, although the grinding efficiency is small, the minimum value is 75 mm 3 / sec.
(Grinding efficiency in Experiment 01) is set to 1.00, and the grinding efficiency in other experiments is obtained by a relative ratio (referred to as relative ratio B for convenience). Specifically, in Experiment 02, since the grinding efficiency is 103, 1.37 is obtained by dividing by 75. That is, the grinding efficiency in Experiment 02 corresponds to 1.37 times the grinding efficiency in Experiment 01.

以上のデータ処理を行うことで表2が得られる。   Table 2 is obtained by performing the above data processing.

Figure 0005551040
Figure 0005551040

表2における、フッ素金雲母/コバルトを横軸に取り、相対比Aを縦軸に取って描いたグラフを、図3に示す。フッ素金雲母/コバルトが増加するほど、研削比(相対比A)が急減する。
フッ素金雲母はチップポケット生成要素であるが、過剰になると脱落が顕著になる。合わせて、フッ素金雲母/コバルトが増加するほど、補強作用を発揮するコバルトが減少するため、研削比が急減したと推定される。
FIG. 3 shows a graph in Table 2 in which the horizontal axis represents fluorine phlogopite / cobalt and the relative ratio A represents the vertical axis. As the amount of fluorine phlogopite / cobalt increases, the grinding ratio (relative ratio A) decreases rapidly.
Fluorophlogopite is a chip pocket generating element, but when it is excessive, dropping off becomes remarkable. In addition, it is presumed that the grinding ratio sharply decreased as the amount of fluorine phlogopite / cobalt increased and the amount of cobalt that exerted the reinforcing action decreased.

また、表2における、フッ素金雲母/コバルトを横軸に取り、相対比Bを縦軸に取って描いたグラフを、図4に示す。フッ素金雲母/コバルトが増加するほど、研削能率(相対比B)が穏やかに増加する。   Moreover, the graph which took the fluorine phlogopite / cobalt on the horizontal axis in Table 2 and took the relative ratio B on the vertical axis is shown in FIG. As the amount of fluorine phlogopite / cobalt increases, the grinding efficiency (relative ratio B) increases more gently.

図3と図4からでは、フッ素金雲母/コバルトの好適範囲を見出すことが難しいため、さらなるデータ処理を施すことにした。
すなわち、表2中の相対比Aに相対比Bを乗じる。具体的には、実験01では、4.56×1.00=4.56の計算により、(相対比A)×(相対比B)を得る。同様の処理を実験02〜05にも施す。結果を表3に示す。
From FIG. 3 and FIG. 4, since it is difficult to find a suitable range of fluorine phlogopite / cobalt, it was decided to perform further data processing.
That is, the relative ratio A in Table 2 is multiplied by the relative ratio B. Specifically, in Experiment 01, (relative ratio A) × (relative ratio B) is obtained by calculation of 4.56 × 1.00 = 4.56. Similar processing is performed for Experiments 02 to 05. The results are shown in Table 3.

Figure 0005551040
Figure 0005551040

表3における、フッ素金雲母/コバルトを横軸に取り、(相対比A)×(相対比B)を縦軸に取って描いたグラフを、図5に示す。   FIG. 5 shows a graph in which the horizontal axis represents fluorophlogopite / cobalt in Table 3 and (relative ratio A) × (relative ratio B) plotted on the vertical axis.

図5から明らかなように、実験02が最良である。実験02でのフッ素金雲母/コバルトは、0.203であるから、最も好ましいフッ素金雲母/コバルトは、0.20である。   As is apparent from FIG. 5, experiment 02 is the best. Since the fluorine phlogopite / cobalt in Experiment 02 is 0.203, the most preferable fluorine phlogopite / cobalt is 0.20.

次に良いのは実験01であり、実験01までを良好とすれば、実験01の点を通る横線Cを引くことができる。この横線Cとグラフが交わった2箇所から縦線Dと縦線Eを下ろすと、縦線Dは0.14の横軸目盛りで横軸と交わり、縦線Eは0.23の横軸目盛りで横軸と交わる。
すなわち、フッ素金雲母/コバルトは0.14〜0.23であれば、良好な研削比と良好な研削能率が得られることが判明した。
Next is Experiment 01. If Experiment 01 is good, a horizontal line C passing through the points of Experiment 01 can be drawn. When the vertical line D and the vertical line E are dropped from two places where the horizontal line C and the graph intersect, the vertical line D intersects with the horizontal axis at a horizontal axis scale of 0.14, and the vertical line E is a horizontal axis scale of 0.23. Crosses the horizontal axis.
That is, it was found that if the fluorine phlogopite / cobalt is 0.14 to 0.23, a good grinding ratio and a good grinding efficiency can be obtained.

本発明は、ホーニング粗加工に用いるメタルボンド砥石に好適である。   The present invention is suitable for a metal bond grindstone used for honing roughing.

50…メタルボンド砥石、51…砥粒、52…コバルト粒子、53…フッ素金雲母粒子、54…結合材(金属系結合材)。   DESCRIPTION OF SYMBOLS 50 ... Metal bond grindstone, 51 ... Abrasive grain, 52 ... Cobalt particle, 53 ... Fluorophlogopite particle, 54 ... Binder (metal type binder).

Claims (1)

研削材としての砥粒と、砥石の性能を向上させるコバルト及びフッ素金雲母と、結合材とからなるメタルボンド砥石において、
前記フッ素金雲母及び前記コバルトの含有量を、フッ素金雲母:7.75〜19.75体積%、コバルト:56〜44体積%であって、前記フッ素金雲母の体積%を前記コバルトの体積%で除した値、0.14〜0.23の範囲にしたことを特徴とするメタルボンド砥石。
In a metal bond grindstone consisting of abrasive grains as a grinding material, cobalt and fluorine phlogopite to improve the performance of the grindstone, and a binder,
The fluorine phlogopite and the cobalt content are: fluorine phlogopite: 7.75 to 19.75% by volume, cobalt: 56 to 44% by volume, and the volume% of the fluorine phlogopite is the volume% of the cobalt. A metal bond grindstone characterized in that the value divided by is in the range of 0.14 to 0.23.
JP2010222044A 2010-09-30 2010-09-30 Metal bond grinding wheel Expired - Fee Related JP5551040B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010222044A JP5551040B2 (en) 2010-09-30 2010-09-30 Metal bond grinding wheel
PCT/JP2011/072249 WO2012043661A1 (en) 2010-09-30 2011-09-28 Metal-bonded grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010222044A JP5551040B2 (en) 2010-09-30 2010-09-30 Metal bond grinding wheel

Publications (2)

Publication Number Publication Date
JP2012076167A JP2012076167A (en) 2012-04-19
JP5551040B2 true JP5551040B2 (en) 2014-07-16

Family

ID=45893100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010222044A Expired - Fee Related JP5551040B2 (en) 2010-09-30 2010-09-30 Metal bond grinding wheel

Country Status (2)

Country Link
JP (1) JP5551040B2 (en)
WO (1) WO2012043661A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5850817B2 (en) * 2012-10-09 2016-02-03 本田技研工業株式会社 Metal bond grinding wheel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969483A (en) * 1982-10-07 1984-04-19 有限会社 日本グレ−ン研究所 Ceramic bond diamond grinding stone
JP2000006033A (en) * 1998-06-18 2000-01-11 Osaka Diamond Ind Co Ltd Resin bond super-abrasive grain wheel and manufacture thereof
JP4586704B2 (en) * 1999-08-17 2010-11-24 三菱マテリアル株式会社 Resin bond grinding wheel
JP2001246565A (en) * 2000-02-29 2001-09-11 Allied Material Corp Super-abrasive grain tool and its manufacturing method
JP2002001668A (en) * 2000-06-19 2002-01-08 Mitsubishi Materials Corp Metal bonded grinding wheel
JP4419299B2 (en) * 2000-09-01 2010-02-24 三菱マテリアル株式会社 Hybrid grinding wheel and manufacturing method thereof
JP2002146344A (en) * 2000-11-16 2002-05-22 Mitsubishi Materials Corp High functional filler for whetstone and method for producing the same, and whetstone using the same and method for producing the whetstone
JP2006239834A (en) * 2005-03-04 2006-09-14 Noritake Super Abrasive:Kk Wheel for resin bond double-end grinding

Also Published As

Publication number Publication date
WO2012043661A1 (en) 2012-04-05
JP2012076167A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP2014527124A (en) Method for manufacturing tungsten carbide sintered body for friction stir welding tool
CN104070171A (en) Preparation method for superfine chromium powder
CN109371274A (en) A kind of preparation method of high-performance powder metallurgy TZM molybdenum alloy
CN103231064A (en) Manufacturing method for novel nickel base solder brazing monolayer diamond grinding wheel
CN108103387A (en) A kind of nanometer of WC particle enhances high chromium iron-base powder metallurgy material
CN101187401A (en) Bearing ball made of cermet
CN105499924A (en) Machining method for molding lower die body of die of pulling ring of ring-pull can
CN104889399B (en) The method that powder metallurgical technique prepares antifriction anticorrosion alloy pipe fitting
JP5551040B2 (en) Metal bond grinding wheel
CN105798063A (en) Piercing point
CN102470512B (en) Metal-bonded grinding wheel and manufacture method thereof
Virdi et al. A review on minimum quantity lubrication technique application and challenges in grinding process using environment-friendly nanofluids
CN102029298B (en) Al2O3/TiC ceramic drawing die and manufacturing method thereof
CN107138725A (en) The compressing material of high-performance for booster
JP5364485B2 (en) Manufacturing method of metal bond grindstone
JP5514689B2 (en) Manufacturing method of metal bond grindstone
JP5417072B2 (en) Metal bond grinding wheel
JP5426263B2 (en) Sintering furnace for metal bond grinding wheel production
CN103212777A (en) Carbide-segregation-free CFW (Casting, Forging and Welding) high-speed steel and processing process thereof
WO2012043660A1 (en) Method for producing metal-bonded grindstone
CN107641770A (en) Hard alloy blade material and its manufacturing process
CN101591739B (en) Method for preparing quinary P-type hard alloy
WO2011010671A1 (en) Process for production of metal-bonded grinding stone, and sintering furnace for production of metal-bonded grinding stone
JP5850817B2 (en) Metal bond grinding wheel
Bae et al. A Study on Performance Characteristics of Super-mirror Face Grinding Machine Using Variable Air Pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140521

R150 Certificate of patent or registration of utility model

Ref document number: 5551040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees