JP5364450B2 - Water treatment device for fuel cell - Google Patents

Water treatment device for fuel cell Download PDF

Info

Publication number
JP5364450B2
JP5364450B2 JP2009132341A JP2009132341A JP5364450B2 JP 5364450 B2 JP5364450 B2 JP 5364450B2 JP 2009132341 A JP2009132341 A JP 2009132341A JP 2009132341 A JP2009132341 A JP 2009132341A JP 5364450 B2 JP5364450 B2 JP 5364450B2
Authority
JP
Japan
Prior art keywords
exchange resin
water
fuel cell
anion exchange
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009132341A
Other languages
Japanese (ja)
Other versions
JP2010277972A (en
Inventor
美和 伊藤
太郎 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2009132341A priority Critical patent/JP5364450B2/en
Priority to CN2010101876043A priority patent/CN101921010B/en
Priority to CN201310019704.9A priority patent/CN103130302B/en
Priority to CN2013100174545A priority patent/CN103130301A/en
Priority to CN201310019751.3A priority patent/CN103130303B/en
Publication of JP2010277972A publication Critical patent/JP2010277972A/en
Application granted granted Critical
Publication of JP5364450B2 publication Critical patent/JP5364450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、イオン交換樹脂を用いた燃料電池の水処理装置の技術に関する。   The present invention relates to a technology of a water treatment device for a fuel cell using an ion exchange resin.

燃料電池には、水素が必要であり、都市ガスや天然ガス等から水素を製造するためには、その改質工程において水が必要であり、純水が利用される。また、燃料電池の冷却や、固体高分子型燃料電池の高分子膜の加湿等にも純水が利用されている。   A fuel cell requires hydrogen, and in order to produce hydrogen from city gas, natural gas, or the like, water is required in the reforming process, and pure water is used. Pure water is also used for cooling the fuel cell and humidifying the polymer membrane of the polymer electrolyte fuel cell.

純水は、通常イオン交換樹脂を備える水処理装置を利用して不純物イオンを除去することにより製造される。水道水からの純水製造の他、燃料電池の発電反応により生じる凝縮水等を処理し、該処理水(純水)を燃料電池に循環する技術が種々提案されている。   Pure water is usually produced by removing impurity ions using a water treatment apparatus equipped with an ion exchange resin. In addition to the production of pure water from tap water, various techniques for treating condensed water generated by the power generation reaction of the fuel cell and circulating the treated water (pure water) to the fuel cell have been proposed.

例えば、特許文献1には、燃料電池の防食などのために、燃料電池に供給する冷却水中の炭酸イオン及び炭酸水素イオン(以下、炭酸イオン等または単に炭酸という)を水処理装置で処理する技術が提案されている。   For example, Patent Document 1 discloses a technique for treating carbonate ions and bicarbonate ions (hereinafter referred to as carbonate ions or simply carbonate) in cooling water supplied to a fuel cell with a water treatment device in order to prevent corrosion of the fuel cell. Has been proposed.

特開平8−17457号公報JP-A-8-17457

ここで、燃料電池の長期安定した運転を実現させるためには、燃料電池に供給する水中の塩化物イオンを除去することが重要である。すなわち、塩化物イオンが含有した水が燃料電池に供給されると、燃料電池で使用される部材が腐食する危険性が高い。   Here, in order to realize a long-term stable operation of the fuel cell, it is important to remove chloride ions in water supplied to the fuel cell. That is, when water containing chloride ions is supplied to the fuel cell, there is a high risk of corrosion of members used in the fuel cell.

本発明の目的は、燃料電池に供給する水中の塩化物イオン濃度を効果的に低減することができる燃料電池用の水処理装置を提供することにある。   The objective of this invention is providing the water treatment apparatus for fuel cells which can reduce the chloride ion concentration in the water supplied to a fuel cell effectively.

本発明は、イオン交換樹脂を用いた燃料電池の水処理装置であって、前記イオン交換樹脂は陰イオン交換樹脂を含み、初期状態の前記陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合は、被処理水中に溶解している炭酸濃度が高くなるに従い小さく、処理水中の所望塩素濃度が低くなるに従い小さくなるように設定されているものである。   The present invention is a water treatment apparatus for a fuel cell using an ion exchange resin, wherein the ion exchange resin includes an anion exchange resin, and chloride ions occupy a total exchange capacity of the anion exchange resin in an initial state. The ratio is set so as to decrease as the concentration of carbonic acid dissolved in the for-treatment water increases and to decrease as the desired chlorine concentration in the for-treatment water decreases.

また、前記燃料電池の水処理装置において、前記陰イオン交換樹脂はトリメチルアンモニウム基を交換基とする強塩基性陰イオン交換樹脂を含み、初期状態の前記陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合が、RCl=4×CCl/CO 0.53の式により求められる値以下であることが好ましい。但し、RClは陰イオン交換樹脂の全交換容量(eq/L−R)に占める塩化物イオン(eq/L−R)の割合(%)、CClは処理水中の所望塩化物イオン濃度(ppb)、COは被処理水中に溶解している炭酸をCOに換算したCO濃度(ppm)である。 Further, in the water treatment apparatus for a fuel cell, the anion exchange resin includes a strongly basic anion exchange resin having a trimethylammonium group as an exchange group, and chlorinated in the total exchange capacity of the anion exchange resin in an initial state. It is preferable that the ratio of the product ions is not more than the value obtained by the formula of R Cl = 4 × C Cl / CO 2 0.53 . However, RCl is the ratio (%) of chloride ions (eq / LR) to the total exchange capacity (eq / LR) of the anion exchange resin, and CCl is the desired chloride ion concentration in the treated water ( ppb) and CO 2 are CO 2 concentrations (ppm) obtained by converting carbonic acid dissolved in the water to be treated into CO 2 .

また、前記燃料電池の水処理装置において、前記陰イオン交換樹脂はジメチルエタノールアンモニウム基を交換基とする強塩基性陰イオン交換樹脂を含み、初期状態の前記陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合が、RCl=1.3×CCl/CO 0.45の式により求められる値以下であることが好ましい。但し、RClは陰イオン交換樹脂の全交換容量(eq/L−R)に占める塩化物イオン(eq/L−R)の割合(%)、CClは処理水中の所望塩化物イオン濃度(ppb)、COは被処理水中に溶解している炭酸をCOに換算したCO濃度(ppm)である。 In the fuel cell water treatment apparatus, the anion exchange resin includes a strongly basic anion exchange resin having a dimethylethanolammonium group as an exchange group, and occupies the total exchange capacity of the anion exchange resin in an initial state. It is preferable that the ratio of chloride ions is not more than the value obtained by the formula of R Cl = 1.3 × C Cl / CO 2 0.45 . However, RCl is the ratio (%) of chloride ions (eq / LR) to the total exchange capacity (eq / LR) of the anion exchange resin, and CCl is the desired chloride ion concentration in the treated water ( ppb) and CO 2 are CO 2 concentrations (ppm) obtained by converting carbonic acid dissolved in the water to be treated into CO 2 .

また、前記燃料電池の水処理装置において、前記初期状態の陰イオン交換樹脂は、炭酸塩を通液することで炭酸型にしたものであることが好ましい。   In the water treatment apparatus for a fuel cell, it is preferable that the anion exchange resin in the initial state is a carbonate type by passing carbonate.

また、前記燃料電池の水処理装置において、前記陰イオン交換樹脂への被処理水の通水は下向流で行われることが好ましい。   Moreover, in the water treatment apparatus for the fuel cell, it is preferable that the water to be treated be passed through the anion exchange resin in a downward flow.

また、前記燃料電池の水処理装置において、前記陰イオン交換樹脂へ通水する被処理水には、燃料電池の発電反応により生じる凝縮水が含まれ、前記被処理水は前記陰イオン交換樹脂により処理された後、前記燃料電池に再利用されることが好ましい。   Further, in the water treatment apparatus for a fuel cell, the treated water that passes through the anion exchange resin includes condensed water generated by a power generation reaction of the fuel cell, and the treated water is obtained by the anion exchange resin. After being processed, it is preferably reused in the fuel cell.

本発明によれば、燃料電池に供給する水中の塩化物イオンを効果的に低減させることができる燃料電池用の水処理装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the water treatment apparatus for fuel cells which can reduce effectively the chloride ion in the water supplied to a fuel cell can be provided.

本実施形態に係る燃料電池の水処理装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the water treatment apparatus of the fuel cell which concerns on this embodiment. 被処理水中の種々のCO濃度におけるRClとCClとの関係を示す図である。It is a diagram showing a relationship between R Cl and C Cl at various CO 2 concentration in the water to be treated. 被処理水中の種々のCO濃度におけるRClとCClとの関係を示す図である。It is a diagram showing a relationship between R Cl and C Cl at various CO 2 concentration in the water to be treated.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る燃料電池の水処理装置の構成の一例を示す模式図である。図1に示す燃料電池の水処理装置10には、イオン交換樹脂が充填されたカートリッジが備えられている。カートリッジは1つ又は複数であってもよい。カートリッジに充填されるイオン交換樹脂は、陰イオン交換樹脂、又は陰イオン交換樹脂と陽イオン交換樹脂との混床樹脂等である。なお、燃料電池の水処理装置10は、イオン交換樹脂が充填されたカートリッジに加え、活性炭等を充填したカートリッジを付加しても良い。   FIG. 1 is a schematic diagram illustrating an example of a configuration of a water treatment apparatus for a fuel cell according to the present embodiment. The fuel cell water treatment device 10 shown in FIG. 1 includes a cartridge filled with an ion exchange resin. There may be one or more cartridges. The ion exchange resin filled in the cartridge is an anion exchange resin or a mixed bed resin of an anion exchange resin and a cation exchange resin. In addition, the water treatment apparatus 10 of the fuel cell may add a cartridge filled with activated carbon or the like in addition to the cartridge filled with the ion exchange resin.

本実施形態に係る燃料電池の水処理装置10は、主に、燃料電池12に供給する水中の不純物イオンの除去を行うものである。燃料電池の水処理装置10により処理される水としては、水道水(市水)、純水、燃料電池12の発電反応により生じる凝縮水等が挙げられる。   The fuel cell water treatment device 10 according to the present embodiment mainly removes impurity ions in water supplied to the fuel cell 12. Examples of water to be treated by the water treatment device 10 of the fuel cell include tap water (city water), pure water, and condensed water generated by the power generation reaction of the fuel cell 12.

水道水等の市水は、被処理水ライン14から燃料電池の水処理装置10に供給される。また、燃料電池12から排出される凝縮水は、例えば、一旦凝縮水タンク16に貯留され、ポンプ18により、凝縮水ライン20から燃料電池の水処理装置10に供給される。そして、燃料電池の水処理装置10により、水中の不純物イオンが除去される。   City water such as tap water is supplied to the water treatment device 10 of the fuel cell from the treated water line 14. Further, the condensed water discharged from the fuel cell 12 is temporarily stored in, for example, the condensed water tank 16 and is supplied from the condensed water line 20 to the water treatment device 10 of the fuel cell by the pump 18. And the impurity ion in water is removed by the water treatment apparatus 10 of a fuel cell.

水中に含まれる不純物イオンとしては、例えば、炭酸イオン、炭酸水素イオン、塩化物イオン、硫酸イオン等が挙げられる。燃料電池の凝縮水には、多くの炭酸が含まれており、多量の炭酸を含む凝縮水から微量の陰イオン(塩化物イオン、硫酸イオン等)を除去することは、通常の陰イオン交換樹脂では比較的難しい。特に、塩化物イオンは、1価の陰イオンであり、硫酸イオン等の多価の陰イオンと比べ、陰イオン交換樹脂による吸着効率が悪いため、水中の塩化物イオンを低減することは難しい。   Examples of impurity ions contained in water include carbonate ions, hydrogen carbonate ions, chloride ions, and sulfate ions. Fuel cell condensate contains a lot of carbonic acid, and removing a small amount of anions (chloride ions, sulfate ions, etc.) from condensate containing a large amount of carbonic acid is a common anion exchange resin. Then it is relatively difficult. In particular, the chloride ion is a monovalent anion, and the adsorption efficiency by the anion exchange resin is poor as compared with a polyvalent anion such as sulfate ion, so it is difficult to reduce the chloride ion in water.

本実施形態では、初期状態の陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合が10%以下、好ましくは1%以下である陰イオン交換樹脂を用いる。これにより、炭酸を多量に含む水中の塩化物イオンを効果的に低減させることが可能となる。初期状態の陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合が10%を超えると、陰イオン交換樹脂は、水中に含まれる炭酸イオン等の不純物イオンを吸着する代わりに、塩化物イオンを処理水側に放出し易くなり、処理水中の塩化物イオンを効果的に低減させることが困難となる。   In the present embodiment, an anion exchange resin is used in which the proportion of chloride ions in the total exchange capacity of the anion exchange resin in the initial state is 10% or less, preferably 1% or less. This makes it possible to effectively reduce chloride ions in water containing a large amount of carbonic acid. When the ratio of chloride ions in the total exchange capacity of the anion exchange resin in the initial state exceeds 10%, the anion exchange resin absorbs impurity ions such as carbonate ions contained in the water instead of chloride ions. Is easily released to the treated water side, and it becomes difficult to effectively reduce chloride ions in the treated water.

また、陰イオン交換樹脂がトリメチルアンモニウム基を交換基とする強塩基性陰イオン交換樹脂を含む場合、初期状態の陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合が、下式(1)により求められる値以下であることが好ましい。これにより、多量の炭酸を含む処理水中において塩化物イオンを処理水側に放出する割合が低下し、処理水中の塩化物イオンをより効果的に低減させることができる。
Cl=4×CCl/CO 0.53 ・・・(1)
Cl:陰イオン交換樹脂の全交換容量(eq/L−R)に占める塩化物イオン(eq/L−R)の割合(%)
Cl:処理水中の所望塩化物イオン濃度(ppb)
CO:被処理水中に溶解している炭酸イオン、炭酸水素イオンをCOに換算したCO濃度(ppm)
When the anion exchange resin includes a strongly basic anion exchange resin having a trimethylammonium group as an exchange group, the ratio of chloride ions to the total exchange capacity of the anion exchange resin in the initial state is expressed by the following formula (1 It is preferable that it is below the value calculated | required by. Thereby, the ratio which discharge | releases a chloride ion to the treated water side in the treated water containing a large amount of carbonic acid falls, and the chloride ion in treated water can be reduced more effectively.
R Cl = 4 × C Cl / CO 2 0.53 (1)
R Cl : Ratio of chloride ion (eq / LR) to the total exchange capacity (eq / LR) of the anion exchange resin (%)
C Cl : Desired chloride ion concentration in treated water (ppb)
CO 2 : CO 2 concentration (ppm) obtained by converting carbonate ions and hydrogen carbonate ions dissolved in the water to be treated into CO 2

また、陰イオン交換樹脂がジメチルエタノールアンモニウム基を交換基とする強塩基性陰イオン交換樹脂を含む場合、初期状態の前記陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合が、下式(2)により求められる値以下であることが好ましい。これにより、塩化物イオンを処理水側に放出する割合が低下し、処理水中の塩化物イオンをより効果的に低減させることができる。
Cl=1.3×CCl/CO 0.45
Cl:陰イオン交換樹脂の全交換容量(eq/L−R)に占める塩化物イオン(eq/L−R)の割合(%)
Cl:処理水中の所望塩化物イオン濃度(ppb)
CO:被処理水中に溶解している炭酸をCOに換算したCO濃度(ppm)
Further, when the anion exchange resin includes a strongly basic anion exchange resin having a dimethylethanolammonium group as an exchange group, the ratio of chloride ions in the total exchange capacity of the anion exchange resin in the initial state is expressed by the following formula: It is preferable that the value is not more than the value obtained by (2). Thereby, the ratio which discharge | releases a chloride ion to the treated water side falls, and the chloride ion in treated water can be reduced more effectively.
R Cl = 1.3 × C Cl / CO 2 0.45
R Cl : Ratio of chloride ion (eq / LR) to the total exchange capacity (eq / LR) of the anion exchange resin (%)
C Cl : Desired chloride ion concentration in treated water (ppb)
CO 2: CO 2 concentration of the carbon dioxide which is dissolved in the water to be treated was converted to CO 2 (ppm)

上式(1)は、被処理水中の種々のCO濃度におけるRClとCClとの関係を示す図2から算出したものである。上式(2)は、被処理水中の種々のCO濃度におけるRClとCClとの関係を示す図3から算出したものである。上式から判るように、処理水中の所望塩化物イオン濃度が小さい場合又は被処理水中に溶解しているCO濃度が大きい場合には、初期状態の前記陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合を小さくする必要がある。 The above equation (1) is calculated from FIG. 2 showing the relationship between R Cl and C Cl at various CO 2 concentrations in the water to be treated. The above equation (2) is calculated from FIG. 3 showing the relationship between R Cl and C Cl at various CO 2 concentrations in the water to be treated. As can be seen from the above equation, when the desired chloride ion concentration in the treated water is small or the CO 2 concentration dissolved in the treated water is large, it accounts for the total exchange capacity of the anion exchange resin in the initial state. It is necessary to reduce the ratio of chloride ions.

また、燃料電池の水処理装置に用いられる陰イオン交換樹脂には、塩化物イオンの低減に加え、耐熱性、小型化等の要求がある。例えば、特開平11−204123号公報には、耐熱性を向上させるために、複数個の炭化水素基を有する陰イオン交換樹脂を用いる例が開示されており、また、例えば、特開平8−17457号公報には、装置を小型化するために、混床カートリッジに充填される陽イオン交換樹脂の量を最適化する例が開示されている。そこで、本実施形態では、重炭酸アンモニウム等の炭酸塩を陰イオン交換樹脂に通液し、炭酸型に変換したものを初期状態の陰イオン交換樹脂として用いることが好ましい。但し、炭酸型の陰イオン交換樹脂は、炭酸を除去することができないため、炭酸の除去が必要な場合は、後段で脱炭酸(脱気膜や空気接触による脱炭酸塔)を行うことが望ましい。炭酸型の陰イオン交換樹脂は、OH型等の陰イオン交換樹脂と比較して、同じ交換容量でも樹脂体積が小さい。すなわち、OH型の陰イオン交換樹脂を炭酸型に置換することで樹脂体積が小さくなる。このため、装置の小型化が可能となる。また、炭酸型の陰イオン交換樹脂は、OH型等の陰イオン交換樹脂と比較して、耐熱性も高い。そのため、燃料電池等の凝縮水等、比較的温度の高い被処理水(例えば、40〜80℃)を処理しても、熱によるイオン交換樹脂の分解が抑制され、処理水中にTOCが溶出することを抑制することができる。   Further, anion exchange resins used in water treatment devices for fuel cells have demands for heat resistance, downsizing, etc. in addition to reducing chloride ions. For example, Japanese Patent Application Laid-Open No. 11-204123 discloses an example in which an anion exchange resin having a plurality of hydrocarbon groups is used to improve heat resistance. The publication discloses an example of optimizing the amount of cation exchange resin filled in the mixed bed cartridge in order to reduce the size of the apparatus. Therefore, in the present embodiment, it is preferable to use carbonates such as ammonium bicarbonate that are passed through an anion exchange resin and converted to a carbonate type as an anion exchange resin in an initial state. However, since carbonic acid type anion exchange resin cannot remove carbonic acid, it is desirable to perform decarbonation (decarbonation tower by degassing membrane or air contact) in the latter stage when it is necessary to remove carbonic acid. . The carbonate type anion exchange resin has a small resin volume even with the same exchange capacity as compared with the anion exchange resin such as OH type. That is, the resin volume is reduced by replacing the OH type anion exchange resin with the carbonic acid type. For this reason, the apparatus can be miniaturized. Carbonic acid type anion exchange resins have higher heat resistance than OH type anion exchange resins. Therefore, even when treated water (for example, 40 to 80 ° C.) having a relatively high temperature such as condensed water of a fuel cell is treated, decomposition of the ion exchange resin due to heat is suppressed, and TOC is eluted in the treated water. This can be suppressed.

本実施形態の炭酸型陰イオン交換樹脂は、初期状態の陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合が10%以下であって、初期状態の陰イオン交換樹脂の全交換容量に占める炭酸イオンの割合が70%以上であることが好ましく、90%以上であることがより好ましい。なお、炭酸型とする場合には、炭酸イオンではなく、重炭酸イオン(炭酸水素イオン)により置換することが好適である。これは、燃料電池の条件において、炭酸水素イオンが重炭酸イオンより安定状態なためである。   In the carbonate type anion exchange resin of the present embodiment, the proportion of chloride ions in the total exchange capacity of the anion exchange resin in the initial state is 10% or less, and the total exchange capacity of the anion exchange resin in the initial state is The proportion of carbonate ions occupied is preferably 70% or more, more preferably 90% or more. In the case of the carbonate type, it is preferable to substitute with bicarbonate ions (bicarbonate ions) instead of carbonate ions. This is because bicarbonate ions are more stable than bicarbonate ions under fuel cell conditions.

本実施形態の燃料電池の水処理装置10では、上記説明した陰イオン交換樹脂への被処理水(例えば、水道水、凝縮水等)の通水を下向流で行うことが好ましい。被処理水の下向流により、カートリッジ内に充填された陰イオン交換樹脂は圧密される。その結果、被処理水は樹脂内を均一に流れ、処理性能を向上させることができる。   In the water treatment apparatus 10 of the fuel cell according to the present embodiment, it is preferable that water to be treated (for example, tap water, condensed water, etc.) is passed through the anion exchange resin described above in a downward flow. The anion exchange resin filled in the cartridge is consolidated by the downward flow of the water to be treated. As a result, the water to be treated can flow uniformly in the resin and improve the treatment performance.

以上のように、本実施形態の燃料電池の水処理装置10によって、不純物イオン、特に塩化物イオン濃度が低減された処理水(純水)は、処理水ライン22から燃料電池12に供給される。ここで、この燃料電池12は、固体酸化物型燃料電池であり、この例においては、供給される水は都市ガスなどを一酸化炭素(CO)と水素ガス(H)に改質するために利用される。 As described above, treated water (pure water) in which the concentration of impurity ions, particularly chloride ions, is reduced by the water treatment device 10 for a fuel cell according to this embodiment is supplied from the treated water line 22 to the fuel cell 12. . Here, the fuel cell 12 is a solid oxide fuel cell, and in this example, the supplied water reforms city gas or the like into carbon monoxide (CO) and hydrogen gas (H 2 ). Used for

本実施形態の燃料電池の水処理装置10では、固体酸化物型燃料電池から排出される凝縮水のような、多量の炭酸を含有する水であっても、該水中に存在する少量の塩化物イオンを効果的に除去することができる。したがって、固体酸化物型燃料電池の発電反応により生じる凝縮水を、本実施形態の燃料電池の水処理装置10により処理し、該処理水を固体酸化物型燃料電池に供給して再利用しても、長期的に安定した燃料電池の運転が可能である。また、凝縮水を循環利用する場合には、水道水、若しくは純水は燃料電池の運転初期の段階に供給されればよい。なお、凝縮水を循環利用する場合には、凝縮水中に含まれるガスを大気に放出した後、水処理装置10により処理して、燃料電池に供給することが好ましい。   In the water treatment apparatus 10 for a fuel cell according to the present embodiment, even if the water contains a large amount of carbonic acid, such as condensed water discharged from a solid oxide fuel cell, a small amount of chloride present in the water. Ions can be effectively removed. Therefore, the condensed water generated by the power generation reaction of the solid oxide fuel cell is processed by the water treatment device 10 of the fuel cell of the present embodiment, and the treated water is supplied to the solid oxide fuel cell and reused. However, stable fuel cell operation is possible over the long term. Further, when the condensed water is circulated and used, tap water or pure water may be supplied at the initial stage of operation of the fuel cell. When the condensed water is circulated and used, it is preferable to discharge the gas contained in the condensed water to the atmosphere, then treat it with the water treatment device 10 and supply it to the fuel cell.

なお、汎用材料の一つであるSUS304は、ppmレベルの塩化物イオンでも条件により応力腐食割れを起こすことが知られているため、燃料電池を長期的に安定して運転するためには、処理水中の塩化物イオンを100ppb以下、好ましくは50ppb以下、より好ましくは10ppb以下にまで低減する必要がある。   Note that SUS304, which is one of the general-purpose materials, is known to cause stress corrosion cracking depending on conditions even in the case of ppm level of chloride ions. It is necessary to reduce the chloride ion in water to 100 ppb or less, preferably 50 ppb or less, more preferably 10 ppb or less.

固体酸化物型燃料電池では、燃料ガス(例えば都市ガス)及び空気(酸素を含んでいる)が、それぞれ燃料供給ライン24、空気供給ライン26から(固体酸化物型)燃料電池12に供給され、燃料の改質反応によって得られる水素ガスや一酸化炭素と酸素とが反応し、発電が行われる。このような固体酸化物形燃料電池では、600〜1000℃の高温で、発電が行われるため、例えば、熱交換器28により発電排熱と、凝縮水及び水道水とを熱交換して温水を供給することが好ましい。   In the solid oxide fuel cell, fuel gas (for example, city gas) and air (containing oxygen) are supplied to the (solid oxide type) fuel cell 12 from the fuel supply line 24 and the air supply line 26, respectively. Hydrogen gas or carbon monoxide obtained by the fuel reforming reaction reacts with oxygen to generate power. In such a solid oxide fuel cell, since power generation is performed at a high temperature of 600 to 1000 ° C., for example, the heat exchanger 28 heat-exchanges the generated exhaust heat with condensed water and tap water to generate hot water. It is preferable to supply.

以下、実施例及び比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1,2)
図1に示す装置を用いて、固体酸化物型燃料電池から排出される凝縮水の水処理を行った。凝縮水中に溶解しているCO濃度は約250ppmであり、塩化物イオン濃度は約150ppbであった。カートリッジに充填するイオン交換樹脂は、トリメチルアンモニウム基を交換基とする強塩基性陰イオン交換樹脂30mL及び強酸性陽イオン交換樹脂10mLの混床樹脂を使用した。実施例1の陰イオン交換樹脂は、塩素型の強塩基性陰イオン交換樹脂(ロームアンドハース社製、アンバージェット4002C1)に7%のNaOH水溶液を1500mL通液し、OH型に変換し、陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合(以下、単にRClと呼ぶ場合がある)を1%以下としたものである。実施例2の陰イオン交換樹脂は、実施例1の陰イオン交換樹脂とOH型に変換していない陰イオン交換樹脂とを混合し、RClを10%としたものである。実施例1,2の陽イオン交換樹脂は、水素型であるアンバージェット1024H(ロームアンドハース社製)である。
(Examples 1 and 2)
The apparatus shown in FIG. 1 was used to treat the condensed water discharged from the solid oxide fuel cell. The concentration of CO 2 dissolved in the condensed water was about 250 ppm, and the chloride ion concentration was about 150 ppb. As the ion exchange resin filled in the cartridge, a mixed bed resin of 30 mL of a strongly basic anion exchange resin having a trimethylammonium group as an exchange group and 10 mL of a strongly acidic cation exchange resin was used. The anion exchange resin of Example 1 was converted into an OH type by passing 1500 mL of a 7% NaOH aqueous solution through a strong basic anion exchange resin of the chlorine type (Rohm and Haas, Amberjet 4002C1). The ratio of chloride ions to the total exchange capacity of the ion exchange resin (hereinafter sometimes simply referred to as R Cl ) is 1% or less. The anion exchange resin of Example 2 is a mixture of the anion exchange resin of Example 1 and an anion exchange resin that has not been converted to OH type, so that RCl is 10%. The cation exchange resins of Examples 1 and 2 are hydrogen type Amberjet 1024H (Rohm and Haas).

実施例1,2共にイオン交換樹脂への被処理水の通水は下向流で行った。そして、24時間運転後、イオン交換樹脂により処理された処理水をサンプリングし塩化物イオン濃度を測定した。その結果を表1にまとめた。   In both Examples 1 and 2, the water to be treated was passed through the ion exchange resin in a downward flow. Then, after 24 hours of operation, the treated water treated with the ion exchange resin was sampled and the chloride ion concentration was measured. The results are summarized in Table 1.

(比較例1)
比較例1は、使用する陰イオン交換樹脂のRClが20%であること以外は、実施例1と同様とした。
(Comparative Example 1)
Comparative Example 1 was the same as Example 1 except that the RCl of the anion exchange resin used was 20%.

Figure 0005364450
Figure 0005364450

表1から判るように、RClが10%の陰イオン交換樹脂を用いた実施例2では塩化物イオン濃度を50ppb以下に低減させることができた。また、RClが1%以下の陰イオン交換樹脂を用いた実施例1では塩化物イオン濃度を10ppb未満に低減させることができ、実施例2より高い塩化物イオン除去性能を示した。一方、RClが20%の陰イオン交換樹脂を用いた比較例1では、塩化物イオン濃度は110ppbであり、塩化物イオンを十分に除去することが出来なかった。 As can be seen from Table 1, it was possible to reduce the chloride ion concentration in Example 2 was used R Cl 10% anion exchange resin to less 50 ppb. Further, in Example 1 using an anion exchange resin having an R Cl content of 1% or less, the chloride ion concentration could be reduced to less than 10 ppb, and higher chloride ion removal performance than in Example 2 was exhibited. On the other hand, in Comparative Example 1 R Cl was used 20% of the anion-exchange resin, the chloride ion concentration is 110Ppb, could not be adequately remove chloride ions.

Cl=4×CCl/CO 0.53の式に、被処理水のCO濃度250ppm、処理水中の塩化物イオン濃度50ppbを当てはめると、RClが10.7%となる。すなわち、CO濃度が250ppmである被処理水を処理して、処理水中の塩化物イオン濃度を50ppb以下とするには、陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合を10.7%以下とする必要がある。そして、上記実施例1,2は上記の式から算出される値以下であることを満足している。処理水中の塩化物イオン濃度を50ppb以下とすることができれば、長期間に亘って安定した燃料電池の運転が可能となる。 If the CO 2 concentration of treated water is 250 ppm and the chloride ion concentration of treated water is 50 ppb in the formula of R Cl = 4 × C Cl / CO 2 0.53 , R Cl becomes 10.7%. That is, in order to treat the water to be treated having a CO 2 concentration of 250 ppm so that the chloride ion concentration in the treated water is 50 ppb or less, the ratio of chloride ions to the total exchange capacity of the anion exchange resin is 10. It is necessary to make it 7% or less. The first and second embodiments satisfy that the value is not more than the value calculated from the above formula. If the chloride ion concentration in the treated water can be reduced to 50 ppb or less, the fuel cell can be stably operated over a long period of time.

(実施例3,4)
図1に示す装置を用いて、固体酸化物型燃料電池から排出される凝縮水の水処理を行った。凝縮水中に溶解しているCO濃度は約250ppmであり、塩化物イオン濃度は約150ppbであった。カートリッジに充填するイオン交換樹脂は、ジメチルエタノールアンモニウム基を交換基とする強塩基性陰イオン交換樹脂30mL及び強酸性陽イオン交換樹脂10mLの混床樹脂を使用した。実施例3の陰イオン交換樹脂は、塩素型の強塩基性陰イオン交換樹脂(ロームアンドハース社製、アンバーライトIRA410Cl)に7%のNaOH水溶液を1500mL通液し、OH型に変換し、RClを1%以下としたものである。実施例4の陰イオン交換樹脂は、実施例3の陰イオン交換樹脂とOH型に変換していない陰イオン交換樹脂とを混合し、RClを5%としたものである。実施例3,4の陽イオン交換樹脂は、H型であるアンバージェット1024H(ロームアンドハース社製)である。
(Examples 3 and 4)
The apparatus shown in FIG. 1 was used to treat the condensed water discharged from the solid oxide fuel cell. The concentration of CO 2 dissolved in the condensed water was about 250 ppm, and the chloride ion concentration was about 150 ppb. As the ion exchange resin filled in the cartridge, a mixed bed resin of 30 mL of strongly basic anion exchange resin having dimethylethanolammonium group as an exchange group and 10 mL of strongly acidic cation exchange resin was used. The anion exchange resin of Example 3 was passed through 1500 mL of a 7% NaOH aqueous solution through a chlorine-type strongly basic anion exchange resin (Amberlite IRA410Cl, manufactured by Rohm and Haas) to convert it to OH type, and R Cl is 1% or less. The anion exchange resin of Example 4 is a mixture of the anion exchange resin of Example 3 and an anion exchange resin that has not been converted to OH type, so that RCl is 5%. The cation exchange resin of Examples 3 and 4 is H-type Amberjet 1024H (Rohm and Haas).

実施例3,4共にイオン交換樹脂への被処理水の通水は下向流で行った。そして、24時間運転後、イオン交換樹脂により処理された処理水をサンプリングし塩化物イオン濃度を測定した。その結果を表2にまとめた。   In both Examples 3 and 4, the water to be treated was passed through the ion exchange resin in a downward flow. Then, after 24 hours of operation, the treated water treated with the ion exchange resin was sampled and the chloride ion concentration was measured. The results are summarized in Table 2.

(比較例2)
比較例2は、使用する陰イオン交換樹脂のRClが20%であること以外は、実施例3と同様とした。
(Comparative Example 2)
Comparative Example 2 was the same as Example 3 except that the RCl of the anion exchange resin used was 20%.

Figure 0005364450
Figure 0005364450

表2から判るように、RClが5%の陰イオン交換樹脂を用いた実施例4では塩化物イオン濃度を50ppb以下に低減させることができた。また、RClが1%以下の陰イオン交換樹脂を用いた実施例3では塩化物イオン濃度を10ppb未満に低減させることができ、実施例4より高い塩化物イオン除去性能を示した。一方、RClが20%の陰イオン交換樹脂を用いた比較例2では、塩化物イオン濃度は210ppbであり、塩化物イオンをほとんど除去することが出来なかった。 As can be seen from Table 2, it was possible to reduce the chloride ion concentration in Example 4 using R Cl 5% anion exchange resin to less 50 ppb. Further, in Example 3 using an anion exchange resin having an RCl of 1% or less, the chloride ion concentration could be reduced to less than 10 ppb, and the chloride ion removal performance higher than that in Example 4 was exhibited. On the other hand, in Comparative Example 2 R Cl was used 20% of the anion-exchange resin, the chloride ion concentration is 210Ppb, it could not be almost remove chloride ions.

Cl=1.3×CCl/CO 0.45の式に、被処理水のCO濃度250ppm、処理水中の塩化物イオン濃度50ppbを当てはめると、RClが5.4%となる。すなわち、CO濃度が250ppmである被処理水を処理して、処理水中の塩化物イオン濃度を50ppb以下とするには、陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合を5.4%以下とする必要がある。そして、上記実施例3,4は上記の式から算出される値以下であることを満足している。 If the CO 2 concentration of the treated water is 250 ppm and the chloride ion concentration of 50 ppb in the treated water is applied to the formula of R Cl = 1.3 × C Cl / CO 2 0.45 , R Cl becomes 5.4%. That is, in order to treat the water to be treated having a CO 2 concentration of 250 ppm so that the chloride ion concentration in the treated water is 50 ppb or less, the ratio of chloride ions to the total exchange capacity of the anion exchange resin is 5. It must be 4% or less. And the said Example 3, 4 is satisfying that it is below the value computed from said formula.

(実施例5,6)
図1に示す装置を用いて、固体酸化物型燃料電池から排出される凝縮水の水処理を行った。カートリッジに充填するイオン交換樹脂は、交換容量として0.13eqに相当するトリメチルアンモニウム基を交換基とする強塩基性陰イオン交換樹脂を使用した。実施例5,6の陰イオン交換樹脂は、OH型の強塩基性陰イオン交換樹脂(ロームアンドハース社製、アンバージェット4002OH)に重炭酸アンモニウム(炭酸水素ナトリウムNaHCO)(1規定)を4L通液し、陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合(RCl)を1%以下、炭酸イオンの割合(以下、単にR−炭酸と呼ぶ場合がある)を90%以上、70%としたものである。
(Examples 5 and 6)
The apparatus shown in FIG. 1 was used to treat the condensed water discharged from the solid oxide fuel cell. As the ion exchange resin filled in the cartridge, a strongly basic anion exchange resin having a trimethylammonium group equivalent to 0.13 eq as an exchange group was used. The anion exchange resins of Examples 5 and 6 were prepared by adding 4 L of ammonium bicarbonate (sodium bicarbonate NaHCO 3 ) (1 normal) to OH type strongly basic anion exchange resin (Rohm and Haas, Amberjet 4002OH). The ratio of chloride ions occupying the total exchange capacity of the anion exchange resin (R Cl ) is 1% or less, and the ratio of carbonate ions (hereinafter sometimes simply referred to as R-carbonic acid) is 90% or more. 70%.

実施例5,6の水処理装置に、1kWの発電量を有する固体酸化物型燃料電池において生成する凝縮水(約60℃)を供給し、24時間運転を行った。イオン交換樹脂への被処理水の通水は下向流で行った。表3に、実施例5,6のイオン交換樹脂の体積及び処理水中のTOC濃度を測定した結果をまとめた。   Condensed water (about 60 ° C.) generated in a solid oxide fuel cell having a power generation amount of 1 kW was supplied to the water treatment apparatuses of Examples 5 and 6 and operated for 24 hours. The water to be treated was passed through the ion exchange resin in a downward flow. Table 3 summarizes the results of measuring the volume of the ion exchange resins of Examples 5 and 6 and the TOC concentration in the treated water.

(比較例3)
比較例3は、使用する陰イオン交換樹脂のR−炭酸が1%未満であること以外は、実施例5と同様とした。
(Comparative Example 3)
Comparative Example 3 was the same as Example 5 except that the R-carbonic acid of the anion exchange resin used was less than 1%.

Figure 0005364450
Figure 0005364450

表3から判るように、実施例5,6のようにイオン交換樹脂を炭酸型にすることで、比較例3のOH型イオン交換樹脂より、イオン交換容量を損なうことなく樹脂体積を低減させることができた。特に、R−炭酸が90%以上の実施例5は、比較例3と比較して、樹脂体積が20%も低減した。また、実施例5,6の炭酸型イオン交換樹脂に、60℃の凝縮水を通水させて、処理を行っても、処理水中のTOCは0.1ppm以下であり、熱による樹脂の分解が抑制されていることがわかった。これに対し、比較例3のOH型イオン交換樹脂に、60℃の凝縮水を通水させて、処理を行うと、処理水中に0.5ppmのTOCが検出され、熱による樹脂が分解されたものと考えられる。   As can be seen from Table 3, by making the ion exchange resin into a carbonate type as in Examples 5 and 6, the resin volume can be reduced without impairing the ion exchange capacity compared to the OH type ion exchange resin of Comparative Example 3. I was able to. In particular, in Example 5 in which R-carbonic acid was 90% or more, the resin volume was reduced by 20% compared to Comparative Example 3. In addition, even when the carbonic acid ion exchange resin of Examples 5 and 6 was treated by passing condensed water at 60 ° C., the TOC in the treated water was 0.1 ppm or less, and the resin was decomposed by heat. It was found to be suppressed. On the other hand, when condensed water of 60 ° C. was passed through the OH-type ion exchange resin of Comparative Example 3 and treated, 0.5 ppm of TOC was detected in the treated water, and the resin due to heat was decomposed. It is considered a thing.

このように、初期状態の陰イオン交換樹脂を予め炭酸型にすることで、装置の設置スペースが低減できると共に、熱による樹脂の分解を抑制し、TOCの溶出を低減させることができる。   Thus, by making the anion exchange resin in the initial state carbonic acid type in advance, the installation space of the apparatus can be reduced, decomposition of the resin due to heat can be suppressed, and elution of TOC can be reduced.

(実施例7)
実施例7は、イオン交換樹脂への被処理水の通水方向を上向流としたこと以外は、実施例1と同様とした。そして、イオン交換樹脂により処理された処理水をサンプリングし塩化物イオン濃度を測定した。その結果を表4にまとめた(なお、比較のため実施例1の結果も表4に記載した。)
(Example 7)
Example 7 was the same as Example 1 except that the flow direction of the water to be treated to the ion exchange resin was an upward flow. And the treated water processed with the ion exchange resin was sampled, and the chloride ion concentration was measured. The results are summarized in Table 4 (for comparison, the results of Example 1 are also listed in Table 4).

Figure 0005364450
Figure 0005364450

被処理水の通水方向が上向流である実施例7では、樹脂が圧密されず、わずかな流動が観察された。そのため、実施例7では短絡流が発生し、処理水中の塩化物イオン濃度は下向流である実施例1と比べてわずかに上昇した。よって、実施例1のように、下向流で水処理を行うことが好ましい。   In Example 7 in which the water flow direction of the water to be treated was an upward flow, the resin was not consolidated and a slight flow was observed. Therefore, in Example 7, a short circuit flow occurred, and the chloride ion concentration in the treated water slightly increased compared to Example 1 which was a downward flow. Therefore, it is preferable to perform the water treatment in a downward flow as in the first embodiment.

10 水処理装置、12 燃料電池、14 被処理水ライン、16 凝縮水タンク、18 ポンプ、20 凝縮水ライン、22 処理水ライン、24 燃料供給ライン、26 空気供給ライン、28 熱交換器。   DESCRIPTION OF SYMBOLS 10 Water treatment apparatus, 12 Fuel cell, 14 To-be-treated water line, 16 Condensed water tank, 18 Pump, 20 Condensed water line, 22 Treated water line, 24 Fuel supply line, 26 Air supply line, 28 Heat exchanger.

Claims (6)

イオン交換樹脂を用いた燃料電池の水処理装置であって、前記イオン交換樹脂は陰イオン交換樹脂を含み、初期状態の前記陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合は、被処理水中に溶解しているCO2濃度に応じて反比例し、処理水中の所望塩素濃度に応じて比例するように減少させたことを特徴とする燃料電池の水処理装置。 A water treatment apparatus for a fuel cell using an ion exchange resin, wherein the ion exchange resin includes an anion exchange resin, and a ratio of chloride ions to a total exchange capacity of the anion exchange resin in an initial state is A water treatment apparatus for a fuel cell, wherein the water treatment device is reduced in proportion to an inverse proportion according to the concentration of CO 2 dissolved in the treated water and proportional to a desired chlorine concentration in the treated water. 請求項1記載の燃料電池の水処理装置であって、前記陰イオン交換樹脂はトリメチルアンモニウム基を交換基とする強塩基性陰イオン交換樹脂を含み、初期状態の前記陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合が、下式(1)により求められる値(RCl)以下であることを特徴とする燃料電池の水処理装置。
Cl=4×CCl/CO2 0.53 ・・・(1)
(但し、RClは陰イオン交換樹脂の全交換容量(eq/L−R)に占める塩化物イオン(eq/L−R)の割合(%)、CClは処理水中の所望塩化物イオン濃度(ppb)、CO2は被処理水中に溶解しているCO2濃度(ppm)である。)
A water treatment device for a fuel cell according to claim 1 Symbol placement, the anion exchange resin comprises a strong basic anion exchange resin to exchange group trimethylammonium group, the anion exchange resin in the initial state all A water treatment apparatus for a fuel cell, characterized in that the ratio of chloride ions in the exchange capacity is not more than the value (R Cl ) obtained by the following formula (1).
R Cl = 4 × C Cl / CO 2 0.53 (1)
(Where R Cl is the ratio (%) of chloride ions (eq / LR) to the total exchange capacity (eq / LR) of the anion exchange resin, and C Cl is the desired chloride ion concentration in the treated water. (Ppb), CO 2 is the CO 2 concentration (ppm) dissolved in the water to be treated.
請求項1記載の燃料電池の水処理装置であって、陰イオン交換樹脂を用いた燃料電池の水処理装置であって、前記陰イオン交換樹脂はジメチルエタノールアンモニウム基を交換基とする強塩基性陰イオン交換樹脂を含み、初期状態の前記陰イオン交換樹脂の全交換容量に占める塩化物イオンの割合が、下式(2)により求められる値(RCl)以下であることを特徴とする燃料電池の水処理装置。
Cl=1.3×CCl/CO2 0.45 ・・・(2)
(但し、RClは陰イオン交換樹脂の全交換容量(eq/L−R)に占める塩化物イオン(eq/L−R)の割合(%)、CClは処理水中の所望塩化物イオン濃度(ppb)、CO2は被処理水中に溶解しているCO2濃度(ppm)である。)
A water treatment device for a fuel cell according to claim 1 Symbol placement, a water treatment device for a fuel cell using an anion exchange resin, the anion exchange resin to exchange groups dimethylethanolammonium groups strong bases The ratio of chloride ions in the total exchange capacity of the anion exchange resin in the initial state is not more than the value (R Cl ) obtained by the following formula (2). Fuel cell water treatment device.
R Cl = 1.3 × C Cl / CO 2 0.45 (2)
(Where R Cl is the ratio (%) of chloride ions (eq / LR) to the total exchange capacity (eq / LR) of the anion exchange resin, and C Cl is the desired chloride ion concentration in the treated water. (Ppb), CO 2 is the CO 2 concentration (ppm) dissolved in the water to be treated.
請求項1〜のいずれか1項に記載の燃料電池の水処理装置であって、前記初期状態の陰イオン交換樹脂は、炭酸塩を通液することで炭酸型に変換したものであることを特徴とする燃料電池の水処理装置。 The water treatment apparatus for a fuel cell according to any one of claims 1 to 3 , wherein the anion exchange resin in the initial state is converted to a carbonate type by passing carbonate. A fuel cell water treatment device. 請求項1〜のいずれか1項に記載の燃料電池の水処理装置であって、前記陰イオン交換樹脂への被処理水の通水は下向流で行われることを特徴とする燃料電池の水処理装置。 The fuel cell water treatment device according to any one of claims 1 to 4 , wherein the water to be treated is passed through the anion exchange resin in a downward flow. Water treatment equipment. 請求項1〜のいずれか1項に記載の燃料電池の水処理装置であって、前記陰イオン交換樹脂へ通水する被処理水には、燃料電池の発電反応により生じる凝縮水が含まれ、前記被処理水は前記陰イオン交換樹脂により処理された後、前記燃料電池に再利用されることを特徴とする燃料電池の水処理装置。


The water treatment device for a fuel cell according to any one of claims 1 to 5 , wherein the water to be treated that is passed through the anion exchange resin includes condensed water generated by a power generation reaction of the fuel cell. The water treatment apparatus for a fuel cell, wherein the water to be treated is treated with the anion exchange resin and then reused in the fuel cell.


JP2009132341A 2009-06-01 2009-06-01 Water treatment device for fuel cell Active JP5364450B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009132341A JP5364450B2 (en) 2009-06-01 2009-06-01 Water treatment device for fuel cell
CN2010101876043A CN101921010B (en) 2009-06-01 2010-06-01 Water treatment facility for fuel cell
CN201310019704.9A CN103130302B (en) 2009-06-01 2010-06-01 Water treatment device for fuel cell
CN2013100174545A CN103130301A (en) 2009-06-01 2010-06-01 Water treatment device for fuel cell
CN201310019751.3A CN103130303B (en) 2009-06-01 2010-06-01 Water treatment facility for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132341A JP5364450B2 (en) 2009-06-01 2009-06-01 Water treatment device for fuel cell

Publications (2)

Publication Number Publication Date
JP2010277972A JP2010277972A (en) 2010-12-09
JP5364450B2 true JP5364450B2 (en) 2013-12-11

Family

ID=43424737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132341A Active JP5364450B2 (en) 2009-06-01 2009-06-01 Water treatment device for fuel cell

Country Status (1)

Country Link
JP (1) JP5364450B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115784A (en) * 2010-12-02 2012-06-21 Toshiba Fuel Cell Power Systems Corp Water treatment system, and fuel cell electric power system using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155984A (en) * 1987-12-14 1989-06-19 Kurita Water Ind Ltd Apparatus for producing pure water
JP3106552B2 (en) * 1991-06-19 2000-11-06 富士電機株式会社 Water treatment system for fuel cell power plant
JPH08155451A (en) * 1994-12-02 1996-06-18 Kurita Water Ind Ltd Simple monitoring method for chlorine ion
JPH08304364A (en) * 1995-05-10 1996-11-22 Mitsubishi Heavy Ind Ltd Performance testing method for ion-exchange resin in condensate treatment device
JP3171058B2 (en) * 1995-06-15 2001-05-28 住友化学工業株式会社 Hydrogen peroxide water purification method
JP3518112B2 (en) * 1995-12-06 2004-04-12 東京瓦斯株式会社 Fuel cell water treatment equipment
JP2001219161A (en) * 2000-02-08 2001-08-14 Nomura Micro Sci Co Ltd Water cleaning apparatus
JP4600617B2 (en) * 2000-08-07 2010-12-15 オルガノ株式会社 Anion exchange resin performance evaluation method and apparatus, and condensate demineralizer
JP4504614B2 (en) * 2002-03-11 2010-07-14 株式会社荏原製作所 Fuel cell power generation system
JP2005327571A (en) * 2004-05-13 2005-11-24 Ebara Ballard Corp Ion-exchange resin column and fuel cell power generation system
KR101300541B1 (en) * 2005-06-24 2013-09-02 프레스톤 프로닥츠 코포레이션 Method for inhibiting corrosion in brazed metal surfaces and coolants and additives for use therein
JP2007299574A (en) * 2006-04-28 2007-11-15 Nissan Motor Co Ltd Cooling water control device of fuel cell

Also Published As

Publication number Publication date
JP2010277972A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP5551944B2 (en) Water treatment device for fuel cell
EP3536823A1 (en) Method for electrochemically reducing carbon dioxide
JP5478953B2 (en) Water treatment device for fuel cell
US20220362707A1 (en) Systems and methods for capturing carbon dioxide and regenerating a capture solution
JP4467488B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP4461553B2 (en) Water treatment device for fuel cell
JP5364450B2 (en) Water treatment device for fuel cell
JP5002884B2 (en) Polymer electrolyte fuel cell system
JP2001338668A (en) Fuel cell power generator
JP4662277B2 (en) Electrodeionization equipment
WO2019025905A1 (en) Olivine doped zinc oxide for hot and cold gas cleaning
CN101921010B (en) Water treatment facility for fuel cell
CN103130303B (en) Water treatment facility for fuel cell
JP5286851B2 (en) Fuel cell power generator
JP4453337B2 (en) Biogas fuel cell power generation device and biogas hydrogen production device
JP5228575B2 (en) Fuel cell power generator
JP5292865B2 (en) Water recovery method for fuel cell power generator and fuel cell power generator
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method
JP2011041874A (en) Water treatment device for fuel cell
JP5380868B2 (en) Condensed water decay prevention method and fuel cell power generator
JP6089888B2 (en) Separation and regeneration method of mixed bed ion exchange resin
JP3528287B2 (en) Pure water production method
JPH1094785A (en) Ultrapure water producing method and device therefor
JP4269904B2 (en) Heat treatment equipment for organic-containing water
JP5836783B2 (en) Hydrodesulfurization method and system using by-product hydrogen in electrodeionization water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5364450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250