JP5363781B2 - Superconducting coil power supply system - Google Patents

Superconducting coil power supply system Download PDF

Info

Publication number
JP5363781B2
JP5363781B2 JP2008271469A JP2008271469A JP5363781B2 JP 5363781 B2 JP5363781 B2 JP 5363781B2 JP 2008271469 A JP2008271469 A JP 2008271469A JP 2008271469 A JP2008271469 A JP 2008271469A JP 5363781 B2 JP5363781 B2 JP 5363781B2
Authority
JP
Japan
Prior art keywords
power supply
switch
current
voltage
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008271469A
Other languages
Japanese (ja)
Other versions
JP2010104104A (en
Inventor
浩二 青山
秀則 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2008271469A priority Critical patent/JP5363781B2/en
Publication of JP2010104104A publication Critical patent/JP2010104104A/en
Application granted granted Critical
Publication of JP5363781B2 publication Critical patent/JP5363781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Switch Cases, Indication, And Locking (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easy and inexpensive method for steeply changing a current to be supplied to a superconducting coil. <P>SOLUTION: In the superconducting coil power supply system, a high-voltage short-time rated power supply 6 is connected to a low-voltage continuous rated power supply 1 in series thereto, a predetermined voltage is applied to the system from the high-voltage short-time rated power supply 6, a current of a switch 3 is set to zero, after that, the switch 3 is opened, and thereby the current to be supplied to the superconducting coil 5 is steeply changed by using the low-voltage continuous rated power supply 1 and the high-voltage short-time rated power supply 6. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、超伝導コイルに大電流を供給して高磁場を発生させる大容量直流電源システムにおいて、通常は前記超伝導コイルに定常電流を通電し、必要とされる期間に高電圧を発生させて、前記超伝導コイルの通電電流を急峻に変化させることを可能にする電源システムに関するものである。 The present invention relates to a large-capacity DC power supply system that generates a high magnetic field by supplying a large current to a superconducting coil, and normally supplies a steady current to the superconducting coil to generate a high voltage during a required period. Thus, the present invention relates to a power supply system that makes it possible to sharply change the energization current of the superconducting coil.

核融合実験装置では、プラズマを閉じ込めるために磁場を制御し、強力な磁場を発生させる磁場発生用コイルが必要とされ、大形の前記実験装置では当該磁場発生用コイルとして超伝導コイルが用いられている。 In a fusion experimental device, a magnetic field generating coil that generates a strong magnetic field by controlling the magnetic field to confine plasma is required, and in the large experimental device, a superconducting coil is used as the magnetic field generating coil. ing.

前記超伝導コイルの励磁には大電流が要求され、かつ、プラズマを励起したりプラズマの位置を移動したりする期間には、前記超伝導コイルに高電圧を印加して、通電する電流を急峻に変化させる必要がある。 Excitation of the superconducting coil requires a large current, and during the period of exciting the plasma or moving the position of the plasma, a high voltage is applied to the superconducting coil so that the energizing current is steep. It is necessary to change to.

前記磁場発生用コイルに通電する電源システムとしては、例えば、図12に示すものが知られている。図12に示した従来例では、負荷コイル11と抵抗器12に、ともにサイリスタ電源である高電圧小電流電源13と低電圧大電流電源14、および、開閉スイッチ15〜17を備えて構成した核融合装置用の電源システムにおいて、高電圧発生期間は、開閉スイッチ15,17をオン、開閉スイッチ16をオフの状態として、高電圧小電流電源13を負荷コイル11に接続し、高電圧小電流電源13の電力を負荷コイル11に供給する。   As a power supply system for energizing the magnetic field generating coil, for example, the one shown in FIG. 12 is known. In the conventional example shown in FIG. 12, a load coil 11 and a resistor 12 are both provided with a high voltage small current power source 13 and a low voltage large current power source 14 which are thyristor power sources, and open / close switches 15 to 17. In the power supply system for the fusion device, during the high voltage generation period, the open / close switches 15 and 17 are turned on and the open / close switch 16 is turned off, and the high voltage / low current power supply 13 is connected to the load coil 11. 13 power is supplied to the load coil 11.

そして、負荷コイル11に対して低電圧大電流電源14を接続する場合は、高電圧小電流電源13の出力電圧を絞り、開閉スイッチ16をオン状態とし負荷コイル11の電流を開閉スイッチ16に転流させ、次に、低電圧大電流電源14を活かし、開閉スイッチ17をオフ状態とすることで、負荷コイル11の電流は、低電圧大電流電源14に転流される。   When the low voltage high current power source 14 is connected to the load coil 11, the output voltage of the high voltage small current power source 13 is throttled, the open / close switch 16 is turned on, and the current of the load coil 11 is transferred to the open / close switch 16. Next, by utilizing the low-voltage high-current power supply 14 and turning off the open / close switch 17, the current of the load coil 11 is commutated to the low-voltage high-current power supply 14.

上記構成によれば、高電圧発生期間には高電圧小電流電源13を負荷コイル11に接続して、高電圧小電流電源13から負荷コイル11に電力を供給し、その他の期間には低電圧大電流電源14を負荷コイル11に接続して、低電圧大電流電源14から負荷コイル11に電力を供給することができるので、両電源13,14の設備容量を小さくすることができる(特許文献1参照)。
特開平3−2593号公報
According to the above configuration, the high voltage small current power source 13 is connected to the load coil 11 during the high voltage generation period, power is supplied from the high voltage small current power source 13 to the load coil 11, and the low voltage is generated during other periods. Since the large current power source 14 is connected to the load coil 11 and power can be supplied from the low voltage large current power source 14 to the load coil 11, the capacity of both power sources 13 and 14 can be reduced (Patent Document). 1).
JP-A-3-2593

然るに、上記核融合装置用の電源システムにおいては、開閉スイッチ16,17として電流遮断能力を有した遮断器または投入器を使用することにより、通電状態での電流の経路の切り替えを可能としているが、このような遮断器または投入器は一般的に大型であるとともに高価であり、複数必要であるため、電源システム全体の大型化を招来するとともに、設備コストが上昇するといった問題点があった。   However, in the power supply system for the nuclear fusion device, it is possible to switch the current path in the energized state by using the circuit breaker or the input device having the current interruption capability as the on / off switches 16 and 17. Such a circuit breaker or charging device is generally large and expensive, and a plurality of circuit breakers are required. Therefore, there is a problem that the power supply system as a whole is increased in size and the equipment cost is increased.

また、高電圧発生期間、すなわち高電圧を必要とする期間に低電圧大電流電源と直列に高電圧電源を接続して同時に運転することができれば、負荷コイル11に印加する電圧を前記低電圧大電流電源と前記高電圧電源で分担可能となるので、前記高電圧電源の出力電圧が低減でき、前記高電圧電源の小型化とコスト低減を図ることができる。   If a high voltage power supply can be connected in series with a low voltage large current power supply during a high voltage generation period, that is, a period requiring a high voltage and operated simultaneously, the voltage applied to the load coil 11 can be Since the current power supply and the high voltage power supply can be shared, the output voltage of the high voltage power supply can be reduced, and the high voltage power supply can be reduced in size and cost.

然るに、従来例では、両電源13,14を同時に運転できないため、高電圧小電流電源13の設備容量が大きくなり、小型化、コストダウンが困難であった。   However, in the conventional example, since both the power sources 13 and 14 cannot be operated simultaneously, the equipment capacity of the high voltage small current power source 13 becomes large, and it is difficult to reduce the size and cost.

そこで、本発明は、斯かる問題点を解決するべくなされたもので、簡単な回路構成で、かつ、小型で安価な部品を使用して、大電流を連続的に通電でき、必要とされる期間に高電圧を発生できる電源システムを提供することを目的とする。   Therefore, the present invention has been made to solve such a problem, and is required to continuously energize a large current with a simple circuit configuration and using small and inexpensive components. An object is to provide a power supply system capable of generating a high voltage during a period.

請求項1記載の発明は、低電圧連続定格の第一の電源と、高電圧短時間定格の第二の電源を直列に接続するとともに、連続定格のダイオードを連続定格の開閉器に正方向に直列接続し、これを前記第二の電源の出力と並列に接続して構成する大容量直流電源システムにおいて、超伝導コイルに第一の電源のみで通電している状態から第一の電源と第二の電源で電流を通電する状態に移行する際には、前記第二の電源が正電圧を出力して、前記開閉器を流れている電流の経路を前記第二の電源に切り替わるように制御し、前記開閉器を流れる電流が所定値以下になったときに前記開閉器を開極し、かつ、前記超伝導コイルに第一の電源と第二の電源で電流を通電している状態から第一の電源のみで通電する状態に移行する際には、前記開閉器を閉極したときに第二の電源を流れている電流が前記開閉器に流れないように前記第二の電源が正電圧を出力し、前記開閉器を閉極した後、前記第二の電源は負電圧を出力して、前記第二の電源に流れている電流の経路を前記開閉器に切り替えるように制御することを特徴とする。 The invention according to claim 1 is a first power supply having a low voltage continuous rating and a second power supply having a high voltage short-time rating connected in series, and a continuous rated diode is connected to the continuous rated switch in the positive direction. In a large-capacity DC power supply system that is connected in series and connected in parallel with the output of the second power supply, the first power supply and the first power supply are switched from the state in which the superconducting coil is energized only by the first power supply. When shifting to a state in which current is passed by the second power source, the second power source outputs a positive voltage, and the current path flowing through the switch is controlled to be switched to the second power source. And when the current flowing through the switch becomes a predetermined value or less, the switch is opened, and the superconducting coil is energized with a first power source and a second power source. When switching to a state where only the first power source is energized, the switch The second power supply outputs a positive voltage so that the current flowing through the second power supply does not flow to the switch when it is poled, and after closing the switch, the second power supply is negative A voltage is output and control is performed to switch the path of the current flowing through the second power source to the switch.

請求項1記載の発明によれば、超伝導コイルに定常電流を通電するときは、第一の電源のみで開閉器を介して前記超伝導コイルに通電し、前記超伝導コイルの電流を急峻に変化させる時には、第一の電源と第二の電源が電圧出力して、両電源の出力電圧を足し合わせて高電圧を前記超伝導コイルに印加できるようにするため、設備容量の大型化を防止することができ、安価な電源システムの提供が可能となる。   According to the first aspect of the present invention, when a steady current is applied to the superconducting coil, the superconducting coil is energized via the switch only by the first power source, and the current of the superconducting coil is sharply increased. When changing the voltage, the first power supply and the second power supply output voltage, and the output voltage of both power supplies is added so that a high voltage can be applied to the superconducting coil. It is possible to provide an inexpensive power supply system.

また、請求項1記載の発明によれば、超伝導コイルに通電している状態で電流経路の切り替えを行う場合、第二の電源の出力電圧を制御したのち開閉器を開極、または閉極するため、開極時、および閉極時には前記開閉器には電流が流れていないので電流遮断能力を有した大型かつ高価な開閉器を使う必要がなく、また、複数の開閉器が必要ないため設備の小型化とコスト低減が可能となる。 According to the first aspect of the present invention, when the current path is switched while the superconducting coil is energized, the switch is opened or closed after the output voltage of the second power source is controlled. Therefore , no current flows through the switch at the time of opening and closing, so there is no need to use a large and expensive switch with current interrupting capability, and there is no need for a plurality of switches. Therefore, it is possible and cost reduction in size of equipment.

以下、本発明の実施の形態について図1〜図10を用いて説明する。図1は本発明に係る磁場発生コイル用の電源システム全体Aを示す回路図である。図1において、1は低電圧連続定格となす直流電源(以下、定常電源という)であり、2は該定常電源1の正極側にアノードを接続したダイオードを示している。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 is a circuit diagram showing an entire power supply system A for a magnetic field generating coil according to the present invention. In FIG. 1, reference numeral 1 denotes a DC power supply (hereinafter referred to as a steady power supply) which is a low voltage continuous rating, and reference numeral 2 denotes a diode having an anode connected to the positive electrode side of the steady power supply 1.

3は電流遮断能力を有さない小型かつ安価な開閉器を示しており、ダイオード2のカソードに当該ダイオードと直列に接続されている。4は前記開閉器3に直列に接続された直流変流器であり、該開閉器に流れる電流を検出する。   Reference numeral 3 denotes a small and inexpensive switch having no current interruption capability, and is connected to the cathode of the diode 2 in series with the diode. Reference numeral 4 denotes a DC current transformer connected in series to the switch 3, and detects a current flowing through the switch.

本実施例では、開閉器3は遮断能力のない機器を用いたが、開閉器3としては、本実施例以外にも、特に小型かつ安価に構成する必要がなければ、電流遮断能力のある遮断器でも構成可能である。 In the present embodiment, the switch 3 is a device having no interruption capability. However, the switch 3 is not limited to this embodiment, and if it is not particularly required to be configured in a small size and at a low cost, the breaker having a current interruption capability is used. It can also be configured with a vessel.

また、上記以外にも、開閉器3にサイリスタやIGBTなどの半導体スイッチ素子を使用することも可能であり、そのときにはダイオード2は省略可能の場合がある。 In addition to the above, it is also possible to use a semiconductor switch element such as a thyristor or IGBT for the switch 3, and in that case, the diode 2 may be omitted.

5は前記定常電源1とダイオード2および開閉器3、直流変流器4からなる直列回路に直列に接続された超伝導コイルであり、例えば、本発明に係る方法が核融合装置用の電源システムに利用される場合においては、核融合炉内に磁場を発生させる磁場発生用コイルが該当する。   Reference numeral 5 denotes a superconducting coil connected in series to a series circuit composed of the steady power source 1, the diode 2, the switch 3, and the DC current transformer 4. For example, the method according to the present invention is a power system for a fusion apparatus. In this case, a magnetic field generating coil for generating a magnetic field in the fusion reactor is applicable.

6は、超伝導コイルに高電圧を印加する高電圧短時間定格のサイリスタ変換器からなる直流電源(以下、パルス電源という)であり、前記定常電源1と超伝導コイル5との間に、パルス電源6の負極側を定常電源1の正極側と、パルス電源6の正極側を超伝導コイル5と直列に接続され、かつ、前記ダイオード2および開閉器3と直流変流器4からなる直列回路に並列接続されている。   Reference numeral 6 denotes a DC power source (hereinafter referred to as a pulse power source) composed of a high-voltage short-time rated thyristor converter that applies a high voltage to the superconducting coil, and a pulse is interposed between the steady power source 1 and the superconducting coil 5. A negative circuit side of the power supply 6 is connected in series with the positive electrode side of the steady power supply 1, and a positive electrode side of the pulse power supply 6 is connected in series with the superconducting coil 5. Are connected in parallel.

さらに、パルス電源6は、制御計算機(図示せず)からの指令を受けて、パルス電源6と開閉器3を制御する制御部(図示せず)を備えている。   Further, the pulse power supply 6 includes a control unit (not shown) that controls the pulse power supply 6 and the switch 3 in response to a command from a control computer (not shown).

本発明の方法によれば、上記のような簡易な部品構成で定常電源1にパルス電源6を直列に接続して運転することが可能で、超伝導コイル5に所望のタイミングで高電圧を印加することができるため、適用例の一つとして、前記核融合装置用の電源システムへの利用が挙げられる。   According to the method of the present invention, it is possible to operate by connecting the pulse power source 6 in series to the stationary power source 1 with the simple component configuration as described above, and a high voltage is applied to the superconducting coil 5 at a desired timing. Therefore, one application example is the use of the power supply system for the fusion apparatus.

核融合装置においては、プラズマを閉じ込める磁場を作るために、磁場発生用コイルに大電流を通電する必要があり、かつ、プラズマを励起したり制御したりする際には、磁場発生用コイルに短時間の高電圧を印加する必要があるため、本発明は、当該用途(プラズマ制御用)に使用する電源システムで利用するのに好適な方法である。   In a fusion device, it is necessary to pass a large current through the magnetic field generating coil in order to create a magnetic field for confining the plasma, and when the plasma is excited or controlled, the magnetic field generating coil is short. Since it is necessary to apply a high voltage for a long time, the present invention is a method suitable for use in a power supply system used for the application (for plasma control).

以下に、本発明に係るパルス電源の直列接続方法を核融合装置に利用する場合について説明する。なお、本発明の技術的範囲は、核融合装置用の電源システムに利用することに限定するものではなく、超伝導コイルに通電する電流を急峻に変化させる目的を有するあらゆる用途に利用できるものであることは当然である。   Below, the case where the serial connection method of the pulse power supply which concerns on this invention is utilized for a nuclear fusion apparatus is demonstrated. The technical scope of the present invention is not limited to use in a power supply system for a fusion device, but can be used in any application having the purpose of abruptly changing the current applied to a superconducting coil. Of course it is.

図2〜図10は、本発明を適用して直列に接続した電源の運転動作の遷移を時系列的に示す説明図である。また、図2〜図9において、閉ループを構成していない矢印の向きは、電圧や電流の正方向の向きを示している。閉ループを構成している矢印は、電流の流れを示している。   2-10 is explanatory drawing which shows the transition of the driving | running operation | movement of the power supply connected in series to which this invention is applied in time series. Moreover, in FIGS. 2-9, the direction of the arrow which does not comprise the closed loop has shown the direction of the positive direction of a voltage or an electric current. The arrows constituting the closed loop indicate the current flow.

図2は通常のプラズマ制御中、つまり、定常運転時における電源システム全体Aの状態を示しており、開閉器3は閉極状態にあり、パルス電源6は点弧角を90°より大きくした状態(ゲートシフト状態)で待機している。 FIG. 2 shows the state of the entire power supply system A during normal plasma control, that is, during steady operation, the switch 3 is in a closed state, and the pulse power supply 6 is in a state where the firing angle is larger than 90 °. Waiting in (gate shift state).

このとき、定常電源1からダイオード2、開閉器3を介して磁場発生用コイル(超伝導コイル)5に、図2に示す矢印方向に電流Iswが流れ、超伝導コイル5は核融合炉内に磁場を発生させる(定常運転状態)。 At this time, the diode 2 from a steady power supply 1, the magnetic field generating coil (superconducting coil) 5 via the switch 3, the current Isw flows in the direction of the arrow shown in FIG. 2, the superconducting coil 5 is fusion furnace A magnetic field is generated (steady operation state).

次に、超伝導コイル5に高電圧を印加して、通電する電流を急峻に変化させる必要がある時(パルス運転)には、制御計算機(図示せず)はパルス運転指令を出力し、制御部(図示せず)はこれを受けて、パルス電源6の出力電圧Vplsを所定の正電圧(例えば、5[V])に制御する(図3参照)。 Next, when it is necessary to apply a high voltage to the superconducting coil 5 to change the energized current sharply (pulse operation), a control computer (not shown) outputs a pulse operation command and performs control. In response to this, the unit (not shown) controls the output voltage Vpls of the pulse power supply 6 to a predetermined positive voltage (for example, 5 [V]) (see FIG. 3).

これにより、開閉器3に流れる電流Iswは減衰し、前記パルス電源6の出力電流Iplsは増加していき、終には、前記開閉器3に流れる電流Iswは、図4に示すように零になり、定常電源1の電流Iconと前記パルス電源6の電流Iplsは同じ電流値となり、超伝導コイル5に流れる電流Icとなる。 As a result, the current Isw flowing through the switch 3 is attenuated and the output current Ipls of the pulse power supply 6 is increased. Finally, the current Isw flowing through the switch 3 becomes zero as shown in FIG. Thus, the current Icon of the steady power supply 1 and the current Ipls of the pulse power supply 6 have the same current value, and become the current Ic flowing through the superconducting coil 5.

なお、前記パルス電源6の出力電圧Vplsが5[V]になったとき、開閉器3にはダイオード2が接続されているので、前記開閉器3を流れる電流は逆方向に流れることはなく、電流零の状態を維持することができる。   When the output voltage Vpls of the pulse power supply 6 becomes 5 [V], the diode 2 is connected to the switch 3, so that the current flowing through the switch 3 does not flow in the reverse direction. A state of zero current can be maintained.

前記制御部(図示せず)は、開閉器3の電流を当該開閉器3と直列に接続した直流変流器4で検出することにより、電流が零になった時点で、前記開閉器3を図5に示すように開極させる。   The control unit (not shown) detects the current of the switch 3 with a DC current transformer 4 connected in series with the switch 3, so that when the current becomes zero, the controller 3 The electrode is opened as shown in FIG.

そして、前記定常電源1および前記パルス電源6は、前記制御計算機(図示せず)からそれぞれ電圧指令値を受け、両電源1、6は出力電圧を変化させ、両電源1、6の出力電圧を足し合わせた電圧を超伝導コイル5に印加して、電流を急峻に変化させる(パルス運転状態)。 The steady power supply 1 and the pulse power supply 6 receive voltage command values from the control computer (not shown), respectively, the power supplies 1 and 6 change the output voltage, and the output voltages of the power supplies 1 and 6 are changed. The added voltage is applied to the superconducting coil 5 to change the current sharply (pulse operation state).

次に、定常運転状態へ遷移する場合は、図5に示したパルス運転状態において、前記制御計算機が定常運転指令を出力すると、前記制御部(図示せず)はこれを受けて、パルス電源6の出力電圧Vplsを所定の正電圧(例えば、5[V])に制御する(図6参照)。   Next, when transitioning to the steady operation state, in the pulse operation state shown in FIG. 5, when the control computer outputs a steady operation command, the control unit (not shown) receives this, and the pulse power source 6 Is controlled to a predetermined positive voltage (for example, 5 [V]) (see FIG. 6).

一方、定常電源1は前記制御計算機からの電圧指令値に従った出力電圧を出力する。 On the other hand, the steady power supply 1 outputs an output voltage according to a voltage command value from the control computer.

パルス電源6の出力電圧Vplsが所定の電圧(例えば、5[V])になった時点で、前記制御部(図示せず)は、開閉器3を図7に示すように閉極させる。   When the output voltage Vpls of the pulse power supply 6 reaches a predetermined voltage (for example, 5 [V]), the control unit (not shown) closes the switch 3 as shown in FIG.

なお、前記開閉器3を閉極するときには、前記開閉器3にダイオード2が接続されているので、前記開閉器3に電流が流れることはない。   When closing the switch 3, no current flows through the switch 3 because the diode 2 is connected to the switch 3.

その後、前記制御部(図示せず)は、パルス電源6に負電圧を出力させ、開閉器3に流れる電流Iswは増加して前記パルス電源6の出力電流Iplsは減少する(図8参照)。すると、前記パルス電源6の出力電流Iplsは零となり、これを以ってパルス運転状態(図5)から定常運転状態への遷移が完了する(図9参照)。   Thereafter, the control unit (not shown) causes the pulse power supply 6 to output a negative voltage, the current Isw flowing through the switch 3 increases, and the output current Ipls of the pulse power supply 6 decreases (see FIG. 8). Then, the output current Ipls of the pulse power supply 6 becomes zero, and this completes the transition from the pulse operation state (FIG. 5) to the steady operation state (see FIG. 9).

図10は、上述した定常運転状態とパルス運転状態間の状態遷移時の、電源システム全体Aの各構成要素における電流波形または電圧波形を示すタイミングチャートである。   FIG. 10 is a timing chart showing a current waveform or a voltage waveform in each component of the entire power supply system A during the state transition between the above-described steady operation state and pulse operation state.

図10(a)は、前記定常電源1における出力電圧Vconの波形を示しており、同図(b)は、該定常電源1における出力電流Iconの波形を示している。   FIG. 10A shows the waveform of the output voltage Vcon in the steady power supply 1, and FIG. 10B shows the waveform of the output current Icon in the steady power supply 1.

図10(c)は、前記パルス電源6における出力電圧Vplsの波形を示しており、同図(d)は該パルス電源6における出力電流Iplsの波形を示している。   FIG. 10C shows the waveform of the output voltage Vpls in the pulse power source 6, and FIG. 10D shows the waveform of the output current Ipls in the pulse power source 6.

図10(e)は、前記開閉器3の開閉状態を示しており、同図(f)は、該開閉器3に流れる電流Iswの波形を示している。   FIG. 10 (e) shows the open / close state of the switch 3, and FIG. 10 (f) shows the waveform of the current Isw flowing through the switch 3. FIG.

図10(g)は、前記超伝導コイル5における電圧Vcの波形を示しており、同図(h)は、該超伝導コイル5に流れる電流Icの波形を示している。 Figure 10 (g), the shows the waveform of the voltage Vc at the superconducting coil 5, FIG. (H) show waveforms of the current Ic flowing through the superconducting coil 5.

以下に、前述した状態遷移時における、電源システム全体Aの各構成要素の電圧または電流波形、および、開閉器3の開閉状態の変化の様子を図10を用いて説明する。   Hereinafter, the voltage or current waveform of each component of the entire power supply system A and the state of change in the switching state of the switch 3 during the state transition described above will be described with reference to FIG.

定常電源1の出力電流Iconと前記超伝導コイル5に流れる電流Icは同じである。 The output current Icon of the steady power supply 1 and the current Ic flowing through the superconducting coil 5 are the same.

定常運転状態(期間(1))において、前記定常電源1は、前記制御計算機からの電圧指令値に従って出力電圧を前記超伝導コイル5に印加しており、一方、前記パルス電源6は点弧角を90°より大きくした状態(ゲートシフト状態)にあり、前記開閉器3は閉極状態にある。ここで、前記制御計算機から前記制御部(図示せず)にパルス運転指令が入力されると、パルス電源6は図10(c)に示すように、その出力電圧Vplsを所定の正電圧(本実施例では5[V])に上昇させる(期間(2))。 In a steady operation state (period (1)), the steady power supply 1 applies an output voltage to the superconducting coil 5 in accordance with a voltage command value from the control computer, while the pulse power supply 6 has an ignition angle. Is greater than 90 ° (gate shift state), and the switch 3 is in a closed state. Here, when a pulse operation command is input from the control computer to the control unit (not shown), the pulse power supply 6 changes its output voltage Vpls to a predetermined positive voltage (main) as shown in FIG. In the embodiment, the voltage is raised to 5 [V]) (period (2)).

これにより、パルス電源6の出力電流Iplsは超伝導コイル5の電流値まで増加する。このとき、開閉器3に流れる電流Iswは減少していき、終には零となる(期間(2))。電流Iswを前記直流変流器4で検出することにより、前記制御部(図示せず)は、電流Iswが零になった時点で開閉器3を極させる(図10(e)参照。期間(3),(4))。 As a result, the output current Ipls of the pulse power supply 6 increases to the current value of the superconducting coil 5. At this time, the current Isw flowing through the switch 3 decreases and eventually becomes zero (period (2)). By detecting the current Isw in the DC current transformer 4, wherein the control unit (not shown), open pole causing the switch 3 at the time the current Isw becomes zero (FIG. 10 (e) see. Period (3), (4)).

その後、前記制御計算機(図示せず)からの電圧指令値に従って定常電源1の出力電圧Vcomは図10(a)、およびパルス電源6の出力電圧Vplsは同図(c)に示すように増加する。この結果、超伝導コイル5に印加される電圧Vcも同図(g)に示すように急上昇する(期間(5))。これにより、超伝導コイル5に流れる電流Icを同図(h)に示すように急峻に変化させることが可能となり、核融合装置におけるプラズマ制御に有効利用することができる。 Thereafter, according to the voltage command value from the control computer (not shown), the output voltage Vcom of the steady power supply 1 increases as shown in FIG. 10 (a) and the output voltage Vpls of the pulse power supply 6 increases as shown in FIG. 10 (c). . As a result, the voltage Vc applied to the superconducting coil 5 also increases rapidly (period (5)) as shown in FIG. As a result, the current Ic flowing through the superconducting coil 5 can be changed sharply as shown in FIG. 5H, and can be effectively used for plasma control in the fusion apparatus.

パルス運転状態から定常運転状態に遷移する場合は、前記制御計算機(図示せず)から前記制御部(図示せず)に定常運転指令が入力されると、パルス電源6はその出力電圧Vplsを所定の正電圧(本実施例では5[V])まで変化させる(期間(6))。一方、前記定常電源1は、前記制御計算機からの電圧指令値に従った電圧を出力している(期間(6))。   When transitioning from the pulse operation state to the steady operation state, when a steady operation command is input from the control computer (not shown) to the control unit (not shown), the pulse power supply 6 sets its output voltage Vpls to a predetermined value. To a positive voltage (5 [V] in this embodiment) (period (6)). On the other hand, the steady power supply 1 outputs a voltage according to a voltage command value from the control computer (period (6)).

出力電圧Vplsが所定値(5[V])になった時点で、前記制御部(図示せず)は、開閉器3を閉極させる(期間(7))。その後、パルス電源6をゲートシフト状態に制御して負電圧を出力させると開閉器3に流れる電流Iswは増加してパルス電源6の出力電流Iplsは減少する(期間(8))。   When the output voltage Vpls reaches a predetermined value (5 [V]), the control unit (not shown) closes the switch 3 (period (7)). Thereafter, when the pulse power supply 6 is controlled to the gate shift state to output a negative voltage, the current Isw flowing through the switch 3 increases and the output current Ipls of the pulse power supply 6 decreases (period (8)).

この結果、パルス電源6の出力電流Iplsは零となり、定常運転状態への遷移が完了する(期間(9))。このとき、パルス電源6は図10(c)に示すように、ゲートシフト状態で待機する。   As a result, the output current Ipls of the pulse power supply 6 becomes zero, and the transition to the steady operation state is completed (period (9)). At this time, the pulse power supply 6 stands by in the gate shift state as shown in FIG.

以上の説明は、超伝導コイル5の電流Icを急峻に増加させる場合を示したが、超伝導コイル5の電流Icを急峻に減少させる場合も、同様にしてパルス運転状態に遷移させ(図10の期間(5))、その運転状態において、定常電源1、およびパルス電源6が負電圧を出力することにより可能となる。 Although the above description has shown a case where the current Ic of the superconducting coil 5 is sharply increased, when the current Ic of the superconducting coil 5 is sharply decreased, the state is similarly changed to the pulse operation state (FIG. 10). This period (5)) is made possible by the steady power supply 1 and the pulse power supply 6 outputting a negative voltage in the operation state.

以上の説明から、本発明によれば、超伝導コイル5に定常電流を通電するときは、定常電源1のみで開閉器3を介して前記超伝導コイル5に通電し、前記超伝導コイル5の電流を急峻に変化させる時には、定常電源1とパルス電源6が電圧を出力して、両電源1,6の出力電圧を足し合わせて高電圧を前記超伝導コイル5に印加できるようにするため、設備容量の大型化を防止することができ、安価な電源システムの提供が可能となる。   From the above description, according to the present invention, when a steady current is passed through the superconducting coil 5, the superconducting coil 5 is energized via the switch 3 with only the steady power supply 1. In order to change the current sharply, the steady power supply 1 and the pulse power supply 6 output voltages, and the output voltages of both power supplies 1 and 6 are added together so that a high voltage can be applied to the superconducting coil 5. An increase in equipment capacity can be prevented, and an inexpensive power supply system can be provided.

また、本発明によれば、簡易な部品構成で定常電源1にパルス電源6を直列に接続して運転することができ、超伝導コイル5に通電する電流を急峻に変化させ得る電源システムの提供が可能となるといった効果を有する。 In addition, according to the present invention, a power supply system that can be operated by connecting a pulse power supply 6 in series to a stationary power supply 1 with a simple component configuration and that can change the current supplied to the superconducting coil 5 sharply is provided. Has the effect of becoming possible.

また、本発明によれば、開閉器3を電流零で開極できる構成であるので、開極時にアークが発生することを確実に防止することができ、開閉器3の接点消耗を防ぐことができるので、開閉器3の長寿命化に貢献できる。   In addition, according to the present invention, since the switch 3 can be opened with zero current, it is possible to reliably prevent an arc from being generated at the time of opening, and to prevent contact loss of the switch 3. As a result, the life of the switch 3 can be extended.

さらに、本発明によれば、開閉器3は電流零で開極、および閉極することが可能であるので、開閉器として、電流遮断能力のない小型かつ安価な断路器を使用することが可能となり、電源システムの大型化およびコスト上昇を確実に抑制することが可能となる。   Furthermore, according to the present invention, since the switch 3 can be opened and closed with zero current, it is possible to use a small and inexpensive disconnector having no current interruption capability as the switch. Thus, it is possible to reliably suppress an increase in size and cost of the power supply system.

なお、上記実施例によれば、開閉器3を開極する前に、パルス電源6が正電圧を出力して、開閉器3を流れる電流を減少させているが、ダイオード2が開閉器3に直列に接続されているため、開閉器3を流れる電流が逆方向に流れることはなく、電流が零になった時点で自然にパルス電源6への電流経路の切り替わりが完了することになるので、開閉器3を開極するタイミングをシビアに調節する必要がない。   According to the above embodiment, the pulse power supply 6 outputs a positive voltage to reduce the current flowing through the switch 3 before opening the switch 3, but the diode 2 is connected to the switch 3. Since it is connected in series, the current flowing through the switch 3 does not flow in the reverse direction, and the switching of the current path to the pulse power source 6 is completed automatically when the current becomes zero. There is no need to adjust the timing for opening the switch 3 severely.

また、上記実施例によれば、ダイオード2が開閉器3に直列に接続されているため、開閉器3を閉極したときにパルス電源6は開閉器3を経由して過大な電流を出力することはない。   Further, according to the above embodiment, since the diode 2 is connected in series to the switch 3, the pulse power supply 6 outputs an excessive current via the switch 3 when the switch 3 is closed. There is nothing.

また、上記実施例では、開閉器3に電流遮断能力のない断路器を利用して、電源を直列に接続して運転する小型かつ安価な構成について説明したが、本発明は、小型かつ安価に構成する必要のない場合は、前記断路器に代えて、電流遮断能力のある遮断器、若しくは、開閉器によって構成してもよいことは当然である。   Moreover, in the said Example, although the switch 3 used the disconnector without current interruption capability, and demonstrated the small and cheap structure which connects and operates a power supply in series, this invention is small and cheap. When it is not necessary to constitute, it is natural that it may be constituted by a circuit breaker having a current interruption capability or a switch instead of the disconnector.

また、上記以外にも、開閉器3として、サイリスタやIGBTなどの半導体スイッチ素子を使用して構成可能であることは言うまでもなく、また、サイリスタで構成するときにはダイオード2は省略可能である。 In addition to the above, it is needless to say that the switch 3 can be configured by using a semiconductor switch element such as a thyristor or IGBT, and the diode 2 can be omitted when the switch 3 is configured by a thyristor.

さらに、本実施例では、電源システム全体Aを図1に示すように構成したが、図11に示すように、ダイオード2のカソードを定常電源1の負極側に接続しダイオード2のアノードと開閉器3と直流変流器4を接続した直列回路と、パルス電源6の正極側を定常電源1の負極側に、パルス電源6の負極側を超導コイル5に接続したパルス電源6を並列接続して構成しても、図1記載の電源システムAと同様の効果を得ることができる。 Further, in this embodiment, the entire power supply system A is configured as shown in FIG. 1, but as shown in FIG. 11, the cathode of the diode 2 is connected to the negative side of the steady power supply 1, and the anode of the diode 2 and the switch 3 and a series circuit connected to a DC current transformer 4 and the positive electrode side to the negative pole of the constant power supply 1 pulse power supply 6, connected in parallel with the pulsed power supply 6 connected to the negative side of the pulse power supply 6 to the superconductive coil 5 Even if configured, the same effect as the power supply system A shown in FIG. 1 can be obtained.

しかも、上記実施例では、開閉器3の開極または閉極時にパルス電源6の制御は所定の正電圧を出力するように電圧制御(閉ループ制御)とする場合について説明したが、当該パルス電源6の制御は、点弧角制御(開ループ制御)としても本発明は成立し、また、当該パルス電源6の制御は開閉器3を流れる電流を零に制御する場合も本発明は成立する。   Moreover, in the above-described embodiment, the case where the control of the pulse power source 6 is voltage control (closed loop control) so as to output a predetermined positive voltage when the switch 3 is opened or closed has been described. The present invention is also established as firing angle control (open loop control), and the control of the pulse power supply 6 is also established when the current flowing through the switch 3 is controlled to zero.

超伝導コイルに一定電流を通電し、必要に応じて超伝導コイルに通電する電流を急峻に変化させることを連続的に可能とした電源システムを提供することが可能である。   It is possible to provide a power supply system capable of continuously allowing a constant current to flow through the superconducting coil and abruptly changing the current passing through the superconducting coil as necessary.

本発明の電源システムの回路図である。It is a circuit diagram of the power supply system of this invention. 前記回路図において、パルス電源がゲートシフト状態にあるときの説明図である。In the circuit diagram, it is an explanatory diagram when the pulse power supply is in a gate shift state. 前記パルス電源が所定の正電圧(5[V])を出力している状態を示す説明図である。It is explanatory drawing which shows the state in which the said pulse power supply is outputting predetermined positive voltage (5 [V]). 前記電圧により開閉器に流れる電流が零となった状態を示す説明図である。It is explanatory drawing which shows the state from which the electric current which flows into a switch with the said voltage became zero. 開閉器を極した状態を示す説明図である。It is an explanatory view showing a state where the switch was open pole. 前記開閉器を極するため、パルス電源が所定の正電圧(5[V])を出力している状態を示す説明図である。To close pole the switch is an explanatory view showing a state in which the pulse power supply is outputting a predetermined positive voltage (5 [V]). 前記開閉器を極した状態を示す説明図である。It said switch is an explanatory view showing a state where the closing pole. 前記パルス電源がゲートシフトした状態を示す説明図である。It is explanatory drawing which shows the state which the said pulse power supply shifted the gate. 前記パルス電源の出力電流が零となった状態を示す説明図である。It is explanatory drawing which shows the state from which the output current of the said pulse power supply became zero. 前記回路図において、各構成要素の出力電圧および出力電流の波形を示す説明図である。In the said circuit diagram, it is explanatory drawing which shows the waveform of the output voltage and output current of each component. 本発明の他の実施例に係る電源システムの回路図である。It is a circuit diagram of the power supply system which concerns on the other Example of this invention. 従来の核融合装置用の電源回路である。This is a power supply circuit for a conventional fusion device.

符号の説明Explanation of symbols

1 低電圧連続定格電源(定常電源)
2 ダイオード
3 開閉器
4 直流変流器
5 超伝導コイル
6 高電圧短時間定格電源(パルス電源)
A 電源システム全体
1 Low voltage continuous rated power supply (steady power supply)
2 Diode 3 Switch 4 DC current transformer 5 Superconducting coil 6 High voltage short-time rated power supply (pulse power supply)
A Power supply system as a whole

Claims (1)

低電圧連続定格の第一の電源と、高電圧短時間定格の第二の電源を直列に接続するとともに、連続定格のダイオードを連続定格の開閉器に正方向に直列接続し、これを前記第二の電源の出力と並列に接続して構成する大容量直流電源システムにおいて、超伝導コイルに第一の電源のみで通電している状態から第一の電源と第二の電源で電流を通電する状態に移行する際には、前記第二の電源が正電圧を出力して、前記開閉器を流れている電流の経路を前記第二の電源に切り替わるように制御し、前記開閉器を流れる電流が所定値以下になったときに前記開閉器を開極し、かつ、前記超伝導コイルに第一の電源と第二の電源で電流を通電している状態から第一の電源のみで通電する状態に移行する際には、前記開閉器を閉極したときに第二の電源を流れている電流が前記開閉器に流れないように前記第二の電源が正電圧を出力し、前記開閉器を閉極した後、前記第二の電源は負電圧を出力して、前記第二の電源に流れている電流の経路を前記開閉器に切り替えるように制御することを特徴とする超伝導コイル電源システム。A first low-voltage continuous power supply and a high-voltage short-time second power supply are connected in series, and a continuous-rated diode is connected in series to a continuous-rated switch in the positive direction. In a large-capacity DC power supply system configured to be connected in parallel with the output of the second power supply, current is supplied from the first power supply and the second power supply to the superconducting coil from the state where only the first power supply is supplied. When transitioning to a state, the second power supply outputs a positive voltage, and the current flowing through the switch is controlled to be switched to the second power supply, and the current flowing through the switch The switch is opened when the current falls below a predetermined value, and the superconducting coil is energized with only the first power source from the state where the first power source and the second power source are energized. When shifting to the state, when the switch is closed, the second power The second power supply outputs a positive voltage so that the current flowing through the switch does not flow to the switch, and after closing the switch, the second power supply outputs a negative voltage, A superconducting coil power supply system that controls to switch a path of a current flowing through a second power supply to the switch.
JP2008271469A 2008-10-22 2008-10-22 Superconducting coil power supply system Active JP5363781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271469A JP5363781B2 (en) 2008-10-22 2008-10-22 Superconducting coil power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271469A JP5363781B2 (en) 2008-10-22 2008-10-22 Superconducting coil power supply system

Publications (2)

Publication Number Publication Date
JP2010104104A JP2010104104A (en) 2010-05-06
JP5363781B2 true JP5363781B2 (en) 2013-12-11

Family

ID=42294217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271469A Active JP5363781B2 (en) 2008-10-22 2008-10-22 Superconducting coil power supply system

Country Status (1)

Country Link
JP (1) JP5363781B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5363786B2 (en) * 2008-11-10 2013-12-11 愛知電機株式会社 Superconducting coil power supply system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231835A (en) * 1985-04-05 1986-10-16 三菱電機株式会社 Thyristor and load protection circuit
JPS61254035A (en) * 1985-04-30 1986-11-11 三菱電機株式会社 Apparatus for transferring energy between superconductive coils
JPH04359191A (en) * 1991-06-05 1992-12-11 Toshiba Corp Power source device for nuclear fusion device

Also Published As

Publication number Publication date
JP2010104104A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP6190059B2 (en) Uninterruptible power system
JP6224831B2 (en) Uninterruptible power system
JP2001197680A (en) Apparatus and method for switching power system
KR20020061371A (en) Multi-functional hybrid contactor
JP2008017663A (en) Switching power supply device
JP5363781B2 (en) Superconducting coil power supply system
JP2008544740A (en) Method for driving an inverter of a gas discharge supply circuit
JP5363786B2 (en) Superconducting coil power supply system
JP2008099468A (en) Method for detecting turn-off of thyristor
US11676786B2 (en) Systems and methods for controlling contactor open time
JP6349203B2 (en) Magnetic contactor, power conditioner
JP4754902B2 (en) Inverter power supply
JP2007252164A (en) Distributed power supply system
JP2007166844A (en) Power supply switching device
JP2006197660A (en) Starting method and starter of uninterruptible power supply
JP2009136122A (en) High-speed pulse power supply device
KR200252917Y1 (en) Magnetic brake controller using thyristors
JP5379028B2 (en) DC power supply test equipment
JP2010012510A (en) Welding power supply device and welding machine
JP2974562B2 (en) Electromagnet drive
JP2003346612A (en) Switching device
KR100394245B1 (en) Hybrid contactor for capacitor load
JP2019121723A (en) Power supply device for electromagnet
Chikaraishi et al. Voltage enhancement of the dc power supplies for dynamic current control of LHD superconducting coils
JPH0442728A (en) Instantaneous power interruption protective unit employing superconducting switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130906

R150 Certificate of patent or registration of utility model

Ref document number: 5363781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150