JP5363645B2 - 所定の投与量−応答曲線を有するバイオセンサーとその製造法 - Google Patents

所定の投与量−応答曲線を有するバイオセンサーとその製造法 Download PDF

Info

Publication number
JP5363645B2
JP5363645B2 JP2012502496A JP2012502496A JP5363645B2 JP 5363645 B2 JP5363645 B2 JP 5363645B2 JP 2012502496 A JP2012502496 A JP 2012502496A JP 2012502496 A JP2012502496 A JP 2012502496A JP 5363645 B2 JP5363645 B2 JP 5363645B2
Authority
JP
Japan
Prior art keywords
biosensor
biosensors
electrical pattern
working electrode
effective area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012502496A
Other languages
English (en)
Other versions
JP2012522226A (ja
JP2012522226A5 (ja
Inventor
グロール ヘニンク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of JP2012522226A publication Critical patent/JP2012522226A/ja
Publication of JP2012522226A5 publication Critical patent/JP2012522226A5/ja
Application granted granted Critical
Publication of JP5363645B2 publication Critical patent/JP5363645B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/74Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/4875Details of handling test elements, e.g. dispensing or storage, not specific to a particular test method
    • G01N33/48771Coding of information, e.g. calibration data, lot number
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、生物流体に含まれる分析物の濃度を測定する際に用いるバイオセンサーに関するものであり、より詳細には、このようなバイオセンサーの製造中に起こる投与量-応答曲線の変動に関する。
生物流体に含まれる物質の濃度を測定することは、多くの医学上の疾患の診断と治療にとって重要である。例えば体液(血液)中のグルコースの測定は、糖尿病の有効な治療にとって極めて重要である。血液サンプル中の分析物の濃度を測定するための多くの方法が知られており、それらは一般に2つのカテゴリーに分類される。すなわち光学的方法と電気化学的方法である。
光学的方法は、一般に、分析物の濃度によって流体に起こるスペクトルのシフトを観察するための分光法が関与しており、典型的には、その分析物と組み合わさったときに既知の色を生じさせる試薬と組み合わされる。
電気化学的方法は、一般に、電流(電流測定)、電位(電位測定)、蓄積された電荷(電気量測定)のいずれかと分析物の濃度の間の相関に依存しており、典型的には、その分析物と組み合わさったときに電荷担体を発生させる試薬と組み合わされる。例えばColumbusに付与されたアメリカ合衆国特許第4,233,029号、Paceに付与されたアメリカ合衆国特許第4,225,410号、Columbusに付与されたアメリカ合衆国特許第4,323,536号、Muggliに付与されたアメリカ合衆国特許第4,008,448号、Liljaらに付与されたアメリカ合衆国特許第4,654,197号、Szuminskyらに付与されたアメリカ合衆国特許第5,108,564号、Nankaiらに付与されたアメリカ合衆国特許第5,120,420号、Szuminskyらに付与されたアメリカ合衆国特許第5,128,015号、Whiteに付与されたアメリカ合衆国特許第5,243,516号、Dieboldらに付与されたアメリカ合衆国特許第5,437,999号、Pollmannらに付与されたアメリカ合衆国特許第5,288,636号、Carterらに付与されたアメリカ合衆国特許第5,628,890号、Hillらに付与されたアメリカ合衆国特許第5,682,884号、Hillらに付与されたアメリカ合衆国特許第5,727,548号、Crismoreらに付与されたアメリカ合衆国特許第5,997,817号、Fujiwaraらに付与されたアメリカ合衆国特許第6,004,441号、Priedelらに付与されたアメリカ合衆国特許第4,919,770号、Shiehに付与されたアメリカ合衆国特許第6,054,039号を参照のこと。なおこれらの特許は、その内容全体がこの明細書に組み込まれているものとする。
試験を行なうための電気化学式バイオセンサーは、一般に、生物流体中の興味の対象である分析物と化学的に反応する試薬が表面に載った使い捨て試験ストリップとして提供される。この試験ストリップは試験用計測器と組み合わせて使用され、その試験用計測器が、分析物と試薬の間の反応を測定して分析物の濃度を決定し、ユーザーに表示することができる。
階段状電位に対する電気化学式バイオセンサーの応答は、大まかにはコットレル方程式(F.G. Cottrell、Z. Physik. Chem.、1902年)、すなわち以下の式(1)によって支配される。
Figure 0005363645
ここで、nは、分析物1モル当たりの電子数、
Fはファラデー定数、
Aは作用電極の面積、
Dは拡散係数、
tは階段状電位を印加後の時間、
Cは分析物の濃度である。
式(1)から、拡散係数Dが変化するとセンサーの投与量-応答が変化することがわかる。
多くの電気化学式センサーでは、一般に作用電極を覆うか作用電極と補助電極を覆う乾燥した化学フィルムを用いる。乾燥したこのフィルムは、分析物とメディエータの間で電子が交換されるのを助ける酵素を含んでいる。興味の対象である分析物を含む液体サンプル(例えば血液)がフィルムを水和させると化学的プロセスが起こる。このプロセスの間にフィルムは膨張して分析物の分子がフィルムの中に拡散し、フィルムの中に存在する分析物特異的酵素の助けによって電子がメディエータ分子と交換される。メディエータ分子は、特別に印加された電位、または特別に制御された電位の存在下で電極の表面に拡散し、還元または酸化される。そこで、得られる電流を測定し、次いで既知の技術(例えば電流測定、電気量測定、電位測定、電圧測定)を利用して、分析物の量、濃度や、他の望ましい特性と相関させる。
式(1)に簡単な拡散係数Dとして提示してあるものは、実際には、(a)例えば試薬の膨張が原因で時間とともに変化し;(b)多数の拡散プロセス(例えば、流体サンプルからフィルムの中に拡散して酵素に到達する分析物、反応中心から電極に拡散するメディエータなど)の和であり;(c)酵素反応の反応速度を考慮して調節せねばならない可能性がある。
説明には、以下の簡単で線形な投与量-応答式(式(2))を用いることができる。
C=kBCIBC+kIt (2)
ここにkBC、kは、システム特異的な係数であり、
IBCは、分析物とは独立なブランク電流であり、
Itは、時刻tに測定した電流である。
あるいは電流密度で表わすと、作用電極の面積Aを導入することにより、
C=kBCAjBC+kAjt (3)
となる。ここに、
jBCは、分析物とは独立なブランク電流密度であり、
jtは、時刻tにおける電流密度である。
ブランク電流が非常に小さい場合には、式(3)を以下のように簡単化することができる。
C=kAjt (4)
分析物の濃度Cは、変化Δkから生じる量ΔCによって不正確ながら推定することができる。Δkのほうは、例えば進行中の製造プロセスの一部として起こる化学フィルムの組成または厚さの変動によって起こる。分析物の濃度の推定が正確でないというこの問題は、以下の式(5)から評価できる。
C+ΔC=(k+Δk)Ajt (5)
これらバイオセンサーで用いる化学フィルムの組成または厚さの変動が分析物の濃度推定の不正確さの重要な要因であるため、電気化学式バイオセンサーの製造プロセスの間、これらパラメータは一般に非常によく制御されている。それにもかかわらず典型的な製造プロセスでは、サイズが制限されたバッチだけを製造することができる。そのバッチは、例えば最終的なバイオセンサー製品の製造に用いる原材料からなる、サイズが制限されたバッチに基づいたものである。多くの場合、新しいロットのバイオセンサーは有意に異なるkを持つ可能性があるため、式(5)によって定量化されるロットごとの変動が生じることになる。また、より長期の傾向(例えば機械部品の摩耗や、原材料の組成の変化)によってもkが変化する可能性があろう。するとやはり投与量-応答曲線の傾きが不正確になる。
システム特異的な係数kの変動に対処するために従来から知られている標準的な1つの方法は、Δkによって起こる変化を相殺するロット特異的な係数(1-Δm)を導入することである。これを以下の式(6)と(7)に示す。
Figure 0005363645
ただし
Figure 0005363645
である。
ロット特異的係数のペアが与えられることがしばしばある。第1の係数は(1-Δm)と同様に傾きを記述し、第2の係数は線形な投与量-応答曲線の切片を記述する。いくつかのロット特異的係数、またはペアの係数は、バイオセンサーとともに用いられる測定装置に記憶させておき、その後、ユーザーが選択するか、バイオセンサーに含まれている情報に基づいて自動的に選択することができる。この方法には、いくつかの補正係数を記憶させるのに十分なメモリを持つ計測器が必要とされるという欠点があり、いくつかの場合には、この方法だと望ましくないことに正確なロット情報の選択をユーザーに委ねることにもなる。これら装置のユーザーは、必要なそうしたステップの実行に失敗する可能性があることが知られている。
あるいは従来から知られている一般的な別の方法は、試験用計測器のソケットに挿入される電子式読み出し専用メモリ・キー(ROMキー)からそのような補正情報または較正情報をその試験用計測器にダウンロードする操作を含んでいる。例えばアメリカ合衆国特許第5,366,609号を参照のこと。しかしこの較正データは特定の生産ロットの試験ストリップについてしか正確でない可能性があるため、ユーザーは、通常、現在使用している試験ストリップのロット番号が、ROMキーをプログラムしたロット番号と一致していることを確認するよう求められる。この方法は、望ましくないことにいくつかの異なるROMキーの生成を必要とし、バイオセンサーの新しいバイアルを使用するときROMキーを変更するのにユーザーに頼ることにもなるが、それは必ずしもそうされていないことが見いだされた。
公知のさらに別の方法は、コード・キーまたは使い捨て容器(例えばバーコード)を通じて補正係数を測定装置に提供するというものである。別のバリエーションは、それぞれのバイオセンサー自体にバーコードやそれ以外のコード情報をコードする操作を含んでいる。この方法では、コードされたバイオセンサーが計測器に挿入されるとき、その計測器が、その計測器のメモリに記憶されているいくつかの補正係数の中から自動的に正しい補正係数を適用する。この方法では、適切な補正係数が使用されていることを確認するいかなる積極的なステップもユーザーが実行する必要はないが、異なる多数のロットのバイオセンサーに供給できるさまざまなコードに対応するあらゆる補正係数を計測器に記憶しておく必要があり、もちろんバイオセンサーのロット特異的コーディングも必要とされる。
さらに別の方法は、バイオセンサーの製造プロセスを制御してロットごとの無視できる変動(Δk)だけが起こるようにし、必要な場合には、Δk≒0という暗黙の条件を満たさないバイオセンサーを拒絶して廃棄する操作を含んでいる。これは、“普遍的コード”と呼ばれることがしばしばある。しかしこのような方法は、第1の場合に課されるきつい許容範囲を満たすのに大きなコストがかかることが原因で出費がかさむため、その許容範囲を満たさないという理由で多数のバイオセンサーを拒絶して廃棄せねばならない場合に大きな無駄になる可能性がある。このような無駄は、拒絶されたロットのバイオセンサーを救い出し、それらのバイオセンサーに、ユーザー、またはストリップ、またはバイアルから入力される特異的コードを必要とする別の計測器、すなわち非普遍的コード式計測器を与えることによって回避できる。しかしこれは、製造して割り当てる多種類の計測器を必要とするため、追加のコストと費用が必要になる。
無駄が多く、しかも許容範囲に合わせることは難しいため、すぐ上に説明した“力ずくの”方法は、大量生産のスケールでは経済的にうまくいかないと多くの当業者に考えられている。それに代わって当業者は、今や古くなった知見を受け入れるようになっている。その知見とは、投与量-応答曲線におけるロットごとの変動はバイオセンサーの大量生産に固有であるため、サンプル中の分析物の濃度を正確に推定するには、製造後に上述のようないくつかのタイプの較正スキームを実現せねばならないというものである。
バイオセンサーの投与量-応答曲線における変動を調節する別の方法が提供されることが望まれている。
本発明は、上述の従来の知見から出発し、製造中に変えることのできるバイオセンサーの1つの特徴を選択することによって投与量-応答曲線を製造中に所定の望む範囲内に維持するバイオセンサー・システムを提供する。本発明のこれらバイオセンサーの製造が終わると、較正は不要である。
本発明の1つの形態では、バイオセンサーの製造方法が提供される。この方法では、同じモデルの少なくとも第1と第2のバイオセンサー(一般にはより多数のバイオセンサー)が製造される。第1のバイオセンサーの投与量-応答曲線は、典型的には、製造中に品質制御用の対照溶液を投与した後、応答を測定することによって決定される。その応答に基づき、第2のバイオセンサー(典型的にはより多くのバイオセンサー)の1つの特徴が決定される。その後、その特徴が第2のバイオセンサーとそれに続くバイオセンサーの製造で実現されるため、第2のバイオセンサーとそれに続くバイオセンサーの投与量-応答曲線は所定の範囲内になる。
一実施態様では、バイオセンサーは電気化学式バイオセンサーであり、決定される特徴は、バイオセンサーの電気的パターンのサイズまたは有効面積である。この実施態様では、この方法は、第2のバイオセンサーの電気的パターンの有効面積を調節することで、第2のバイオセンサーの投与量-応答曲線を所定の範囲内にする操作を含んでいる。例えば電気的パターンは、例えばレーザーで分離することによって製造中に絶縁できる何本かの指状部を有する作用電極を備えることができる。するとバイオセンサーの投与量-応答曲線が所定の範囲内になる。いくつかの実施態様では、このような分離により、作用電極のうちでサンプル収容室の中で露出している部分が効果的に絶縁される。
サンプル収容室の中で露出している作用電極の有効面積は、調節可能な1つの好ましい特徴であり、その詳細な説明と例はあとで提示するが、当業者であれば、本発明の教えを利用して製造中にバイオセンサーの他の特徴を決定して調節し、それらのバイオセンサーの投与量-応答曲線を所定の範囲内にすることができると考えられる。例えば電流測定式バイオセンサーにおける“励起電圧”の調節は、作用電極につながる導電線の途中に抵抗器(すなわち電流または電圧の分割器)を設けることによって可能になろう。1つの形態では、導電線と作用電極を含む電気的パターンを、“開いた”部分、すなわち分離された部分を有するようにして最初に形成することができる。その部分は、必要な投与量-応答の調節がなされると、望む調節を提供する既知の電気的特性を持つ導電性材料を用いて“閉じられる”、すなわち接続される。
本発明の別の1つの形態では、一般に同じタイプの第1と第2のバイオセンサーを備える電気化学式バイオセンサー・システムが提供される。第1のバイオセンサーは第1の電気的パターンを持ち、第2のバイオセンサーは第2の電気的パターンを持つ。第1と第2の電気的パターンは異なる有効面積を持ち、第1と第2のバイオセンサーの投与量-応答曲線は、同じ所定の範囲内にある。
この実施態様では、電気的パターンの有効面積はバイオセンサーの1つの特徴であり、そのバイオセンサーの投与量-応答曲線を所定の範囲内または許容範囲内に維持するために必要に応じて製造中に調節することができる。一実施態様では、バイオセンサーの作用電極は、多数の指状部を備えている。製造の変動を相殺するため、その指状部のうちの何本かまたはすべて、またはその一部を絶縁できるため、投与量-応答曲線を所定の受け入れられた範囲内または許容範囲内に維持することができる。
本発明を組み込んだ実施態様では、好ましいことに、分析物の濃度を測定するためにユーザーがバイオセンサーを使用する前に、計測器および/またはユーザーがそのバイオセンサーを較正する必要がなくなる。
添付の図面を考慮した本発明の実施態様に関する以下の記述を参照することにより、本発明の上記の特徴と、それらの特徴を得る方法がより明らかになるであろうし、本発明そのものがよりよく理解されるようになろう。
本発明の教えに従って形成したバイオセンサーの斜視図である。 図1Aに示したバイオセンサーの基板の斜視図であり、その基板の表面に電気的パターンが形成されている。 図1Aと図1Bに示したバイオセンサーと基板の一部の分解斜視図である。 バイオセンサーの基板のさまざまな投与端の一部の平面図であり、基板の表面には電気的パターンが形成されていて、この電気的パターンの作用電極の有効面積を本発明の教えに従って変えることができる。 バイオセンサーの基板のさまざまな投与端の一部の平面図であり、基板の表面には電気的パターンが形成されていて、この電気的パターンの作用電極の有効面積を本発明の教えに従って変えることができる。 バイオセンサーの基板のさまざまな投与端の一部の平面図であり、基板の表面には電気的パターンが形成されていて、この電気的パターンの作用電極の有効面積を本発明の教えに従って変えることができる。 バイオセンサーの基板のさまざまな投与端の一部の平面図であり、基板の表面には電気的パターンが形成されていて、この電気的パターンの作用電極の有効面積を本発明の教えに従って変えることができる。 バイオセンサーの基板のさまざまな投与端の一部の平面図であり、基板の表面には電気的パターンが形成されていて、この電気的パターンの作用電極の有効面積を本発明の教えに従って変えることができる。 バイオセンサーの基板のさまざまな投与端の一部の平面図であり、基板の表面には電気的パターンが形成されていて、この電気的パターンの作用電極の有効面積を本発明の教えに従って変えることができる。 バイオセンサーの基板のさまざまな投与端の一部の平面図であり、基板の表面には電気的パターンが形成されていて、この電気的パターンの作用電極の有効面積を本発明の教えに従って変えることができる。 1つのバイオセンサーの基板の投与端の一部の平面図であり、基板の表面には電気的パターンが形成されていて、この電気的パターンの作用電極の有効面積を本発明の教えに従って変えることができる。 本発明の教えに従ってバイオセンサーを製造する方法を説明するための、一部を模式的に示した斜視図である。 バイオセンサーの投与量-応答曲線を所定の範囲内に前向きに維持する方法を説明するグラフである。 バイオセンサーの投与量-応答曲線を所定の範囲内に前向きに維持する方法を説明するグラフである。 バイオセンサーの基板の投与端の一部の平面図であり、基板の表面には電気的パターンが形成されていて、この電気的パターンの作用電極の有効面積を、本発明の教えに従い、このバイオセンサーの投与量-応答曲線を所定の範囲内に前向きに維持するサイズにすることができる。
対応する参照番号は、図面全体を通じて対応する部分を指すのに用いる。
以下に記載する本発明の実施態様は、網羅する意図も、本発明を以下の詳細な説明に開示した特定の形態に限定する意図もない。むしろ、これらの実施態様を選択して説明するのは、当業者が本発明の原理と実際を評価し、理解できるようにするためである。
本発明の教えにより、1つのバイオセンサー・システムが提供される。このシステムでは、同じモデルの実質的に同等な複数のバイオセンサーが用意または製造され、これらバイオセンサーの1つの特徴(例えば電気的パターンの有効面積)を製造中に変化させることで、すべてのバイオセンサーの投与量-応答曲線を所定の範囲内または許容範囲内に維持する。
この明細書の目的では、“有効面積”という用語は広く解釈されるべきであり、典型的には、1つの電気的特徴(例えば、バイオセンサーを計測器に接続するときに電流を流したり、それ以外のときに電流を供給したりすることのできる電極)のサイズを意味する。多くの場合、有効面積は、その電気的特徴の表面積によって実質的に決まることになる。これは、表面または内部に薄くて平坦な電気的パターンが形成されている実質的に平坦なバイオセンサーの場合には適切であろう。他の用途では、有効面積は、特定の電気的特徴が電気的パターンの他の特徴に電気的に接続されているかどうかに依存する可能性がある。さらに別の用途では、有効面積は、特定の電気的特徴の厚さまたは体積に依存する可能性がある。例示する実施態様では、有効面積に、サンプル収容室の中に位置していて計測器の電子回路にも電気的に接続されている作用電極の表面積が含まれる。
この明細書では、“投与量-応答曲線”という用語は、ある濃度の特定の1つの分析物(または複数の分析物)が含まれる流体サンプルをバイオセンサーの中または上に配置し、そのバイオセンサーで電流、電荷、電位、抵抗、色や、流体サンプル中の分析物の濃度と相関させることのできる他のいくつかのパラメータを測定する実験または試験を広く記述する。したがって“投与量”は分析物の濃度を意味し、“応答”は、その濃度に対応する測定されたパラメータを意味する。“濃度-応答曲線”という用語もこの分野で知られており、この明細書では“投与量-応答曲線”の同義語である。
ここで図1A、図1B、図2を参照すると、本発明の教えに従う有用なバイオセンサー20の1つの代表的な“モデル”が示されている。しかし当業者であれば、本発明の教えを実質的に無限にバリエーションのあるバイオセンサーのモデルに組み込めること、そして実際には他の装置にも応用できることが容易にわかるであろう。バイオセンサー20は、ベース基板22と、スペーシング層24と、カバー層25を含んでいる。カバー層25は、本体カバー部28とサンプル収容室カバー部30を備えている。スペーシング層24とカバー層25が合わさって、ベース基板22と、カバー層25の少なくともサンプル収容室カバー部30との間を延びるサンプル収容室34を規定する。ギャップ36が本体カバー部28とサンプル収容室カバー部30の間に設けられていて、サンプル収容室34に通じる通気用開口部を規定している。この通気用開口部により、サンプル流体が縁部開口部または流体受容開口部45からサンプル収容室に入ってくるときに空気がサンプル収容室から出て行くことができる。別の一実施態様では、カバー層は、スペーシング層24の上に重なっていてサンプル収容室と流体をやり取りできる通気用穴(図示せず)のある単一の頂部カバー(図示せず)を備えることができよう。
バイオセンサー20は、投与端46と計測器挿入端48を含んでいる。投与端は、ユーザーにわかりやすくするため、計測器挿入端と識別可能な設計にすることができる。例えば図1に示したバイオセンサー20の投与端46は斜めに切り取られていて、このバイオセンサーの残部と対比させる色も着けられている。矢印41などのストリップ上のグラフィックを用いることで、このバイオセンサーを計測器に挿入する向きを示すこともできる。
これら教えの1つの特徴では、電気的パターンまたはそれ以外の特徴の有効面積は、ロットごとに変動したり、他の要因で変動したりする可能性があるが、各モデルからのバイオセンサーの全体的な“外観と感触”は一般に同じであり、ユーザーには識別できない。たとえバイオセンサーのうちのいくつかが、製造中に投与量-応答曲線を望む許容範囲内に維持するように改変された特徴を持っているとしても、例えばストリップ上のグラフィック、色を着けた投与端、カバー層25、スペーシング層24、バイオセンサーの形状とサイズのどれもが、一般に、所定のモデルのすべてのバイオセンサーで同じか実質的に同じであろう。しかし別の実施態様では、特定の1つのモデルの個々のバイオセンサーのいくつかの特徴(例えば色、グラフィックなど)を変えることが望ましい可能性がある。“モデル”という用語をこの明細書では使用しているため、バイオセンサーの“モデル”の例を挙げると、Accu-Chek(登録商標)Comfort Curve(登録商標)ブランドの試験用ストリップまたはバイオセンサー、Accu-Chek(登録商標)Avivaブランドのバイオセンサーまたは試験用ストリップなどがある。
図1Bを参照すると、ベース基板22は、その表面に、電気的特徴38を有する電気的パターン50を備えている。電気的特徴38の一部は図1Aでサンプル収容室34の中にも見ることができる。電気的パターン50は、例えばレーザー・アブレーションによって基板22の表面に形成される。レーザー・アブレーションはアメリカ合衆国特許出願公開第2005/0103624号に記載されており、その開示内容は参考としてこの明細書に組み込まれているものとする。電気的パターン50を形成する他の適切な手段として、レーザー・スクライビング、スクリーン印刷や、この分野で知られている他の方法などがある。電気的パターン50の他の電気的特徴38として、作用電極52がある。作用電極52はさらに、一連の指状部54、フォーク状の補助電極56、投与充足電極58、一連の線60、62、64、66、68、70を備えている。これらすべてが、1つ以上の個々の電気的特徴38から、このバイオセンサーを挿入する計測器と電気的に接続するためのさまざまな接触パッド42につながっている。試薬層または試薬フィルム72を基板22の投与端46に付着させる。この試薬層72は、多数ある任意の方法でバイオセンサーに付着させることができる。そうした方法の多くは、以前に引用したアメリカ合衆国特許出願公開第2005/0016844号に記載されている。すぐ上に記載した基本的特徴を有する電気化学式バイオセンサーの追加の基本設計と機能の詳細は、アメリカ合衆国特許出願公開第2005/0016844号に見いだすことができる(その開示内容の全体は参考としてこの明細書に組み込まれているものとする)。
図2を参照すると、バイオセンサー20の投与端46の斜視図が、分解したスペーシング層24および二部材式カバー層25とともに示されている。小さなアクセス用開口部44がカバー層25とスペーシング層24を貫通して設けられていて、点線で示したように、組み立てられたバイオセンサーの中で分離領域76の直上に位置する。開口部44により、レーザーその他のツールを調節区画82(図3A〜図3N)の位置で作用電極52の指状部54のうちの何本かの一部に近づけ、図示したように指状部54を分離することが可能になる。すると分離領域76が残り、指状部54のうちの1本以上がうまく絶縁されることで、電気的パターン、特に作用電極の有効面積が、望む程度に変化する。図からわかるように、例えば作用電極52の3本の指状部54が分離され、より広い2本の指状部53だけが残ることで、サンプル収容室34内で露出している作用電極52の有効面積が狭くなる。指状部53のそれぞれが、3本の指状部54をすべて合わせた合計幅と同じ広さであると仮定すると、有効面積の減少は約33%になる。
作用電極の有効面積を調節することの効果は、投与量-応答曲線を望む許容範囲内に維持することである。これは、上記の式(5)を再度検討することで理解できる。
Figure 0005363645
この式からわかるように、測定または推定された分析物の濃度は、定数kだけでなく、作用電極の面積であるAにも比例する。したがってロットごとの変動から生じる変化Δkは、以下の式(8)に示したように、個々の変化ΔAによって相殺することができる。
Figure 0005363645
あるいはΔAで表わすと、式(9)が得られる。
Figure 0005363645
したがってΔkを決定すること(例えば濃度が既知の分析物を含む対照溶液を用いて個々のバイオセンサーを試験することによって可能である)により、作用電極の面積を変化させる必要がある場合には、その必要な変化を式(9)から決定できる。あとでより詳しく説明するように、面積のこの調節は、バイオセンサー製造プロセスの最終ステップの1つとして実施すること、または前向きベースで、製造プロセスのより早い段階において電気的パターンが基板の表面に形成されているときに組み込むことができる。
バイオセンサーの電気的パターンの有効面積が後のほうの製造段階で(例えばバイオセンサーがすでにほとんど形成された後に)調節される場合には、本発明の教えに従うシステムは、調節するためのさまざまな選択肢を提供することができる。
上述のように、例示したいくつかの実施態様では、調節する“有効面積”は、サンプル収容室の中に位置する作用電極の表面積を含んでいる。これらの実施態様では、投与量-応答曲線に関する調節可能な範囲を与えるため、作用電極には一般に、所定のモデルのあらゆるバイオセンサーで同じ基本的部分を設けることができる。作用電極は、投与量-応答曲線を変化させるために選択的に分離できる何本かの他の指状部も含むことができる。
例えば図3Aと図3Bは、本発明の教えに従うバイオセンサー・システムで用いるのに適した基板22の投与端46の一実施態様を示している。(投与端46は図1と図2にも示されている。)電気的パターン50には作用電極52が設けられていて、作用電極52はさらに、一連の調節用指状部54と、指状部54よりも広い常設指状部53と、補助電極56と、投与充足電極58をさらに備えている。毛管空間またはサンプル収容室が点線で参照番号55の位置に示されている。図1と図2を参照して上述したように、試薬フィルムまたは試薬層(図3A〜図3Nには図示せず)が一般にこの毛管空間の少なくとも一部に、少なくとも作用電極52と接触して存在している。
この実施態様では、作用電極52の常設指状部53は、サンプル収容室の中に位置する作用電極の面積の公称値の約80%を提供する。それに対して作用電極52の指状部54は、毛管空間の中へと延びていて選択的に分離することができ、公称値の追加の約40%を提供する。その結果、この特別な実施態様では、投与量-応答曲線は、作用電極の公称値の上は約120%まで(どの指状部54も分離されていない)、下は80%まで(すべての指状部54が完全に分離されている)の間で調節することができる。もちろん当業者であれば、すぐ上に示した割合を望みに応じて変えられることが容易に理解できよう。そのためには、例えば指状部53および/または54をより広く、またはより狭くする、および/または3本ある選択的に分離可能な指状部54よりも少数の分離可能な指状部をさらに設ける。作用電極の有効面積を製造中に公称値の約80%〜120%の間で変えられるというのは、本発明のバイオセンサーを大量生産するいくつかの方法にとって、投与量-応答曲線を望む範囲内に維持するのに十分であると考えられる範囲の単なる一例である。当業者であれば、本発明の教えを利用した個々の製造法で遭遇する投与量-応答曲線の変動に応じ、この範囲を広くしたり狭くしたりすることを望む可能性がある。
図3Aは、上述のように例えばレーザー・アブレーションやそれ以外の適切な手段によって基板22の表面に最初に形成された状態の電気的パターンを示しているのに対し、図3Bは、面積の調節を行なった後の電気的パターン50を示している。より詳細には、図3Aの調節用指状部54の一部の上に投影して示してある調節区画82は、1本以上の調節用指状部54を例えば製造の最終段階で分離できる場所を表わしている。図3Bは、3本の指状部54を分離した後の電気的パターンを示しており、分離領域76が、導電性材料を除去した場所に形成されている。したがってこの場合の作用電極の有効面積は、上方で補助電極の間を延びている3本の指状部54の区画が絶縁されているために公称値の約120%から公称値の約80%へと低下している。
図3Aと図3Bに示したような指状部54の分離を後のほうの製造段階で実施できるようにするため、アクセス用開口部(例えば図1と図2に示した開口部44)が、調節区画82の直上位置でカバー層に設けられている。すぐ上に述べたように、そしてあとでより詳しく説明するように、分離すべき調節用指状部54がある場合には、その数は、製造する個々のバイオセンサーの投与量-応答曲線に対して望む補正の程度に基づき、設計時に選択される。
図2、図3A、図3Bに示した実施態様には、より広い指状部53はより狭い指状部よりも一般により丈夫であるといういくつかの利点がある。さらに、この場合には、指状部53が作用電極の外縁部を規定しているため、作用電極の上縁部および下縁部と、補助電極の対応する縁部との間のギャップ幅は、存在している場合の分離すべき指状部の数に関係なく同じに留まる。これは、あとで説明するように、いくつかの状況では望ましい可能性がある。
図3Cと図3Dは、図3Aと図3Bの実施態様とは異なる別の実施態様を示しており、ここには、作用電極157が、より広い単一の常設指状部153と、選択的に分離できる3本のより狭い指状部154とだけが含まれている。この場合には、指状部153の面積は、例えば公称値の約80%をカバーできるのに対し、3本の指状部154は、合わさって、作用電極の公称面積の追加の40%をカバーすることができる。図2、図3A、図3Bに示した実施態様と同様、補助電極156の縁部と作用電極157の縁部のギャップ幅は、存在している場合の分離すべき指状部の数に関係なく同じに留まる。図3Dは、分離領域76において3本の指状部154がすべて分離された状態を示している。
図3Eと図3Fに示した作用電極は、図3Aと図3Bに示した作用電極をいくらか逆にしたものである。この場合には、より広い単一の常設指状部53が、選択的に分離可能な3本のより狭い指状部54からなる2つのセットに挟まれて中央に位置している。この実施態様では、2つの調節区画82と82aが存在しているという理由でより正確な調節が可能になる。それぞれの調節区画により、0〜3本の指状部54を分離することができる。図3Fは、2つの分離領域76と76aを示している。
図3Gと図3Hでは、常設指状部153に加え、2セットの調節用指状部154と156が設けられている。指状部154と156は、両者間のスペース150によって隔てられている。指状部154を分離するための第1の調節区画82に加え、図3Gに点線で示した第2の調節区画84に、レーザーなどの切断装置がアクセスできる。図3Hは、すべての調節用指状部154と156が分離されて、分離領域76、86が残った調節状態を示しているが、もちろん必ずしもこうなっていなければならないわけではない。投与量-応答曲線に対する望ましい正確な補正がどのようなものであるかに応じ、分離する指状部154と156の数と組み合わせを任意に決めること、または数をゼロにすることができる。
図3Iと図3Jは、作用電極157が図3Gと図3Hに示した作用電極152とは異なるように形成された別の一実施態様を示している。図示されているように、導電性材料からなる接続バンド151が、毛管空間55に対して中央に配置されている。2つの調節区画82と84が図3Iに示されており、選択的に分離できるすべての指状部が分離領域76と86において分離された状態が図3Jに示されている。
図3Kと図3Lは、本発明の教えに従うバイオセンサー・システムで用いるのに適した基板22の投与端46のさらに別の一実施態様を示している。この場合には、作用電極52は、一連の調節用指状部54と、常設指状部53と、補助電極56と、投与充足電極58を備えている。図3Kに示したように1つの調節領域82が設けられていて、図3Lには、分離領域76においてすべての指状部54が分離された状態が示されている。
材料を除去するか材料を分離して電気的パターンの有効面積を小さくする代わりに、バイオセンサーの製造中に導電性材料を電気的パターンに付加してその導電性材料を電気的に接続し、電気的パターンの有効面積のサイズを大きくすることができる。例えば図3Mと図3Nは、電気的パターン50が図3Kと図3Lに示した電気的パターンと似ているが、分離領域76を有する電気的パターン50を最初に形成し(図3M)、図3Nに示したように、例えば製造の最終段階で導電性材料90をアクセス用の開口部またはウインドウ(例えば図1と図2に示した開口部44)を通じて堆積させて指状部54を接続する点が異なる一実施態様を示している。導電性材料90は、従来から知られている多彩な方法のうちの任意の方法で堆積させることができる。別のバリエーションとして、導電性材料からなる“栓”をアクセス用開口ウインドウ(例えば図1の開口部44)に摩擦嵌めによって嵌め、その栓が電気的パターンおよび基板22から離れた状態にすることができる。次に、望むのであれば製造中にこの栓を下方に押して指状部54と接触させることで、指状部54を電気的に接続することができよう。当業者であれば、製造プロセスの間にアクティブにし、望みに応じて1本以上の調節用指状部54を接続することで電気的パターンの有効面積を調節できる設置可能な任意の数の切り換えメカニズムを容易に思いつくであろう。
電気的パターンの有効面積をいかにして変化させることができるかの一般的な例をこれまで提示してきたが、数値の伴ったより詳細な一例を図4に提示する。この図には、本発明の教えに従うバイオセンサー・システムで用いるのに適した基板222の投与端246が示されている。多数の指状部がある2つの区画254と256を含む作用電極252を有する電気的パターン250が設けられている。区画254は、常設指状部262と調節用指状部264を含んでいる。同様に、区画256は、常設指状部266と調節用指状部268を含んでいる。すべての調節用指状部264と268が、常設指状部によって作用電極252の中央部272に接続されている。試薬フィルム274(模様のある部分として示す)が基板222の投与端246を横断して延びていて、補助電極と作用電極の大半を覆っている。図からわかるように補助電極270と投与充足電極280も設けられていて、毛管空間の境界が、参照番号255によって点線で示されている。上に説明し、図1Aと図1Bにも示してあるように、もちろん線またはリードが、作用電極、補助電極、投与充足電極から延びていて、計測器に接続される接触パッドで終わっている。
図4には、点線で2つの調節ウインドウ284、286も示されている。これらは図1のアクセス用開口部44などのウインドウと同じものであり、これらのウインドウを通じて調節用指状部264と268にアクセスし、望むのであればそれらの指状部を製造中に分離することができる。また、図4に示した実施態様では4本の常設指状部(指状部262と268からそれぞれ2本)を考えているが、バイオセンサーの基本的な機能を保証するには常設指状部が1本だけで十分であろう。しかし他の場合には、毛管空間の幅全体にわたって補助電極270と作用電極252の間に一定のギャップ幅を維持することが望ましい可能性がある。それは例えばインピーダンスの測定値を用いてヘマトクリットまたは温度を補正する場合などであり、全血中のグルコース濃度を推定するいくつかのバイオセンサーでそうされている。例えばアメリカ合衆国特許第6,645,368号、アメリカ合衆国特許出願シリアル番号第2004-0157337号、第2004-0157338号、第2004-0157339号を参照のこと。図4からわかるように、常設指状部262と266は作用電極の上縁部を規定しており、望むのであれば毛管空間の幅全体にわたってギャップ幅を一定に維持する目的を達成している。
やはり図4からわかるように、調節ウインドウ284と286は、試薬フィルムの下方にその試薬フィルムから離れて位置している。そのため指状部264と268をより容易かつより正確に分離することが可能になる。なぜならこれらの指状部は、図示した位置では試薬フィルムに覆われておらず、試薬フィルムが指状部の切断を邪魔しないからである。さらに、例えばレーザーを用いて指状部を分離する場合には、試薬への照射を避けることが望ましい可能性がある。なぜならレーザー光は試薬の化学反応に望ましくない影響を与える可能性があるからである。しかし望むのであれば、いくつかの用途ではウインドウを試薬フィルムの上方に位置させることが可能である。
以下の表1に、図4に示した電気的パターンを例えばレーザー・アブレーション法で形成する場合の実際のサイズの例を提示する。これらの例からわかるように、毛管空間255を(例えば図4の左から右へ)横断する主要な作用電極の面積272の全長は1.15mmであり、毛管空間におけるその全幅は0.29mmである。常設指状部262と266は、表1では、毛管空間内でその毛管空間の境界のそれぞれの側の近くに位置する幅0.04mm、長さ0.35mmの2本の指状部として示されている。6本の調節用指状部(指状部264と268からそれぞれ3本)が存在していて、そのすべてが表1では同じになっている。なぜならこれら指状部はすべて、幅と長さが実質的に同じだからである。
表1の第5列に作用電極の面積の総計を示してある。この値は、この列の下に行くほど大きくなる。例えば中央部272と常設指状部262、266に属する作用電極の全面積は、0.362mm2である。表1に示してあるように、調節用指状部を1本だけ付加すると面積は増加して0.365mm2になるのに対し、6本の調節用指状部をすべて付加すると全面積は0.384mm2になる。
表1は、接続されている3本の調節用指状部(264または268)と、分離または絶縁された他の3本の調節用指状部とを有する図4の電気的パターン250の構成を、作用電極の公称面積の基準となる100.0%として提示してある。したがって表からわかるように、6本の指状部をすべて切断すると公称面積の97%になり、どの指状部も切断しないと公称面積の103%になる。式(9)から、得られるΔAのセットは{-0.037, -0.024, -0.012, +0.012, +0.024, +0.037}である。
Figure 0005363645
表1は、有効面積が増分を1%として調節されることを示している。しかし別の一実施態様では、作用電極の有効面積は、すぐ上に記載したようにして指状部の配置を調節することにより、または上に開示した他の調節用配置により、増分を-9%、-6%、-3%、0%(公称値)、+3%、+6%、+9%とすることができよう。当業者であれば、個々の製造プロセスで考慮するか遭遇するシステムのドリフトに対処するため、他の増分とその組み合わせを提供することができよう。
ここで図5を参照すると、本発明の教えに従ってバイオセンサーを製造する方法の一例が示されている。バイオセンサー300の第1のラインまたは第1の製造ステーションは、リールで提供されるバイオセンサー20のロール301を含んでいて、このリールは図示されているようにほどかれていく。ロール301上のバイオセンサー20は、図1と図2を参照して上に説明したのと実質的に同じだが、異なっているのは、バイオセンサーが、まだ切り取られていない連続的なウェブで供給され、製造の最終段階で個々のバイオセンサーに切断される点である。ロール301がほどかれていくと、品質制御(“QC”)水溶液304(例えば較正用溶液)を収容したディスペンサ302が、選択されたバイオセンサー20にQC溶液304を投与する。図示してあるように、QC溶液は、選択されたバイオセンサーのサンプル収容室に引き込まれる。
図5に示した方法では、ディスペンサ302がバイオセンサーに素早く投与している間はロールを一時的に停止させること、または連続的にロールを移動させることが可能である。選択されたバイオセンサー20が移動するにつれ、化学的・物理的プロセスがサンプル収容室34内で素早く起こる。選択されたバイオセンサー20は試験ステーション306に進み、プローブ308が接触する。プローブ308は、図5では、ラインの中でその選択されたバイオセンサーよりも3つ前に位置するバイオセンサー20と接触している。ディスプレイ311をオプションとして有する計測器または測定装置309が、選択されたバイオセンサー20にプローブ308を通じて励起信号列を供給し、応答信号を記録する。コンピュータ313が、1つのロールまたは複数のロールの中で試験されるすべてのバイオセンサーについて応答を受信して記録し、電気的パターンの有効面積に対してなすべき望ましい補正を計算する。
ライン300の中で試験ステーション306よりもバイオセンサー2つ分だけ前に位置するのが、毛管ステーション310である。この毛管ステーション310は、矢印で示してあるように授受が可能であり、選択されたバイオセンサーの投与端と接触していてQC溶液304をそこから吸引する毛管要素312を含んでいる。
最後に、ライン中でさらにバイオセンサー4つ分だけ先に位置するのが、上下に移動可能なマーキング・ステーション314である。このマーキング・ステーション314は、“X”の形をしたマーカーまたはスタンプ316を備えていて、試験をするために選択されたバイオセンサーの表面に拒絶マーク318を印刷する。拒絶マーク318は、ライン300の中に点線で示してある。なぜならステーション314の下に位置するバイオセンサーにはまだ投与されていないため、実際には“X”のマークが付けられていないはずだからである。製造ラインで製造される合計数に対する試験されるバイオセンサーの割合は設計によって異なるが、多数のバイオセンサーを試験したほうがよいと考えられる。この設計の一実施態様では、50個のストリップからなるバイアル全体を製造中に定期的に試験する。例えばリール・ツー・リールへという方式の製造プロセスがAccu-Chek(登録商標)Aviva試験ストリップの製造に使用されているが、この製造プロセスでは、1mに約111個のストリップが一般に存在しており、約200mごとに50個のストリップが試験のために選択される。したがって割合として、製造される445個のストリップごとに、約1個のストリップが試験のために選択される。最適な割合は、多くの場合、製造される各ロットの試薬の再現性と、基板22の投与端46の表面への試薬層フィルム付着の再現性に依存する。合計の再現性が大きいほど、製造されるストリップに対する試験するストリップの割合が大きくなる。試験は破壊的だが、試験されて廃棄されるバイオセンサーは製造される合計数に対してわずかな割合であるため、そのわずかな割合のバイオセンサーが製造コストを顕著に増大させることはなく、実際、ROMキーやバー・コードなどを用意する従来の解決法が回避されることを相殺する以上のことがある。
さらに図5を参照すると、選択されたバイオセンサーは、投与され、試験され、吸引され、マークを付けられた後、第2のロール322に巻き取られてライン330内でさらに処理される。ラインまたはステーション330は、カメラ332と、レーザー334と、ミラー336で示した光学装置とを含んでいる。レーザー334は、それに付随するコンピュータまたは計算/機械制御システム338を備えていて、このシステムは、例えば電気的パターンの作用電極に関する面積補正の計算値を第1のコンピュータ313から受け取る。
カメラ332をシステム338と組み合わせて用いることで、レーザーが必要に合わせて切断を行なってライン330内のすべてのバイオセンサーの作用電極の面積を調節することが可能になる。より詳細には、図示してあるようにライン330がバイオセンサー20を左から右に前進させると、レーザー334のパルス・ビーム340がミラー336によって反射されてウインドウまたは開口部44を通じて投射され、例えば図3Aと図3Bを参照して上に説明したような切断を行なうことで、必要に応じて切断された領域76を作り出す。カメラが読み取った光学的な結果は計算システム338によって処理されて、指定した領域でレーザーが必要な切断を適切に行なっていることを保証する。この調節がなされた後、バイオセンサーは再びロール342に巻き取られてさらに処理される。その処理の間に、バイオセンサーは、例えばロールから分離され、トリミングされ、バイアルの中に包装される。ストリップ組立体を完成させるためのすぐ上に記載したタイプのさらなる処理の詳細は、アメリカ合衆国特許出願公開第2005-0013731号に提示されており、その開示内容の全体が参考としてこの明細書に組み込まれているものとする。
1つの製造法を図5に示してあるが、当業者であれば多くのバリエーションを容易に思いつくであろう。例えば2つの独立したステーション300と330を図5に示したが、これら2つのステーションの機能をうまく合体させて1つにすることができよう。ただしラインはより長くなる。言い換えるならば、ライン300を長くし、レーザー334とカメラ332をこの1本だけのラインのマーキング・ステーション314の下流に位置させることができよう。さらに、ライン300は、このラインに沿って互いに離れた投与ステーション、試験ステーション、吸引ステーション、マーキング・ステーションを有するため、このラインを連続的に動かし、その間に選択されたバイオセンサーを試験することができる。しかし望むのであれば、これらステーションをすべてまとめて配置し、バイオセンサーのうちの1つを試験するときにラインを定期的に停止させることができよう。ほんの少数個しかバイオセンサーを試験しないときには、ラインの設定に関してこの選択肢がより望ましかろう。さらに、ラインを停止させ、試験を、例えばその目的で訓練された技術者が手作業で実行することができよう。当業者であれば、本発明の教えをバイオセンサーの製造に組み込むためのさまざまな別の選択肢を思いつくであろう。
本発明の教えの第2の特徴から、まだ製造されていないバイオセンサーの電気的パターンの面積に対する必要な調節を統計的プロセス制御(SPC)を利用して前向きに予測することにより、バイオセンサーを調節して分析物の濃度を正確に推定することが可能になる。本発明のこの特徴を説明するため、図6Aに、いくつかの製造ロットについて、対照水溶液に対するロットごとのバイオセンサーの応答の平均値(“均等化ロット平均値”と呼ぶ)を示してある。均等化ロット平均値は、製造ロットを形成する多数のロールからバイオセンサーを統計的にサンプリングする操作を含むプロトコルによって決定される。図6Aには放出限界も示されている。この限界よりも上または下だと、ロットは、複雑な補正アルゴリズムを利用したシステムで用いるためであってさえ、一般に不十分であるとして廃棄される。理論的な制御限界と中心線も示されている。理論的な制御限界は所定の範囲または許容範囲を表わしており、バイオセンサーの応答はその範囲内に維持することが望ましい。移動平均は黒い実線でプロットしてある。
図6Aに示した結果からわかるように、均等化ロット平均値の移動平均(実線)は、ほぼロット102の位置から下方制御限界よりも下になり、次いで下方制御限界をさらに6回交差した後、最終的にほぼロット540の位置で上方制御限界と交差する。この傾向はモニタすることができ、SPCを用いて前向き補正を実現することができる。
特に図6Bは、上記の教えに従ってなされる作用電極の面積補正を利用する場合に予想される均等化ロット平均値を示している。作用電極の公称(補正されていない)面積A0をロット102までのすべてのロットで用いる。この地点で上述のように下方制御限界と交差するため、その後のロットの作用電極の面積は、図6Bに示したように(A0+2%)に調節する。この図からわかるように、作用電極の面積を(A0+2%)という値に維持することにより、実線で示した均等化ロット平均値は、その後の数百個のロットで上方制御限界と下方制御限界の間に維持される。面積の調節なしの図6Aに示した場合にはそうはならなかった。ロット472の位置でSPC上方制御限界と交差する。これを補償するには、その後のロットでバイオセンサーの作用電極の面積をA0に戻さねばならない。図6Bに示してあるように、ロット540の位置で再びSPC上方制御限界と交差した後、バイオセンサーの作用電極の面積を(A0-2%)に変更する。
上述のように、補正は前向きであるため、望むのであればその補正をバイオセンサーの製造プロセスの早い段階に組み込むことができる。すると製造の経済性と実現の容易さに関していくつかの利点が提供されよう。図7は、図6Bを参照して説明した前向き補正を利用するのに適した基板422の投与端446を示している。作用電極452と、2本の指状部または区画458と460を有する補助電極456と、投与充足電極462とを有する電気的パターン450が設けられている。電気的パターン450は、レーザー・アブレーション、レーザー・スクライビング、スクリーン印刷や、電気的パターンをバイオセンサーの基板の表面に作り出すために従来から知られている他の技術によって形成することができる。毛管空間またはサンプル収容室434は、点線で示した境界線436によって区画されている。試薬フィルムまたは試薬層464が電極を覆っている。
作用電極452は、図に示したように幅“W”を持つのに対し、作用電極452と区画458に挟まれたギャップと、作用電極452と区画460に挟まれたギャップは、それぞれG1、G2で示してある。表2、表3、表4に、ギャップ幅のさまざまな変化と組み合わせて作用電極の面積を調節するための3つの異なる選択肢を示してある。
以下の表2は、ギャップG1、G2が維持される一方で作用電極452の幅Wが変化する場合を示している。
Figure 0005363645
表3は、作用電極の幅Wと、作用電極452と補助電極の区画460に挟まれたギャップG2が変化する場合を示している。その一方でG1が一定に維持されると、サンプル収容室434に入るサンプルを信頼性も再現性もよい状態で検出することに関していくつかの利点がもたらされる可能性がある。
Figure 0005363645
以下の表4は、作用電極の幅WとギャップG1、G2が対称に変化する場合を示している。この場合には測定体積が一定に維持されるため、本発明の教えを例えば電気量測定に利用するときにいくつかの利点がもたらされる可能性がある。
Figure 0005363645
本発明の原理を含む実施態様をこれまで開示してきたが、本発明が開示した実施態様に限定されることはない。そうではなく、本出願は、本発明の一般的な原理を利用した本発明のあらゆるバリエーション、利用法、適合法を含むものとする。さらに、本出願は、ここに開示した内容から出発したそのような事柄のうちで、本発明が関係していて添付の請求項の範囲に入る従来から知られている事柄または一般的に実施されている事柄をカバーするものとする。
以下は、本発明の好ましい実施態様のリストである。
1.複数の電気化学式バイオセンサーからなるシステムであって、
同じモデルの第1と第2のバイオセンサーを備えていて、第1のバイオセンサーは、複数の第1の調節用指状部を含む第1の電気的パターンを持ち、第2のバイオセンサーは、複数の第2の調節用指状部を含む第2の電気的パターンを持ち;
第1と第2の電気的パターンは、絶縁されたそれぞれ異なる数の調節用指状部を持つことで異なる有効面積を持ち;
第1と第2のバイオセンサーの投与量-応答曲線が、共通する所定の範囲内にあるシステム。
2.第1と第2の電気的パターンのそれぞれが、作用電極と補助電極を持ち、第1の電気的パターンの作用電極が、第2の電気的パターンの作用電極の有効面積と異なる有効面積を持つ、実施態様1のシステム。
3.第1と第2の電気的パターンの作用電極が、複数の第1と第2の調節用指状部をそれぞれ備えていて、第1の電気的パターンの調節用指状部のうちの少なくとも1本が分離されている、実施態様2のシステム。
4.試薬が作用電極の一部を覆っていて、前記少なくとも1本の指状部が、作用電極のうちで試薬で覆われている部分から離れた位置で分離されている、実施態様3のシステム。
5.第1と第2のバイオセンサーのそれぞれが、
基板と;
その基板の上方にあり、その基板と合わさってサンプル収容室を規定する1つ以上のスペーシング層およびカバー層と;
サンプル収容室の中に配置された試薬とを備えていて;
第1のバイオセンサーの基板は、その表面に形成された第1の電気的パターンを持ち、第2のバイオセンサーの基板は、その表面に形成された第2の電気的パターンを持ち、第1と第2の電気的パターンは、それぞれ、作用電極と、補助電極と、バイオセンサーを計測器に接続する設計のコンタクトとを備えており;
試薬が作用電極の少なくとも一部と接触する、実施態様1のシステム。
6.基板と、1つ以上あるスペーシング層およびカバー層と、試薬とが、すべて、第1と第2のバイオセンサーで実質的に同じである、実施態様5のシステム。
7.1つ以上あるスペーシング層およびカバー層が開口部を備えていて、その開口部を通じて製造中に第1と第2の電気的パターンの区画にアクセスできる、実施態様5のシステム。
8.第3の電気的パターンを有する第3のバイオセンサーをさらに備えていて、第1と第3の電気的パターンが同じであり、第1と第2と第3のバイオセンサーの投与量-応答曲線が共通する所定の範囲内にある、実施態様1のシステム。
9.複数の第3の調節用指状部を持つ第3の電気的パターンを有する第3のバイオセンサーをさらに備えていて、複数の第1と第2と第3の調節用指状部が、それぞれ、絶縁された異なる数の指状部を備えていて、第1と第2と第3のバイオセンサーの投与量-応答曲線が共通する所定の範囲内にある、実施態様1のシステム。
10.第1のバイオセンサーと第2のバイオセンサーが異なる製造ロットで製造される、実施態様1のシステム。
11.第1のバイオセンサーと第2のバイオセンサーが同じ製造ロットで製造される、実施態様1のシステム。
12.同じモデルの電気化学式バイオセンサーのそれぞれが、何本かの調節用指状部を備える電気的パターンを持ち、それらの調節用指状部が個別に電気的パターンから絶縁されるか電気的パターンに接続されることで電気的パターンの有効面積を調節できる構成の複数のバイオセンサーを製造する方法であって、この方法が、
(a)第1と第2のバイオセンサーを製造するステップと;
(b)第1のバイオセンサーの投与量-応答曲線を決定するステップと;
(c)第2のバイオセンサーの電気的パターンの有効面積を、第1のバイオセンサーの投与量-応答曲線の関数として選択するステップと;
(d)第2のバイオセンサーの前記何本かの調節用指状部のうちの少なくとも1本を接続または分離して前記選択された有効面積を実現し、第2のバイオセンサーの投与量-応答曲線を望む所定の範囲内に入れるステップを含む方法。
13.第1と第2のバイオセンサーが同じ製造ロットで製造される、実施態様12の方法。
14.ロール・ツー・ロール処理をさらに含んでいて、第1と第2のバイオセンサーが、製造中に異なるロール上に位置する、実施態様12の方法。
15.第1のバイオセンサーと第2のバイオセンサーが異なる製造ロットで製造される、実施態様12の方法。
16.ステップ(d)が、第2のバイオセンサーにおいて前記何本かの調節用指状部のうちの前記少なくとも1本を絶縁する操作を含む、実施態様12の方法。
17.前記少なくとも1本の絶縁された調節用指状部が、作用電極の一区画を含んでいる、実施態様16の方法。
18.前記少なくとも1本の絶縁された調節用指状部の少なくとも一部が、第2のバイオセンサーの毛管空間の中に位置する、実施態様17の方法。
19.前記何本かの調節用指状部が毛管空間の中へと延びている、実施態様12の方法。
20.電気的パターンを第2のバイオセンサーの表面に形成する前にステップ(b)を実施する、実施態様12の方法。
21.基板の表面に第2のバイオセンサーの電気的パターンを設けるステップと;
少なくとも1つのカバー層またはスペーシング層を基板の上に貼り合わせることにより、その第2のバイオセンサーの表面にカバーとサンプル収容室を形成するステップをさらに含む、実施態様12の方法。
22.ステップ(d)が、第2のバイオセンサーの電気的パターンの前記何本かの調節用指状部のうちの少なくとも1本を分離するため、前記少なくとも1つのカバー層またはスペーシング層に侵入する操作を含む、実施態様21の方法。
23.レーザーを用いて分離を実行する、実施態様22の方法。
24.ステップ(b)が、第1のバイオセンサーの破壊試験を含む、実施態様12の方法。
25.同じモデルの複数の電気化学式バイオセンサーを製造する方法であって、
(a)第1の有効面積を持つ第1の電気的パターンを有する第1のバイオセンサーを製造するステップと;
(b)第1のバイオセンサーの投与量-応答曲線を決定するステップと;
(c)第1のバイオセンサーについて決定された投与量-応答曲線を用い、第2のバイオセンサーの第2の電気的パターンについて、第1の有効面積とは異なる第2の有効面積を決定するステップと;
(d)第2のバイオセンサーを形成し、その第2のバイオセンサーの形成中に第2の有効面積を得ることで、その第2のバイオセンサーに望む所定の範囲内の投与量-応答曲線を持たせるステップを含む方法。
26.ステップ(a)が、第1のバイオセンサーの第1の作用電極を第1の幅で形成する操作を含み、ステップ(d)が、第2のバイオセンサーの第2の作用電極を第1の幅とは異なる第2の幅で形成する操作を含む、実施態様25の方法。
27.ステップ(a)が、第1の作用電極と第1の補助電極を、両者の間にギャップを挟んで形成する操作を含み、ステップ(d)が、第2のバイオセンサーでギャップを同じサイズに維持する操作を含む、実施態様26の方法。
28.ステップ(a)が、第1の作用電極と第1の補助電極を、両者の間に第1のギャップを挟んで形成する操作を含み、ステップ(d)が、第2の作用電極と第2の補助電極を、両者の間に第1のギャップとは異なる第2のギャップを挟んで形成する操作を含む、実施態様26の方法。
29.実施態様25の方法において、
第1のバイオセンサーが複数の第1のバイオセンサーを含み;
ステップ(b)で決定される投与量-応答曲線が、複数の第1のバイオセンサーの平均投与量-応答曲線を含み;
第2のバイオセンサーが複数の第2のバイオセンサーを含む方法。
30.前記複数の第2のバイオセンサーの平均投与量-応答曲線を決定するステップと;
複数の第3のバイオセンサーの第3の電気的パターンに関して第2の有効面積とは異なる第3の有効面積を決定するステップと;
第3の有効面積を持つ第3の電気的パターンを有する前記複数の第3のバイオセンサーを形成することで、第3のバイオセンサーが、望む所定の範囲内の投与量-応答曲線を持つようにするステップをさらに含む、実施態様29の方法。
31.第1の有効面積と第3の有効面積が同じである、実施態様30の方法。
32.前記複数の第1のバイオセンサーが、第1の製造ロットのバイオセンサーを含み、前記複数の第2のバイオセンサーが、第2の製造ロットのバイオセンサーを含む、実施態様29の方法。
33.望む所定の範囲を規定する上方制御限界と下方制御限界を確立する操作をさらに含む、実施態様29の方法。

Claims (14)

  1. 同じモデルの電気化学式バイオセンサーのそれぞれが、何本かの調節用指状部を備える電気的パターンを持ち、それらの調節用指状部がキャピラリーチャンバー内に延伸し、かつ個別に電気的パターンから絶縁されるか電気的パターンに接続されることで電気的パターンの有効面積を調節できる構成の複数のバイオセンサーを製造する方法であって、この方法が、
    (a)第1と第2のバイオセンサーを製造するステップと;
    (b)第1のバイオセンサーの投与量-応答曲線を決定するステップと;
    (c)第2のバイオセンサーの電気的パターンの有効面積を、第1のバイオセンサーの投与量-応答曲線の関数として選択するステップと;
    (d)第2のバイオセンサーの前記何本かの調節用指状部のうちの少なくとも1本を接続または分離して前記選択された有効面積を実現し、第2のバイオセンサーの投与量-応答曲線を望む所定の範囲内に入れるステップを含む方法。
  2. ステップ(d)が、第2のバイオセンサーにおいて前記何本かの調節用指状部のうちの前記少なくとも1本を絶縁する操作を含む、請求項1に記載の方法。
  3. 前記少なくとも1本の絶縁された調節用指状部が、作用電極の一区画を含んでいる、請求項2に記載の方法。
  4. 電気的パターンを第2のバイオセンサーの表面に形成する前にステップ(b)を実施する、請求項1に記載の方法。
  5. 基板の表面に第2のバイオセンサーの電気的パターンを設けるステップと;
    少なくとも1つのカバー層またはスペーシング層を基板の上に貼り合わせることにより、その第2のバイオセンサーの表面にカバーとサンプル収容室を形成するステップをさらに含む、請求項1に記載の方法。
  6. ステップ(d)が、第2のバイオセンサーの電気的パターンの前記何本かの調節用指状部のうちの少なくとも1本を分離するため、前記少なくとも1つのカバー層またはスペーシング層に侵入する操作を含む、請求項に記載の方法。
  7. レーザーを用いて前記分離を実行する、請求項に記載の方法。
  8. 同じモデルの複数の電気化学式バイオセンサーを製造する方法であって、
    (a)第1の有効面積を持つ第1の電気的パターンを有する第1のバイオセンサーを製造するステップと;
    (b)第1のバイオセンサーの投与量-応答曲線を決定するステップと;
    (c)第1のバイオセンサーについて決定された投与量-応答曲線を用い、第2のバイオセンサーの第2の電気的パターンについて、第1の有効面積とは異なる第2の有効面積を決定するステップと;
    (d)第2のバイオセンサーを形成し、その第2のバイオセンサーに第2の電気的パターンを最初に形成している間に第2の有効面積を得て、その第2のバイオセンサーに望む所定の範囲内の投与量-応答曲線を持たせることで、最初の形成後に第2の電気的パターンを変える必要をなくすステップを含む方法。
  9. ステップ(a)が、第1のバイオセンサーの第1の作用電極を第1の幅で形成する操作を含み、ステップ(d)が、第2のバイオセンサーの第2の作用電極を第1の幅とは異なる第2の幅で形成する操作を含む、請求項に記載の方法。
  10. ステップ(a)が、第1の作用電極と第1の補助電極を、両者の間にギャップを挟んで形成する操作を含み、ステップ(d)が、第2のバイオセンサーでギャップを同じサイズに維持する操作を含む、請求項に記載の方法。
  11. ステップ(a)が、第1の作用電極と第1の補助電極を、両者の間に第1のギャップを挟んで形成する操作を含み、ステップ(d)が、第2の作用電極と第2の補助電極を、両者の間に第1のギャップとは異なる第2のギャップを挟んで形成する操作を含む、請求項に記載の方法。
  12. 請求項に記載の方法において、
    第1のバイオセンサーが複数の第1のバイオセンサーを含み;
    ステップ(b)で決定される投与量-応答曲線が、複数の第1のバイオセンサーの平均投与量-応答曲線を含み;
    第2のバイオセンサーが複数の第2のバイオセンサーを含む方法。
  13. 前記複数の第2のバイオセンサーの平均投与量-応答曲線を決定するステップと;
    複数の第3のバイオセンサーの第3の電気的パターンに関して第2の有効面積とは異なる第3の有効面積を決定するステップと;
    第3の有効面積を持つ第3の電気的パターンを有する前記複数の第3のバイオセンサーを形成することで、第3のバイオセンサーが、望む所定の範囲内の投与量-応答曲線を持つようにするステップをさらに含む、請求項12に記載の方法。
  14. 第1の有効面積と第3の有効面積が同じである、請求項13に記載の方法。
JP2012502496A 2009-03-30 2010-03-25 所定の投与量−応答曲線を有するバイオセンサーとその製造法 Expired - Fee Related JP5363645B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/413,778 US8608937B2 (en) 2009-03-30 2009-03-30 Biosensor with predetermined dose response curve and method of manufacturing
US12/413.778 2009-03-30
PCT/EP2010/001857 WO2010112168A1 (en) 2009-03-30 2010-03-25 Biosensor with predetermined dose response curve and method of manufacturing

Publications (3)

Publication Number Publication Date
JP2012522226A JP2012522226A (ja) 2012-09-20
JP2012522226A5 JP2012522226A5 (ja) 2013-04-18
JP5363645B2 true JP5363645B2 (ja) 2013-12-11

Family

ID=42226635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012502496A Expired - Fee Related JP5363645B2 (ja) 2009-03-30 2010-03-25 所定の投与量−応答曲線を有するバイオセンサーとその製造法

Country Status (11)

Country Link
US (2) US8608937B2 (ja)
EP (2) EP2594939B1 (ja)
JP (1) JP5363645B2 (ja)
KR (1) KR101293361B1 (ja)
CN (1) CN102369437B (ja)
CA (1) CA2755364C (ja)
ES (1) ES2415856T3 (ja)
HK (1) HK1167893A1 (ja)
MX (1) MX2011009896A (ja)
PL (1) PL2414825T3 (ja)
WO (1) WO2010112168A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE317267T1 (de) * 2000-11-07 2006-02-15 Immunovaccine Technologies Inc Impfstoffe mit erhöhter immunantwort und verfahren zur deren herstellung
KR100918027B1 (ko) * 2009-02-19 2009-09-18 주식회사 올메디쿠스 코드전극을 구비한 바이오센서와 이의 제조방법, 및 이의 센서 정보 획득 방법
US8940141B2 (en) * 2010-05-19 2015-01-27 Lifescan Scotland Limited Analytical test strip with an electrode having electrochemically active and inert areas of a predetermined size and distribution
US10168313B2 (en) * 2013-03-15 2019-01-01 Agamatrix, Inc. Analyte detection meter and associated method of use
EP3169992B1 (en) * 2014-07-17 2022-10-19 Siemens Healthcare Diagnostics Inc. Sensor array
JP6754259B2 (ja) * 2015-10-15 2020-09-09 アークレイ株式会社 バイオセンサ、及びその製造方法
US11073495B2 (en) 2015-10-15 2021-07-27 Arkray, Inc. Biosensor and manufacturing method of biosensor
FI128124B (en) * 2016-04-25 2019-10-15 Teknologian Tutkimuskeskus Vtt Oy Optical sensor, system and methods
CN110161095B (zh) * 2018-02-12 2024-02-23 杭州微策生物技术股份有限公司 一种生物传感器电阻调节激光系统及其方法
WO2021138405A1 (en) * 2019-12-30 2021-07-08 Roche Diabetes Care, Inc. Temperature compensated biosensors and methods of manufacture and use thereof
KR20210108250A (ko) 2020-02-25 2021-09-02 엘지전자 주식회사 횡류팬

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008448A (en) 1975-10-03 1977-02-15 Polaroid Corporation Solenoid with selectively arrestible plunger movement
US4233029A (en) 1978-10-25 1980-11-11 Eastman Kodak Company Liquid transport device and method
US4225410A (en) 1978-12-04 1980-09-30 Technicon Instruments Corporation Integrated array of electrochemical sensors
US4323536A (en) 1980-02-06 1982-04-06 Eastman Kodak Company Multi-analyte test device
DE3228542A1 (de) 1982-07-30 1984-02-02 Siemens AG, 1000 Berlin und 8000 München Verfahren zur bestimmung der konzentration elektrochemisch umsetzbarer stoffe
US5682884A (en) 1983-05-05 1997-11-04 Medisense, Inc. Strip electrode with screen printing
US5509410A (en) 1983-06-06 1996-04-23 Medisense, Inc. Strip electrode including screen printing of a single layer
SE8305704D0 (sv) 1983-10-18 1983-10-18 Leo Ab Cuvette
US5128015A (en) 1988-03-15 1992-07-07 Tall Oak Ventures Method and apparatus for amperometric diagnostic analysis
US5108564A (en) 1988-03-15 1992-04-28 Tall Oak Ventures Method and apparatus for amperometric diagnostic analysis
EP0359831B2 (en) 1988-03-31 2007-06-20 Matsushita Electric Industrial Co., Ltd. Biosensor and process for its production
ES2075955T3 (es) 1989-12-15 1995-10-16 Boehringer Mannheim Corp Reactivo mediador redox y biosensor.
US5243516A (en) 1989-12-15 1993-09-07 Boehringer Mannheim Corporation Biosensing instrument and method
JP2541081B2 (ja) * 1992-08-28 1996-10-09 日本電気株式会社 バイオセンサ及びバイオセンサの製造・使用方法
US5366609A (en) 1993-06-08 1994-11-22 Boehringer Mannheim Corporation Biosensing meter with pluggable memory key
US5431800A (en) * 1993-11-05 1995-07-11 The University Of Toledo Layered electrodes with inorganic thin films and method for producing the same
US5762770A (en) * 1994-02-21 1998-06-09 Boehringer Mannheim Corporation Electrochemical biosensor test strip
US5437999A (en) 1994-02-22 1995-08-01 Boehringer Mannheim Corporation Electrochemical sensor
KR0151203B1 (ko) * 1994-12-08 1998-12-01 이헌조 다중전극형 바이오센서
US5628890A (en) 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
US6863801B2 (en) * 1995-11-16 2005-03-08 Lifescan, Inc. Electrochemical cell
JP3365184B2 (ja) * 1996-01-10 2003-01-08 松下電器産業株式会社 バイオセンサ
US6599406B1 (en) * 1997-07-22 2003-07-29 Kyoto Daiichi Kagaku Co., Ltd. Concentration measuring apparatus, test strip for the concentration measuring apparatus, biosensor system and method for forming terminal on the test strip
US6054039A (en) 1997-08-18 2000-04-25 Shieh; Paul Determination of glycoprotein and glycosylated hemoglobin in blood
US6001239A (en) * 1998-09-30 1999-12-14 Mercury Diagnostics, Inc. Membrane based electrochemical test device and related methods
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US7494816B2 (en) 1997-12-22 2009-02-24 Roche Diagnostic Operations, Inc. System and method for determining a temperature during analyte measurement
US7407811B2 (en) 1997-12-22 2008-08-05 Roche Diagnostics Operations, Inc. System and method for analyte measurement using AC excitation
AU738325B2 (en) 1997-12-22 2001-09-13 Roche Diagnostics Operations Inc. Meter
US7390667B2 (en) 1997-12-22 2008-06-24 Roche Diagnostics Operations, Inc. System and method for analyte measurement using AC phase angle measurements
US6063339A (en) * 1998-01-09 2000-05-16 Cartesian Technologies, Inc. Method and apparatus for high-speed dot array dispensing
US7073246B2 (en) * 1999-10-04 2006-07-11 Roche Diagnostics Operations, Inc. Method of making a biosensor
US20050103624A1 (en) * 1999-10-04 2005-05-19 Bhullar Raghbir S. Biosensor and method of making
AU1978701A (en) * 1999-12-17 2001-06-25 Trojan Technologies Inc. Optical radiation sensor system
JP4047506B2 (ja) * 2000-02-01 2008-02-13 日本電気株式会社 化学センサカートリッジ及びそれを備えた化学センサ並びにそれを用いた試料の測定方法
DE10015818A1 (de) * 2000-03-30 2001-10-18 Infineon Technologies Ag Biosensor und Verfahren zum Ermitteln makromolekularer Biopolymere mit einem Biosensor
DE10128964B4 (de) 2001-06-15 2012-02-09 Qimonda Ag Digitale magnetische Speicherzelleneinrichtung
US6814844B2 (en) * 2001-08-29 2004-11-09 Roche Diagnostics Corporation Biosensor with code pattern
US20030116447A1 (en) * 2001-11-16 2003-06-26 Surridge Nigel A. Electrodes, methods, apparatuses comprising micro-electrode arrays
WO2003076918A1 (fr) * 2002-03-08 2003-09-18 Arkray, Inc. Analyseur dote d'une fonction de reconnaissance d'informations, outil analytique utilise dans cet analyseur et ensemble constitue de cet analyseur et de cet outil analytique
DE10343477A1 (de) 2002-12-23 2004-07-01 Robert Bosch Gmbh Verfahren zum Kalibrieren eines Sensorelements für eine Grenzstromsonde
TW565692B (en) * 2002-12-31 2003-12-11 Veutron Corp Chip with measuring reliability and a method thereof
US8206565B2 (en) * 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
ES2675787T3 (es) * 2003-06-20 2018-07-12 F. Hoffmann-La Roche Ag Método y reactivo para producir tiras reactivas estrechas y homogéneas
EP2465862A1 (en) * 2003-07-01 2012-06-20 Roche Diagniostics GmbH Mononuclear osmium complexes for use in biosensors
KR101365933B1 (ko) 2004-10-12 2014-02-24 바이엘 헬스케어 엘엘씨 샘플 내 분석물의 농도를 측정하기 위한 전기화학 시스템
US7418285B2 (en) * 2004-12-29 2008-08-26 Abbott Laboratories Analyte test sensor and method of manufacturing the same
US7866026B1 (en) * 2006-08-01 2011-01-11 Abbott Diabetes Care Inc. Method for making calibration-adjusted sensors
US7312042B1 (en) * 2006-10-24 2007-12-25 Abbott Diabetes Care, Inc. Embossed cell analyte sensor and methods of manufacture

Also Published As

Publication number Publication date
KR101293361B1 (ko) 2013-08-07
CA2755364C (en) 2014-09-23
US8685229B2 (en) 2014-04-01
US8608937B2 (en) 2013-12-17
EP2594939B1 (en) 2020-12-02
KR20110122220A (ko) 2011-11-09
PL2414825T3 (pl) 2013-09-30
US20100243441A1 (en) 2010-09-30
WO2010112168A1 (en) 2010-10-07
EP2414825A1 (en) 2012-02-08
JP2012522226A (ja) 2012-09-20
EP2594939A1 (en) 2013-05-22
US20130292033A1 (en) 2013-11-07
CN102369437A (zh) 2012-03-07
CN102369437B (zh) 2015-09-09
ES2415856T3 (es) 2013-07-29
EP2414825B1 (en) 2013-04-17
MX2011009896A (es) 2011-09-30
HK1167893A1 (zh) 2012-12-14
CA2755364A1 (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5363645B2 (ja) 所定の投与量−応答曲線を有するバイオセンサーとその製造法
JP5344728B2 (ja) エンボス加工されたセル検体センサおよび製造方法
US9267911B2 (en) Encoded biosensors and methods of manufacture and use thereof
US8357274B2 (en) Electrochemical biosensor analysis system
US6821400B2 (en) Electrochemical sensor with increased reproducibility
JP2009019935A (ja) 分析用具の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130905

R150 Certificate of patent or registration of utility model

Ref document number: 5363645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees