JP5362344B2 - Multi-stage constant temperature crystal oscillator - Google Patents

Multi-stage constant temperature crystal oscillator Download PDF

Info

Publication number
JP5362344B2
JP5362344B2 JP2008332151A JP2008332151A JP5362344B2 JP 5362344 B2 JP5362344 B2 JP 5362344B2 JP 2008332151 A JP2008332151 A JP 2008332151A JP 2008332151 A JP2008332151 A JP 2008332151A JP 5362344 B2 JP5362344 B2 JP 5362344B2
Authority
JP
Japan
Prior art keywords
circuit
temperature
stage
crystal
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008332151A
Other languages
Japanese (ja)
Other versions
JP2010154400A (en
Inventor
鉄男 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2008332151A priority Critical patent/JP5362344B2/en
Publication of JP2010154400A publication Critical patent/JP2010154400A/en
Application granted granted Critical
Publication of JP5362344B2 publication Critical patent/JP5362344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermostatic crystal oscillator which prevents characteristics from decreasing due to rise in temperature by making thermal capacity small and facilitating temperature control. <P>SOLUTION: The multistage thermostatic crystal oscillator includes a crystal vibrator 1 and circuit elements 4 of an oscillation stage and a buffer stage, a circuit element 4 of a temperature control circuit having at least a heat generating body and a temperature sensing element and making the operating temperature of the crystal vibrator 1 constant, a first circuit board 5a where the crystal vibrator 1 and the circuit elements 4 of the temperature sensing element and oscillation stage are arranged and a thermal cylinder 10 housing the first circuit board 5a, and a second circuit board 5b where the circuit element 4 of the temperature control circuit excluding at least the circuit element 4 of the buffer stage and the temperature sensing element is arranged and which supports the circuit element 4 apart from the thermal cylinder 10, the heat generating body being the thermal cylinder 10. The thermal cylinder 10 is made of a material having a resistance value for generating Joule heat, and a lead wire 11 for supplying electric power from outside is connected to the thermal cylinder 10. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は多段型とした恒温型の水晶発振器(以下、恒温型発振器とする)を技術分野とし、特に熱筒を用いた周波数安定度の高い恒温型発振器に関する。   The present invention relates to a multi-stage constant temperature crystal oscillator (hereinafter referred to as a constant temperature oscillator) in the technical field, and more particularly to a constant temperature oscillator having a high frequency stability using a thermal cylinder.

(発明の背景)
恒温型発振器は水晶振動子の動作温度を一定にすることから周波数安定度が高く、例えばppb(1/10億)単位とした周波数偏差の求められる基地局用の通信機器に適用される。近年では、これらの基地局等でも小型化が浸透し、例えば熱線を券回した旧来の恒温熱筒に代えて、チップ抵抗等を発熱素子としたものがある。
(Background of the Invention)
The constant temperature oscillator has a high frequency stability since the operating temperature of the crystal unit is kept constant, and is applied to a communication device for a base station that requires a frequency deviation in units of ppb (1/1 billion), for example. In recent years, downsizing has been permeated in these base stations and the like. For example, instead of the conventional constant temperature heating cylinder in which a hot wire is wound, there is one in which a chip resistor or the like is used as a heating element.

(従来技術の一例、特許文献1)
第4図(abc)は一従来例を説明する図で、第4図(a)は恒温型発振器の断面図、同図(b)は発振出力回路、同図(c)は温度制御回路である。
(Example of prior art, Patent Document 1)
FIG. 4 (abc) is a diagram for explaining a conventional example. FIG. 4 (a) is a sectional view of a constant temperature oscillator, FIG. 4 (b) is an oscillation output circuit, and FIG. 4 (c) is a temperature control circuit. is there.

恒温型発振器は、水晶振動子1と、発振出力回路2及び温度制御回路3を構成する回路素子4と、第1及び第2回路基板5(ab)と、発振器用容器6とを有する。水晶振動子1は例えばATカットやSCカットとした水晶片1aを有し、例えば外部端子を有する表面実装用の容器1bに密閉封入される。   The constant temperature oscillator includes a crystal resonator 1, a circuit element 4 constituting an oscillation output circuit 2 and a temperature control circuit 3, first and second circuit boards 5 (ab), and an oscillator container 6. The crystal unit 1 has a crystal piece 1a made of, for example, AT cut or SC cut, and is hermetically sealed in a surface mounting container 1b having external terminals, for example.

そして、いずれのカットの場合でも、常温25℃以上の高温側となる80℃近傍を極値とし、温度よって振動周波数が変化する周波数温度特性を有する。例えばATカットでは三次曲線(第5図の曲線イ)となり、SCカットでは二次曲線(同図の曲線ロとする)となる。なお、図の縦軸は周波数偏差Δf/fで、fは常温での周波数、Δfは常温での周波数fに対する周波数差である。   In any of the cuts, it has a frequency-temperature characteristic in which the vicinity of 80 ° C., which is the high temperature side of room temperature 25 ° C. or more, is an extreme value, and the vibration frequency changes with temperature. For example, in the AT cut, a cubic curve (curve a in FIG. 5) is obtained, and in an SC cut, a quadratic curve (curved in FIG. 5) is obtained. The vertical axis in the figure is the frequency deviation Δf / f, where f is the frequency at room temperature and Δf is the frequency difference with respect to the frequency f at room temperature.

発振出力回路2は、発振回路としての発振段2aと緩衝増幅器等を有する緩衝段2bとからなる。発振段2aは水晶振動子1とともに共振回路を形成する図示しない分圧コンデンサ及び発振用トランジスタを有するコルピッツ型とする。ここでは、例えば発振ループ内に電圧可変容量素子4aを有する電圧制御型とする。図中のVccは電源、Voutは出力、Vcは制御電圧である。   The oscillation output circuit 2 includes an oscillation stage 2a as an oscillation circuit and a buffer stage 2b having a buffer amplifier and the like. The oscillation stage 2a is a Colpitts type having a voltage dividing capacitor (not shown) and an oscillation transistor that form a resonance circuit together with the crystal resonator 1. Here, for example, a voltage control type having the voltage variable capacitance element 4a in the oscillation loop is used. In the figure, Vcc is a power source, Vout is an output, and Vc is a control voltage.

温度制御回路3は、オペアンプ4bの一方の入力端に温度感応素子4c(例えばサーミスタ)と抵抗4dによる温度感応電圧Vtを、他方の入力端に抵抗4e、4fによる基準電圧Vrを印加する。そして、基準電圧Vrと温度感応電圧Vtとの差電圧をパワートランジスタ4gのベースに印加し、発熱素子としてのチップ抵抗(加熱抵抗とする)4hへ電源Vccからの電力を供給する。これにより、温度感応素子4cの温度に依存した抵抗値によって加熱抵抗4hへの電力を制御し、水晶振動子1の動作温度を一定にする。   The temperature control circuit 3 applies a temperature sensitive element 4c (for example, a thermistor) and a temperature sensitive voltage Vt by a resistor 4d to one input terminal of an operational amplifier 4b, and a reference voltage Vr by resistors 4e and 4f to the other input terminal. Then, a voltage difference between the reference voltage Vr and the temperature sensitive voltage Vt is applied to the base of the power transistor 4g, and power from the power source Vcc is supplied to a chip resistor (heating resistor) 4h as a heating element. Thereby, the power to the heating resistor 4h is controlled by the resistance value depending on the temperature of the temperature sensitive element 4c, and the operating temperature of the crystal unit 1 is made constant.

第1及び第2回路基板5(ab)はいずれも配線パターンが形成され、例えば第1回路基板5aはセラミックとして、第2回路基板5bはガラス9エポキシとする。第1回路基板5aの一主面には水晶振動子1が配設され、他主面には例えば温度制御回路3の加熱抵抗4h及び温度感応素子4cが配設される。そして、加熱抵抗4h及び温度感応素子4c上からは液状の熱伝導性樹脂7が塗布されて硬化する。   Both the first and second circuit boards 5 (ab) are formed with wiring patterns. For example, the first circuit board 5a is made of ceramic, and the second circuit board 5b is made of glass 9 epoxy. The crystal resonator 1 is disposed on one main surface of the first circuit board 5a, and the heating resistor 4h and the temperature sensitive element 4c of the temperature control circuit 3, for example, are disposed on the other main surface. Then, the liquid heat conductive resin 7 is applied and cured from above the heating resistor 4h and the temperature sensitive element 4c.

第2回路基板5bにはこれら以外の発振出力回路2及び温度制御回路3の各回路素子4が両主面に配設され、特に発振段2aの回路素子4が中央領域に配設される。そして、第1と第2回路基板5(ab)とは金属ピン8aによって電気的及び機械的に接続し、板面が対向する2段構造とする。この場合、加熱抵抗4h及び温度感応素子4c上に塗布された熱伝導性樹脂7が第2回路基板5bの中央領域に密着し、第2回路基板5bと熱的に結合して特に発振段2aとなる回路素子4の動作温度を一定にする。   On the second circuit board 5b, the circuit elements 4 of the oscillation output circuit 2 and the temperature control circuit 3 other than these are disposed on both main surfaces, and in particular, the circuit element 4 of the oscillation stage 2a is disposed in the central region. The first and second circuit boards 5 (ab) are electrically and mechanically connected by metal pins 8a and have a two-stage structure in which the plate surfaces face each other. In this case, the heat conductive resin 7 applied on the heating resistor 4h and the temperature sensitive element 4c is in close contact with the central region of the second circuit board 5b, and is thermally coupled to the second circuit board 5b, in particular, the oscillation stage 2a. The operating temperature of the circuit element 4 becomes constant.

発振器用容器6は少なくとも4角部にガラス9によって気密化したリード線即ち気密端子8bが貫通した金属ベース6aと抵抗溶接等によって封止される金属カバー6bとからなる。そして、金属ベース6aの気密端子8bには、第2回路基板5bが電気的・機械的に接続し、第1回路基板5aとともに密閉封入される。   The oscillator container 6 is composed of a metal wire 6b sealed by resistance welding or the like, and a lead wire hermetically sealed by glass 9 at least at four corners, that is, a gas-tight terminal 8b. The second circuit board 5b is electrically and mechanically connected to the hermetic terminal 8b of the metal base 6a and hermetically sealed together with the first circuit board 5a.

このようなものでは、発振出力Voutの周波数温度特性を支配する水晶振動子1の動作温度を一定にするとともに、発振回路(発振段)2aを形成する各回路素子4も一定温度にする。したがって、水晶振動子1のみならず発振段2aをも動作温度を一定とするので、これらの周波数温度特性の影響を受けずに、周波数偏差Δf/foを例えばppb単位にできる。但し、foは発振周波数の公称値、Δfは公称値foからのずれ量である。
特開2005−341191号公報 特開2005−223395号公報
In such a case, the operating temperature of the crystal resonator 1 that governs the frequency temperature characteristic of the oscillation output Vout is made constant, and the circuit elements 4 forming the oscillation circuit (oscillation stage) 2a are also made constant. Therefore, since the operating temperature is constant not only in the crystal resonator 1 but also in the oscillation stage 2a, the frequency deviation Δf / fo can be set, for example, in units of ppb without being affected by these frequency temperature characteristics. However, fo is a nominal value of the oscillation frequency, and Δf is a deviation from the nominal value fo.
JP 2005-341191 A JP 2005-223395 A

(従来技術の問題点)
しかしながら、上記構成の恒温型発振器では、発振器用容器6に発振周波数に影響を及ぼす水晶振動子1及び発振段2aの回路素子4のみならず、これ以外の緩衝段2b等の回路素子4をも収容する。したがって、発振器用容器6内の熱容量(空間積)も大きくなって、温度分布が不均一になることから、温度制御を困難にする問題があった。
(Problems of conventional technology)
However, in the constant temperature oscillator having the above-described configuration, not only the crystal element 1 and the circuit element 4 of the oscillation stage 2a that affect the oscillation frequency but also the other circuit elements 4 such as the buffer stage 2b are provided on the oscillator container 6. Accommodate. Therefore, the heat capacity (space product) in the oscillator container 6 also increases, and the temperature distribution becomes non-uniform, which makes it difficult to control the temperature.

このことから、例えば第6図に示したように、水晶振動子1と発振段2bの回路素子4及び温度補償回路3の少なくとも温度感応素子4cとを配設した第1回路基板5aのみを凹状とした熱筒10に収容する。水晶振動子1は例えば一対のリード線1dが導出した金属ベース1c内に図示しないサポータによって水晶片1aを保持し、抵抗溶接等によって金属カバー1bを接合してなる。   For this reason, for example, as shown in FIG. 6, only the first circuit board 5a in which the crystal resonator 1, the circuit element 4 of the oscillation stage 2b and at least the temperature sensitive element 4c of the temperature compensation circuit 3 are disposed is recessed. The heat cylinder 10 is housed. The crystal unit 1 is formed, for example, by holding a crystal piece 1a by a supporter (not shown) in a metal base 1c from which a pair of lead wires 1d is led, and joining a metal cover 1b by resistance welding or the like.

そして、温度補償回路3の少なくとも温度感応素子4cを除く回路素子4及び緩衝段2bの回路素子4を下面に配設した第2回路基板5bの上面側に熱筒10を保持(支持)する。そして、第2回路基板5bの上面側に配設した発熱抵抗4hによって熱筒10を加熱し、熱筒10内の温度を一定に制御することが考えられた。なお、符号7は熱伝導シートである。   Then, the thermal cylinder 10 is held (supported) on the upper surface side of the second circuit board 5b in which the circuit elements 4 excluding at least the temperature sensitive element 4c of the temperature compensation circuit 3 and the circuit elements 4 of the buffer stage 2b are disposed on the lower surface. Then, it has been considered that the heat cylinder 10 is heated by the heating resistor 4h disposed on the upper surface side of the second circuit board 5b, and the temperature in the heat cylinder 10 is controlled to be constant. Reference numeral 7 denotes a heat conductive sheet.

これにより、第1回路基板5aを収容する熱筒10内の空間積を小さくできるので、温度分布を均一にして温度制御を容易にする。しかし、この場合でも、発熱抵抗4hが熱筒10の底面に熱結合するので、熱分布が底面側に集中して均一な温度分布が得られず、温度制御を困難にする問題があった。特に、ppb単位での周波数安定度を要求される場合には問題が顕著になる。   Thereby, since the space product in the thermal cylinder 10 which accommodates the 1st circuit board 5a can be made small, temperature distribution is made uniform and temperature control is made easy. However, even in this case, since the heating resistor 4h is thermally coupled to the bottom surface of the thermal cylinder 10, the heat distribution is concentrated on the bottom surface side, so that a uniform temperature distribution cannot be obtained, which makes temperature control difficult. In particular, when frequency stability in ppb units is required, the problem becomes significant.

また、いずれの場合でも、第2回路基板5bには、発振段2a以外の緩衝段2bや温度制御回路3の回路素子4も配設され、発振段2aと同様に高温にさらされる。すなわち、発振周波数を決定する水晶振動子1や発振段2a以外の緩衝段2bや温度制御回路3の多数の回路素子4が高温にさらされる。したがって、これらの回路素子4は温度上昇による特性低下を生じ、例えば常温時における発振周波数を含めた発振出力特性を不安定にする問題があった。   In any case, the second circuit board 5b is also provided with the buffer stage 2b other than the oscillation stage 2a and the circuit element 4 of the temperature control circuit 3, and is exposed to a high temperature similarly to the oscillation stage 2a. That is, the quartz resonator 1 that determines the oscillation frequency, the buffer stage 2b other than the oscillation stage 2a, and the numerous circuit elements 4 of the temperature control circuit 3 are exposed to high temperatures. Therefore, these circuit elements 4 have a characteristic deterioration due to a temperature rise, and there is a problem that an oscillation output characteristic including an oscillation frequency at room temperature becomes unstable.

なお、発振周波数を決定する水晶振動子1から見た負荷容量(直列等価容量)に及ぼす緩衝段2b以降での容量は極めて小さくて殆ど無視できる。したがって、緩衝段2bにおける回路素子4の周波数温度特性による発振周波数への影響も無視でき、これらの回路素子4の動作温度を一定にする必要は基本的にない。また、温度制御回路3は発振出力回路2とは電気的な接続はなく独立しているので、発振周波数に与える影響はない。これらにより、発振出力回路2の緩衝段2bや温度制御回路3の回路素子4の温度上昇による特性低下が問題になる。   Note that the capacity after the buffer stage 2b on the load capacity (series equivalent capacity) viewed from the crystal unit 1 that determines the oscillation frequency is extremely small and can be almost ignored. Therefore, the influence on the oscillation frequency due to the frequency temperature characteristics of the circuit elements 4 in the buffer stage 2b can be ignored, and there is basically no need to keep the operating temperature of these circuit elements 4 constant. Further, since the temperature control circuit 3 is independent of the oscillation output circuit 2 without being electrically connected, there is no influence on the oscillation frequency. As a result, there is a problem that the characteristics of the buffer stage 2b of the oscillation output circuit 2 and the circuit element 4 of the temperature control circuit 3 are lowered due to temperature rise.

(発明の目的)
本発明は、熱容量を小さくして温度分布を一定にし、温度制御を容易にする。そして、水晶振動子及び発振段以外となる回路素子の温度上昇による特性低下を防止する恒温型発振器を提供することを目的とする。
(Object of invention)
The present invention reduces the heat capacity, makes the temperature distribution constant, and facilitates temperature control. It is another object of the present invention to provide a constant temperature oscillator that prevents deterioration of characteristics due to temperature rise of circuit elements other than the crystal resonator and the oscillation stage.

本発明は、特許請求の範囲(請求項1)に示したように、水晶片が密封封入されて外部端子を有する水晶振動子と、前記水晶振動子とともに発振出力回路を形成する発振段及び前記発振段の出力を緩衝増幅する緩衝段の回路素子と、前記水晶振動子を加熱する発熱体及び前記水晶振動子の動作温度を検出する温度感応素子を少なくとも有し、前記水晶振動子の動作温度を一定にする温度制御回路の回路素子と、前記水晶振動子、前記温度感応素子及び前記発振段の回路素子を少なくとも配設した第1回路基板と、前記第1回路基板を支持する第1気密端子が底面を貫通し、前記第1回路基板を収容する熱筒と、前記緩衝段の回路素子及び前記温度感応素子を少なくとも除く前記温度制御回路の回路素子を配設し、前記気密端子が接続して前記熱筒を支持するとともに前記熱筒とは離間した第2回路基板と、前記熱筒及び前記第2回路基板を収容した発振器用容器とを有する多段型とした恒温型の水晶発振器であって、前記水晶振動子を加熱する前記発熱体は前記熱筒であり、前記熱筒はジュール熱を発生する抵抗値を有する材料で凹状に形成されて、前記凹状の開口端面が絶縁基板によって閉塞されており前記熱筒の対向する両側面の上端側に電気的に接続されて外部からの電力を供給するリード線を備えた構成とする。
According to the present invention, as shown in the claims (Claim 1), a crystal unit having a crystal piece sealed and sealed and having an external terminal, an oscillation stage that forms an oscillation output circuit together with the crystal unit, and the A buffer stage circuit element for buffering and amplifying the output of the oscillation stage; a heating element for heating the crystal oscillator; and a temperature sensitive element for detecting an operating temperature of the crystal oscillator. A circuit element of a temperature control circuit that keeps constant, a first circuit board on which at least the crystal resonator, the temperature sensitive element, and the circuit element of the oscillation stage are disposed, and a first airtight that supports the first circuit board A thermal cylinder that accommodates the first circuit board through which a terminal penetrates the bottom surface, a circuit element of the temperature control circuit excluding at least the circuit element of the buffer stage and the temperature sensitive element, and the hermetic terminal is connected And said A second circuit board and a crystal oscillator of a thermostatic type in which a multi-stage type having an oscillator for container accommodating the heat pipe and the second circuit board spaced apart from said heat pipe to support the cylinder, the The heating element for heating the crystal unit is the thermal cylinder, the thermal cylinder is formed in a concave shape with a material having a resistance value for generating Joule heat, and the opening end face of the concave shape is closed by an insulating substrate. And a lead wire that is electrically connected to the upper end sides of the opposite side surfaces of the thermal cylinder and supplies electric power from the outside.

このような構成であれば、熱筒自体の抵抗値に基づくジュール熱によって、熱筒を直接に発熱体とする。そして、発振出力(周波数)に最も影響を与える水晶振動子及び発振段の回路素子とを第1回路基板に配設して発熱体としての熱筒に収容し、緩衝段等の回路素子は熱筒外の第2回路基板に配設する。したがって、熱筒の熱容量を小さくして温度分布を均一にすることから温度制御を容易にできる。   With such a configuration, the heat cylinder is directly used as a heating element by Joule heat based on the resistance value of the heat cylinder itself. Then, the crystal resonator and the circuit element of the oscillation stage that most affect the oscillation output (frequency) are arranged on the first circuit board and accommodated in a heat cylinder as a heating element, and the circuit elements such as the buffer stage are heated. Arranged on the second circuit board outside the cylinder. Therefore, temperature control can be facilitated by reducing the heat capacity of the heat cylinder and making the temperature distribution uniform.

この場合、水晶振動子(発振段)から見た緩衝段及び温度制御回路の回路素子による容量分は極めて小さい。したがって、緩衝段及び温度制御回路の回路素子が周波数温度特性をもったとしても、水晶振動子から見た負荷容量(直列等価容量)の変化は無視できて、発振段での発振周波数に対する影響は無視できる。   In this case, the capacity of the buffer stage and the circuit elements of the temperature control circuit viewed from the crystal resonator (oscillation stage) is extremely small. Therefore, even if the circuit elements of the buffer stage and the temperature control circuit have frequency temperature characteristics, the change of the load capacity (series equivalent capacity) seen from the crystal unit can be ignored, and the influence on the oscillation frequency at the oscillation stage is Can be ignored.

そして、緩衝段や温度制御回路の回路素子は第2回路基板に配設され、熱筒とは間隙を有して熱的に遮断される。したがって、緩衝段や温度制御回路の回路素子は高熱にさらされることなく、極度の高温にはならずに常温よりも高い程度の温度になる。したがって、緩衝段や温度制御回路の回路素子は高温動作による特性低下を防止し、例えば常温時における発振周波数を含めた発振出力特性を良好に維持する。これらのことから、周波数偏差をppb単位として周波数安定度を高められる。   The circuit elements of the buffer stage and the temperature control circuit are disposed on the second circuit board, and are thermally shut off with a gap from the thermal cylinder. Therefore, the circuit elements of the buffer stage and the temperature control circuit are not exposed to high heat, and do not reach an extremely high temperature but become a temperature higher than room temperature. Accordingly, the circuit elements of the buffer stage and the temperature control circuit prevent deterioration of characteristics due to high-temperature operation, and maintain, for example, good oscillation output characteristics including the oscillation frequency at normal temperature. From these facts, the frequency stability can be increased with the frequency deviation as a unit of ppb.

また、発熱素子による加熱対象は基本的に水晶振動子と発振段の回路素子との最小要素とし、これ以外の回路素子は熱筒外とする。したがって、加熱対象を必要最低限の回路素子として最低限の熱容量とするとともに、熱筒を直接に発熱体とするので、エネルギー効率を高められる。   The heating target by the heating element is basically the minimum element of the crystal resonator and the oscillation stage circuit element, and the other circuit elements are outside the heat cylinder. Therefore, the heating target is the minimum necessary circuit element and the minimum heat capacity, and the heat cylinder is directly used as a heating element, so that energy efficiency can be improved.

同請求項では、請求項1において、前記熱筒はステンレス又はタングステンからなる。これにより、熱筒の材料を明確にして特定する。ちなみに、ステンレスは抵抗値が3Ω、タングステンは2Ωとして、ジュール熱を充分に発生して熱筒を発熱体にできる。 In the second aspect , in the first aspect, the thermal cylinder is made of stainless steel or tungsten. Thereby, the material of the heat cylinder is clarified and specified. Incidentally, the resistance value of stainless steel is 3Ω and tungsten is 2Ω, so that Joule heat can be sufficiently generated to make the heat cylinder a heating element.

(第1実施形態)
第1図は本実施例の一実施形態を説明する恒温型発振器の断面図である。なお、前従来例と同一部分には同番号を付与してその説明は簡略又は省略する。
(First embodiment)
FIG. 1 is a cross-sectional view of a constant temperature oscillator for explaining an embodiment of the present embodiment. In addition, the same number is attached | subjected to the same part as a prior art example, and the description is simplified or abbreviate | omitted.

恒温型発振器は、前述同様に、第1及び第2回路基板5(ab)を上下方向に重ねた多段型とし、第1回路基板5aは熱筒10に収容される。そして、これらは、金属ベース6aとカバー6bとの半田封止による発振器用容器6に封入される。この例では、第1回路基板5aの下面には水晶片1aが密閉封入された水晶振動子1が、上面には発振段2aの回路素子4及び温度感応素子4cさらにはトリマコンデンサ等を含む調整用素子が配設される。第2回路基板5bの下面には緩衝段及び温度制御回路の温度感応素子4cを除く回路素子4が配設される。但し、温度補償回路3のパワートランジスタは必要に応じて第1回路基板5aに配設される。   As described above, the constant temperature oscillator is a multistage type in which the first and second circuit boards 5 (ab) are stacked in the vertical direction, and the first circuit board 5 a is accommodated in the thermal cylinder 10. And these are enclosed in the container 6 for oscillators by the solder sealing of the metal base 6a and the cover 6b. In this example, the crystal resonator 1 in which the crystal piece 1a is hermetically sealed on the lower surface of the first circuit board 5a, and the upper surface includes the circuit element 4 of the oscillation stage 2a, the temperature sensitive element 4c, a trimmer capacitor, and the like. An element is disposed. Circuit elements 4 excluding the temperature sensitive element 4c of the buffer stage and the temperature control circuit are disposed on the lower surface of the second circuit board 5b. However, the power transistor of the temperature compensation circuit 3 is disposed on the first circuit board 5a as necessary.

熱筒10は凹状として底面を貫通した気密端子8aを有し、材料としては例えば抵抗値を3Ωとしたステンレスや、2Ωとしたタングステンの金属板単体からなる。そして、熱筒10の底面を貫通した凹状内となる気密端子8aの先端には第1回路基板5aの外周が支持され、開口端面は絶縁板10aによって閉塞される。また、熱筒10の底面を貫通した凹状外となる気密端子8aの先端は第2回路基板5bの外周に接続して支持される。この場合、熱筒10の底面は第2回路基板5bとは離間して支持される。   The heat cylinder 10 has a hermetic terminal 8a having a concave shape and penetrating the bottom surface, and is made of, for example, a stainless steel plate having a resistance value of 3Ω or a tungsten metal plate having a resistance value of 2Ω. And the outer periphery of the 1st circuit board 5a is supported by the front-end | tip of the airtight terminal 8a used as the inside of the concave shape penetrated the bottom face of the thermal cylinder 10, and an opening end surface is obstruct | occluded by the insulating board 10a. Further, the tip of the airtight terminal 8a that is recessed outside and penetrates the bottom surface of the thermal cylinder 10 is connected to and supported by the outer periphery of the second circuit board 5b. In this case, the bottom surface of the thermal cylinder 10 is supported separately from the second circuit board 5b.

第2回路基板5bは金属ベース6aの第1気密端子8bによって外周部が支持される。第1気密端子8bはアースを含めて緩衝段及び温度補償回路3と電気的に接続する。そして、金属ベース6aは第1気密端子8bの外側に第2気密端子8cを有し、熱筒10の対向する側面の上端側とリード線としての金属線11によって電気的に接続する。なお、金属線11によらずに、第2気密端子8cとしてのリード線が半田等によって直接に接続することもできる。   The outer periphery of the second circuit board 5b is supported by the first hermetic terminal 8b of the metal base 6a. The first hermetic terminal 8b is electrically connected to the buffer stage and the temperature compensation circuit 3 including ground. And the metal base 6a has the 2nd airtight terminal 8c outside the 1st airtight terminal 8b, and is electrically connected with the upper end side of the side surface which the thermal cylinder 10 opposes by the metal wire 11 as a lead wire. It should be noted that the lead wire as the second hermetic terminal 8c can be directly connected by solder or the like without depending on the metal wire 11.

このようなものでは、第2気密端子8c及び金属線11を経ての外部からの電力が、熱筒10の対向する側面の上端側に印加される。そして、高抵抗値とした熱筒10はジュール熱によって発熱することから、熱筒10自体が発熱体となる。したがって、従来例のように、発熱抵抗及び熱伝導シートを用いた場合よりも、直接的な加熱となるのでエネルギー効率を高められる。   In such a case, electric power from the outside through the second hermetic terminal 8 c and the metal wire 11 is applied to the upper end side of the opposite side surface of the thermal cylinder 10. Since the heat cylinder 10 having a high resistance value generates heat due to Joule heat, the heat cylinder 10 itself becomes a heating element. Therefore, as in the conventional example, the heating efficiency is higher than in the case of using the heating resistor and the heat conductive sheet, so that the energy efficiency can be increased.

そして、この場合は、特に熱筒10の対向する側面の上端側に電力(電圧)が印加されるので、熱筒10の側面及び底面を経て電流が周回する。したがって、熱筒10には周回するジュール熱を生じて熱筒10が全体的に加熱されるので、熱筒10内部の温度分布を均一にする。これにより、温度制御を容易にする。 In this case, since electric power (voltage) is applied particularly to the upper end side of the opposite side surface of the thermal cylinder 10, the current circulates through the side surface and the bottom surface of the thermal cylinder 10. Accordingly, Joule heat that circulates in the heat cylinder 10 and the heat cylinder 10 is heated as a whole, so that the temperature distribution inside the heat cylinder 10 is made uniform. This facilitates temperature control.

また、この例では、第2回路基板5bは熱筒10とは離間して配置されるので、熱筒10とは熱的に遮断される。したがって、緩衝段2bや温度制御回路3の回路素子4は、外気温度が常温であるにも拘わらず、加熱抵抗4hによる高温動作を強いられることがない。これにより、例えば常温時における発振周波数を含めた発振出力特性を良好に維持する。   Further, in this example, the second circuit board 5b is disposed away from the thermal cylinder 10, so that it is thermally insulated from the thermal cylinder 10. Accordingly, the circuit element 4 of the buffer stage 2b and the temperature control circuit 3 is not forced to operate at high temperature by the heating resistor 4h, although the outside air temperature is normal temperature. As a result, for example, the oscillation output characteristics including the oscillation frequency at normal temperature are favorably maintained.

ちなみに、本実施形態の恒温型発振器では周囲温度に対する周波数偏差Δf/foは、第2図(直線A)に示したように、例えば-20〜80℃の範囲で±2ppb以内の周波数安定度になる。これに対し、例えば前第2図に示したように、加熱抵抗4hの配置された第2回路基板5bの下面に緩衝段2bや温度制御回路3の回路素子4を配設した場合は、周波数変化Δf/fは±10ppbとなる(第2図の直線B)。   Incidentally, in the constant temperature oscillator of this embodiment, the frequency deviation Δf / fo with respect to the ambient temperature has a frequency stability within ± 2 ppb in the range of −20 to 80 ° C., for example, as shown in FIG. 2 (straight line A). Become. On the other hand, for example, as shown in FIG. 2, when the buffer stage 2b and the circuit element 4 of the temperature control circuit 3 are arranged on the lower surface of the second circuit board 5b on which the heating resistor 4h is arranged, the frequency The change Δf / f is ± 10 ppb (straight line B in FIG. 2).

したがって、本実施形態での緩衝段2bや温度制御回路3の回路素子4を加熱抵抗4hから離間して熱的な影響を避けた場合の効果が明確になる。なお、いずれの直線ABでも温度上昇とともに周波数偏差Δf/fは低下するが、これとは逆に周波数偏差Δf/fが上昇する場合あり、これらは回路側と水晶振動子の温度特性に依存にする。   Therefore, the effect in the case where the buffer stage 2b and the circuit element 4 of the temperature control circuit 3 in this embodiment are separated from the heating resistor 4h to avoid a thermal influence becomes clear. Note that the frequency deviation Δf / f decreases with increasing temperature on any straight line AB, but on the contrary, the frequency deviation Δf / f may increase, depending on the temperature characteristics of the circuit side and the crystal unit. To do.

(他の事項)
上記実施形態では熱筒10は金属板単体としたが、例えば第3図に示したように、セラミックの積層面にタングステン等の金属ペースト12を印刷して凹状とし、その後に焼成した金属積層板であってもよい。この場合、先端側のタングステンを露出して焼成し、金属線11を接続する。この場合でも同様の効果を奏する。また、一対のリード線1dが導出した金属ベース1c上に図示しないサポータによって水晶片1aを保持して金属カバー1bを接合した水晶振動子を例としたが、従来例で述べた表面実装用とした水晶振動子を用いた場合でも同様である。
(Other matters)
In the above embodiment, the heat cylinder 10 is a single metal plate. However, as shown in FIG. 3, for example, a metal laminate plate is formed by printing a metal paste 12 such as tungsten on a ceramic laminate surface to form a concave shape, and then firing it. It may be. In this case, tungsten on the tip side is exposed and fired, and the metal wire 11 is connected. Even in this case, the same effect is obtained. In addition, the crystal resonator in which the crystal piece 1a is held by the supporter (not shown) on the metal base 1c from which the pair of lead wires 1d is led and the metal cover 1b is joined is described as an example. The same applies to the case where the crystal resonator is used.

本発明の実施形態を説明する恒温型発振器の断面図である。It is sectional drawing of the constant temperature oscillator explaining embodiment of this invention. 本発明の実施形態の作用を説明する周波数偏差特性である。It is a frequency deviation characteristic explaining the effect | action of embodiment of this invention. 本発明のその他の実施形態を説明する恒温型発振器の断面図である。It is sectional drawing of the constant temperature oscillator explaining other embodiment of this invention. 従来例を説明する図で、同図(a)は恒温型発振器の断面図、同図(b)は発振回路の概略図、同図(c)温度制御回路図である。FIG. 2A is a cross-sectional view of a constant temperature oscillator, FIG. 2B is a schematic diagram of an oscillation circuit, and FIG. 2C is a temperature control circuit diagram. 従来例を説明するATカット及びSCカットとした水晶振動子の周波数温度特性図である。It is a frequency-temperature characteristic view of a crystal resonator having an AT cut and an SC cut for explaining a conventional example. 従来例の他の例を説明する恒温型発振器の断面図である。It is sectional drawing of the constant temperature type oscillator explaining the other example of a prior art example.

符号の説明Explanation of symbols

1 水晶振動子、2 発振出力回路、3 温度制御回路、4 回路素子、5 回路基板、6 金属容器、7 熱伝導性樹脂、8 気密端子(金属ピン)、9 ガラス、10 熱筒、11 金属線、12 金属ペースト。   DESCRIPTION OF SYMBOLS 1 Crystal oscillator, 2 Oscillation output circuit, 3 Temperature control circuit, 4 Circuit element, 5 Circuit board, 6 Metal container, 7 Thermally conductive resin, 8 Airtight terminal (metal pin), 9 Glass, 10 Thermal cylinder, 11 Metal Wire, 12 metal paste.

Claims (2)

水晶片が密封封入されて外部端子を有する水晶振動子と、
前記水晶振動子とともに発振出力回路を形成する発振段及び前記発振段の出力を緩衝増幅する緩衝段の回路素子と、
前記水晶振動子を加熱する発熱体及び前記水晶振動子の動作温度を検出する温度感応素子を少なくとも有し、前記水晶振動子の動作温度を一定にする温度制御回路の回路素子と、
前記水晶振動子、前記温度感応素子及び前記発振段の回路素子を少なくとも配設した第1回路基板と、
前記第1回路基板を支持する第1気密端子が底面を貫通し、前記第1回路基板を収容する熱筒と、
前記緩衝段の回路素子及び前記温度感応素子を少なくとも除く前記温度制御回路の回路素子を配設し、前記気密端子が接続して前記熱筒を支持するとともに前記熱筒とは離間した第2回路基板と、
前記熱筒及び前記第2回路基板を収容した発振器用容器とを有する多段型とした恒温型の水晶発振器であって、
前記水晶振動子を加熱する前記発熱体は前記熱筒であり、前記熱筒はジュール熱を発生する抵抗値を有する材料で凹状に形成されて、前記凹状の開口端面が絶縁基板によって閉塞されており
前記熱筒の対向する両側面の上端側に電気的に接続されて外部からの電力を供給するリード線を備えたことを特徴とする恒温型の水晶発振器。
A crystal unit in which a crystal piece is hermetically sealed and having an external terminal;
An oscillation stage that forms an oscillation output circuit together with the crystal oscillator, and a buffer stage circuit element that buffers and amplifies the output of the oscillation stage;
A circuit element of a temperature control circuit that has at least a heating element that heats the crystal unit and a temperature sensitive element that detects an operating temperature of the crystal unit, and makes the operating temperature of the crystal unit constant;
A first circuit board on which at least the crystal resonator, the temperature sensitive element, and the circuit element of the oscillation stage are disposed;
A first airtight terminal that supports the first circuit board passes through a bottom surface, and a thermal cylinder that houses the first circuit board;
The circuit element of the temperature control circuit excluding at least the circuit element of the buffer stage and the temperature sensitive element is disposed, and the airtight terminal is connected to support the thermal cylinder and to be separated from the thermal cylinder A substrate,
A constant temperature crystal oscillator having a multi-stage shape having the thermal cylinder and an oscillator container containing the second circuit board,
The heating element for heating the crystal unit is the thermal cylinder , the thermal cylinder is formed in a concave shape with a material having a resistance value for generating Joule heat, and the concave opening end surface is closed by an insulating substrate. And
A constant temperature crystal oscillator comprising a lead wire that is electrically connected to the upper end sides of the opposite side surfaces of the thermal cylinder and supplies electric power from the outside.
請求項1において、
前記熱筒はステンレス又はタングステンからなることを特徴とする恒温型の水晶発振器。
In claim 1,
The thermostat is made of stainless steel or tungsten, and is a constant temperature crystal oscillator.
JP2008332151A 2008-12-26 2008-12-26 Multi-stage constant temperature crystal oscillator Expired - Fee Related JP5362344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332151A JP5362344B2 (en) 2008-12-26 2008-12-26 Multi-stage constant temperature crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332151A JP5362344B2 (en) 2008-12-26 2008-12-26 Multi-stage constant temperature crystal oscillator

Publications (2)

Publication Number Publication Date
JP2010154400A JP2010154400A (en) 2010-07-08
JP5362344B2 true JP5362344B2 (en) 2013-12-11

Family

ID=42572910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332151A Expired - Fee Related JP5362344B2 (en) 2008-12-26 2008-12-26 Multi-stage constant temperature crystal oscillator

Country Status (1)

Country Link
JP (1) JP5362344B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6307869B2 (en) 2013-12-24 2018-04-11 セイコーエプソン株式会社 Electronic components, crystal oscillators with thermostatic chambers, electronic devices, and moving objects
US10666194B2 (en) 2016-07-07 2020-05-26 Nihon Dempa Kogyo Co., Ltd. Oven-controlled crystal oscillator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207870A (en) * 2002-12-24 2004-07-22 Kyocera Corp Package for piezoelectric vibrator, and constant temperature oscillator employing the same
JP2005143060A (en) * 2003-11-10 2005-06-02 Toyo Commun Equip Co Ltd Piezoelectric vibrator and piezoelectric oscillator using the same
JP4270158B2 (en) * 2005-04-11 2009-05-27 エプソントヨコム株式会社 Highly stable piezoelectric oscillator
JP2007201673A (en) * 2006-01-25 2007-08-09 Epson Toyocom Corp Highly stable piezoelectric oscillator
JP5194482B2 (en) * 2007-02-21 2013-05-08 セイコーエプソン株式会社 Highly stable piezoelectric oscillator

Also Published As

Publication number Publication date
JP2010154400A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP4885207B2 (en) Multi-stage constant temperature crystal oscillator
JP5351082B2 (en) Oscillator device including a thermally controlled piezoelectric resonator
JP4629760B2 (en) Constant temperature crystal oscillator
JP4955042B2 (en) Constant temperature crystal oscillator
JP4744578B2 (en) Constant temperature crystal oscillator
JP4629744B2 (en) Constant temperature crystal oscillator
JP2007006270A (en) Piezoelectric oscillator
JP2009302701A (en) Constant temperature type crystal device
JP5218169B2 (en) Piezoelectric oscillator and method for measuring ambient temperature of this piezoelectric oscillator
JP5218372B2 (en) Piezoelectric oscillator and frequency control method of piezoelectric oscillator
JP2005286892A (en) Piezoelectric vibrator with built-in temperature sensor and piezoelectric oscillator using the same
JP2003309432A (en) Highly stable piezoelectric oscillator
JP4499478B2 (en) Constant temperature crystal oscillator using crystal resonator for surface mounting
JP2009284372A (en) Constant temperature structure of crystal unit
JP5362344B2 (en) Multi-stage constant temperature crystal oscillator
EP2244385B1 (en) Temperature compensated crystal oscillator, printed-circuit board, and electronic device
JP2015033065A (en) Crystal vibrator and crystal oscillator
JP2002314339A (en) Structure of highly stabilized piezo-oscillator
US6707347B2 (en) Crystal oscillator that utilizes the power transistor of an output amplifier to heat the crystal resonator
US20220037579A1 (en) Oscillator
WO2022044360A1 (en) Thermostatic bath-type crystal oscillator
JP5741869B2 (en) Piezoelectric device
JP2010187060A (en) Constant temperature piezoelectric oscillator
JP2010098348A (en) Crystal vibrator
JP2011217302A (en) Constant-temperature piezoelectric oscillator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees