JP5362126B2 - Pressure regulating device for power storage device and power storage device - Google Patents

Pressure regulating device for power storage device and power storage device Download PDF

Info

Publication number
JP5362126B2
JP5362126B2 JP2012545678A JP2012545678A JP5362126B2 JP 5362126 B2 JP5362126 B2 JP 5362126B2 JP 2012545678 A JP2012545678 A JP 2012545678A JP 2012545678 A JP2012545678 A JP 2012545678A JP 5362126 B2 JP5362126 B2 JP 5362126B2
Authority
JP
Japan
Prior art keywords
storage device
container
adjustment chamber
electrolyte
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012545678A
Other languages
Japanese (ja)
Other versions
JPWO2012070397A1 (en
Inventor
達典 岡田
憲朗 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012545678A priority Critical patent/JP5362126B2/en
Application granted granted Critical
Publication of JP5362126B2 publication Critical patent/JP5362126B2/en
Publication of JPWO2012070397A1 publication Critical patent/JPWO2012070397A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/308Detachable arrangements, e.g. detachable vent plugs or plug systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/394Gas-pervious parts or elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

An electric storage device pressure regulating apparatus includes: a case in an internal portion of which is disposed a regulating chamber that communicates with a space in a vessel by an opening portion; a semipermeable membrane that seals the opening portion; a check valve that stops discharging of the gas out of the vessel from inside the regulating chamber when the internal pressure of the regulating chamber is less than or equal to a predetermined value, and that discharges the gas out of the vessel from inside the regulating chamber when the internal pressure of the regulating chamber exceeds the value; and a communicating pipe that communicates between a space inside the regulating chamber and a space inside the vessel and extends from the case to an electric storage device main body.

Description

この発明は、蓄電デバイスの内圧を調整する蓄電デバイス用圧力調整装置、及び蓄電デバイス用圧力調整装置を有する蓄電デバイスに関するものである。   The present invention relates to a pressure adjusting device for a power storage device that adjusts an internal pressure of the power storage device, and a power storage device having the pressure adjusting device for a power storage device.

従来、電解液が含浸されたキャパシタ本体と、キャパシタ本体を密封する容器とを有するキャパシタが知られている。このようなキャパシタでは、キャパシタ本体への充放電を繰り返してキャパシタ本体からガスが発生した場合、容器の内圧が次第に上昇し、容器が破損してしまうおそれがある。   Conventionally, a capacitor having a capacitor body impregnated with an electrolyte and a container for sealing the capacitor body is known. In such a capacitor, when the capacitor body is repeatedly charged and discharged and gas is generated from the capacitor body, the internal pressure of the container gradually increases and the container may be damaged.

従来、容器の内圧を調整するために、容器内への外気の進入を防止しながら容器内の圧力が所定の圧力を超えたときに容器内のガスを容器外へ放出するガス抜き弁と、ガス抜き弁を容器の内側から覆い、容器内のガスを透過しながら容器内の電解液の浸透を阻止する多孔膜であるガス透過フィルムとを有するキャパシタの圧力調整装置が提案されている(例えば特許文献1及び2参照)。   Conventionally, in order to adjust the internal pressure of the container, a gas vent valve that releases the gas in the container to the outside of the container when the pressure in the container exceeds a predetermined pressure while preventing the outside air from entering the container, There has been proposed a pressure regulator for a capacitor that covers a gas vent valve from the inside of a container and has a gas permeable film that is a porous film that permeates the gas in the container and prevents permeation of the electrolyte in the container (for example, (See Patent Documents 1 and 2).

特許第3884039号公報Japanese Patent No. 3884039 特許第3992517号公報Japanese Patent No. 3992517

しかし、特許文献1及び2に示されているキャパシタの圧力調整装置では、例えばキャパシタが倒れたり外力で容器が変形したりして、ガス透過フィルムが電解液で覆われてしまうと、容器内のガスがガス透過フィルムを透過しなくなり、容器の内圧が異常に上昇してしまうおそれがある。   However, in the capacitor pressure adjusting device shown in Patent Documents 1 and 2, for example, if the capacitor falls or the container is deformed by an external force, and the gas permeable film is covered with the electrolyte, There is a risk that the gas will not permeate the gas permeable film and the internal pressure of the container will rise abnormally.

一方、ガス透過フィルムの表裏で一定の差圧が生じると、電解液がガス透過フィルムを浸透しやすくなる。従って、ガス透過フィルムが電解液で覆われてしまった場合には、容器内の電解液がガス透過フィルムを浸透し、ガス抜き弁からガスとともに電解液が容器外へ漏出してしまう。これにより、容器内の電解液の量が減少して寿命が短くなるだけでなく、電解液がガス抜き弁で結晶化することによりガス抜き弁の動作に不具合が生じるおそれもある。   On the other hand, when a certain differential pressure is generated between the front and back of the gas permeable film, the electrolytic solution easily penetrates the gas permeable film. Therefore, when the gas permeable film is covered with the electrolytic solution, the electrolytic solution in the container penetrates the gas permeable film, and the electrolytic solution leaks out of the container together with the gas from the gas vent valve. This not only reduces the amount of electrolyte in the container and shortens its life, but also causes a problem in the operation of the vent valve due to crystallization of the electrolyte by the vent valve.

この発明は、上記のような課題を解決するためになされたものであり、動作の信頼性の向上を図ることができるとともに、蓄電デバイスの長寿命化を図ることができる蓄電デバイス用圧力調整装置、及び蓄電デバイスを得ることを目的とする。   The present invention has been made in order to solve the above-described problems, and is capable of improving the reliability of operation and extending the life of the power storage device. And it aims at obtaining an electrical storage device.

この発明に係る蓄電デバイス用圧力調整装置は、電解液が含浸された蓄電デバイス本体と、蓄電デバイス本体を密封する容器とを有する蓄電デバイスに設けられ、容器の内圧を調整する蓄電デバイス用圧力調整装置であって、容器に設けられた通気口を覆った状態で容器内に設けられ、開口部が設けられているとともに、容器内の空間に開口部を介して連通された調整室が内部に設けられているケース、開口部を塞ぎ、容器内のガスを透過可能な多孔性のガス透過膜、調整室の内圧が所定値以下であるときに調整室内から容器外へのガスの排出を阻止し、調整室の内圧が所定値を超えたときに調整室内から通気口を通して容器外へガスを排出する逆止弁、及び調整室内の空間と容器内の空間とを連通し、ケースと蓄電デバイス本体とに接触する多孔性の電解液保持体を有し、ケースから延びて蓄電デバイス本体に達しており、調整室内に進入した電解液を蓄電デバイス本体へ導く電解液戻し部を備えている。   The pressure adjustment device for an electricity storage device according to the present invention is provided in an electricity storage device having an electricity storage device body impregnated with an electrolyte and a container for sealing the electricity storage device body, and adjusts the internal pressure of the container. An adjustment chamber that is provided in the container in a state of covering a vent hole provided in the container, has an opening, and communicates with a space in the container through the opening. The case provided, a porous gas permeable membrane that closes the opening and allows the gas in the container to permeate, and prevents the gas from being discharged from the adjustment chamber to the outside when the internal pressure of the adjustment chamber is below a predetermined value. And a check valve that discharges gas from the adjustment chamber to the outside of the container through the vent when the internal pressure of the adjustment chamber exceeds a predetermined value, and communicates the space in the adjustment chamber with the space in the container. Contact with the body Has a porous electrolyte holding body, it has reached the electric storage device main body extending from the case, and a electrolytic solution returning portion leading to entering the adjustment chamber electrolytic solution to power storage device body.

この発明に係る蓄電デバイス用圧力調整装置では、調整室がケース内に設けられ、調整室内の空間と容器内の空間とを互いに連通する電解液戻し部がケースから延びて蓄電デバイス本体に達しているので、電解液がガス透過膜を浸透した場合であっても、調整室内に電解液を溜めることにより、電解液が逆止弁に及ぶことを防止することができる。これにより、電解液が逆止弁で結晶化することを防止することができ、蓄電デバイス用圧力調整装置の動作の信頼性の向上を図ることができる。また、ガス透過膜を浸透して調整室内に進入した電解液を、電解液戻し部を通して容器内に戻すことができる。これにより、容器内の電解液の減少を抑制することができ、蓄電デバイスの長寿命化を図ることができる。   In the pressure regulation device for an electricity storage device according to the present invention, the adjustment chamber is provided in the case, and an electrolyte return portion that communicates the space in the adjustment chamber and the space in the container extends from the case to reach the electricity storage device body. Therefore, even when the electrolytic solution permeates the gas permeable membrane, the electrolytic solution can be prevented from reaching the check valve by accumulating the electrolytic solution in the adjustment chamber. Thereby, it can prevent that electrolyte solution crystallizes with a non-return valve, and can aim at the improvement of the reliability of operation | movement of the pressure regulation apparatus for electrical storage devices. In addition, the electrolytic solution that has permeated the gas permeable membrane and entered the adjustment chamber can be returned to the container through the electrolytic solution return section. Thereby, the reduction | decrease of the electrolyte solution in a container can be suppressed and the lifetime of an electrical storage device can be achieved.

この発明の実施の形態1による蓄電デバイスを示す断面図である。It is sectional drawing which shows the electrical storage device by Embodiment 1 of this invention. 図1の圧力調整装置を示す断面図である。It is sectional drawing which shows the pressure regulator of FIG. 図2のガス透過膜の表面及び裏面のうち、表面のみを電解液で覆った状態から電解液を除去したときのガス透過膜の表面側と裏面側との差圧の変化を示すグラフである。It is a graph which shows the change of the differential pressure | voltage between the surface side of a gas permeable film, and a back surface side when an electrolyte solution is removed from the state which covered only the surface among the surface and the back surface of the gas permeable membrane of FIG. . この発明の実施の形態2による蓄電デバイスを示す断面図である。It is sectional drawing which shows the electrical storage device by Embodiment 2 of this invention. この発明の実施の形態3による蓄電デバイスを示す断面図である。It is sectional drawing which shows the electrical storage device by Embodiment 3 of this invention. この発明の実施の形態4による圧力調整装置の連通管を示す要部斜視図である。It is a principal part perspective view which shows the communicating pipe | tube of the pressure regulator by Embodiment 4 of this invention. この発明の実施の形態5による圧力調整装置の連通管を示す断面図である。It is sectional drawing which shows the communicating pipe | tube of the pressure regulator by Embodiment 5 of this invention.

実施の形態1.
図1は、この発明の実施の形態1による蓄電デバイスを示す断面図である。図において、蓄電デバイス1は、充電及び放電が行われる蓄電デバイス本体2と、蓄電デバイス本体2を密封する容器3と、容器3に設けられ、容器3の内圧を調整する圧力調整装置(蓄電デバイス用圧力調整装置)4とを有している。
Embodiment 1 FIG.
1 is a cross-sectional view showing an electricity storage device according to Embodiment 1 of the present invention. In the figure, an electricity storage device 1 includes an electricity storage device body 2 that is charged and discharged, a container 3 that seals the electricity storage device body 2, and a pressure adjusting device (an electricity storage device) that is provided in the container 3 and adjusts the internal pressure of the container 3. Pressure adjusting device 4).

蓄電デバイス本体2は、容器3内の上部が空間となるように容器3内に配置されている。蓄電デバイス本体2には、蓄電デバイス本体2と外部機器との電気的接続を行うための金属製(アルミニウムや銅等)の正極集電端子5及び負極集電端子6が設けられている。正極集電端子5及び負極集電端子6は、容器3の上端部から容器3外に露出している。   The power storage device body 2 is disposed in the container 3 so that the upper part in the container 3 is a space. The power storage device body 2 is provided with a positive electrode current collector terminal 5 and a negative electrode current collector terminal 6 made of metal (aluminum, copper, etc.) for electrical connection between the power storage device body 2 and an external device. The positive electrode current collector terminal 5 and the negative electrode current collector terminal 6 are exposed from the upper end of the container 3 to the outside of the container 3.

また、蓄電デバイス本体2は、正極集電端子5が接続された正極電極7と、負極集電端子6が接続された負極電極8と、正極電極7及び負極電極8間に挟まれたセパレータ9とを有している。   The power storage device body 2 includes a positive electrode 7 to which the positive current collector terminal 5 is connected, a negative electrode 8 to which the negative current collector terminal 6 is connected, and a separator 9 sandwiched between the positive electrode 7 and the negative electrode 8. And have.

正極電極7及び負極電極8のそれぞれは、複数の微細空孔が設けられた多孔性の電極とされている。正極電極7としては、例えばカーボンを含む電極や、Li及びCoを含む電極等が用いられている。負極電極8としては、例えばカーボンを含む電極等が用いられている。   Each of the positive electrode 7 and the negative electrode 8 is a porous electrode provided with a plurality of fine pores. As the positive electrode 7, for example, an electrode containing carbon or an electrode containing Li and Co is used. For example, an electrode containing carbon is used as the negative electrode 8.

セパレータ9は、複数の微細空孔が設けられた多孔性の膜とされている。セパレータ9としては、例えば紙やポリプロピレンシート等が用いられている。   The separator 9 is a porous film provided with a plurality of fine pores. As the separator 9, for example, paper or polypropylene sheet is used.

蓄電デバイス本体2(即ち、正極電極7、負極電極8及びセパレータ9)には、電解液が含浸されている。電解液としては、例えばプロピレンカーボネート等を含む電解液が用いられている。蓄電デバイス本体2の充電及び放電は、正極電極7と負極電極8との間で電解液中のイオンや電子が移動することにより行われる。蓄電デバイス本体2の充電及び放電が行われると、例えばH2やCOやCO2等のガスが蓄電デバイス本体2から発生する。容器3の内圧は、蓄電デバイス本体2からのガスの発生により上昇する。The electricity storage device body 2 (that is, the positive electrode 7, the negative electrode 8, and the separator 9) is impregnated with an electrolytic solution. As the electrolytic solution, for example, an electrolytic solution containing propylene carbonate or the like is used. Charging and discharging of the electricity storage device main body 2 is performed by ions and electrons in the electrolytic solution moving between the positive electrode 7 and the negative electrode 8. When the power storage device body 2 is charged and discharged, a gas such as H 2 , CO, or CO 2 is generated from the power storage device body 2. The internal pressure of the container 3 increases due to the generation of gas from the power storage device body 2.

容器3は、液体及び気体の透過を阻止する密閉容器となっている。この例では、容器3は、アルミラミネートシートにより形成された変形可能な袋とされている。容器3の上部には、通気口10が設けられている。   The container 3 is a sealed container that prevents permeation of liquid and gas. In this example, the container 3 is a deformable bag formed of an aluminum laminate sheet. A vent 10 is provided at the top of the container 3.

圧力調整装置4は、容器3の内側から通気口10を覆った状態で容器3の内面に取り付けられている。また、圧力調整装置4は、容器3内の電解液が通気口10から容器3外へ漏出することを阻止しながら、容器3の内圧を調整する。   The pressure adjusting device 4 is attached to the inner surface of the container 3 so as to cover the vent hole 10 from the inside of the container 3. Further, the pressure adjusting device 4 adjusts the internal pressure of the container 3 while preventing the electrolytic solution in the container 3 from leaking out of the container 3 from the vent 10.

図2は、図1の圧力調整装置4を示す断面図である。図において、圧力調整装置4は、開口部11が設けられたケース12と、開口部11を塞ぎ、容器3内のガスを透過可能なガス透過膜13と、ケース12内に設けられ、容器3内への外気の進入を阻止する逆止弁14と、ケース12に接続され、ケース12内の空間と容器3内の空間とを連通する連通管(電解液戻し部)15とを有している。   FIG. 2 is a cross-sectional view showing the pressure adjusting device 4 of FIG. In the figure, a pressure adjusting device 4 includes a case 12 provided with an opening 11, a gas permeable membrane 13 that closes the opening 11 and allows gas in the container 3 to pass therethrough, and is provided in the case 12. A check valve 14 that prevents the outside air from entering the inside, and a communication pipe (electrolyte return portion) 15 that is connected to the case 12 and communicates the space in the case 12 and the space in the container 3. Yes.

ケース12は、通気口10を覆った状態で容器3の内面に溶着により固定されている。また、ケース12は、図1に示すように、蓄電デバイス本体2から離して配置されている。さらに、ケース12内には、仕切り板16により仕切られた調整室17及び逆止弁室18が設けられている。調整室17は、開口部11を介して容器3内の空間に連通されている。逆止弁室18は、通気口10を介して容器3外の空間に連通されている。仕切り板16には、調整室17と逆止弁室18とを連通する弁開閉口19が設けられている。   The case 12 is fixed to the inner surface of the container 3 by welding while covering the vent hole 10. Moreover, the case 12 is arrange | positioned away from the electrical storage device main body 2, as shown in FIG. Further, an adjustment chamber 17 and a check valve chamber 18 partitioned by a partition plate 16 are provided in the case 12. The adjustment chamber 17 communicates with the space in the container 3 through the opening 11. The check valve chamber 18 communicates with the space outside the container 3 through the vent 10. The partition plate 16 is provided with a valve opening / closing port 19 that allows the adjustment chamber 17 and the check valve chamber 18 to communicate with each other.

ガス透過膜13は、ケース12の外面に貼られた状態で開口部11を塞いでいる。また、ガス透過膜13は、複数の微細空孔が設けられた多孔性の膜(多孔膜)とされている。これにより、ガス透過膜13は、複数の微細空孔を通してガスを透過するようになっている。従って、蓄電デバイス本体2から発生したガスにより容器3の内圧が上昇すると、容器3内のガスがガス透過膜13を透過して調整室17内に進入し、調整室17の内圧が容器3の内圧に応じて上昇する。ガス透過膜13は、例えばポリプロピレン(PP)やポリエチレン(PE)、ポリテトラフルオロエチレン(PTFE)等により構成されている。   The gas permeable membrane 13 closes the opening 11 while being attached to the outer surface of the case 12. The gas permeable membrane 13 is a porous membrane (porous membrane) provided with a plurality of fine pores. Thereby, the gas permeable film 13 permeates | transmits gas through a some fine hole. Therefore, when the internal pressure of the container 3 rises due to the gas generated from the power storage device body 2, the gas in the container 3 penetrates the gas permeable membrane 13 and enters the adjustment chamber 17, and the internal pressure of the adjustment chamber 17 is It rises according to the internal pressure. The gas permeable membrane 13 is made of, for example, polypropylene (PP), polyethylene (PE), polytetrafluoroethylene (PTFE), or the like.

逆止弁14は、逆止弁室18内に設けられている。また、逆止弁14は、調整室17内への外気の進入を阻止している。さらに、逆止弁14は、調整室17の内圧が所定値以下であるときに調整室17内から容器3外へのガスの排出を阻止し、調整室17の内圧が所定値を超えたときに調整室17内から逆止弁室18及び通気口10を通して容器3外へガスを排出する。   The check valve 14 is provided in the check valve chamber 18. Further, the check valve 14 prevents the outside air from entering the adjusting chamber 17. Further, the check valve 14 prevents the gas from being discharged from the inside of the adjusting chamber 17 to the outside of the container 3 when the internal pressure of the adjusting chamber 17 is not more than a predetermined value, and when the internal pressure of the adjusting chamber 17 exceeds the predetermined value. Then, gas is discharged from the inside of the adjustment chamber 17 to the outside of the container 3 through the check valve chamber 18 and the vent 10.

逆止弁14は、弁開閉口19を開閉する弁本体20と、弁開閉口19を閉じる方向へ弁本体20を付勢する付勢ばね(付勢体)21とを有している。   The check valve 14 includes a valve body 20 that opens and closes the valve opening / closing port 19 and a biasing spring (biasing body) 21 that biases the valve body 20 in a direction to close the valve opening / closing port 19.

付勢ばね21は、逆止弁室18の内面と弁本体20との間で縮められ、弾性反発力を発生している。付勢ばね21は、弾性反発力を弁本体20に与えることにより仕切り板16に向けて弁本体20を付勢している。   The biasing spring 21 is contracted between the inner surface of the check valve chamber 18 and the valve body 20 to generate an elastic repulsion force. The urging spring 21 urges the valve body 20 toward the partition plate 16 by applying an elastic repulsive force to the valve body 20.

仕切り板16の逆止弁室18側の面には、弁開閉口19の周囲を囲む樹脂製のパッキン(O−リング)22が設けられている。弁本体20は、付勢ばね21の付勢力を受けながら、パッキン22を介して仕切り板16に押圧されることにより、弁開閉口19を閉じる。また、弁本体20は、付勢ばね21の付勢力に逆らって、パッキン22から離れる方向へ変位されることにより、弁開閉口19を開く。   A resin packing (O-ring) 22 surrounding the valve opening / closing port 19 is provided on the surface of the partition plate 16 on the check valve chamber 18 side. The valve body 20 closes the valve opening / closing port 19 by being pressed against the partition plate 16 via the packing 22 while receiving the biasing force of the biasing spring 21. Further, the valve body 20 opens the valve opening / closing port 19 by being displaced in a direction away from the packing 22 against the urging force of the urging spring 21.

調整室17の内圧が所定値以下であるときには、弁本体20が付勢ばね21の付勢力により仕切り板16に押圧されて弁開閉口19を閉じている。調整室17の内圧が所定値を超えると、調整室17の内圧が付勢ばね21の付勢力に打ち勝ち、付勢ばね21の付勢力に逆らって弁本体20が変位され、弁開閉口19が開く。調整室17内のガスは、弁開閉口19が開くことにより、通気口10を通して容器3外へ排出される。逆止弁14は、調整室17の内圧に応じて弁開閉口19の開閉動作を行うことにより、調整室17の内圧を調整する。   When the internal pressure of the adjustment chamber 17 is equal to or less than a predetermined value, the valve body 20 is pressed against the partition plate 16 by the urging force of the urging spring 21 to close the valve opening / closing port 19. When the internal pressure of the adjustment chamber 17 exceeds a predetermined value, the internal pressure of the adjustment chamber 17 overcomes the urging force of the urging spring 21, the valve body 20 is displaced against the urging force of the urging spring 21, and the valve opening / closing port 19 is moved. open. The gas in the adjustment chamber 17 is discharged out of the container 3 through the vent 10 when the valve opening / closing port 19 is opened. The check valve 14 adjusts the internal pressure of the adjusting chamber 17 by opening and closing the valve opening / closing port 19 according to the internal pressure of the adjusting chamber 17.

蓄電デバイス1では、例えば蓄電デバイス1が倒れたり容器3が変形したりすることにより、ガス透過膜13の表面が電解液で覆われる状態が生じることも想定される。ガス透過膜13の表面及び裏面のうち、表面が電解液で覆われている状態では、ガス透過膜13の表面が電解液で封じられるので、ガス透過膜13でのガスの透過が電解液により阻止される。また、ガス透過膜13の表面及び裏面のうち、表面が電解液で覆われている状態では、ガス透過膜13は、表面側と裏面側との差圧が所定の限界値以下であるときには電解液の浸透を阻止する(即ち、気液分離機能を発揮する)が、差圧が所定の限界値を超えると電解液の浸透を阻止しきれず、電解液の浸透を許容するようになる。電解液がガス透過膜13を浸透する圧力(即ち、所定の限界値)は、容器3が破断する圧力よりも低く設定されている。   In the electricity storage device 1, for example, it is assumed that the state where the surface of the gas permeable membrane 13 is covered with the electrolytic solution is generated when the electricity storage device 1 falls or the container 3 is deformed. In the state where the surface of the gas permeable membrane 13 is covered with the electrolytic solution, the surface of the gas permeable membrane 13 is sealed with the electrolytic solution, so that the gas permeation through the gas permeable membrane 13 is caused by the electrolytic solution. Be blocked. Further, in the state where the surface of the gas permeable membrane 13 is covered with the electrolytic solution, the gas permeable membrane 13 is electrolyzed when the pressure difference between the front surface side and the back surface side is a predetermined limit value or less. Although the penetration of the liquid is prevented (that is, the gas-liquid separation function is exhibited), when the differential pressure exceeds a predetermined limit value, the penetration of the electrolytic solution cannot be prevented and the penetration of the electrolytic solution is allowed. The pressure at which the electrolytic solution penetrates the gas permeable membrane 13 (that is, the predetermined limit value) is set lower than the pressure at which the container 3 breaks.

ここで、図3は、図2のガス透過膜13の表面及び裏面のうち、表面のみを電解液で覆った状態から電解液を除去したときのガス透過膜13の表面側と裏面側との差圧の変化を示すグラフである。図3に示すように、ガス透過膜13の表面が電解液で覆われているときには、ガス透過膜13の表面側と裏面側との差圧が20kPaのまま維持されており、ガス透過膜13でのガスの透過が阻止されていることが分かる。また、電解液が時点Pで除去されると、ガス透過膜13の表面側と裏面側との差圧が急激に低下し、ガスがガス透過膜13を透過されることが分かる。このことから、ガス透過膜13の表面側と裏面側との差圧が20kPaであるときには、ガス透過膜13が気液分離機能を発揮することが分かる。   Here, FIG. 3 shows the front side and the back side of the gas permeable membrane 13 when the electrolyte is removed from the state where only the surface is covered with the electrolyte out of the front and back sides of the gas permeable membrane 13 of FIG. It is a graph which shows the change of differential pressure. As shown in FIG. 3, when the surface of the gas permeable membrane 13 is covered with the electrolytic solution, the differential pressure between the front surface side and the back surface side of the gas permeable membrane 13 is maintained at 20 kPa. It can be seen that gas permeation is blocked. In addition, when the electrolytic solution is removed at time P, it can be seen that the differential pressure between the front surface side and the back surface side of the gas permeable film 13 rapidly decreases and the gas is transmitted through the gas permeable film 13. From this, it can be seen that when the differential pressure between the front surface side and the back surface side of the gas permeable membrane 13 is 20 kPa, the gas permeable membrane 13 exhibits a gas-liquid separation function.

圧力調整装置4では、ガス透過膜13の表面が電解液で覆われている状態でガス透過膜13の表面側(容器3内)と裏面側(調整室17内)との差圧が所定の限界値を超えると、容器3内の電解液がガス透過膜13を浸透して調整室17内に進入することとなる。   In the pressure adjusting device 4, the differential pressure between the front surface side (inside the container 3) and the back surface side (inside the adjusting chamber 17) of the gas permeable membrane 13 is in a state where the surface of the gas permeable membrane 13 is covered with the electrolyte. When the limit value is exceeded, the electrolyte in the container 3 penetrates the gas permeable membrane 13 and enters the adjustment chamber 17.

連通管15は、図1に示すように、ケース12から延びて蓄電デバイス本体2に達している。ケース12の下部には、図2に示すように、ケース12の壁を貫通する接続口23が設けられている。連通管15の一端部は、接続口23の位置に合わせてケース12に接続されている。連通管15の他端部は、蓄電デバイス本体2の側面で負極電極8に接触している。また、連通管15の他端部は、容器3内に開放されている。これにより、調整室17内の空間と容器3内の空間とは、連通管15を介して互いに連通されている。調整室17内に進入した電解液は、連通管15を通して蓄電デバイス本体2へ導かれる。   As shown in FIG. 1, the communication pipe 15 extends from the case 12 and reaches the power storage device body 2. As shown in FIG. 2, a connection port 23 that penetrates the wall of the case 12 is provided at the lower portion of the case 12. One end of the communication pipe 15 is connected to the case 12 in accordance with the position of the connection port 23. The other end of the communication tube 15 is in contact with the negative electrode 8 on the side surface of the electricity storage device body 2. Further, the other end of the communication pipe 15 is opened in the container 3. Thereby, the space in the adjustment chamber 17 and the space in the container 3 are communicated with each other via the communication pipe 15. The electrolyte that has entered the adjustment chamber 17 is guided to the power storage device body 2 through the communication pipe 15.

連通管15の他端部は、図1に示すように、容器3の底面の近傍にまで達している。この例では、連通管15の他端部が、容器3の全体の高さ寸法(例えば100mm)の約1割の距離(例えば10mm)だけ、容器3の底面から離れている。   The other end of the communication pipe 15 reaches the vicinity of the bottom surface of the container 3 as shown in FIG. In this example, the other end of the communication pipe 15 is separated from the bottom surface of the container 3 by a distance (for example, 10 mm) that is approximately 10% of the overall height dimension (for example, 100 mm) of the container 3.

連通管15の材料としては、例えばポリプロピレン(PP)やポリエチレン(PE)、ポリテトラフルオロエチレン(PTFE)等が用いられている。特に、電解液の接触角が90度以下となる性質を持つ材料(即ち、親水性の高い材料(例えばポリプロピレン等))を連通管15の材料とすることが望ましい。親水性の高い材料が連通管15の材料に適用されることにより、毛細管現象が発生し、電解液が連通管15内を導かれやすくなる。   For example, polypropylene (PP), polyethylene (PE), polytetrafluoroethylene (PTFE) or the like is used as the material of the communication pipe 15. In particular, it is desirable to use a material having a property that the contact angle of the electrolytic solution is 90 degrees or less (that is, a highly hydrophilic material (for example, polypropylene)) as the material of the communication pipe 15. By applying a highly hydrophilic material to the material of the communication tube 15, a capillary phenomenon occurs, and the electrolyte is easily guided through the communication tube 15.

調整室17の容積は、容器3内の電解液の総量から、蓄電デバイス本体2に含浸可能な電解液を差し引いた余剰の電解液の量を収容可能な容積とされている。これにより、容器3内の余剰の電解液が連通管15を通して容器3内から調整室17内へ逆流しても、電解液が調整室17内から溢れることが防止される。   The volume of the adjustment chamber 17 is a volume that can accommodate the surplus amount of electrolyte obtained by subtracting the electrolyte that can be impregnated in the electricity storage device body 2 from the total amount of electrolyte in the container 3. As a result, even if excess electrolyte solution in the container 3 flows backward from the container 3 into the adjustment chamber 17 through the communication pipe 15, the electrolyte solution is prevented from overflowing from the adjustment chamber 17.

次に、動作について説明する。蓄電デバイス1では、蓄電デバイス本体2に対する充電及び放電が繰り返されると残存水分や不純物による副反応等が発生することにより、蓄電デバイス本体2からガスが発生し、容器3の内圧が次第に上昇する。調整室17の内圧も、容器3内のガスがガス透過膜13を透過することにより、容器3の内圧に応じて次第に上昇する。   Next, the operation will be described. In the power storage device 1, when charging and discharging of the power storage device body 2 are repeated, a side reaction or the like due to residual moisture or impurities occurs, so that gas is generated from the power storage device body 2 and the internal pressure of the container 3 gradually increases. The internal pressure of the adjustment chamber 17 also gradually increases according to the internal pressure of the container 3 as the gas in the container 3 permeates the gas permeable membrane 13.

調整室17の内圧が所定値を超えると、調整室17内のガスが、付勢ばね21の付勢力に逆らって弁本体20を押し上げ、弁開閉口19から通気口10を通して容器3外へ排出される。これにより、容器3の内圧及び調整室17の内圧が調整される。   When the internal pressure of the adjustment chamber 17 exceeds a predetermined value, the gas in the adjustment chamber 17 pushes up the valve body 20 against the urging force of the urging spring 21, and is discharged out of the container 3 through the vent opening 10 through the vent opening 10. Is done. Thereby, the internal pressure of the container 3 and the internal pressure of the adjustment chamber 17 are adjusted.

例えば容器3の変形や蓄電デバイス1の転倒等により、ガス透過膜13の表面が容器3内の電解液で覆われると、ガス透過膜13の表面が電解液で封止されるので、ガスがガス透過膜13を透過しなくなる。これにより、容器3の内圧が調整されにくくなり、容器3の内圧が上昇し続ける。   For example, when the surface of the gas permeable membrane 13 is covered with the electrolytic solution in the container 3 due to deformation of the container 3 or overturning of the electricity storage device 1, the surface of the gas permeable membrane 13 is sealed with the electrolytic solution. It does not permeate the gas permeable membrane 13. Thereby, it becomes difficult to adjust the internal pressure of the container 3, and the internal pressure of the container 3 continues to rise.

ガス透過膜13の表面側(容器3内)と裏面側(調整室17内)との差圧が所定の限界値以下である段階では、電解液がガス透過膜13を浸透することはない。   At the stage where the differential pressure between the front surface side (inside the container 3) and the back surface side (in the adjustment chamber 17) of the gas permeable membrane 13 is below a predetermined limit value, the electrolyte does not permeate the gas permeable membrane 13.

この後、容器3の内圧がさらに上昇し、ガス透過膜13の表面側と裏面側との差圧が所定の限界値を超えると、容器3内の電解液がガス透過膜13を浸透して調整室17内に進入する。   Thereafter, when the internal pressure of the container 3 further increases and the differential pressure between the front surface side and the back surface side of the gas permeable film 13 exceeds a predetermined limit value, the electrolyte in the container 3 penetrates the gas permeable film 13. Enter the adjustment chamber 17.

調整室17内に進入した電解液は、調整室17内に一旦溜められ、連通管15を通して蓄電デバイス本体2へ導かれることにより、容器3内に戻される。これにより、容器3内の電解液が容器3外へ漏出されることが防止される。   The electrolytic solution that has entered the adjustment chamber 17 is temporarily stored in the adjustment chamber 17 and returned to the container 3 by being guided to the power storage device body 2 through the communication pipe 15. Thereby, the electrolyte solution in the container 3 is prevented from leaking out of the container 3.

容器3の内圧が調整室17の内圧よりも異常に高くなると、容器3内の電解液がガスとともに連通管15を通して調整室17内へ逆流することも考えられる。しかし、余剰の電解液を収容するのに十分な容積が調整室17に確保されているので、調整室17内に逆流した電解液が調整室17内に溜められ、ガスのみが弁開閉口19を通して容器3外へ排出される。調整室17内に溜まった電解液は、容器3の内圧が低下したときに連通管15を通して容器3内に戻される。   If the internal pressure of the container 3 is abnormally higher than the internal pressure of the adjustment chamber 17, the electrolyte in the container 3 may flow back into the adjustment chamber 17 through the communication pipe 15 together with the gas. However, since the adjustment chamber 17 has a sufficient volume to accommodate the surplus electrolyte, the electrolyte that has flowed back into the adjustment chamber 17 is stored in the adjustment chamber 17, and only the gas is supplied to the valve opening / closing port 19. It is discharged out of the container 3 through. The electrolytic solution accumulated in the adjustment chamber 17 is returned to the container 3 through the communication pipe 15 when the internal pressure of the container 3 decreases.

このような圧力調整装置4では、調整室17がケース12内に設けられ、調整室17内の空間と容器3内の空間とを互いに連通する連通管15がケース12から延びて蓄電デバイス本体2に達しているので、電解液がガス透過膜13を浸透した場合であっても、調整室17内に電解液を溜めることにより、電解液が逆止弁14に及ぶことを防止することができる。これにより、電解液が逆止弁14で結晶化することを防止することができ、圧力調整装置4の動作の信頼性の向上を図ることができる。また、ガス透過膜13を浸透して調整室17内に進入した電解液を、連通管15を通して容器3内に戻すことができる。これにより、容器3内の電解液の減少を抑制することができ、蓄電デバイス1の長寿命化を図ることができる。   In such a pressure adjustment device 4, the adjustment chamber 17 is provided in the case 12, and the communication pipe 15 that communicates the space in the adjustment chamber 17 and the space in the container 3 extends from the case 12 to extend from the case 12. Therefore, even when the electrolytic solution permeates the gas permeable membrane 13, it is possible to prevent the electrolytic solution from reaching the check valve 14 by accumulating the electrolytic solution in the adjustment chamber 17. . Thereby, it can prevent that electrolyte solution crystallizes with the non-return valve 14, and the improvement of the reliability of operation | movement of the pressure regulator 4 can be aimed at. In addition, the electrolytic solution that has permeated the gas permeable membrane 13 and entered the adjustment chamber 17 can be returned to the container 3 through the communication pipe 15. Thereby, the reduction | decrease of the electrolyte solution in the container 3 can be suppressed and the lifetime of the electrical storage device 1 can be achieved.

また、調整室17の容積は、容器3内の電解液の総量から、蓄電デバイス本体2に含浸可能な電解液の量を差し引いた余剰の電解液の量を収容可能な容積とされているので、容器3内の余剰の電解液のすべてが調整室17内に進入した場合であっても、電解液が調整室17内から溢れることを防止することができる。これにより、圧力調整装置4の動作の信頼性の向上をさらに図ることができる。   In addition, the volume of the adjustment chamber 17 is a volume that can accommodate the surplus amount of electrolyte obtained by subtracting the amount of electrolyte that can be impregnated in the electricity storage device body 2 from the total amount of electrolyte in the container 3. Even when all of the excess electrolyte in the container 3 enters the adjustment chamber 17, the electrolyte can be prevented from overflowing from the adjustment chamber 17. Thereby, the reliability of the operation of the pressure adjusting device 4 can be further improved.

なお、上記の例では、連通管15の他端部が蓄電デバイス本体2の側面で負極電極8に接触しているが、連通管15の他端部は蓄電デバイス本体2のいずれかの部分に接触していればよく、連通管15の他端部が蓄電デバイス本体2の側面で正極電極7に接触していてもよいし、連通管15の他端部が蓄電デバイス本体2の上面で正極電極7、負極電極8及びセパレータ9の少なくともいずれかに接触していてもよい。   In the above example, the other end of the communication tube 15 is in contact with the negative electrode 8 on the side surface of the electricity storage device body 2, but the other end of the communication tube 15 is not connected to any part of the electricity storage device body 2. The other end of the communication tube 15 may be in contact with the positive electrode 7 on the side surface of the electricity storage device body 2, or the other end of the communication tube 15 may be in contact with the upper surface of the electricity storage device body 2. It may be in contact with at least one of the electrode 7, the negative electrode 8, and the separator 9.

実施の形態2.
図4は、この発明の実施の形態2による蓄電デバイスを示す断面図である。図において、ケース12には、調整室17内に進入した電解液を容器3内に導く電解液戻し部31が設けられている。電解液戻し部31は、調整室17内の空間と容器3内の空間とを互いに連通している。また、電解液戻し部31は、ケース12に接続された連通管32と、連通管32に接続されかつ蓄電デバイス本体2に接触する電解液保持体33とを有している。
Embodiment 2. FIG.
FIG. 4 is a cross-sectional view showing an electric storage device according to Embodiment 2 of the present invention. In the figure, the case 12 is provided with an electrolyte return part 31 that guides the electrolyte that has entered the adjustment chamber 17 into the container 3. The electrolyte solution return unit 31 communicates the space in the adjustment chamber 17 and the space in the container 3 with each other. The electrolyte return unit 31 includes a communication pipe 32 connected to the case 12 and an electrolyte solution holding body 33 connected to the communication pipe 32 and in contact with the power storage device body 2.

連通管32は、接続口23(図2)の位置に合わせてケース12に接続されている。連通管32の材料は、実施の形態1の連通管15の材料と同様である。   The communication pipe 32 is connected to the case 12 according to the position of the connection port 23 (FIG. 2). The material of the communication pipe 32 is the same as the material of the communication pipe 15 of the first embodiment.

電解液保持体33は、複数の微細空孔が設けられた多孔性の部材(発泡体)である。電解液保持体33には、電解液が含浸される。この例では、電解液保持体33が蓄電デバイス本体2の側面で負極電極8に接触している。電解液保持体33に設けられた微細空孔の平均空孔径(ポアサイズ)は、正極電極7及び負極電極8のそれぞれに設けられた微細空孔の平均空孔径(ポアサイズ)よりも大きくなっている。電解液保持体33の材料としては、例えば例えばポリプロピレン(PP)やポリエチレン(PE)、ポリテトラフルオロエチレン(PTFE)等が用いられている。   The electrolytic solution holding body 33 is a porous member (foam) provided with a plurality of fine pores. The electrolytic solution holder 33 is impregnated with the electrolytic solution. In this example, the electrolytic solution holder 33 is in contact with the negative electrode 8 on the side surface of the electricity storage device body 2. The average pore diameter (pore size) of the fine pores provided in the electrolytic solution holding body 33 is larger than the average pore diameter (pore size) of the fine pores provided in each of the positive electrode 7 and the negative electrode 8. . For example, polypropylene (PP), polyethylene (PE), polytetrafluoroethylene (PTFE), or the like is used as the material of the electrolytic solution holder 33.

調整室17内に進入した電解液は、連通管15を通って電解液保持体33へ導かれ、電解液保持体33に含浸される。電解液保持体33に含浸された電解液は、例えば電解液の蒸発等により蓄電デバイス本体2内の電解液が不足したときに、正極電極7及び負極電極8の微細空孔に起因する毛細管力により蓄電デバイス本体2へ電解液保持体33から供給される。他の構成は実施の形態1と同様である。   The electrolytic solution that has entered the adjustment chamber 17 is guided to the electrolytic solution holding body 33 through the communication pipe 15 and impregnated in the electrolytic solution holding body 33. The electrolytic solution impregnated in the electrolytic solution holding body 33 is, for example, a capillary force caused by fine pores of the positive electrode 7 and the negative electrode 8 when the electrolytic solution in the electricity storage device body 2 is insufficient due to evaporation of the electrolytic solution or the like. Is supplied from the electrolytic solution holder 33 to the power storage device body 2. Other configurations are the same as those in the first embodiment.

このような圧力調整装置4では、調整室17内から容器3内に電解液を導く電解液戻し部31が、ケース12に接続された連通管32と、連通管32に接続されかつ蓄電デバイス本体2に接触する多孔性の電解液保持体33とを有しているので、調整室17内から連通管32を通して導かれた電解液を電解液保持体33で保持することができる。これにより、電解液保持体33を圧損バリアとして機能させることができ、容器3内から調整室17内への電解液の逆流を抑制することができる。従って、容器3内の電解液が容器3外へ漏出することをより確実に防止することができる。   In such a pressure adjusting device 4, an electrolyte return part 31 that guides the electrolyte from the adjustment chamber 17 into the container 3 is connected to the communication pipe 32 connected to the case 12, the communication pipe 32, and the power storage device main body. 2, the electrolyte solution guided from the adjustment chamber 17 through the communication pipe 32 can be held by the electrolyte solution holder 33. Thereby, the electrolyte solution holding body 33 can be caused to function as a pressure loss barrier, and the backflow of the electrolyte solution from the container 3 into the adjustment chamber 17 can be suppressed. Therefore, it is possible to more reliably prevent the electrolytic solution in the container 3 from leaking out of the container 3.

また、電解液保持体33の平均空孔径は、正極電極7及び負極電極8のそれぞれの平均空孔径よりも大きくなっているので、蓄電デバイス本体2内の電解液が不足したときに、正極電極7及び負極電極8の微細空孔に起因する毛細管力をより確実に発生させることができ、電解液保持体33から蓄電デバイス本体2への電解液の供給をより確実に行うことができる。   In addition, since the average pore diameter of the electrolytic solution holding body 33 is larger than the average pore diameter of each of the positive electrode 7 and the negative electrode 8, when the electrolytic solution in the electricity storage device body 2 is insufficient, the positive electrode 7 and the capillary force resulting from the fine pores of the negative electrode 8 can be generated more reliably, and the electrolyte solution can be more reliably supplied from the electrolyte solution holding body 33 to the electricity storage device body 2.

なお、上記の例では、電解液保持体33が蓄電デバイス本体2の側面で負極電極8に接触しているが、電解液保持体33が蓄電デバイス本体2の側面で正極電極7に接触していてもよいし、電解液保持体33が蓄電デバイス本体2の上面で正極電極7、負極電極8及びセパレータ9の少なくともいずれかに接触していてもよい。   In the above example, the electrolytic solution holder 33 is in contact with the negative electrode 8 on the side surface of the electricity storage device body 2, but the electrolytic solution holder 33 is in contact with the positive electrode 7 on the side surface of the electricity storage device body 2. Alternatively, the electrolytic solution holder 33 may be in contact with at least one of the positive electrode 7, the negative electrode 8, and the separator 9 on the upper surface of the electricity storage device body 2.

また、上記の例では、電解液保持体33の平均空孔径が正極電極7及び負極電極8のそれぞれの平均空孔径よりも大きくなっているが、蓄電デバイス本体2内の電解液が不足したときに電解液保持体33から蓄電デバイス本体2への電解液の供給が可能であれば、電解液保持体33の平均空孔径を正極電極7及び負極電極8のそれぞれの平均空孔径と同じにしてもよいし、電解液保持体33の平均空孔径を正極電極7及び負極電極8のそれぞれの平均空孔径よりも小さくしてもよい。   In the above example, the average pore diameter of the electrolytic solution holding body 33 is larger than the average pore diameter of each of the positive electrode 7 and the negative electrode 8, but when the electrolytic solution in the electricity storage device body 2 is insufficient. If the electrolytic solution can be supplied from the electrolytic solution holder 33 to the power storage device body 2, the average pore diameter of the electrolytic solution holder 33 is made equal to the average pore diameter of the positive electrode 7 and the negative electrode 8. Alternatively, the average pore diameter of the electrolytic solution holder 33 may be smaller than the average pore diameter of each of the positive electrode 7 and the negative electrode 8.

実施の形態3.
図5は、この発明の実施の形態3による蓄電デバイスを示す断面図である。図において、ケース12と蓄電デバイス本体2との間には、調整室17内に進入した電解液を容器3内に導く多孔性の電解液保持体(電解液戻し部)41が設けられている。調整室17内の空間と容器3内の空間とは、電解液保持体41を介して互いに連通されている。電解液保持体41は、接続口23(図2)を塞いだ状態でケース12に接触し、かつ蓄電デバイス本体2の上面で負極電極8に接触している。電解液保持体41の構成は、実施の形態3の電解液保持体33の構成と同様である。
Embodiment 3 FIG.
FIG. 5 is a cross-sectional view showing an electricity storage device according to Embodiment 3 of the present invention. In the figure, a porous electrolyte solution holding body (electrolyte return portion) 41 that guides the electrolyte solution that has entered the adjustment chamber 17 into the container 3 is provided between the case 12 and the power storage device body 2. . The space in the adjustment chamber 17 and the space in the container 3 are communicated with each other via the electrolyte solution holding body 41. The electrolytic solution holding body 41 is in contact with the case 12 with the connection port 23 (FIG. 2) closed, and in contact with the negative electrode 8 on the upper surface of the electricity storage device body 2. The configuration of the electrolytic solution holder 41 is the same as the configuration of the electrolytic solution holder 33 of the third embodiment.

調整室17内に進入した電解液は、接続口23から電解液保持体41に含浸される。電解液保持体41に含浸された電解液は、蓄電デバイス本体2内の電解液が不足したときに、正極電極7及び負極電極8の微細空孔に起因する毛細管力により蓄電デバイス本体2へ供給される。他の構成は実施の形態2と同様である。   The electrolytic solution that has entered the adjustment chamber 17 is impregnated in the electrolytic solution holder 41 from the connection port 23. The electrolytic solution impregnated in the electrolytic solution holding body 41 is supplied to the electrical storage device body 2 by the capillary force due to the fine pores of the positive electrode 7 and the negative electrode 8 when the electrolytic solution in the electrical storage device body 2 is insufficient. Is done. Other configurations are the same as those of the second embodiment.

このような圧力調整装置4では、調整室17内の電解液を容器3内に導く多孔性の電解液保持体41が、ケース12及び蓄電デバイス本体2のそれぞれに接触しているので、電解液保持体41が圧損バリアとして機能し、容器3内から調整室17内への電解液の逆流を簡単な構成で抑制することができる。   In such a pressure regulator 4, the porous electrolyte holder 41 that guides the electrolyte in the adjustment chamber 17 into the container 3 is in contact with each of the case 12 and the power storage device body 2. The holding body 41 functions as a pressure loss barrier, and the backflow of the electrolyte from the container 3 into the adjustment chamber 17 can be suppressed with a simple configuration.

上記の例では、電解液保持体41が蓄電デバイス本体2の上面で負極電極8に接触しているが、電解液保持体41が蓄電デバイス本体2の側面で正極電極7に接触していてもよいし、電解液保持体41が蓄電デバイス本体2の上面で正極電極7、負極電極8及びセパレータ9の少なくともいずれかに接触していてもよい。   In the above example, the electrolytic solution holder 41 is in contact with the negative electrode 8 on the upper surface of the electricity storage device body 2, but the electrolytic solution holder 41 may be in contact with the positive electrode 7 on the side surface of the electric storage device body 2. Alternatively, the electrolyte solution holding body 41 may be in contact with at least one of the positive electrode 7, the negative electrode 8, and the separator 9 on the upper surface of the electricity storage device body 2.

また、上記の例では、電解液保持体41の平均空孔径が正極電極7及び負極電極8のそれぞれの平均空孔径よりも大きくなっているが、蓄電デバイス本体2内の電解液が不足したときに電解液保持体41から蓄電デバイス本体2への電解液の供給が可能であれば、電解液保持体41の平均空孔径を正極電極7及び負極電極8のそれぞれの平均空孔径と同じにしてもよいし、電解液保持体41の平均空孔径を正極電極7及び負極電極8のそれぞれの平均空孔径よりも小さくしてもよい。   In the above example, the average pore diameter of the electrolytic solution holding body 41 is larger than the average pore diameter of each of the positive electrode 7 and the negative electrode 8, but when the electrolytic solution in the electricity storage device body 2 is insufficient. If the electrolytic solution can be supplied from the electrolytic solution holder 41 to the electricity storage device body 2, the average pore diameter of the electrolytic solution holder 41 is made equal to the average pore size of the positive electrode 7 and the negative electrode 8. Alternatively, the average pore diameter of the electrolyte solution holding body 41 may be smaller than the average pore diameter of each of the positive electrode 7 and the negative electrode 8.

実施の形態4.
図6は、この発明の実施の形態4による圧力調整装置の連通管15を示す要部斜視図である。図において、ケース12から延びて蓄電デバイス本体2に達している連通管15は、ケース12に接続された大径管部15aと、大径管部15aの蓄電デバイス本体2側の端部に接続された絞り管部15bと、絞り管部15bの蓄電デバイス本体2側の端部に接続された小径管部15cとを有している。大径管部15aの内径は、接続口23の内径と同一とされている。小径管部15cの内径は、大径管部15aの内径よりも小さくされている。
Embodiment 4 FIG.
FIG. 6 is a perspective view showing a main part of a communication pipe 15 of a pressure adjusting device according to Embodiment 4 of the present invention. In the figure, a communication pipe 15 extending from the case 12 and reaching the power storage device main body 2 is connected to the large diameter pipe portion 15a connected to the case 12 and the end of the large diameter pipe portion 15a on the power storage device main body 2 side. The throttle tube portion 15b and the small-diameter tube portion 15c connected to the end of the throttle tube portion 15b on the power storage device main body 2 side. The inner diameter of the large diameter pipe portion 15 a is the same as the inner diameter of the connection port 23. The inner diameter of the small diameter tube portion 15c is smaller than the inner diameter of the large diameter tube portion 15a.

絞り管部15bの内径は、大径管部15a側(調整室17側)から小径管部15c側(蓄電デバイス本体2側)に向けて連続的に小さくなっている。従って、絞り管部15bの大径管部15a側(調整室17側)の端部の内径が絞り管部15bの最大内径となっており、絞り管部15bの小径管部15c側(蓄電デバイス本体2側)の端部の内径が絞り管部15bの最小内径となっている。絞り管部15bの最大内径は、大径管部15aの内径と同一とされている。絞り管部15bの最小内径は、小径管部15cの内径と同一とされている。絞り管部15bの長さは、小径管部15cの長さよりも短くなっている。他の構成は実施の形態1と同様である。   The inner diameter of the throttle tube portion 15b continuously decreases from the large-diameter tube portion 15a side (the adjustment chamber 17 side) toward the small-diameter tube portion 15c side (the power storage device body 2 side). Therefore, the inner diameter of the end portion of the throttle tube portion 15b on the large diameter tube portion 15a side (adjustment chamber 17 side) is the maximum inner diameter of the throttle tube portion 15b, and the narrow tube portion 15b side of the throttle tube portion 15b (power storage device). The inner diameter of the end portion on the main body 2 side is the minimum inner diameter of the throttle tube portion 15b. The maximum inner diameter of the throttle tube portion 15b is the same as the inner diameter of the large diameter tube portion 15a. The minimum inner diameter of the throttle tube portion 15b is the same as the inner diameter of the small diameter tube portion 15c. The length of the throttle tube portion 15b is shorter than the length of the small diameter tube portion 15c. Other configurations are the same as those in the first embodiment.

このような圧力調整装置4では、調整室17側から蓄電デバイス本体2側に向けて連続的に小さくなる内径を持つ絞り管部15bの蓄電デバイス本体2側の端部に、絞り管部15bの最小内径と同一の内径を持つ小径管部15cが接続され、絞り管部15bの長さが小径管部15cの長さよりも短くなっているので、調整室17内の電解液を連通管15を通して蓄電デバイス本体2へ導きやすくすることができるとともに、容器3内から調整室17内へ電解液が連通管15内を逆流しにくくすることができる。   In such a pressure adjusting device 4, the end of the throttle tube portion 15 b is connected to the end of the throttle tube portion 15 b having an inner diameter that continuously decreases from the adjustment chamber 17 side toward the power storage device body 2 side. A small-diameter pipe portion 15c having the same inner diameter as the minimum inner diameter is connected, and the length of the throttle pipe portion 15b is shorter than the length of the small-diameter pipe portion 15c, so that the electrolytic solution in the adjustment chamber 17 passes through the communication pipe 15. While being able to make it easy to guide to the electrical storage device main body 2, electrolyte solution can be made difficult to flow backward in the communicating pipe 15 from the inside of the container 3 into the adjustment chamber 17.

なお、上記の例では、小径管部15cの内径が絞り管部15bの最小内径と同一とされているが、小径管部15cの内径を絞り管部15bの最小内径よりも小さくしてもよい。このようにすれば、容器3内から調整室17内への電解液の逆流をさらに抑制することができる。   In the above example, the inner diameter of the small diameter tube portion 15c is the same as the minimum inner diameter of the throttle tube portion 15b. However, the inner diameter of the small diameter tube portion 15c may be smaller than the minimum inner diameter of the throttle tube portion 15b. . In this way, it is possible to further suppress the backflow of the electrolyte from the container 3 into the adjustment chamber 17.

また、上記の例では、連通管15が大径管部15aを有しているが、大径管部15aをなくして、絞り管部15bをケース12に直接接続するようにしてもよい。   In the above example, the communication pipe 15 has the large-diameter pipe portion 15a, but the large-diameter pipe portion 15a may be eliminated and the throttle pipe portion 15b may be directly connected to the case 12.

また、上記の例では、絞り管部15b及び小径管部15cを有する連通管15の構成が実施の形態1の連通管15の構成に適用されているが、絞り管部15b及び小径管部15cを有する連通管15の構成を実施の形態2の連通管32の構成に適用してもよい。   In the above example, the configuration of the communication tube 15 having the throttle tube portion 15b and the small-diameter tube portion 15c is applied to the configuration of the communication tube 15 of the first embodiment, but the throttle tube portion 15b and the small-diameter tube portion 15c. The configuration of the communication tube 15 having the above may be applied to the configuration of the communication tube 32 of the second embodiment.

実施の形態5.
図7は、この発明の実施の形態5による圧力調整装置の連通管15を示す断面図である。図において、連通管15の内面には、連通管15の長さ方向に沿った複数の溝51が設けられている。この例では、各溝51が連通管15の内周方向へ等間隔に設けられている。また、溝51の幅寸法は、連通管15の内面から連通管15の径方向外側に向かって(即ち、溝51の底部に向かって)連続的に狭くなっている。他の構成は実施の形態1と同様である。
Embodiment 5 FIG.
FIG. 7 is a cross-sectional view showing a communication pipe 15 of a pressure adjusting device according to Embodiment 5 of the present invention. In the figure, a plurality of grooves 51 along the length direction of the communication pipe 15 are provided on the inner surface of the communication pipe 15. In this example, the grooves 51 are provided at equal intervals in the inner circumferential direction of the communication pipe 15. Further, the width dimension of the groove 51 is continuously narrowed from the inner surface of the communication pipe 15 toward the radially outer side of the communication pipe 15 (that is, toward the bottom of the groove 51). Other configurations are the same as those in the first embodiment.

このような圧力調整装置4では、連通管15の長さ方向に沿った溝51が連通管15の内面に設けられているので、溝51内での毛細管現象の発生により、連通管15を通して調整室17内から容器3内へ電解液をより確実に導くことができる。   In such a pressure adjusting device 4, since the groove 51 along the length direction of the communication pipe 15 is provided on the inner surface of the communication pipe 15, adjustment is made through the communication pipe 15 due to the occurrence of capillary action in the groove 51. The electrolyte can be more reliably guided from the chamber 17 into the container 3.

また、溝51の幅寸法は、連通管15の内面から連通管15の径方向外側に向かって連続的に狭くなっているので、溝51内での毛細管現象をさらに発生させやすくすることができる。   Further, since the width dimension of the groove 51 is continuously narrowed from the inner surface of the communication pipe 15 toward the radially outer side of the communication pipe 15, the capillary phenomenon in the groove 51 can be further easily generated. .

上記の例では、複数の溝51が実施の形態1の連通管15の内面に設けられているが、実施の形態2の連通管32の内面、又は実施の形態4の連通管15の内面に複数の溝51を設けてもよい。   In the above example, the plurality of grooves 51 are provided on the inner surface of the communication tube 15 of the first embodiment, but on the inner surface of the communication tube 32 of the second embodiment or the inner surface of the communication tube 15 of the fourth embodiment. A plurality of grooves 51 may be provided.

また、各上記実施の形態では、ケース12内が仕切り板16により調整室17と逆止弁室18とに仕切られ、逆止弁14が逆止弁室18内に設けられているが、仕切り板16をケース12内から外し、逆止弁14を容器3の外面に取り付けて、通気口10を弁本体20により開閉するようにしてもよい。この場合、ケース12内の空間のすべてが調整室となる。このようにしても、ケース12内に調整室を確保することができ、ガス透過膜13を浸透した電解液が逆止弁に及ぶことを防止することができる。また、調整室内に進入した電解液を容器3内に戻すことができる。   In each of the above embodiments, the inside of the case 12 is partitioned into the adjustment chamber 17 and the check valve chamber 18 by the partition plate 16, and the check valve 14 is provided in the check valve chamber 18. The plate 16 may be removed from the case 12, the check valve 14 may be attached to the outer surface of the container 3, and the vent 10 may be opened and closed by the valve body 20. In this case, the entire space in the case 12 becomes the adjustment chamber. Even in this case, the adjustment chamber can be secured in the case 12, and the electrolytic solution that has permeated the gas permeable membrane 13 can be prevented from reaching the check valve. Further, the electrolytic solution that has entered the adjustment chamber can be returned to the container 3.

1 蓄電デバイス、2 蓄電デバイス本体、3 容器、4 圧力調整装置、7 正極電極、8 負極電極、10 通気口、11 開口部、12 ケース、13 ガス透過膜、14 逆止弁、15 連通管(電解液戻し部)、15b 絞り管部、15c 小径管部、17 調整室、31 電解液戻し部、32 連通管、33 電解液保持体、41 電解液保持体、51 溝。   DESCRIPTION OF SYMBOLS 1 Power storage device, 2 Power storage device main body, 3 Container, 4 Pressure regulator, 7 Positive electrode, 8 Negative electrode, 10 Vent, 11 Opening, 12 Case, 13 Gas permeable membrane, 14 Check valve, 15 Communication pipe ( Electrolyte return part), 15b throttle pipe part, 15c small diameter pipe part, 17 adjustment chamber, 31 electrolyte return part, 32 communicating pipe, 33 electrolyte solution holding body, 41 electrolyte solution holding body, 51 groove.

Claims (7)

電解液が含浸された蓄電デバイス本体と、上記蓄電デバイス本体を密封する容器とを有する蓄電デバイスに設けられ、上記容器の内圧を調整する蓄電デバイス用圧力調整装置であって、
上記容器に設けられた通気口を覆った状態で上記容器内に設けられ、開口部が設けられているとともに、上記容器内の空間に上記開口部を介して連通された調整室が内部に設けられているケース、
上記開口部を塞ぎ、上記容器内のガスを透過可能な多孔性のガス透過膜、
上記調整室の内圧が所定値以下であるときに上記調整室内から上記容器外へのガスの排出を阻止し、上記調整室の内圧が上記所定値を超えたときに上記調整室内から上記通気口を通して上記容器外へガスを排出する逆止弁、及び
上記調整室内の空間と上記容器内の空間とを連通し、上記ケースと上記蓄電デバイス本体とに接触する多孔性の電解液保持体を有し、上記ケースから延びて上記蓄電デバイス本体に達しており、上記調整室内に進入した上記電解液を上記蓄電デバイス本体へ導く電解液戻し部
を備えている蓄電デバイス用圧力調整装置。
A power storage device pressure regulation device provided in a power storage device having a power storage device body impregnated with an electrolyte and a container that seals the power storage device body, and adjusting an internal pressure of the container,
An adjustment chamber is provided in the container in a state of covering a vent hole provided in the container, and an opening is provided, and an adjustment chamber communicated with the space in the container via the opening. Case,
A porous gas permeable membrane that closes the opening and allows the gas in the container to pass through;
When the internal pressure of the adjustment chamber is equal to or lower than a predetermined value, the gas is prevented from being discharged from the adjustment chamber to the outside of the container, and when the internal pressure of the adjustment chamber exceeds the predetermined value, the vent hole from the adjustment chamber A non-return valve that discharges gas to the outside of the container, and a porous electrolyte holding body that communicates the space in the adjustment chamber and the space in the container and that contacts the case and the power storage device body. And an electrolytic solution return unit that extends from the case to reach the electrical storage device body and guides the electrolytic solution that has entered the adjustment chamber to the electrical storage device body.
上記蓄電デバイス本体は、多孔性の電極を有し、
上記電解液保持体の平均空孔径は、上記電極の平均空孔径よりも大きくなっていることを特徴とする請求項1に記載の蓄電デバイス用圧力調整装置。
The power storage device body has a porous electrode,
The pressure adjusting device for an electricity storage device according to claim 1, wherein an average pore diameter of the electrolyte solution holder is larger than an average pore diameter of the electrode.
上記調整室の容積は、上記容器内の電解液の総量から、上記蓄電デバイス本体に含浸可能な電解液の量を差し引いた余剰の電解液の量を収容可能な容積とされていることを特徴とする請求項1又は請求項2に記載の蓄電デバイス用圧力調整装置。   The volume of the adjustment chamber is a volume capable of accommodating an excess amount of electrolyte obtained by subtracting the amount of electrolyte that can be impregnated in the power storage device body from the total amount of electrolyte in the container. The pressure regulating device for an electricity storage device according to claim 1 or 2. 上記電解液戻し部は、上記ケースに接続された連通管をさらに有し、
上記電解液保持体は、上記連通管を介して上記ケースに接続されていることを特徴とする請求項1に記載の蓄電デバイス用圧力調整装置。
The electrolyte return part further has a communication pipe connected to the case,
2. The pressure adjustment device for an electric storage device according to claim 1, wherein the electrolytic solution holding body is connected to the case via the communication pipe.
上記連通管は、上記調整室側から上記蓄電デバイス本体側に向けて連続的に小さくなる内径を持つ絞り管部と、上記絞り管部の上記蓄電デバイス本体側の端部に接続され、上記絞り管部の最小内径以下の内径を持つ小径管部とを有し、
上記絞り管部の長さは、上記小径管部の長さよりも短くなっていることを特徴とする請求項4に記載の蓄電デバイス用圧力調整装置。
The communication pipe is connected to a throttle pipe portion having an inner diameter that continuously decreases from the adjustment chamber side toward the power storage device main body side, and an end of the throttle pipe portion on the power storage device main body side. A small-diameter pipe portion having an inner diameter equal to or smaller than the minimum inner diameter of the pipe portion,
5. The pressure regulating device for an electricity storage device according to claim 4, wherein a length of the throttle tube portion is shorter than a length of the small diameter tube portion.
上記連通管の内面には、上記連通管の長さ方向に沿った溝が設けられていることを特徴とする請求項4又は請求項5に記載の蓄電デバイス用圧力調整装置。   The pressure regulating device for an electricity storage device according to claim 4 or 5, wherein a groove along the length direction of the communication pipe is provided on an inner surface of the communication pipe. 請求項1〜請求項6のいずれか一項に記載の蓄電デバイス用圧力装置を備えていることを特徴とする蓄電デバイス。   An electricity storage device comprising the pressure device for an electricity storage device according to any one of claims 1 to 6.
JP2012545678A 2010-11-22 2011-11-10 Pressure regulating device for power storage device and power storage device Expired - Fee Related JP5362126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012545678A JP5362126B2 (en) 2010-11-22 2011-11-10 Pressure regulating device for power storage device and power storage device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010260064 2010-11-22
JP2010260064 2010-11-22
JP2012545678A JP5362126B2 (en) 2010-11-22 2011-11-10 Pressure regulating device for power storage device and power storage device
PCT/JP2011/075945 WO2012070397A1 (en) 2010-11-22 2011-11-10 Pressure regulating device for power storage device and power storage device

Publications (2)

Publication Number Publication Date
JP5362126B2 true JP5362126B2 (en) 2013-12-11
JPWO2012070397A1 JPWO2012070397A1 (en) 2014-05-19

Family

ID=46145745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012545678A Expired - Fee Related JP5362126B2 (en) 2010-11-22 2011-11-10 Pressure regulating device for power storage device and power storage device

Country Status (3)

Country Link
US (1) US9153386B2 (en)
JP (1) JP5362126B2 (en)
WO (1) WO2012070397A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156489A (en) * 2011-01-06 2012-08-16 Mitsubishi Electric Corp Storage element
WO2017126693A1 (en) * 2016-01-22 2017-07-27 旭化成株式会社 Nonaqueous lithium storage element
EP3392896B1 (en) 2016-01-22 2020-01-08 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium power storage element
EP3392892B1 (en) 2016-01-22 2020-03-11 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
KR101903939B1 (en) 2016-01-22 2018-10-02 아사히 가세이 가부시키가이샤 Positive electrode precursor
JP7249286B2 (en) 2017-03-30 2023-03-30 ドナルドソン カンパニー,インコーポレイティド Vent with relief valve
CN109148746A (en) * 2017-06-28 2019-01-04 比亚迪股份有限公司 Battery cover board assembly, single battery, battery modules, power battery pack and electric car
KR102173031B1 (en) * 2017-07-04 2020-11-02 주식회사 엘지화학 Rechargeable battery
CN213393710U (en) * 2020-07-14 2021-06-08 东莞东阳光科研发有限公司 Relief valve and have its electrolytic capacitor
US11824220B2 (en) * 2020-09-03 2023-11-21 Apple Inc. Electronic device having a vented battery barrier

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143261A (en) * 1981-01-27 1982-09-04 Baruta Batsuteriisu Ltd Liquid leakage preventing device for electrolyte battery
JPS5826462Y2 (en) * 1979-03-16 1983-06-08 松下電器産業株式会社 alkaline storage battery
JPS6030048A (en) * 1983-07-27 1985-02-15 Japan Storage Battery Co Ltd Lead storage battery having device for stirring electrolyte
JPS6039763A (en) * 1983-08-11 1985-03-01 Japan Storage Battery Co Ltd Lead storage battery with eletrolyte circulating device
JP2000335649A (en) * 1999-06-01 2000-12-05 Musashino Giken:Kk Gas vent valve
JP2006125559A (en) * 2004-10-29 2006-05-18 Power System:Kk Gas bleeding valve
JP2010003048A (en) * 2008-06-19 2010-01-07 Hitachi Displays Ltd Display device with touch panel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2227319A (en) * 1937-05-28 1940-12-31 Gen Motors Corp Electrolytic condenser vent
US3013190A (en) * 1957-12-23 1961-12-12 Mallory & Co Inc P R Hermetic seal type vent for electrolytic capacitors
US4613550A (en) 1985-08-30 1986-09-23 Gnb Incorporated Venting system for electric storage batteries
JPH0822815A (en) 1994-07-07 1996-01-23 Yuasa Corp Exhaust mechanism of storage battery
JP3916943B2 (en) * 2001-06-14 2007-05-23 東海興業株式会社 Ventable plug and method for manufacturing the same
JP2006269704A (en) 2005-03-24 2006-10-05 Japan Pionics Co Ltd Electric double-layer capacitor
KR100844601B1 (en) * 2006-11-07 2008-07-07 세방전지주식회사 Battery case cover
CN101901886B (en) * 2010-07-15 2013-06-12 东莞新能源电子科技有限公司 Power battery explosion protection device
KR101191657B1 (en) * 2010-07-19 2012-10-17 에스비리모티브 주식회사 Battery module
JP2012156489A (en) 2011-01-06 2012-08-16 Mitsubishi Electric Corp Storage element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826462Y2 (en) * 1979-03-16 1983-06-08 松下電器産業株式会社 alkaline storage battery
JPS57143261A (en) * 1981-01-27 1982-09-04 Baruta Batsuteriisu Ltd Liquid leakage preventing device for electrolyte battery
JPS6030048A (en) * 1983-07-27 1985-02-15 Japan Storage Battery Co Ltd Lead storage battery having device for stirring electrolyte
JPS6039763A (en) * 1983-08-11 1985-03-01 Japan Storage Battery Co Ltd Lead storage battery with eletrolyte circulating device
JP2000335649A (en) * 1999-06-01 2000-12-05 Musashino Giken:Kk Gas vent valve
JP2006125559A (en) * 2004-10-29 2006-05-18 Power System:Kk Gas bleeding valve
JP2010003048A (en) * 2008-06-19 2010-01-07 Hitachi Displays Ltd Display device with touch panel

Also Published As

Publication number Publication date
US9153386B2 (en) 2015-10-06
JPWO2012070397A1 (en) 2014-05-19
US20130208405A1 (en) 2013-08-15
WO2012070397A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5362126B2 (en) Pressure regulating device for power storage device and power storage device
JP5261908B2 (en) Flat electrochemical cell
US7846307B2 (en) High-pressure hydrogen production apparatus
ES2383505T3 (en) Fuel cartridges for fuel cells and procedures for their realization
JP5489714B2 (en) Pressure regulating valve for electronic parts and electronic parts using the same
US20120176730A1 (en) Electric storage device
JP4959657B2 (en) Sealing device and sealed container
MXPA06001186A (en) Fuel cartridge with flexible liner.
CN113571741A (en) Electrolyte circulation type battery
EP3533093B1 (en) A double-chamber battery venting system
JP6931467B2 (en) Redox flow battery
JP4852823B2 (en) Liquid fuel cartridge for fuel cell
KR20150135878A (en) Electrochemical Cell with Gas Permeable Membrane
US7514168B2 (en) Gas-liquid separator and fuel cell
JP5473183B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2007150055A (en) Electric double-layer capacitor
JP2018018657A (en) Battery module
JP6406491B2 (en) Power storage device
JP2006147455A (en) Valve for fuel cell system and fuel cell system
WO2017022313A1 (en) Tank-type power generation device capable of producing high-pressure hydrogen and fuel-cell vehicle
JP2005238217A (en) Gas-liquid separation device and fuel cell
JP5563490B2 (en) Battery module
JP2012199297A (en) Power storage device
JP6737317B2 (en) Power storage device
JP6264526B2 (en) Power storage device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees