JP5360711B2 - Hermetic rotary compressor and refrigeration cycle equipment - Google Patents

Hermetic rotary compressor and refrigeration cycle equipment Download PDF

Info

Publication number
JP5360711B2
JP5360711B2 JP2009077069A JP2009077069A JP5360711B2 JP 5360711 B2 JP5360711 B2 JP 5360711B2 JP 2009077069 A JP2009077069 A JP 2009077069A JP 2009077069 A JP2009077069 A JP 2009077069A JP 5360711 B2 JP5360711 B2 JP 5360711B2
Authority
JP
Japan
Prior art keywords
roller
blade
rotary compressor
ring portion
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009077069A
Other languages
Japanese (ja)
Other versions
JP2010229866A (en
Inventor
卓也 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2009077069A priority Critical patent/JP5360711B2/en
Publication of JP2010229866A publication Critical patent/JP2010229866A/en
Application granted granted Critical
Publication of JP5360711B2 publication Critical patent/JP5360711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hermetic rotary compressor improving reliability by regulating the maximum deformation amount of a roller on which a concentration load is applied and ensuring smooth rotations, and a refrigerating cycle device equipped with the hermetic rotary compressor and capable of improving a refrigerating efficiency. <P>SOLUTION: The hermetic rotary compressor 1 fits an inner ring portion 23a of a rolling bearing 23 with a rotating shaft eccentric portion 13a, and an outer ring portion 23b is also used as a roller. A track surface M of a rolling element 23c interposed between the inner ring portion and the outer ring portion is formed on a roller inner diameter portion. If assuming that the width dimensions of a blade 27 is T[mm], an outer diameter portion radius of the roller is Rr[mm], the outermost peripheral radius of a roller inner diameter portion track surface M is Ri[mm], the Young's modulus of the roller is Er[MPa], a distance on a track ring between the rolling elements is C[mm], and differential pressure between discharging pressure and sucking pressure is &Delta;P[MPa], the expression (1):0.001[mm]&ge;T*&Delta;P/16Er*(C/(Rr-Ri))<SP>3</SP>is satisfied. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、回転軸の偏心部に転がり軸受を嵌合し、この転がり軸受の外輪部をブレードが当接するローラとして兼用した密閉型回転式圧縮機と、この密閉型回転式圧縮機を冷凍サイクル構成部品として備えた冷凍サイクル装置に関する。   The present invention relates to a hermetic rotary compressor in which a rolling bearing is fitted to an eccentric part of a rotating shaft and the outer ring part of the rolling bearing is also used as a roller with which a blade contacts, and the hermetic rotary compressor is used as a refrigeration cycle. The present invention relates to a refrigeration cycle apparatus provided as a component.

従来から多用される密閉型回転式圧縮機は、密閉ケース内に、電動機部と、この電動機部に回転軸を介して連結される圧縮機構部とを収容してなる。上記圧縮機構部は、シリンダ室を形成するシリンダと、回転軸に設けられる偏心部に嵌合するローラと、圧縮ばねによる背圧を受けて先端縁がローラ外周面に当接するブレードとを備えている。   A hermetic rotary compressor that has been frequently used conventionally includes an electric motor part and a compression mechanism part connected to the electric motor part via a rotating shaft in a hermetic case. The compression mechanism includes a cylinder that forms a cylinder chamber, a roller that fits in an eccentric portion provided on the rotating shaft, and a blade that receives a back pressure by a compression spring and a tip edge of which contacts a roller outer peripheral surface. Yes.

このような構造から、圧縮作用自体は何らの支障も無く円滑に行われている。しかしながら、回転軸偏心部とブレードとの間に介在するローラは、すべり軸受として機能している。回転軸の直径と比較してローラの内径が大であり、直径の大きな部分が回転することで、すべり軸受としての摩擦損失が大となり、効率の向上が阻害されている。   Due to such a structure, the compression operation itself is smoothly performed without any trouble. However, the roller interposed between the rotating shaft eccentric part and the blade functions as a slide bearing. The inner diameter of the roller is larger than the diameter of the rotating shaft, and the large diameter portion rotates, resulting in a large friction loss as a slide bearing, which hinders improvement in efficiency.

本発明者等は、圧縮作用のより円滑化を求め、圧縮効率の向上を目指す新技術の開発の一環として、回転軸の偏心部に嵌合されブレードの先端縁が当接するローラに着目し、[特許文献1]を開示した。この新技術は転がり軸受を、回転軸と主軸受、副軸受およびローラとの、少なくとも1ヶ所に設けて、給油効率の向上を図っている。   As a part of the development of a new technology that seeks a smoother compression action and improves compression efficiency, the present inventors have focused on a roller that is fitted to the eccentric part of the rotating shaft and the tip edge of the blade contacts. [Patent Document 1] has been disclosed. In this new technology, rolling bearings are provided in at least one of the rotating shaft, the main bearing, the auxiliary bearing, and the roller to improve the oil supply efficiency.

具体的には、転がり軸受を回転軸の偏心部に取付け、外輪部外周面にブレード先端縁を当接させ、外輪部をローラとして兼用している。すなわち、ローラとして転がり軸受を備えることとなり、摩擦損失の低減を図れ、圧縮効率の向上を得る。   Specifically, the rolling bearing is attached to the eccentric portion of the rotating shaft, the blade tip edge is brought into contact with the outer peripheral surface of the outer ring portion, and the outer ring portion is also used as a roller. That is, a roller bearing is provided as a roller, friction loss can be reduced, and compression efficiency can be improved.

特開2007−291996号公報JP 2007-291996 A

ところで、一般的に転がり軸受は、固定体と回転体との間に介設されていて、集中荷重がかかることはない。たとえば、車軸と車輪との間に用いられる転がり軸受は、車軸に嵌め込まれる内輪部は勿論のこと、車輪に嵌め込まれる外輪部のいずれにも、部分的に集中荷重がかからずにすむ。   By the way, the rolling bearing is generally interposed between the fixed body and the rotating body, so that no concentrated load is applied. For example, in a rolling bearing used between an axle and a wheel, not only an inner ring part fitted into the axle but also an outer ring part fitted into the wheel can be partially applied with no concentrated load.

したがって、通常用いられる範囲での転がり軸受では、外輪部と内輪部の最大変形量(撓み量)を考慮する必要はない。これに対して上述のように、密閉型回転式圧縮機の圧縮機構部に、ローラの代用として転がり軸受の外輪部を兼用させると、背圧を受けたブレードの先端縁がローラを押圧し、ローラに集中荷重が掛かることは避けられない。   Therefore, it is not necessary to consider the maximum deformation amount (deflection amount) of the outer ring portion and the inner ring portion in the rolling bearing in the range normally used. On the other hand, as described above, when the compression mechanism portion of the hermetic rotary compressor is also used as the outer ring portion of the rolling bearing as a substitute for the roller, the tip edge of the blade subjected to the back pressure presses the roller, It is inevitable that a concentrated load is applied to the roller.

吸込み圧と吐出圧との差圧の大きい運転条件等では、上記集中荷重の影響でローラの内径部に形成される転動体(ボール)の軌道面に変形が生じる虞れがある。その結果、フレーキング(軌道面の金属剥離)等の発生があって、転がり軸受の信頼性が損なわれてしまう。
上記[特許文献1]においては、上述の不安要素に対する何らの措置も考慮するには至らないものであった。
Under operating conditions where the differential pressure between the suction pressure and the discharge pressure is large, the raceway surface of the rolling element (ball) formed on the inner diameter portion of the roller may be deformed due to the concentrated load. As a result, flaking (metal peeling of the raceway surface) occurs and the reliability of the rolling bearing is impaired.
In the above-mentioned [Patent Document 1], no measures against the above-mentioned anxiety factor have been taken into consideration.

本発明は上記事情にもとづきなされたものであり、その目的とするところは、回転軸の偏心部に転がり軸受を嵌合し、この外輪部をローラとして兼用させることとして、ブレードから集中荷重がかかることで生じるローラの最大変形量を最小限に抑制し、円滑な回転を保証して信頼性の向上を得られる密閉型回転式圧縮機と、この密閉型回転式圧縮機を備えて冷凍効率の向上を得られる冷凍サイクル装置を提供しようとするものである。   The present invention has been made on the basis of the above circumstances. The purpose of the present invention is to apply a concentrated load from the blade by fitting a rolling bearing to the eccentric portion of the rotating shaft and also using the outer ring portion as a roller. The maximum amount of deformation of the roller caused by the above is suppressed to the minimum, and the rotary type compressor that can improve the reliability by ensuring smooth rotation, and the refrigeration efficiency is provided with the hermetic type rotary compressor. It is an object of the present invention to provide a refrigeration cycle apparatus that can improve.

上記目的を満足するため本発明の密閉型回転式圧縮機は、密閉ケース内に、電動機部と、この電動機部に回転軸を介して連結される圧縮機構部とを収容し、上記圧縮機構部は、シリンダ室が形成されるシリンダと、回転軸の偏心部に嵌合してシリンダ室で偏心運動をなすローラと、シリンダに往復動自在に設けられローラ外周面に当接してシリンダ室を二分するブレードと、シリンダ室で圧縮された高圧ガスを密閉ケース内に吐出案内する吐出弁機構と、シリンダに設けられ吐出弁機構から密閉ケース内に吐出された高圧ガスをブレード後端部に導きブレードに対して背圧を付与する背圧付与手段とを具備し、
回転軸偏心部に転がり軸受の内輪部を嵌合し、転がり軸受の外輪部をブレードが当接するローラとして兼用し、転がり軸受の内輪部と外輪部との間に介在される転動体の軌道面を外輪部内径部であるローラ内径部に形成し、
ブレードの幅寸法をT[mm]、ローラの外径部半径をRr[mm]、ローラの内径部軌道面の最外周半径をRi[mm]、ローラのヤング率をEr[MPa]、各転動体間の軌道輪上における距離をC[mm]、圧縮機運転時の吐出圧力と吸込み圧力との差圧をΔP[MPa]としたとき、下記関係式(1)が成り立つ。

Figure 0005360711
In order to satisfy the above object, a hermetic rotary compressor according to the present invention accommodates an electric motor unit and a compression mechanism unit coupled to the electric motor unit via a rotating shaft in a hermetic case, and the compression mechanism unit. The cylinder in which the cylinder chamber is formed, a roller that fits in the eccentric part of the rotating shaft and makes an eccentric motion in the cylinder chamber, and is provided in a freely reciprocating manner in the cylinder so as to abut on the outer peripheral surface of the roller and bisect the cylinder chamber Blade, a discharge valve mechanism for guiding the high pressure gas compressed in the cylinder chamber into the sealed case, and a high pressure gas provided in the cylinder and discharged from the discharge valve mechanism into the sealed case to the blade rear end A back pressure applying means for applying back pressure to the
The rolling ring raceway surface interposed between the inner ring part and the outer ring part of the rolling bearing, in which the inner ring part of the rolling bearing is fitted to the rotating shaft eccentric part and the outer ring part of the rolling bearing is also used as a roller with which the blade contacts. Is formed on the inner diameter part of the roller which is the inner diameter part of the outer ring part,
The width of the blade is T [mm], the outer radius of the roller is Rr [mm], the outermost radius of the inner raceway surface of the roller is Ri [mm], the Young's modulus of the roller is Er [MPa], When the distance between the moving bodies on the raceway is C [mm] and the differential pressure between the discharge pressure and the suction pressure during the compressor operation is ΔP [MPa], the following relational expression (1) is established.
Figure 0005360711

本発明の密閉型回転式圧縮機によれば、転がり軸受の外輪部をローラとして兼用させることを前提として、集中荷重がかかるローラの最大変形量を最小限に規制し、円滑な回転を保証して信頼性の向上を得られる。
本発明の冷凍サイクル装置によれば、上記密閉型回転式圧縮機を冷凍サイクル構成部品として備えて、冷凍サイクル効率の向上を得られる。
According to the hermetic rotary compressor of the present invention, on the premise that the outer ring portion of the rolling bearing is also used as a roller, the maximum deformation amount of the roller to which concentrated load is applied is restricted to the minimum to ensure smooth rotation. To improve reliability.
According to the refrigeration cycle apparatus of the present invention, the above-described hermetic rotary compressor is provided as a refrigeration cycle component, and an improvement in refrigeration cycle efficiency can be obtained.

本発明における実施の形態に係る、密閉型回転式圧縮機の縦断面図と、冷凍サイクル装置の冷凍サイクル構成図。The longitudinal cross-sectional view of the hermetic type rotary compressor based on embodiment in this invention, and the refrigeration cycle block diagram of a refrigeration cycle apparatus. 同実施の形態に係る、密閉型回転式圧縮機における圧縮機構部の横断平面図。The cross-sectional top view of the compression mechanism part in the sealed rotary compressor based on the embodiment. 同実施の形態に係る、圧縮機構部一部の横断平面図。The cross-sectional top view of a part of compression mechanism part based on the embodiment. 同実施の形態に係る、図3の一部を拡大した図。The figure which expanded a part of FIG. 3 based on the embodiment. 同実施の形態に係る、ローラ最大変形量と疲れ寿命の特性図。The characteristic figure of the roller maximum deformation amount and fatigue life based on the embodiment.

以下、本発明の実施の形態を、図面にもとづいて説明する。
図1は、密閉型回転式圧縮機1の縦断面図および、冷凍サイクル装置Rの冷凍サイクル構成図である。
図中1は、密閉型回転式圧縮機(以下、単に「圧縮機」と呼ぶ)であり、この圧縮機1については後述する。前記圧縮機1の上端部には冷媒管Pが接続され、この冷媒管Pには、凝縮器2と、膨張弁(膨張装置)3と、蒸発器4およびアキュームレータ5が順次設けられる。さらに冷媒管Pは、アキュームレータ5から上記圧縮機1の側部に接続されていて、これらで冷凍サイクル装置Rの冷凍サイクルが構成される。
つぎに、上記圧縮機1について説明する。
上記圧縮機1は、密閉ケース10を備えていて、この密閉ケース10内部の上部側に電動機部11が収容され、下部側に圧縮機構部12が収容される。これら電動機部11と圧縮機構部12は、回転軸13を介して一体に連結される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view of a hermetic rotary compressor 1 and a refrigeration cycle configuration diagram of a refrigeration cycle apparatus R.
In the figure, reference numeral 1 denotes a hermetic rotary compressor (hereinafter simply referred to as “compressor”), which will be described later. A refrigerant pipe P is connected to the upper end portion of the compressor 1, and a condenser 2, an expansion valve (expansion device) 3, an evaporator 4 and an accumulator 5 are sequentially provided in the refrigerant pipe P. Further, the refrigerant pipe P is connected to the side of the compressor 1 from the accumulator 5, and these constitute the refrigeration cycle of the refrigeration cycle apparatus R.
Next, the compressor 1 will be described.
The compressor 1 includes a sealed case 10. The electric motor unit 11 is accommodated in the upper part of the sealed case 10, and the compression mechanism part 12 is accommodated in the lower part. The electric motor unit 11 and the compression mechanism unit 12 are integrally connected via a rotating shaft 13.

上記密閉ケース10の内底部には潤滑油を集溜する油溜り部14が形成され、下部側に配置される圧縮機構部12のほとんど大部分が潤滑油中に浸漬される。密閉ケース10の上面部には、凝縮器2に連通する吐出管である冷媒管Pが接続され、密閉ケース10の下部周壁には、アキュームレータ5に連通する吸込み管である冷媒管Pが接続される。   An oil reservoir 14 for collecting lubricating oil is formed on the inner bottom of the sealed case 10, and most of the compression mechanism 12 disposed on the lower side is immersed in the lubricating oil. A refrigerant pipe P that is a discharge pipe communicating with the condenser 2 is connected to the upper surface portion of the sealed case 10, and a refrigerant pipe P that is a suction pipe communicating with the accumulator 5 is connected to the lower peripheral wall of the sealed case 10. The

上記電動機部11は、回転軸13に嵌着固定される回転子(ロータ)15と、この回転子15の外周面と狭小の間隙を存して内周面が対向され、密閉ケース10内周壁に嵌着固定される固定子(ステータ)16とから構成される。   The motor unit 11 has a rotor (rotor) 15 fitted and fixed to the rotary shaft 13, and an inner peripheral surface thereof facing the outer peripheral surface of the rotor 15 with a narrow gap therebetween. It is comprised from the stator (stator) 16 inserted and fixed to.

つぎに、上記圧縮機構部12について、図1および図2にもとづいて説明する。
図2は、圧縮機構部12を拡大して示す横断平面図である。
圧縮機構部12は、密閉ケース10の内周壁に嵌着固定され、軸芯に内径孔を備えたシリンダ20と、シリンダ20上面に取付けられる主軸受21と、シリンダ20下面に取付けられる副軸受22を備えている。シリンダ内径孔は、主軸受21と副軸受22によって塞がれる空間部であり、この空間部はシリンダ室Sとなる。
Next, the compression mechanism 12 will be described with reference to FIGS.
FIG. 2 is an enlarged cross-sectional plan view showing the compression mechanism 12.
The compression mechanism unit 12 is fitted and fixed to the inner peripheral wall of the sealed case 10, and the cylinder 20 having an inner diameter hole in the shaft core, the main bearing 21 attached to the upper surface of the cylinder 20, and the auxiliary bearing 22 attached to the lower surface of the cylinder 20. It has. The cylinder inner diameter hole is a space that is closed by the main bearing 21 and the auxiliary bearing 22, and the space becomes a cylinder chamber S.

上記回転軸13は、電動機部11とシリンダ20上面との間の部分が上記主軸受21にに貫通され、回転自在に軸支される。また、回転軸13はシリンダ20下面から下端までの間の部分が上記副軸受22に貫通され、回転自在に軸支される。
上記主軸受21と副軸受22はともに、シリンダ20の内径孔を塞ぐフランジ部21a,22aと、このフランジ部21a,22aの軸芯部に沿って一体に突設され、回転軸13を軸支する軸受孔を備えた枢支部21b,22bとからなる。
The rotary shaft 13 is rotatably supported by a portion between the motor unit 11 and the cylinder 20 upper surface that is penetrated by the main bearing 21. Further, the rotary shaft 13 is rotatably supported by the portion between the lower surface and the lower end of the cylinder 20 through the auxiliary bearing 22.
Both the main bearing 21 and the sub-bearing 22 are integrally projected along flange portions 21a and 22a that block the inner diameter hole of the cylinder 20 and the shaft core portions of the flange portions 21a and 22a. It consists of pivot parts 21b and 22b provided with bearing holes.

上記回転軸13には、中心軸が所定量だけ偏心する偏心部13aが一体に設けられている。偏心部13aの周面には、後述する転がり軸受23が嵌合される。偏心部13aおよび転がり軸受23は上記シリンダ室Sに収容されていて、転がり軸受23の外周面一部は軸方向に沿ってシリンダ室S周壁に線状に接触するよう設計されている。   The rotating shaft 13 is integrally provided with an eccentric portion 13a whose central axis is eccentric by a predetermined amount. A rolling bearing 23 described later is fitted to the peripheral surface of the eccentric portion 13a. The eccentric portion 13a and the rolling bearing 23 are accommodated in the cylinder chamber S, and a part of the outer peripheral surface of the rolling bearing 23 is designed to linearly contact the peripheral wall of the cylinder chamber S along the axial direction.

上記転がり軸受23は、所定の肉厚に形成され、内径部が回転軸偏心部13aに緩い状態で嵌合する内輪部23aと、所定の肉厚に形成され外周面一部が軸方向に沿ってシリンダ室S周壁に線状に接触する外輪部23bと、この内輪部23aと外輪部23bとの間に介在される複数の転動体(ボール)23cとから構成される。   The rolling bearing 23 is formed to have a predetermined thickness, and an inner ring portion 23a that is fitted in a loose state with an inner diameter portion of the rotary shaft eccentric portion 13a, and a part of the outer peripheral surface that is formed to have a predetermined thickness along the axial direction. The outer ring portion 23b that linearly contacts the circumferential wall of the cylinder chamber S and a plurality of rolling elements (balls) 23c interposed between the inner ring portion 23a and the outer ring portion 23b.

回転軸13が回転すれば、外輪部23b外周面のシリンダ室S周壁に対する接触位置が、漸次、周方向に移動するようになっている。すなわち、外輪部23bは従来から用いられる回転式圧縮機のローラと全く同一の作用をなすものであるので、これ以降、すべり軸受23の外輪部23bを、「ローラ」と呼ぶ。   If the rotating shaft 13 rotates, the contact position of the outer peripheral surface of the outer ring portion 23b with the peripheral wall of the cylinder chamber S gradually moves in the circumferential direction. That is, the outer ring portion 23b performs the same function as a conventionally used roller of a rotary compressor, and hence the outer ring portion 23b of the slide bearing 23 is hereinafter referred to as a “roller”.

上記シリンダ20には、ブレード室25が設けられる。このブレード室25は、シリンダ20の外周面から軸芯方向に向って所定深さに設けられる横孔25aと、この横孔25aの先端部とシリンダ20の内径孔であるシリンダ室Sとを連通し、かつシリンダ20の上下面に亘って設けられるブレード収容溝25bとからなる。   The cylinder 20 is provided with a blade chamber 25. The blade chamber 25 communicates a lateral hole 25a provided at a predetermined depth from the outer peripheral surface of the cylinder 20 in the axial direction, and a cylinder chamber S which is an inner diameter hole of the cylinder 20 and a distal end portion of the lateral hole 25a. And a blade receiving groove 25b provided over the upper and lower surfaces of the cylinder 20.

上記横孔25aに圧縮ばね26が収容され、ブレード収容溝25bにブレード27が移動自在に収容される。圧縮ばね26の一端部は密閉ケース10内周壁に接触し、他端部はブレード27後端部に接触する。ブレード27は圧縮ばね26の弾性力による背圧を受け、先端縁はローラ23b外周面に軸方向に沿って当接し、シリンダ室Sを二分する。   A compression spring 26 is accommodated in the lateral hole 25a, and a blade 27 is accommodated in the blade accommodation groove 25b in a movable manner. One end of the compression spring 26 is in contact with the inner peripheral wall of the sealed case 10, and the other end is in contact with the rear end of the blade 27. The blade 27 receives a back pressure due to the elastic force of the compression spring 26, and the tip edge abuts the outer peripheral surface of the roller 23b along the axial direction to bisect the cylinder chamber S.

シリンダ20の下面から横孔25aに亘って連通用孔28が設けられていて、油溜り部14の潤滑油は上記連通用孔28を介して横孔25aに導かれる。横孔25aに充満する潤滑油はブレード27の後端部に背圧を付与し、かつブレード27両側面とブレード収容溝25b両側壁との間に浸透して、ブレード27の円滑な移動を保証する。   A communication hole 28 is provided from the lower surface of the cylinder 20 to the horizontal hole 25 a, and the lubricating oil in the oil reservoir 14 is guided to the horizontal hole 25 a through the communication hole 28. The lubricating oil filling the lateral hole 25a applies back pressure to the rear end portion of the blade 27 and penetrates between both side surfaces of the blade 27 and both side walls of the blade accommodating groove 25b to ensure smooth movement of the blade 27. To do.

このようにして、上記圧縮ばね26とともに上記連通用孔28は、ブレード27に対する背圧付与手段Jを構成する。ただし、実質的にブレード27に背圧を付与するのは、連通用孔28を介して横孔25aに導かれる高圧の潤滑油である。圧縮ばね26は専ら、圧縮運転の起動時において押圧作用をなす、補助的な背圧付与手段Jとして存在する。   Thus, the communication hole 28 together with the compression spring 26 constitutes a back pressure applying means J for the blade 27. However, it is the high-pressure lubricating oil led to the lateral hole 25 a through the communication hole 28 that substantially applies the back pressure to the blade 27. The compression spring 26 exists exclusively as auxiliary back pressure applying means J that performs a pressing action when the compression operation is started.

一方、主軸受21には吐出孔30が設けられる。吐出孔30が設けられる位置は、ブレード27先端縁がローラ23b外周面に当接する部位の近傍で、この一側部になる。吐出孔30は吐出弁機構31により開閉され、主軸受21に取付けられ密閉ケース10内に開口する案内孔を備えたバルブカバー32が吐出弁機構31を覆う。   On the other hand, the main bearing 21 is provided with a discharge hole 30. The position where the discharge hole 30 is provided is this one side portion in the vicinity of the portion where the leading edge of the blade 27 contacts the outer peripheral surface of the roller 23b. The discharge hole 30 is opened and closed by a discharge valve mechanism 31, and a valve cover 32 provided with a guide hole attached to the main bearing 21 and opening into the sealed case 10 covers the discharge valve mechanism 31.

上記シリンダ20において、ブレード27のローラ23bとの接触部位を挟んで吐出孔30とは反対側の部位に、孔部である吸込み部33が設けられる。この吸込み部33は、シリンダ20を径方向に貫通して、密閉ケース10内とシリンダ室Sに連通し、かつ上記アキュームレータ5に連通する吸込み管である冷媒管Pが接続される。   In the cylinder 20, a suction portion 33, which is a hole portion, is provided at a portion opposite to the discharge hole 30 across the contact portion of the blade 27 with the roller 23 b. The suction portion 33 is connected to a refrigerant pipe P that is a suction pipe that penetrates the cylinder 20 in the radial direction, communicates with the inside of the sealed case 10 and the cylinder chamber S, and communicates with the accumulator 5.

つぎに、このようにして構成される密閉型回転式圧縮機1の圧縮作用および冷凍サイクル装置Rの冷凍作用について説明する。
圧縮機1を構成する電動機部11に通電することで、固定子16に発生する回転磁界によって回転子15が回転し、回転子15と一体の回転軸13が回転駆動される。電動機部11から回転軸13に駆動トルクが作用し、回転軸13に設けられる偏心部13aと転がり軸受23が一体にシリンダ室Sにおいて偏心運動を行う。
Next, the compression action of the hermetic rotary compressor 1 configured as described above and the refrigeration action of the refrigeration cycle apparatus R will be described.
By energizing the motor unit 11 constituting the compressor 1, the rotor 15 is rotated by the rotating magnetic field generated in the stator 16, and the rotating shaft 13 integrated with the rotor 15 is rotationally driven. A driving torque acts on the rotating shaft 13 from the electric motor unit 11, and the eccentric portion 13 a provided on the rotating shaft 13 and the rolling bearing 23 integrally perform an eccentric motion in the cylinder chamber S.

シリンダ室Sの一部が負圧化し、アキュームレータ5から冷媒管Pを介して冷媒が導かれる。冷媒は、ローラ23b周面とシリンダ室S周面とブレード27とで区画される空間部位に導かれ、ローラ23bの偏心回転にともない上記空間部位の容量が低減することで圧縮される。   A part of the cylinder chamber S becomes negative pressure, and the refrigerant is guided from the accumulator 5 through the refrigerant pipe P. The refrigerant is guided to a space part defined by the peripheral surface of the roller 23b, the peripheral surface of the cylinder chamber S, and the blade 27, and is compressed by reducing the capacity of the space part as the roller 23b rotates eccentrically.

上記空間部位が最も小さくなったとき、冷媒は所定の高圧状態になるとともに高温化する。高温高圧化したガス冷媒により吐出弁機構31が開放され、バルブカバー32の案内孔を介して密閉ケース10内部に導かれ充満する。密閉ケース10内に充満するガス冷媒は、密閉ケース10の上端部に接続される冷媒管Pへ吐出される。
ガス冷媒は凝縮器2において外気もしくは水などと熱交換し、凝縮液化して液冷媒に変る。この液冷媒は、膨張弁3に導かれて断熱膨張し、さらに蒸発器4に導かれて、蒸発器4が配置される周辺部位の空気と熱交換し蒸発する。
When the space portion becomes the smallest, the refrigerant reaches a predetermined high pressure state and increases in temperature. The discharge valve mechanism 31 is opened by the high-temperature and high-pressure gas refrigerant, and is guided and filled into the sealed case 10 through the guide hole of the valve cover 32. The gas refrigerant filling the sealed case 10 is discharged to the refrigerant pipe P connected to the upper end portion of the sealed case 10.
The gas refrigerant exchanges heat with the outside air or water in the condenser 2 to be condensed and liquefied and converted into a liquid refrigerant. This liquid refrigerant is led to the expansion valve 3 and adiabatically expanded, and further led to the evaporator 4 to evaporate by exchanging heat with the air in the peripheral portion where the evaporator 4 is disposed.

冷媒の蒸発にともなって周辺部位から蒸発潜熱を奪って冷気に変える。すなわち、周辺部位に対する冷凍作用をなす。蒸発器4で蒸発した冷媒は、アキュームレータ5に導かれ気液分離される。そして、圧縮機1のシリンダ室Sに吸込まれ、再び圧縮されて高温高圧のガス冷媒に変り、上述の冷凍サイクルを繰り返す。   As the refrigerant evaporates, it takes away the latent heat of evaporation from the surrounding area and changes it to cool air. That is, it performs a freezing action on the peripheral part. The refrigerant evaporated in the evaporator 4 is guided to the accumulator 5 and separated into gas and liquid. Then, the refrigerant is sucked into the cylinder chamber S of the compressor 1 and compressed again to change into a high-temperature and high-pressure gas refrigerant, and the above-described refrigeration cycle is repeated.

つぎに、図3および図4にもとづいて、上記密閉型回転式圧縮機1の圧縮機構部12を構成するローラ23bとブレード27について説明する。
図3は、圧縮機構部12の一部を拡大した図、図4は図3の拡大図である。
Next, based on FIGS. 3 and 4, the roller 23b and the blade 27 constituting the compression mechanism 12 of the hermetic rotary compressor 1 will be described.
3 is an enlarged view of a part of the compression mechanism section 12, and FIG. 4 is an enlarged view of FIG.

上記ブレード27は、圧縮運転の起動時は圧縮ばね26の弾性力をもって背圧を受け、圧縮運転が安定した状態では油溜り部14の高圧化した潤滑油が連通用孔28からブレード室25の横孔25aに充満することで背圧を受ける。   The blade 27 receives a back pressure by the elastic force of the compression spring 26 when the compression operation is started, and when the compression operation is stable, the high-pressure lubricating oil in the oil reservoir 14 passes from the communication hole 28 to the blade chamber 25. Back pressure is received by filling the horizontal hole 25a.

背圧を受けたブレード27の先端縁はローラ23bに当接し、ローラ23bに対して集中荷重Fv[N]を付与する。このとき、吸込み圧と吐出圧との差圧が大きい条件時等では、ブレード27のローラ23bに対する集中荷重Fvが過大になり、あるいはローラ23bの剛性が小になる。   The leading edge of the blade 27 receiving the back pressure contacts the roller 23b, and applies a concentrated load Fv [N] to the roller 23b. At this time, when the differential pressure between the suction pressure and the discharge pressure is large, the concentrated load Fv of the blade 27 on the roller 23b becomes excessive, or the rigidity of the roller 23b becomes small.

そのため、転動体23cが接触するローラ23bの内径部軌道面Mに変形が生じる虞れがあり、フレーキング等が発生してローラ23bの円滑な自転が妨げられ、転がり軸受23に対する信頼性が著しく損なわれてしまう。   For this reason, there is a possibility that the inner surface raceway surface M of the roller 23b with which the rolling element 23c comes into contact may be deformed, flaking or the like occurs, preventing smooth rotation of the roller 23b, and the reliability of the rolling bearing 23 is remarkably high. It will be damaged.

この対策を備えるために、ブレード27の集中荷重Fvによる、荷重方向のローラ23bの最大変形量σmax[mm]を求める。
すなわち、ブレード27からの集中荷重Fvの作用点(ローラ23bに対する接触点)の両側にある転動体23cの位置を固定端とし、ローラ23bを真直な梁材として近似する。すると、機械工学便覧、A4材料力学から、下記関係式(2)が求められる。

Figure 0005360711
In order to provide this countermeasure, the maximum deformation amount σmax [mm] of the roller 23b in the load direction due to the concentrated load Fv of the blade 27 is obtained.
That is, the positions of the rolling elements 23c on both sides of the point of application of the concentrated load Fv from the blade 27 (contact point with the roller 23b) are set as fixed ends, and the roller 23b is approximated as a straight beam. Then, the following relational expression (2) is calculated | required from mechanical engineering handbook and A4 material dynamics.
Figure 0005360711

圧縮機1運転時の吐出圧力と吸込み圧力との差圧をΔP[MPa]、ブレード27の幅寸法をT[mm]、ブレード27とローラ23bの厚み(図1に示す)をH[mm]としたときの集中荷重Fvの最大値は、関係式(3)から求められる。
Fvmax[N] = ΔP・T・H ……(3)
また、ローラ23bの外周半径をRr[mm]、ローラ23bの内径部軌道面Mの最外周半径をRi[mm]としたときの、ローラ23bの断面2次モーメントIrは、関係式(4)から求められる。
Ir = H・(Rr−Ri)/ 12 ……(4)
上記関係式(3)、(4)を、上記関係式(2)に代入すると、下記関係式(5)が求められる。

Figure 0005360711
The differential pressure between the discharge pressure and the suction pressure during operation of the compressor 1 is ΔP [MPa], the width of the blade 27 is T [mm], and the thickness of the blade 27 and the roller 23b (shown in FIG. 1) is H [mm]. The maximum value of the concentrated load Fv is obtained from the relational expression (3).
Fvmax [N] = ΔP · T · H (3)
Further, when the outer peripheral radius of the roller 23b is Rr [mm] and the outermost peripheral radius of the inner raceway surface M of the roller 23b is Ri [mm], the cross-sectional secondary moment Ir of the roller 23b is expressed by the relational expression (4). It is requested from.
Ir = H · (Rr-Ri ) 3/12 ...... (4)
Substituting the above relational expressions (3) and (4) into the above relational expression (2) yields the following relational expression (5).
Figure 0005360711

図5は、ローラ23bの最大変形量σmaxと疲れ寿命比L/L0の特性図である。
この図は、ブレード27の集中荷重Fvによる荷重方向のローラ23bの最大変形量σmaxが0のときの、ローラ23bの内径部軌道面Mにおける転がり疲れ寿命をL0とし、ローラ23bの最大変形量σmaxに対する転がり疲れ寿命の関係を示す。
図5から、ローラ23bの最大変形量σmaxが、0.001mm以上になると、急速に疲れ寿命が低下するのが分る。
FIG. 5 is a characteristic diagram of the maximum deformation amount σmax of the roller 23b and the fatigue life ratio L / L0.
In this figure, when the maximum deformation amount σmax of the roller 23b in the load direction due to the concentrated load Fv of the blade 27 is 0, the rolling fatigue life on the inner raceway surface M of the roller 23b is L0, and the maximum deformation amount σmax of the roller 23b. Shows the relationship of rolling fatigue life to.
FIG. 5 shows that when the maximum deformation amount σmax of the roller 23b is 0.001 mm or more, the fatigue life is rapidly reduced.

たとえば、車軸と車輪との間に用いられる転がり軸受等、通常の使用方法では、玉軸受(すなわち、転動体)の軌道面はハウジングあるいは軸に倣うので、内輪部は勿論のこと、外輪部においても変形する虞れは全く無い。したがって、通常用いられる範囲での転がり軸受に対し、外輪部と内輪部の最大変形量σmaxを考慮する必要はない。   For example, in a normal usage method such as a rolling bearing used between an axle and a wheel, the raceway surface of the ball bearing (that is, the rolling element) follows the housing or the shaft. There is no fear of deformation. Therefore, it is not necessary to consider the maximum deformation amount σmax of the outer ring portion and the inner ring portion with respect to the rolling bearing in a normally used range.

これに対して上述のように、密閉型回転式圧縮機1における圧縮機構部12に、転がり軸受23の外輪部23bをローラの代用として用いると、背圧を受けたブレード27による集中荷重Fvが外輪部であるローラ23bにかかることは避けられない。
ローラ23bの剛性が低いと、この内径面である転動体23cの軌道面に変形が生じ、転動体23cが円滑に転がることができない。ローラ23bの最大変形量σmaxがある値を越えると、フレーキング等が生じて急速に転がり寿命の低下を招く。
On the other hand, as described above, when the outer ring portion 23b of the rolling bearing 23 is used as a substitute for the roller in the compression mechanism portion 12 in the hermetic rotary compressor 1, the concentrated load Fv due to the blade 27 receiving the back pressure is generated. It is inevitable that the roller 23b as the outer ring portion is applied.
When the rigidity of the roller 23b is low, deformation occurs in the raceway surface of the rolling element 23c, which is the inner diameter surface, and the rolling element 23c cannot be smoothly rolled. If the maximum deformation amount σmax of the roller 23b exceeds a certain value, flaking or the like occurs and the rolling life is rapidly reduced.

そこで、図5から、ローラ23bの最大変形量σmaxが、0.001mmと等しい、もしくはそれ以下である、以下の関係式(1)を満たすことによって、転がり寿命の低下を防ぎ、信頼性の高い圧縮機1を得られる。

Figure 0005360711
Therefore, from FIG. 5, by satisfying the following relational expression (1) where the maximum deformation amount σmax of the roller 23b is equal to or less than 0.001 mm, the rolling life is prevented from being lowered and the reliability is high. The compressor 1 can be obtained.
Figure 0005360711

さらに、本発明では、上記関係式(1)を満たしたうえで、ブレード27のローラ23bとの当接部における曲率半径Rv[mm]と、ローラ23bの外周半径Rr[mm]から、下記関係式(7)で計算される等価半径ρ[mm]について、ブレード27の幅寸法T[mm]と、下記関係式(6)が成り立つことを特徴としている。
ρ ≧ T ……(6)
ここで、 1/ρ = 1/Rv + 1/Rr ……(7)
すなわち、ローラ23bとブレード27との接触状態は、図4に示すように、異なる曲率を有する円筒体の接触状態に置き換えることができる。
ブレード27のローラ23bに対する集中荷重Fvにより、ローラ23bとブレード27は面接触する。そのときの弾性接触長さd[mm]は関係式(8)で表され、関係式(9)に展開できる。

Figure 0005360711
Furthermore, in the present invention, after satisfying the above relational expression (1), the following relation is obtained from the curvature radius Rv [mm] at the contact portion of the blade 27 with the roller 23b and the outer peripheral radius Rr [mm] of the roller 23b. With respect to the equivalent radius ρ [mm] calculated by Expression (7), the width dimension T [mm] of the blade 27 and the following relational expression (6) are established.
ρ ≧ T (6)
Here, 1 / ρ = 1 / Rv + 1 / Rr (7)
That is, the contact state between the roller 23b and the blade 27 can be replaced with a contact state of a cylindrical body having a different curvature, as shown in FIG.
Due to the concentrated load Fv of the blade 27 on the roller 23b, the roller 23b and the blade 27 come into surface contact. The elastic contact length d [mm] at that time is expressed by the relational expression (8) and can be developed into the relational expression (9).
Figure 0005360711

Figure 0005360711
Figure 0005360711

ローラ23bとブレード27との接触部には、関係式(10)で表されるヘルツ応力Pmax[MPa]が発生する。(ヘルツの弾性接触理論)

Figure 0005360711
A Hertz stress Pmax [MPa] expressed by the relational expression (10) is generated at the contact portion between the roller 23b and the blade 27. (Hertz's elastic contact theory)
Figure 0005360711

ヘルツ応力Pmaxが大きい場合、ローラ23bとブレード27との接触面において異常摩耗が生じる危険性が高くなり、信頼性が低下する。また、ローラ23bの自転が抑制され、最悪の場合にはローラ23bが自転しなくなる。この場合、常にローラ23b内径部軌道面Mの同一箇所で負荷を受けて、転がり軸受23としての寿命低下を招く。
この問題に対して、先に説明した関係式(6)を満たすように設計することにより、関係式(10)は次式(11)で表される。

Figure 0005360711
When the Hertz stress Pmax is large, there is a high risk that abnormal wear will occur on the contact surface between the roller 23b and the blade 27, and the reliability decreases. Further, the rotation of the roller 23b is suppressed, and in the worst case, the roller 23b does not rotate. In this case, a load is always received at the same location on the inner raceway surface M of the roller 23b, and the life of the rolling bearing 23 is reduced.
With respect to this problem, the relational expression (10) is expressed by the following expression (11) by designing so as to satisfy the relational expression (6) described above.
Figure 0005360711

したがって、ブレード27の幅寸法T[mm]に係らず、常に、ヘルツ応力Pmaxを関係式(11)で示す数値以下にすることができ、信頼性設計を容易にして、信頼性の高い圧縮機1を得られる。
以下に、実施例の数値を、[表1]に示す。

Figure 0005360711
Therefore, regardless of the width dimension T [mm] of the blade 27, the Hertz stress Pmax can always be made equal to or less than the numerical value represented by the relational expression (11), the reliability design is facilitated, and the highly reliable compressor 1 is obtained.
Below, the numerical value of an Example is shown in [Table 1].
Figure 0005360711

上記[表1]における実施例3は実施例2に対し、ローラ23bの内径部軌道面Mの半径Riを、関係式(1)を満たす範囲内でできるだけ大きくし、直径の大きな転動体23cを使えるようにしたものである。
このように転動体23cの直径を大きくすることにより、転がり軸受23の基本定格荷重が増大するので、基本定格荷重を重視した設計仕様を提供できる。
In Example 3 in [Table 1], the radius Ri of the inner raceway surface M of the roller 23b is made as large as possible within the range satisfying the relational expression (1), and the rolling element 23c having a large diameter is formed. It is designed to be used.
By increasing the diameter of the rolling element 23c in this way, the basic load rating of the rolling bearing 23 is increased, so that design specifications that emphasize the basic load rating can be provided.

なお、公知例1(たとえば 特開2005−140123号)においては、分子中に塩素を含まない冷媒および潤滑油としてポリオールエステル、またはポリビニルエーテルを基油として用いても、ローラとベーンの異常な摩耗が防止されるような信頼性の高い回転式圧縮機を提供するため、以下のような条件を開示している。
In the known example 1 (e.g. JP 2005 No. -140123), polyol esters as refrigerant and a lubricating oil does not contain chlorine in the molecule or be a polyvinyl ether as a base oil, the roller and the vane abnormal wear, The following conditions are disclosed in order to provide a highly reliable rotary compressor that can prevent the above.

すなわち、ベーンのローラとの摺接部における曲率半径(Rv)(cm)が次式(A)で示されるようなベーンを用いる。 T < Rv <Rr ……(A)
ただし、Tはベーンの厚さ(cm)、Rrはベーンと摺接するローラの外周曲率半径(cm)。
That is, a vane having a curvature radius (Rv) (cm) at a sliding contact portion with the roller of the vane is represented by the following expression (A) is used. T <Rv <Rr (A)
Where T is the vane thickness (cm), and Rr is the outer radius of curvature (cm) of the roller in sliding contact with the vane.

上記した関係式(6)、(7)に関し、公知例1の数値を比較してみると、公知例1の範囲 T<Rv<Rr では範囲が広すぎることとなり、表1に公知例3として示すように、実施例1〜3に対してヘルツ応力Pmaxが大きく、信頼性が劣っているを含むことが分る。
また、関係式(6)、(7)に関し、ブレード27のローラ23bとの当接面および、ローラ23bの外周面において、その表面粗さRz(JIS規格)で、3.2μm以下を選択する。
Regarding the relational expressions (6) and (7), when comparing the numerical values of the known example 1, the range of the known example 1 is too wide in the range T <Rv <Rr. as shown, large Hertzian stress Pmax relative to examples 1-3, it is understood to include also the reliability is inferior.
Regarding the relational expressions (6) and (7), the surface roughness of the contact surface of the blade 27 with the roller 23b and the outer peripheral surface of the roller 23b is Rz (JIS standard) and is 3.2 μm or less . Select .

すなわち、上記構造の圧縮機1を採用することで、ブレード27とローラ23bとの当接面において摩擦抵抗が小さくなるため、ローラ23bの自転が容易になり、ローラ内径部軌道輪の同一位置で負荷を受けることを防止し、転がり軸受の寿命が向上する。よって、信頼性の高い圧縮機1が得られる。   That is, by adopting the compressor 1 having the above structure, the frictional resistance is reduced at the contact surface between the blade 27 and the roller 23b, so that the roller 23b can be easily rotated, and at the same position of the roller inner diameter raceway. Prevents the load from being received and improves the life of the rolling bearing. Therefore, the highly reliable compressor 1 is obtained.

なお、上記実施の形態において、シリンダ室Sが1つの圧縮機1について説明したが、これに限定されるものではなく、2つ以上のシリンダ室を有する圧縮機にも適用することができる。
さらに、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。
In addition, in the said embodiment, although the cylinder chamber S demonstrated one compressor 1, it is not limited to this, It can apply also to the compressor which has two or more cylinder chambers.
Furthermore, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.

10…密閉ケース、11…電動機部、13…回転軸、12…圧縮機構部、S…シリンダ室、20…シリンダ、23b…ローラ(外輪部)、27…ブレード、31…吐出弁機構、J…背圧付与手段、23a…内輪部、23c…転動体、M…ローラの内径部軌道面、1…密閉型回転式圧縮機、2…凝縮器、3…膨張弁(膨張装置)、4…蒸発器、P……冷媒管。   DESCRIPTION OF SYMBOLS 10 ... Sealing case, 11 ... Electric motor part, 13 ... Rotating shaft, 12 ... Compression mechanism part, S ... Cylinder chamber, 20 ... Cylinder, 23b ... Roller (outer ring part), 27 ... Blade, 31 ... Discharge valve mechanism, J ... Back pressure applying means, 23a ... inner ring part, 23c ... rolling element, M ... inner diameter part raceway surface of roller, 1 ... hermetic rotary compressor, 2 ... condenser, 3 ... expansion valve (expansion device), 4 ... evaporation P, refrigerant pipe.

Claims (2)

密閉ケース内に、電動機部と、この電動機部に回転軸を介して連結される圧縮機構部とを収容し、
上記圧縮機構部は、シリンダ室が形成されるシリンダと、上記回転軸に設けられる偏心部に嵌合し上記シリンダ室で偏心運動をなすローラと、上記シリンダに往復動自在に設けられローラ外周面に当接してシリンダ室を二分するブレードと、上記シリンダ室で圧縮された高圧ガスを密閉ケース内に吐出案内する吐出弁機構と、
上記シリンダに設けられ、上記吐出弁機構から密閉ケース内に吐出された高圧ガスを上記ブレード後端部に導き、ブレードに対して背圧を付与する背圧付与手段と、
を具備した密閉型回転式圧縮機において、
上記回転軸偏心部に、転がり軸受の内輪部が嵌合され、
上記転がり軸受の外輪部を、上記ブレードが当接する上記ローラとして兼用され、
上記転がり軸受の内輪部と外輪部との間に介在される転動体の軌道面が、外輪部内径部であるローラ内径部に形成され、
ブレードの幅寸法をT[mm]、ローラの外径部半径をRr[mm]、ローラの内径部軌道面の最外周半径をRi[mm]、ローラのヤング率をEr[MPa]、各転動体間の軌道輪上における距離をC[mm]、圧縮機運転時の吐出圧力と吸込み圧力との差圧をΔP[MPa]としたとき、下記関係式(1)が成り立つ
ことを特徴とする密閉型回転式圧縮機。
Figure 0005360711
In the sealed case, an electric motor part and a compression mechanism part connected to the electric motor part via a rotating shaft are accommodated,
The compression mechanism includes a cylinder in which a cylinder chamber is formed, a roller that is fitted in an eccentric portion provided in the rotating shaft and performs an eccentric motion in the cylinder chamber, and an outer peripheral surface of the roller that is provided in a reciprocating manner in the cylinder. A discharge valve mechanism that discharges and guides the high-pressure gas compressed in the cylinder chamber into a sealed case;
A back pressure applying means that is provided in the cylinder, guides the high pressure gas discharged from the discharge valve mechanism into the sealed case to the blade rear end, and applies a back pressure to the blade;
In a hermetic rotary compressor equipped with
The inner ring portion of the rolling bearing is fitted to the rotating shaft eccentric portion,
The outer ring portion of the rolling bearing is also used as the roller with which the blade contacts,
The raceway surface of the rolling element interposed between the inner ring portion and the outer ring portion of the rolling bearing is formed on a roller inner diameter portion which is an outer ring inner diameter portion,
The width of the blade is T [mm], the outer radius of the roller is Rr [mm], the outermost radius of the inner raceway surface of the roller is Ri [mm], the Young's modulus of the roller is Er [MPa], The following relational expression (1) is established, where C [mm] is the distance between the moving bodies on the raceway and ΔP [MPa] is the differential pressure between the discharge pressure and the suction pressure during compressor operation. Hermetic rotary compressor.
Figure 0005360711
上記請求項1に記載の回転式圧縮機と、凝縮器と、膨張装置と、蒸発器とを冷媒管を介して連通して冷凍サイクルが構成される
ことを特徴とする冷凍サイクル装置。
A refrigeration cycle apparatus comprising the rotary compressor according to claim 1 , a condenser, an expansion device, and an evaporator connected via a refrigerant pipe.
JP2009077069A 2009-03-26 2009-03-26 Hermetic rotary compressor and refrigeration cycle equipment Active JP5360711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077069A JP5360711B2 (en) 2009-03-26 2009-03-26 Hermetic rotary compressor and refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077069A JP5360711B2 (en) 2009-03-26 2009-03-26 Hermetic rotary compressor and refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2010229866A JP2010229866A (en) 2010-10-14
JP5360711B2 true JP5360711B2 (en) 2013-12-04

Family

ID=43045924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077069A Active JP5360711B2 (en) 2009-03-26 2009-03-26 Hermetic rotary compressor and refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5360711B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609152B2 (en) * 2010-02-25 2014-10-22 日本精工株式会社 Rotary compressor
CN103206377B (en) * 2012-01-11 2015-11-18 广东美芝制冷设备有限公司 Rotary compressor
CN102889209B (en) * 2012-09-27 2015-05-20 广东美芝精密制造有限公司 Compression pump body, rotary compressor and refrigerating circulating device
KR102434918B1 (en) * 2020-03-13 2022-08-23 코우테크 주식회사 Fluid compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335287U (en) * 1989-08-12 1991-04-05
JPH05256283A (en) * 1992-03-11 1993-10-05 Daikin Ind Ltd Rolling piston type compressor
JPH07229488A (en) * 1994-02-18 1995-08-29 Hitachi Ltd Rotary compressor
JP3958443B2 (en) * 1998-08-07 2007-08-15 東芝キヤリア株式会社 Rotary compressor
JP2005127306A (en) * 2003-10-03 2005-05-19 Hitachi Ltd On-vehicle rotary compressor

Also Published As

Publication number Publication date
JP2010229866A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5358018B2 (en) Rotary compressor and refrigeration cycle apparatus
WO2009145232A1 (en) Enclosed compressor and refrigeration cycle device
TWI221883B (en) Rotary compressor
JP5260608B2 (en) Scroll compressor
JP5360711B2 (en) Hermetic rotary compressor and refrigeration cycle equipment
WO2014002970A1 (en) Scroll compressor
JP5348924B2 (en) Screw fluid machine
EP2811164B1 (en) Scroll compressor
JP5449999B2 (en) Hermetic compressor and refrigeration cycle equipment
US9945378B2 (en) Scroll compressor
JP4953974B2 (en) Rotary compressor
US9021937B2 (en) Reciprocating compressor
JP2007046537A (en) Hermetic rotary compressor and refrigeration cycle device using same
JP5091019B2 (en) Scroll expander
US20050207926A1 (en) Scroll compressor
JP2013241853A (en) Electric compressor
WO2016075768A1 (en) Scroll compressor
JP2016160793A (en) Rotary compressor and refrigerating cycle device
JPWO2004029461A1 (en) Scroll compressor
JP2009052462A (en) Scroll compressor
JP2014190176A (en) Rotary compressor and refrigeration cycle device
JP6441119B2 (en) Rotary compressor and refrigeration cycle apparatus
JP4013992B2 (en) Scroll type fluid machinery
JP3874018B2 (en) Scroll type fluid machinery
JP2006214335A (en) Scroll compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5360711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250