JP5360478B2 - Volatile harmful substance removal material - Google Patents

Volatile harmful substance removal material Download PDF

Info

Publication number
JP5360478B2
JP5360478B2 JP2009127614A JP2009127614A JP5360478B2 JP 5360478 B2 JP5360478 B2 JP 5360478B2 JP 2009127614 A JP2009127614 A JP 2009127614A JP 2009127614 A JP2009127614 A JP 2009127614A JP 5360478 B2 JP5360478 B2 JP 5360478B2
Authority
JP
Japan
Prior art keywords
activated carbon
pan
volatile harmful
manganese oxide
acnf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009127614A
Other languages
Japanese (ja)
Other versions
JP2010274178A (en
Inventor
勲 持田
聖昊 尹
仁 宮脇
正洋 佐藤
淳 丹羽
興哲 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Kansai Research Institute KRI Inc
Original Assignee
Kyushu University NUC
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Kansai Research Institute KRI Inc filed Critical Kyushu University NUC
Priority to JP2009127614A priority Critical patent/JP5360478B2/en
Publication of JP2010274178A publication Critical patent/JP2010274178A/en
Application granted granted Critical
Publication of JP5360478B2 publication Critical patent/JP5360478B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、揮発性有害物質の無害化処理に関するものであり、特に多湿条件における揮発性有害物質の高効率除去材に関するものである。   The present invention relates to a detoxification process for volatile harmful substances, and particularly relates to a highly efficient removal material for volatile harmful substances under humid conditions.

近年、ビルや住宅の気密性の向上に従い、人体に悪影響を引き起こすアンモニア、硫化水素、トリメチルアミン、メチルメルカプタン、ホルムアルデヒド、アセトアルデヒド、トルエン、キシレン、エチルベンゼン、スチレン、パラジクロロベンゼン等の特定悪臭物質またはシックハウス症候群原因物質(本発明では、これらの特定悪臭物質またはシックハウス症候群原因物質を網羅して揮発性有害物質と定義する)の除去に対する関心が高まっており、このような揮発性有害物質の除去対策として、様々な提案がなされている。   In recent years, according to the improvement of airtightness in buildings and houses, specific malodorous substances such as ammonia, hydrogen sulfide, trimethylamine, methyl mercaptan, formaldehyde, acetaldehyde, toluene, xylene, ethylbenzene, styrene, paradichlorobenzene and sick house syndrome cause adverse effects on the human body There is an increasing interest in the removal of substances (in the present invention, these specific malodorous substances or sick house syndrome causative substances are comprehensively defined as volatile harmful substances), and there are various measures for removing such volatile harmful substances. Proposals have been made.

主な除去方法としては、大きく分類すると、吸着法と分解法の二つがある。まず、吸着法は、空気中の揮発性有害物質を吸着剤に吸着させて除去する方法であって、簡単に有害物質を除去できる特長があるが、単なる物理吸着又は化学吸着であるために、飽和してしまうとすぐ吸着性能が低下する。特に高湿度における水蒸気の阻害吸着による吸着能低下を解決する術は未だ不十分である。   There are two main removal methods: adsorption method and decomposition method. First, the adsorption method is a method of removing volatile harmful substances in the air by adsorbing them to the adsorbent, and has the feature that it can easily remove harmful substances, but because it is just physical adsorption or chemical adsorption, As soon as saturation occurs, the adsorption performance decreases. In particular, the technique for solving the decrease in adsorption capacity due to the inhibition of water vapor adsorption at high humidity is still insufficient.

次に、分解法としては、高温燃焼法、オゾン分解法、光触媒分解法、触媒(光触媒を除く)分解法がある。   Next, as a decomposition method, there are a high temperature combustion method, an ozone decomposition method, a photocatalytic decomposition method, and a catalyst (excluding photocatalyst) decomposition method.

高温燃焼法は、有害有機物を燃焼させて完全に分解し、無害化する方法ではあるが、大型設備と多大なエネルギーを必要とするため、工場など多量に有害ガスを処理する場合にその用途が限定される。
オゾン分解法は、オゾンの酸化力を利用して揮発性有害物質を分解する技術であるが、オゾン発生設備に加え、残留オゾンの分解除去設備も同時に必要であるので、設備が複雑で、オゾンによる二次汚染の恐れもある。
光触媒分解法は、酸化チタンなど光触媒を用いて揮発性有害物質を分解、無害化する方法であるが、太陽光や白熱灯・蛍光灯など通常の生活空間では、光のうちの極一部しか光触媒反応に寄与しないため、揮発性有害物質の分解速度が非常に遅い。従って、分解速度を高めるためには、通常ブラックライト等を使用する必要があるが、その場合、ターゲットの揮発性有害物質よりも有害なオゾン発生の問題が懸念されている。特に室内使用の場合、発生オゾンによる人体への深刻な影響を考えるとその利用は非常に難しい。
The high-temperature combustion method burns harmful organic substances, completely decomposes them and renders them harmless. However, it requires large facilities and a large amount of energy, so it is used when processing a large amount of harmful gases such as in factories. Limited.
The ozonolysis method is a technology that decomposes volatile hazardous substances using the oxidizing power of ozone. However, in addition to the ozone generation equipment, equipment for the decomposition and removal of residual ozone is also necessary, so the equipment is complicated, There is also a risk of secondary contamination.
The photocatalytic decomposition method is a method of decomposing and detoxifying volatile harmful substances using a photocatalyst such as titanium oxide. However, in ordinary living spaces such as sunlight, incandescent lamps and fluorescent lamps, only a very small part of light is used. Since it does not contribute to the photocatalytic reaction, the decomposition rate of volatile harmful substances is very slow. Therefore, in order to increase the decomposition rate, it is usually necessary to use black light or the like. In that case, there is a concern that ozone is generated more harmful than the target volatile harmful substances. In particular, in the case of indoor use, the use of the generated ozone is very difficult considering the serious impact on the human body.

触媒分解法は、これらの問題点を解決するための非常に有効な手段とされており、近年金属又は金属酸化物を組み合わせた種々の分解触媒の開発が盛んに行なわれている。例えば、特開平11-276844号公報には、活性炭素繊維からなる担体に金(Au)元素からなる第1触媒成分と鉄などの金属酸化物からなる第2触媒成分とを組み合わせて担持した脱臭触媒が、特開2000−262907号公報には、例えば、金(Au)元素が三酸化二鉄上に担持された第1触媒単位、白金(Pt)元素が二酸化スズ上に担持された第2触媒単位およびイリジウム(Ir)元素が酸化ランタン上に担持された第3触媒単位を含む集積化脱臭触媒が、特開2001-187343号公報には、還元処理によって酸素欠損が導入された酸化物に貴金属を担持してなる常温浄化触媒が、特開2008‐55425号公報には、活性炭からなる多孔性担体に白金(Pt)など金属微粒子を担持し、更にアニオン界面活性剤を被覆した分解触媒がそれぞれ開示されている。これらの触媒はいずれも初期分解活性は優れているが、耐久性(長期間の分解活性の維持)についての実証例は殆どなく、尚高価な貴金属を使っているため、実用化触媒としては長寿命化並びに低コスト化が求められている。一方、特開2001−038207号公報には、高価な貴金属は使わず、高湿度条件下においても分解性能を発揮できるように、マンガンに鉄を組み合わせ、さらにセリウム(Ce)又はユーロピウム(Eu)を添加した分解触媒が提示されているが、いずれの触媒も相対湿度40%で反応温度を150℃に上げてもアセトアルデヒド(初期濃度210ppm)の分解率は高々50%前後で、まだ実用化には至っていない。   The catalytic cracking method is considered to be a very effective means for solving these problems, and in recent years, various cracking catalysts combining metals or metal oxides have been actively developed. For example, Japanese Patent Application Laid-Open No. 11-276844 discloses a deodorization in which a support made of activated carbon fiber is combined with a first catalyst component made of gold (Au) element and a second catalyst component made of a metal oxide such as iron. JP-A-2000-262907 discloses, for example, a first catalyst unit in which a gold (Au) element is supported on ferric trioxide and a second catalyst in which a platinum (Pt) element is supported on tin dioxide. An integrated deodorization catalyst including a catalyst unit and a third catalyst unit in which iridium (Ir) element is supported on lanthanum oxide is disclosed in Japanese Patent Laid-Open No. 2001-187343 as an oxide in which oxygen deficiency is introduced by reduction treatment. A normal temperature purification catalyst carrying a precious metal is disclosed in Japanese Patent Application Laid-Open No. 2008-55425 as a decomposition catalyst comprising a porous carrier made of activated carbon carrying metal fine particles such as platinum (Pt) and further coated with an anionic surfactant. Each is disclosed. All of these catalysts have excellent initial cracking activity, but there are few examples of durability (maintenance of long-term cracking activity), and since expensive precious metals are used, they are long as practical catalysts. There is a demand for lifetime and cost reduction. On the other hand, in Japanese Patent Laid-Open No. 2001-038207, expensive noble metals are not used, and iron is combined with manganese, and cerium (Ce) or europium (Eu) is used so that decomposition performance can be exhibited even under high humidity conditions. Although the added cracking catalyst is presented, the decomposition rate of acetaldehyde (initial concentration 210ppm) is at most around 50% even if the reaction temperature is raised to 150 ° C with 40% relative humidity. Not reached.

このような現状を踏まえ、高湿度下においても揮発性有害物質を完全に除去できる低コストの揮発性有害物質除去材並びにそれを用いた揮発性有害物質の除去技術の確立が強く求められている。   Based on this situation, there is a strong need to establish a low-cost volatile hazardous substance removal material that can completely remove volatile harmful substances even under high humidity, and a technology for removing volatile harmful substances using the material. .

特開平11−276844号公報JP-A-11-276844 特開2000−262907号公報JP 2000-262907 A 特開2001−187343号公報JP 2001-187343 A 特開2008―55425号公報JP 2008-55425 A 特開2001−038207号公報JP 2001-038207 A

これまでの研究より、揮発性有害物質の吸着には適当な細孔径が存在することが明らかになっている。例えば、ホルムアルデヒドの場合、平均細孔径0.7nm以下の吸着剤は0.8nmの吸着剤に比べて、約2.5〜3倍のHCHO吸着性能の差があるのがわかっている。   Previous studies have shown that there is an appropriate pore size for the adsorption of volatile hazardous substances. For example, in the case of formaldehyde, it has been found that an adsorbent having an average pore diameter of 0.7 nm or less has a difference in adsorption performance of HCHO of about 2.5 to 3 times compared to an adsorbent having a size of 0.8 nm.

また、多くの研究により、無機系酸化物由来多孔質材料に比べて比較的疎水性の炭素系多孔質材料とりわけ活性炭、活性炭素繊維などが揮発性有害物質の吸着に優れていることが分かっている。   In addition, many studies have shown that relatively hydrophobic carbon-based porous materials, especially activated carbon and activated carbon fibers, are better at adsorbing volatile harmful substances than inorganic oxide-derived porous materials. Yes.

しかし、水蒸気の阻害吸着の影響が大きなネックで、前記背景技術の部分で述べたように高湿度環境では揮発性有害物質除去能が著しく低下することも知られている。   However, it is also known that the effect of water vapor inhibition adsorption is a major bottleneck, and as described in the background section, the ability to remove volatile harmful substances is significantly reduced in a high humidity environment.

そこで、本発明では、高湿度の環境においても、ホルムアルデヒドなど揮発性有害物質を高効率で除去できる揮発性有害物質除去材を提供すること、さらに高価な貴金属を使用することなく高活性、長寿命、低コストの揮発性有害物質除去材を提供することを目的とした。   Therefore, the present invention provides a volatile harmful substance removing material that can remove volatile harmful substances such as formaldehyde with high efficiency even in a high humidity environment, and also has a high activity and long life without using expensive precious metals. An object of the present invention is to provide a low-cost volatile hazardous substance removing material.

本発明者らは、上記の目的を達成するために鋭意検討した結果、水蒸気の阻害吸着の影響を最小限にした浅い細孔を持つ活性炭素ナノ繊維を調製し、揮発性有害物質に対して従来の活性炭または活性炭素繊維に比べて優れた吸着除去能を有していることを確認した。   As a result of intensive studies to achieve the above-mentioned object, the present inventors have prepared activated carbon nanofibers having shallow pores that minimize the influence of water vapor inhibition adsorption, and are effective against volatile harmful substances. It was confirmed that it has superior adsorption removal ability compared with conventional activated carbon or activated carbon fiber.

また、この活性炭素ナノ繊維は吸着材としての特性のみならず、触媒担体としての特性にも非常に優れていることを確認した。   Moreover, it was confirmed that this activated carbon nanofiber is very excellent not only as an adsorbent but also as a catalyst carrier.

従って、この活性炭素ナノ繊維からなる吸着材をさらに触媒担持用担体とし、その上に触媒として金属酸化物、特に酸化マンガンをナノサイズで高分散させ、更に最適化することで、揮発性有害物質を活性炭素ナノ繊維上に高濃度で吸着させ、引き続き高活性金属酸化物ナノ粒子で酸化分解することにより、高湿度の環境においても揮発性有害物質を除去できる揮発性有害物質除去材およびその製造方法を見出し、本発明を完成した。   Therefore, the adsorbent made of activated carbon nanofibers is further used as a catalyst-supporting carrier, on which a metal oxide, particularly manganese oxide, is highly dispersed in nano-size as a catalyst, and further optimized, thereby reducing volatile harmful substances. Of volatile harmful substances that can be removed even in a high humidity environment by adsorbing the activated carbon nanofibers on the activated carbon nanofibers at a high concentration and subsequently oxidatively decomposing with the highly active metal oxide nanoparticles The method was found and the present invention was completed.

すなわち、本発明は、水蒸気の阻害吸着の影響を最小限にした浅い細孔を持つ活性炭素ナノ繊維および/または金属酸化物を高分散させた前記活性炭素ナノ繊維からなる揮発性有害物質除去材により、高湿度の条件においても揮発性有害物質を高効率で除去できる点にその要旨を有する。   That is, the present invention provides a volatile harmful substance removal material comprising activated carbon nanofibers having shallow pores and / or metal carbon oxides in which metal oxides are highly dispersed, in which the influence of water vapor inhibition adsorption is minimized. Therefore, it has the gist in that volatile harmful substances can be removed with high efficiency even under high humidity conditions.

すなわち、本発明は以下に記載の事項を特徴とするものである。   That is, the present invention is characterized by the following matters.

〔1〕賦活により導入される細孔を持つ活性炭素ナノ繊維に金属酸化物を高分散させた活性炭素ナノ繊維からなる揮発性有害物質除去材であって、
前記活性炭素ナノ繊維の前駆体が、繊径1μm以下のPAN(ポリアクリロニトリル)系炭素ナノ繊維であり、
前記金属酸化物が、主としてMn の構造を有する酸化マンガンで、平均粒径が20nm以下のナノサイズで活性炭素ナノ繊維上に担持量が0.1〜20質量%で高分散されており、
揮発性有害物質であるホルムアルデヒド(HCHO)を除去する
ことを特徴とする揮発性有害物質除去材。
[1] A volatile harmful substance removing material comprising activated carbon nanofibers in which metal oxides are highly dispersed in activated carbon nanofibers having pores introduced by activation ,
The precursor of the activated carbon nanofiber is a PAN (polyacrylonitrile) -based carbon nanofiber having a fine diameter of 1 μm or less,
The metal oxide is mainly manganese oxide having a structure of Mn 3 O 4 and is highly dispersed at a supported amount of 0.1 to 20% by mass on activated carbon nanofibers with an average particle diameter of 20 nm or less in nano size. And
A volatile harmful substance removing material, characterized by removing formaldehyde (HCHO) which is a volatile harmful substance.

本発明では、水蒸気の阻害吸着の影響を最小限にした浅い細孔を持つ活性炭素ナノ繊維(吸着材又は触媒担体)を調製し、この活性炭素ナノ繊維上に金属酸化物、特に酸化マンガンを高分散させ、更に最適化することで、ホルムアルデヒドなど揮発性有害物質を活性炭素ナノ繊維上に高濃度で吸着させ、さらに高活性・低コストの金属酸化物ナノ粒子を用いて酸化分解することにより、高湿度の環境においてもホルムアルデヒドなど揮発性有害物質を高効率且つ持続的に除去できるので、日本のような高湿度の気候を持つ環境において屋内空気清浄器又はエアコンフィルター等として広範に利用できる。   In the present invention, activated carbon nanofibers (adsorbent or catalyst support) having shallow pores that minimize the influence of water vapor inhibition adsorption are prepared, and a metal oxide, particularly manganese oxide, is placed on the activated carbon nanofibers. By highly dispersing and further optimizing, volatile harmful substances such as formaldehyde are adsorbed on activated carbon nanofibers at a high concentration, and further oxidized and decomposed using metal oxide nanoparticles with high activity and low cost. Since volatile harmful substances such as formaldehyde can be removed efficiently and continuously even in a high humidity environment, it can be widely used as an indoor air purifier or an air conditioner filter in an environment with a high humidity climate such as Japan.

図1は、PAN系活性炭素ナノ繊維(PAN-ACNF)のSEM像を示す。FIG. 1 shows an SEM image of PAN-based activated carbon nanofiber (PAN-ACNF). 図2は、PAN-ACNF調製についてのフローチャートを示す。FIG. 2 shows a flowchart for PAN-ACNF preparation. 図3は、PAN系活性炭素ナノ繊維(PAN-ACNF)への酸化マンガン担持についてのフローチャートを示す。FIG. 3 shows a flowchart for supporting manganese oxide on PAN-based activated carbon nanofibers (PAN-ACNF). 図4は、酸化マンガン担持PAN-ACNFのX線回折パターンを示す。FIG. 4 shows an X-ray diffraction pattern of PAN-ACNF supporting manganese oxide. 図5は、酸化マンガン担持PAN-ACNFのSEMおよびTEM像を示す。FIG. 5 shows SEM and TEM images of PAN-ACNF supported on manganese oxide. 図6は、ホルムアルデヒド除去活性評価装置のモデル図である。FIG. 6 is a model diagram of a formaldehyde removal activity evaluation apparatus. 図7は、PAN-ACNF、FE100、FE300のそれぞれの担体及びその酸化マンガン担持触媒の乾燥条件下における酸化マンガン担持量とHCHO破過時間の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the amount of manganese oxide supported on each of PAN-ACNF, FE100, and FE300 and the manganese oxide-supported catalyst and the HCHO breakthrough time under dry conditions. 図8は、水蒸気発生装置のモデル図である。FIG. 8 is a model diagram of the water vapor generator.

本発明者らは、水蒸気の阻害吸着の影響を少なくするために、多孔質吸着材又は担体材料の疎水性向上だけでは本質的な問題解決には繋がらないことに着目して、浅くて均一な細孔を有する活性炭素ナノ繊維を吸着材又は触媒担体とすることにより、水蒸気の脱着を容易にさせ、水蒸気の阻害吸着を抑制できるようにした。そして、たとえ親水性金属酸化物触媒を担持した場合においても同様に水蒸気の脱着を容易にさせ、水蒸気の阻害吸着を抑制できるようにした。   In order to reduce the influence of water vapor inhibition adsorption, the present inventors pay attention to the fact that improvement of the hydrophobicity of the porous adsorbent or the carrier material alone does not lead to an essential solution. By using activated carbon nanofibers having pores as an adsorbent or a catalyst carrier, it is possible to facilitate desorption of water vapor and suppress water vapor inhibition adsorption. Further, even when a hydrophilic metal oxide catalyst is supported, the desorption of water vapor is facilitated in the same manner, and the water vapor inhibition adsorption can be suppressed.

すなわち、水蒸気の阻害吸着の影響を最小限にした浅い細孔を持つ活性炭素ナノ繊維および/または金属酸化物を高分散させた前記活性炭素ナノ繊維からなることを特徴とする揮発性有害物質除去材を発明した。   That is, removal of volatile harmful substances, characterized by comprising activated carbon nanofibers having shallow pores and / or the above-mentioned activated carbon nanofibers in which metal oxide is highly dispersed, which minimizes the influence of water vapor inhibition adsorption Invented the material.

前記活性炭素ナノ繊維の前駆体(すなわち炭素ナノ繊維)は特に限定されるものではなく、PAN(ポリアクリロニトリル)系炭素ナノ繊維、コールタルピッチ系炭素ナノ繊維、石油ピッチ系炭素ナノ繊維、バイオマス系炭素ナノ繊維のいずれでもよく、望ましくは繊径1μm(ミクロン)以下のものが好ましい。   The precursor of the activated carbon nanofiber (that is, carbon nanofiber) is not particularly limited, and PAN (polyacrylonitrile) carbon nanofiber, coal tar pitch carbon nanofiber, petroleum pitch carbon nanofiber, and biomass type. Any of carbon nanofibers may be used, and those having a fine diameter of 1 μm (micron) or less are desirable.

繊径の下限は特にないが、数十nm(ナノメートル)、例えば20nmレベルまで細くすればさらによい。繊維が細ければ細孔が浅くても高比表面積の担体を得ることができ、水蒸気の阻害吸着の影響を最小限に留めることができる。   There is no particular lower limit of the fine diameter, but it is better if the diameter is reduced to several tens nm (nanometer), for example, 20 nm level. If the fiber is thin, a carrier having a high specific surface area can be obtained even if the pores are shallow, and the influence of water vapor inhibition adsorption can be minimized.

特に、PAN系の場合、コールタルピッチ系及び石油ピッチ系より分子量が遥かに高いため、電解紡糸などの方法により容易に炭素ナノ繊維を作ることができる。また、最近ではバイオマス由来天然植物繊維のフィブリル化技術の進歩により、例えば竹繊維の場合は20nm程度のナノ繊維製造技術も確立しつつある。一方、ピッチ系のナノ繊維化は気相成長法などにより可能である。   In particular, in the case of the PAN system, since the molecular weight is much higher than that of the coal tar pitch system and the petroleum pitch system, carbon nanofibers can be easily produced by a method such as electrospinning. In recent years, with the advance of fibrillation technology of biomass-derived natural plant fibers, for example, in the case of bamboo fibers, nanofiber production technology of about 20 nm is being established. On the other hand, the formation of pitch-based nanofibers can be achieved by vapor phase growth.

本発明の炭素ナノ繊維は、前記前駆体を賦活して熱による炭素ナノ繊維の構造の変形を防ぐために、賦活に先立って不融化処理を行なう必要がある。不融化は、空気流通下で200〜300℃まで徐々に昇温する方法で行なわれるが、この処理により繊維表面に導入された酸素が炭素ドメインを互いに繋ぎ、耐熱変形性が向上する。   In order to activate the precursor and prevent deformation of the carbon nanofiber structure due to heat, the carbon nanofiber of the present invention needs to be infusibilized prior to activation. Infusibilization is carried out by a method of gradually raising the temperature to 200 to 300 ° C. under air flow. Oxygen introduced on the fiber surface by this treatment connects the carbon domains to each other, and the heat distortion resistance is improved.

通常の活性炭、活性炭素繊維は、水蒸気賦活される場合が多いが、本発明においては、賦活は水蒸気賦活に限定されるものではない。すなわち、賦活に用いる酸化剤は水(水蒸気)に限定するものではなく、より強いものでは例えば空気(酸素)を使うことも可能であり、より弱いものでは例えば二酸化炭素などを使うことも可能であるが、水蒸気の場合、コントロール面、安全面、及び性能面においてより好適である。また、上記ガス賦活法以外に必要に応じて薬品賦活法を用いることも可能である。薬品賦活には、塩化亜鉛、塩化カルシウム、硫化カリウム、リン酸ナトリウム、硫酸カリウム、硫酸ナトリウム、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、リン酸、硫酸、硼酸など様々な塩類、酸、アルカリが使用可能であるが、賦活処理後、環境面及び安全面から薬剤成分を極力取り除く必要がある。   Ordinary activated carbon and activated carbon fiber are often steam-activated, but activation is not limited to steam activation in the present invention. That is, the oxidant used for activation is not limited to water (water vapor), but for stronger ones, for example, air (oxygen) can be used, and for weaker ones, for example, carbon dioxide can be used. However, water vapor is more suitable in terms of control, safety, and performance. In addition to the gas activation method, a chemical activation method may be used as necessary. For chemical activation, various salts such as zinc chloride, calcium chloride, potassium sulfide, sodium phosphate, potassium sulfate, sodium sulfate, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, phosphoric acid, sulfuric acid, boric acid, etc. Alkaline can be used, but it is necessary to remove the chemical component as much as possible from the environmental and safety aspects after the activation treatment.

炭素ナノ繊維を賦活処理することにより、炭素ナノ繊維表面に凹凸や細孔と共に、カルボキシル基(−COOH)、カルボニル基(>C=O)、ヒドロキシル基(−OH)などの官能基も形成されるので、物理吸着及び化学吸着に富んだ活性な表面を形成できる。   By activating carbon nanofibers, functional groups such as carboxyl groups (-COOH), carbonyl groups (> C = O), and hydroxyl groups (-OH) are formed on the carbon nanofiber surface along with irregularities and pores. Therefore, an active surface rich in physical adsorption and chemical adsorption can be formed.

本発明では、賦活処理などにより得られた上記のような活性表面を有する炭素ナノ繊維を「活性炭素ナノ繊維」とする。   In the present invention, carbon nanofibers having an active surface as described above obtained by activation treatment or the like are referred to as “activated carbon nanofibers”.

本発明においても賦活は、水蒸気賦活されるのがより好ましく、水蒸気賦活温度は、通常の活性炭、活性炭素繊維の水蒸気賦活温度は700〜1000℃であるが、本発明の炭素ナノ繊維の水蒸気賦活温度は、浅い細孔形成の要求から通常の活性炭の場合より低い温度の650℃未満が望ましい。
水蒸気賦活温度の下限は、水蒸気賦活をすることができれば特に制限がないが、500℃以上であることが好ましい。水蒸気賦活温度のより好ましい温度は500〜600℃である。
Also in the present invention, the activation is more preferably steam activated, and the steam activation temperature is normal activated carbon, and the steam activation temperature of activated carbon fibers is 700 to 1000 ° C., but the steam activation of the carbon nanofibers of the present invention is performed. The temperature is desirably lower than 650 ° C., which is lower than that of ordinary activated carbon, because of the requirement for shallow pore formation.
The lower limit of the steam activation temperature is not particularly limited as long as steam activation can be performed, but is preferably 500 ° C. or higher. A more preferable temperature of the steam activation temperature is 500 to 600 ° C.

前記活性炭素ナノ繊維に高分散させる金属酸化物の成分としては、金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os)などの貴金属と金属酸化物の組み合わせでもよいが、コストの面から高価な貴金属を使わず、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、チタン(Ti)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、アルミニウム(Al)、インジウム(In)、スズ(Sn)からなる元素群から選ばれた少なくとも1種の元素の酸化物から構成されてもよい。   The metal oxide components highly dispersed in the activated carbon nanofiber include gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru). ), Precious metals such as osmium (Os) and metal oxides may be combined, but from the viewpoint of cost, expensive precious metals are not used, magnesium (Mg), calcium (Ca), strontium (Sr), yttrium (Y), Lanthanum (La), Cerium (Ce), Praseodymium (Pr), Titanium (Ti), Zirconium (Zr), Niobium (Nb), Molybdenum (Mo), Manganese (Mn), Iron (Fe), Cobalt (Co), It may be composed of an oxide of at least one element selected from the group consisting of nickel (Ni), copper (Cu), zinc (Zn), aluminum (Al), indium (In), and tin (Sn). Good.

前記金属酸化物の平均粒径は20nm以下のナノサイズで活性炭素ナノ繊維上に高分散されたものが望ましく、前記金属酸化物の活性炭素ナノ繊維上への担持量は20質量%以下が望ましい。担持量の下限は特に限定されていないが、通常0.1質量%以上、望ましくは0.5質量%以上、より望ましくは1質量%以上である。   The average particle diameter of the metal oxide is preferably 20 nm or less and highly dispersed on the activated carbon nanofibers, and the supported amount of the metal oxide on the activated carbon nanofibers is desirably 20% by mass or less. . The lower limit of the loading amount is not particularly limited, but is usually 0.1% by mass or more, desirably 0.5% by mass or more, and more desirably 1% by mass or more.

前記揮発性有害物質除去材は低湿度又は乾燥条件下では勿論、相対湿度30〜90%の環境においても揮発性有害物質を高効率で除去できる。   The volatile harmful substance removing material can remove volatile harmful substances with high efficiency even in an environment with a relative humidity of 30 to 90% as well as under low humidity or dry conditions.

次に、より好ましい例として、前駆体の一例として繊径800nmのポリアクリロニトリル(PAN)系炭素ナノ繊維(PCNF)を用いた例について説明する。   Next, as a more preferable example, an example in which polyacrylonitrile (PAN) -based carbon nanofiber (PCNF) having a diameter of 800 nm is used as an example of the precursor will be described.

このPCNFは通常のPAN系炭素繊維(繊径 約6μm)に比べて非常に細く、またマイクロドメインサイズも約2nmと小さいので、賦活によって導入される細孔もマイクロドメインより浅くすることを可能にした。   This PCNF is much thinner than ordinary PAN-based carbon fiber (fine diameter: about 6μm) and the microdomain size is about 2nm, so that the pores introduced by activation can be made shallower than the microdomain. did.

PCNFは通常電解紡糸により繊維状に成型されるが、熱に対して弱い特性を持っており、賦活時に融解し繊維状構造を失う恐れがあるので、熱によるPCNFの構造の変形を防ぐために、賦活に先立って不融化処理を行なう必要がある。不融化は、空気流通下で200〜300℃まで徐々に昇温する方法で行なわれるが、この処理により繊維表面に導入された酸素が炭素ドメインを互いに繋ぎ、耐熱変形性が向上する。   PCNF is usually molded into a fibrous form by electrospinning, but has a characteristic that is weak against heat, and it may melt upon activation and lose its fibrous structure, so to prevent deformation of the PCNF structure due to heat, Prior to activation, it is necessary to perform infusibilization. Infusibilization is carried out by a method of gradually raising the temperature to 200 to 300 ° C. under air flow. Oxygen introduced on the fiber surface by this treatment connects the carbon domains to each other, and the heat distortion resistance is improved.

不融化された繊維を更に昇温して水蒸気賦活処理を行なうと、繊維表面に凹凸、細孔や活性官能基などが形成され、それにより活性化されたPAN系炭素ナノファイバー(以下、PAN-ACNFということがある)を得ることができる。繊維表面の細孔の構造やサイズ(直径、深さなど)は処理温度と時間の制御により任意にコントロールすることが可能であるが、対象除去物質の分子サイズに応じて適宜に処理条件を変えることもできる。   When the infusibilized fiber is further heated to perform steam activation treatment, irregularities, pores, active functional groups, etc. are formed on the fiber surface, and activated PAN-based carbon nanofiber (hereinafter referred to as PAN-) Sometimes called ACNF). The structure and size (diameter, depth, etc.) of the pores on the fiber surface can be arbitrarily controlled by controlling the treatment temperature and time, but the treatment conditions are appropriately changed according to the molecular size of the target removal substance. You can also.

通常の活性炭、活性炭素繊維の水蒸気賦活温度は700〜1000℃であるが、本発明の吸着材又は触媒担体としての活性炭素ナノ繊維の場合の賦活温度は650℃未満であり、望ましくは500〜600℃である。   Normal activated carbon and activated carbon fiber have a steam activation temperature of 700 to 1000 ° C., but in the case of activated carbon nanofiber as the adsorbent or catalyst carrier of the present invention, the activation temperature is less than 650 ° C., desirably 500 to 600 ° C.

石油ピッチ又はコールタールピッチ系炭素ナノ繊維の賦活処理の場合においても、前記PAN系の場合とほぼ同様であり、賦活処理により、炭素ナノ繊維表面に凹凸や細孔と共に、カルボキシル基(−COOH)、カルボニル基(>C=O)、ヒドロキシル基(−OH)などの官能基も形成されるので、物理吸着及び化学吸着に富んだ活性な表面を形成できる。   In the case of activation treatment of petroleum pitch or coal tar pitch-based carbon nanofibers, it is almost the same as in the case of the PAN system, and by the activation treatment, the surface of the carbon nanofibers together with irregularities and pores, carboxyl groups (—COOH) Since functional groups such as carbonyl group (> C = O) and hydroxyl group (-OH) are also formed, an active surface rich in physical adsorption and chemical adsorption can be formed.

本発明の揮発性有害物質の分解触媒成分としては、単なる分解活性から見ると、貴金属と金属酸化物の組み合わせでもよいが、高価な貴金属を使うため、コストの面からは安価な金属酸化物のほうがよい。又、触媒分解活性が強すぎると、高濃度で吸着・凝集された揮発性有機化合物類が発火する恐れもある。   The decomposition catalyst component of the volatile harmful substance of the present invention may be a combination of a noble metal and a metal oxide from the viewpoint of simple decomposition activity. However, since an expensive noble metal is used, an inexpensive metal oxide is used in terms of cost. Better. If the catalytic decomposition activity is too strong, volatile organic compounds adsorbed and aggregated at a high concentration may ignite.

従って、本発明者らは、コスト面、安全面のことをも考えて、基本的には貴金属を使わず、金属酸化物のみを活性炭素ナノ繊維に担持し、さらに高分散化を図ることにより、高分解活性、長寿命、低コストの揮発性有害物質除去材を見出した。金属酸化物としては一種または複数の金属酸化物から構成されてもよい。なお、金属酸化物が一種の場合には酸化マンガンが望ましい。   Therefore, the present inventors consider cost and safety, and basically do not use precious metals, but support only metal oxides on activated carbon nanofibers, and further achieve high dispersion. We have found a volatile hazardous substance removal material with high decomposition activity, long life and low cost. The metal oxide may be composed of one or more metal oxides. Note that manganese oxide is desirable when the metal oxide is a kind.

金属酸化物の平均粒径は、望ましくは20nm以下であり、さらに望ましくは15nm以下である。金属酸化物をナノサイズで活性炭素ナノ繊維上に高分散させることにより、触媒の活性点が増え、揮発性有害物質の分解速度と分解率が向上し、安価な金属化合物から高活性且つ高価な貴金属に匹敵する触媒効果を得ることが可能である。前記金属酸化物の活性炭素ナノ繊維上への担持量は通常0.1質量%以上、望ましくは0.5質量%以上、より望ましくは1質量%以上であり、上限は20質量%で十分である。   The average particle diameter of the metal oxide is desirably 20 nm or less, and more desirably 15 nm or less. By highly dispersing metal oxide on activated carbon nanofibers in nano size, the active point of the catalyst is increased, the decomposition rate and decomposition rate of volatile harmful substances are improved, and it is highly active and expensive from inexpensive metal compounds. It is possible to obtain a catalytic effect comparable to noble metals. The amount of the metal oxide supported on the activated carbon nanofiber is usually 0.1% by mass or more, desirably 0.5% by mass or more, more desirably 1% by mass or more, and an upper limit of 20% by mass is sufficient.

上述のように製造された揮発性有害物質除去材は、低湿度又は乾燥条件下では勿論、相対湿度30〜90%の環境においても揮発性有害物質を高効率で除去できる。これまでの研究によれば、通常の活性炭または活性炭素繊維の場合には、水分の阻害吸着により、揮発性有害物質の除去能が大きく低下するが、本発明の金属酸化物担持活性炭素ナノ繊維からなる揮発性有害物質除去材の場合は、後述実施例7の結果からもわかるように、却って除去材の破過に至る所要時間が長くなり、優れた除去率および耐久性を示す。これは、金属酸化物担持活性炭素ナノ繊維の表面に適度に吸着された水分子の存在がホルムアルデヒド(HCHO)類の吸着を促進することに起因すると思料される。   The volatile harmful substance removing material manufactured as described above can remove volatile harmful substances with high efficiency even in an environment with a relative humidity of 30 to 90% as well as under low humidity or dry conditions. According to research so far, in the case of normal activated carbon or activated carbon fiber, the ability to remove volatile harmful substances is greatly reduced due to water-inhibiting adsorption, but the metal oxide-supported activated carbon nanofiber of the present invention. In the case of the volatile harmful substance removing material comprising, as can be seen from the results of Example 7 which will be described later, the time required for the removal material to break through becomes longer, and an excellent removal rate and durability are exhibited. This is thought to be due to the presence of water molecules moderately adsorbed on the surface of the metal oxide-supported activated carbon nanofibers promoting the adsorption of formaldehyde (HCHO) s.

次いで、本発明の揮発性有害物質除去材の製造方法について詳細に説明する。
まず、活性炭素ナノ繊維は、前駆体の不融化とそれに続くナノ繊維の賦活からなる製造工程であって、電解紡糸等により製造された前駆体(例えば、PAN系ナノ繊維、石油ピッチ系ナノ繊維、コールタール系ナノ繊維の紡糸品など)を不融化処理後、一旦炭化処理を経てからさらに水蒸気賦活を行なうことも可能であるが、通常炭化と水蒸気賦活処理を同時に行なったほうが簡便である。
Next, the method for producing the volatile harmful substance removing material of the present invention will be described in detail.
First, activated carbon nanofiber is a manufacturing process consisting of infusibilization of precursor and subsequent activation of nanofiber, which is a precursor manufactured by electrospinning or the like (for example, PAN-based nanofiber, petroleum pitch-based nanofiber) It is also possible to perform steam activation after insolubilizing a coal tar nanofiber spinning product, etc., and then subjecting it to carbonization, but it is usually easier to perform carbonization and steam activation simultaneously.

以上のようにして製造された活性炭素ナノ繊維は、本発明の揮発性有害物質除去材および金属酸化物を高分散させた活性炭素ナノ繊維の担体として供される。   The activated carbon nanofibers produced as described above are used as a carrier for activated carbon nanofibers in which the volatile harmful substance removing material and the metal oxide of the present invention are highly dispersed.

次に、活性炭素ナノ繊維への触媒担持工程の好ましい工程は、前記活性炭素ナノ繊維製造工程で得られた担体(活性炭素ナノ繊維)を一定濃度の金属化合物溶液を用いて含浸処理し、均一に攪拌後、乾燥、熱処理して、担体上に触媒成分を金属酸化物の状態で担持させる一連の手順から成り立つ。   Next, a preferable step of the catalyst supporting step on the activated carbon nanofiber is to impregnate the support (activated carbon nanofiber) obtained in the activated carbon nanofiber production step using a metal compound solution having a constant concentration, Then, drying and heat treatment are performed, and the catalyst component is supported on the support in the form of a metal oxide.

ここで、金属化合物は無機塩でもよいが、カルボン酸塩またはアルコキシドのほうが担体の活性炭素ナノ繊維との親和性(濡れ性)がよく、高分散(ナノ分散)に適している。なお、カルボン酸塩またはアルコキシドの分散媒としては、アルコール等有機溶媒が好適である。   Here, the metal compound may be an inorganic salt, but carboxylate or alkoxide has better affinity (wetability) with the activated carbon nanofibers of the carrier and is suitable for high dispersion (nanodispersion). As the carboxylate or alkoxide dispersion medium, an organic solvent such as alcohol is suitable.

含浸処理後、溶媒を除去すると、金属化合物(例えば、酢酸マンガン)が担体表面に析出される。これを熱処理(焼成処理)すると、当該金属化合物は分解して金属酸化物(例えば、酸化マンガン)に転換される。ここで、焼成処理は空気雰囲気または不活性ガス雰囲気のどちらもよい。   When the solvent is removed after the impregnation treatment, a metal compound (for example, manganese acetate) is deposited on the surface of the support. When this is heat-treated (firing treatment), the metal compound is decomposed and converted into a metal oxide (for example, manganese oxide). Here, the firing treatment may be either an air atmosphere or an inert gas atmosphere.

金属酸化物担持後、担持量が多すぎる場合、比表面積や細孔容積が減少する場合があるが、このような場合は軽度の水蒸気賦活を補充し、比表面積と細孔容積を回復することも可能である。   After loading metal oxide, if the loading amount is too large, the specific surface area and pore volume may decrease. In such a case, supplementing with mild water vapor activation to restore the specific surface area and pore volume. Is also possible.

活性炭素ナノ繊維への触媒担持法としては、上記含浸法に限られず、混合法(混練法、スプレー法も含む)、イオン交換法、物理蒸着法(スパッタリング法)、化学蒸着法(CVD法)など既存方法のどちらを用いてもよいが、上記含浸法のほうが比較的に簡便で、低コストで、且つ分散性もよい。   The catalyst loading method on the activated carbon nanofiber is not limited to the above impregnation method, but is a mixing method (including kneading method and spray method), ion exchange method, physical vapor deposition method (sputtering method), chemical vapor deposition method (CVD method). Any of the existing methods may be used. However, the above impregnation method is relatively simple, low in cost, and good in dispersibility.

以上のようにして、水蒸気の阻害吸着の影響を最小限にした浅い細孔を持つ活性炭素ナノ繊維の調製工程と、この活性炭素ナノ繊維からなる担体上に触媒として金属酸化物、特に酸化マンガンをナノサイズで高分散させ、更に最適化することで、金属酸化物担持活性炭素ナノ繊維、すなわち本発明の揮発性有害物質除去材が完成される。   As described above, a process for preparing activated carbon nanofibers having shallow pores that minimizes the influence of water vapor inhibition adsorption, and a metal oxide, particularly manganese oxide, as a catalyst on the support made of this activated carbon nanofiber. Is highly dispersed in a nano-size, and further optimized, the metal oxide-supported activated carbon nanofiber, that is, the volatile harmful substance removing material of the present invention is completed.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

<1>活性炭素ナノ繊維(吸着材/担体)の調製
実施例1
前駆体として繊径約800nmのポリアクリロニトリル(PAN)系炭素ナノ繊維(PCNF、韓国Nanotechnics社)を用いた。このPCNFをボックス型電気炉内にPCNFを設置し、空気流通下(300mL/min)で常温から270℃まで9時間かけて昇温して不融化処理を行なった後、自然冷却した。続いて不融化されたサンプルを600℃まで昇温速度10℃/minで1時間水蒸気賦活をし、PAN系活性炭素ナノ繊維(PAN-ACNF)を得た。
その結果、出発原料PCNFに対するPAN-ACNFの収率は約57%であった。図1にPAN-ACNFの走査型電子顕微鏡(SEM)像を示す。不融化、賦活処理後も直径約800nmの繊維状形状が保持されているのが確認できる。PAN-ACNF調製のフローチャートを図2に示す。
<1> Preparation Example 1 of Activated Carbon Nanofiber (Adsorbent / Support)
A polyacrylonitrile (PAN) -based carbon nanofiber (PCNF, Korea Nanotechnics Co., Ltd.) having a diameter of about 800 nm was used as a precursor. The PCNF was placed in a box-type electric furnace, heated from room temperature to 270 ° C. over 9 hours under air flow (300 mL / min), infusibilized, and then naturally cooled. Subsequently, the infusible sample was steam activated at 600 ° C./min for 1 hour to 600 ° C. to obtain PAN-based activated carbon nanofibers (PAN-ACNF).
As a result, the yield of PAN-ACNF relative to the starting material PCNF was about 57%. Figure 1 shows a scanning electron microscope (SEM) image of PAN-ACNF. It can be confirmed that a fibrous shape having a diameter of about 800 nm is maintained even after infusibilization and activation treatment. A flow chart of PAN-ACNF preparation is shown in FIG.

比較例1〜2
担体の効果を比較するため、TOHO TENAX社より提供を受けたPAN系活性炭素繊維FE100およびFE300を用い、それぞれ比較例1、比較例2とした。
Comparative Examples 1-2
In order to compare the effects of the carriers, PAN-based activated carbon fibers FE100 and FE300 provided by TOHO TENAX were used as Comparative Example 1 and Comparative Example 2, respectively.

表1に、実施例1のPAN-ACNFと比較例1〜2のFE100およびFE300の元素分析値を比較した結果を示す。
Table 1 shows the results of comparing the elemental analysis values of PAN-ACNF of Example 1 and FE100 and FE300 of Comparative Examples 1-2.

<2>酸化マンガンの担持
実施例2〜5(PAN-ACNFへの酸化マンガンの担持)
前記実施例1により得られたPAN-ACNFを担体とし、次の方法で酸化マンガンを担持した。まず、酢酸マンガン四水和物とエタノール溶液にPAN-ACNFを含浸し、20時間撹拌した。撹拌の速度は約700〜800rpmとした。熱風循環乾燥器中にて80℃で乾燥させた後、電気管状炉を用い、空気流通下400℃で酢酸マンガンを熱分解し、酸化マンガン担持PAN-ACNFを得た。ここで、酸化マンガン担持量の影響を見るため、0.5、1、5、20wt.%と変化させた試料を調製し、それぞれ実施例2、実施例3、実施例4、実施例5とした。マンガン担持のフローチャーを図3に示す。
<2> Manganese oxide loading Examples 2 to 5 (Manganese oxide loading on PAN-ACNF)
Using PAN-ACNF obtained in Example 1 as a carrier, manganese oxide was supported by the following method. First, manganese acetate tetrahydrate and ethanol solution were impregnated with PAN-ACNF and stirred for 20 hours. The stirring speed was about 700 to 800 rpm. After drying at 80 ° C. in a hot air circulating drier, manganese acetate was thermally decomposed at 400 ° C. under an air flow using an electric tube furnace to obtain PAN-ACNF carrying manganese oxide. Here, in order to see the influence of the amount of manganese oxide supported, samples with varying amounts of 0.5, 1, 5, and 20 wt.% Were prepared, and were set as Example 2, Example 3, Example 4, and Example 5, respectively. A flow chart of manganese support is shown in FIG.

比較例3〜6(FE100への酸化マンガンの担持)
前記実施例2〜5のPAN-ACNFの代りにFE100を使用した以外は実施例2〜5と同様に酸化マンガンを担持した試料を調製し、酸化マンガン担持量を0.5、1、5、20wt.%とした場合を、それぞれ比較例3、比較例4、比較例5、比較例6とした。
Comparative Examples 3 to 6 (support of manganese oxide on FE100)
A sample carrying manganese oxide was prepared in the same manner as in Examples 2 to 5 except that FE100 was used instead of PAN-ACNF in Examples 2 to 5, and the manganese oxide loading was 0.5, 1, 5, 20 wt. The cases of% were designated as Comparative Example 3, Comparative Example 4, Comparative Example 5, and Comparative Example 6, respectively.

比較例7〜10(FE300への酸化マンガンの担持)
前記実施例2〜5のPAN-ACNFの代りにFE300を使用した以外は実施例2〜5と同様に酸化マンガンを担持した試料を調製し、酸化マンガン担持量を0.5、1、5、20wt.%とした場合を、それぞれ比較例7、比較例8、比較例9、比較例10とした。
Comparative Examples 7 to 10 (support of manganese oxide on FE300)
A sample carrying manganese oxide was prepared in the same manner as in Examples 2 to 5 except that FE300 was used instead of PAN-ACNF in Examples 2 to 5, and the manganese oxide loading was 0.5, 1, 5, and 20 wt. % Were designated as Comparative Example 7, Comparative Example 8, Comparative Example 9, and Comparative Example 10, respectively.

<3>担体(吸着材)及び担持触媒の細孔構造
上記のように調製した各試料の77K窒素吸着等温線測定から求めた比表面積、細孔容量、平均細孔径の値を表2に示す。酸化マンガンの担持量が1wt.%まではどの担体においても比表面積は大きく変化しないが、5wt.%以上になると表面積が減少することがわかった。触媒量を増やしすぎると、ミクロ孔が閉塞することに由来すると考えられる。
<3> Pore structure of support (adsorbent) and supported catalyst Table 2 shows specific surface area, pore volume, and average pore diameter values obtained from 77K nitrogen adsorption isotherm measurement of each sample prepared as described above. . It was found that the specific surface area did not change greatly in any support up to 1 wt.% Of manganese oxide, but the surface area decreased when it exceeded 5 wt.%. If the amount of the catalyst is increased too much, it is considered that the micropores are blocked.

<4>活性ナノ炭素繊維上への触媒の分散状態
PAN-ACNFに担持した酸化マンガンの構造および粒径を調べるため、粉末X線回折測定を行った結果を、図4に示す。担持した酸化マンガンは主としてMn3O4の構造をとっていること、担持量が20
wt.%の時にはMnO構造も含まれることが分かった。Debye-Sherrerの式を用いて2θ=28.880°のMn3O4(112)回折ピークから算出した平均粒子サイズは、5%担持のとき17.1nm、20%担持のときは24.7nmであり、図5に示すTEM観察において見られた酸化マンガン粒子サイズと良く一致している。
また、酸化マンガン担持PAN-ACNFの電子顕微鏡観察結果を図5に示す。SEM写真から、担持量5wt.%の試料では、酸化マンガン粒子が比較的に良く分散されているが、20wt.%の時は、粒子同士が凝集していることが見られた。透過型電子顕微鏡(TEM)を用いて、高倍率で観測した結果、担持量5wt.%の試料では繊維表面に数nm〜約20nmの酸化マンガン粒子がほぼ全面的に分布しているが、20%に担持量を増やすと、局部的に凝集して粒子径が大きくなっていることが確認された。
<4> Dispersion state of catalyst on activated nanocarbon fiber
FIG. 4 shows the results of powder X-ray diffraction measurement for investigating the structure and particle size of manganese oxide supported on PAN-ACNF. The supported manganese oxide mainly has the structure of Mn 3 O 4 and the supported amount is 20
It was found that MnO structure was also included when wt.%. The average particle size calculated from the Mn 3 O 4 (112) diffraction peak at 2θ = 28.880 ° using the Debye-Sherrer equation is 17.1 nm when 5% is supported, and 24.7 nm when 20% is supported. This is in good agreement with the manganese oxide particle size observed in the TEM observation shown in FIG.
Moreover, the electron microscope observation result of PAN-ACNF carrying manganese oxide is shown in FIG. From the SEM photograph, the manganese oxide particles were relatively well dispersed in the sample with a loading amount of 5 wt.%, But when the amount was 20 wt.%, The particles were found to aggregate. As a result of observation at a high magnification using a transmission electron microscope (TEM), manganese oxide particles of several nm to about 20 nm are distributed almost entirely on the fiber surface in the sample having a loading amount of 5 wt. When the loading was increased to%, it was confirmed that the particle size was increased by local aggregation.

<5>ホルムアルデヒド除去活性評価
実施例6(乾燥条件における活性評価)
ホルムアルデヒド除去活性評価のシステムと条件を図6に示す。ホルムアルデヒドを窒素と酸素で希釈した混合ガスを用いた。このとき、HCHO濃度は10ppmv、総流量100mL/min(20ppmvHCHO/N2:50mL/min、純N2:40mL/min、純O2:10mL/min)とした。試料0.05gを内径4mmのサンプルチューブに入れ、30℃の空気恒温槽の中に設置した。なお、試料の直径と高さの比は1対4とした。
酸化マンガン担持によるHCHO除去への影響をより詳細に比較検討するために、職業安全衛生管理局の定めるHCHOの環境規制値である0.5ppmに達する時間を破過時間としてプロットした(図7)。酸化マンガン未担持サンプルでは、PAN-ACNF(PAN系活性炭素ナノ繊維)が6時間以上もの最も長い破過時間を示した。このPAN-ACNFに酸化マンガンを担持すると、担持量が5wt.%までは担持量の増加とともに破過時間が長くなって2倍以上の約12時間以上を示した。しかしながら、担持量が20wt.%の試料においては、5%担持試料よりも破過時間が短くなった。これは、過剰な酸化マンガンがPAN-ACNFの外表面上において大きなクラスターを形成し、PAN-ACNFの持つHCHO吸着能が低下したことに起因すると考えられる。一方、FE100、FE300においても酸化マンガン担持によるHCHO除去能向上が観察されたが、PAN-ACNFに比較して低いレベルに留まった。PAN-ACNFに近い比表面積を持つFE100は酸化マンガン担持によりやや破過時間の延伸が見られたが、担持量の依存性は現時点でははっきりしない。FE300の場合、担持量5wt.%見の時に未担持に比べて2.5倍の大きな除去活性を見せたが、担持量を20wt.%に増やすと酸化マンガン未担持よりも短い破過時間を示した。なお、市販のMnO2粉末(未担持)50mgを用いて同様の測定を行ったところ、破過時間は約1時間であった。つまり、酸化マンガンを担持することで、ここで用いた三種類のどの炭素材料−酸化マンガン複合体においても活性が向上することが明らかとなった。特にPAN-ACNFは最も大きな効果を見せ、担持量5wt.%で最高の活性を示した。
<5> Formaldehyde removal activity evaluation example 6 (activity evaluation under dry conditions)
The system and conditions for the evaluation of formaldehyde removal activity are shown in FIG. A mixed gas obtained by diluting formaldehyde with nitrogen and oxygen was used. At this time, the HCHO concentration was 10 ppmv, and the total flow rate was 100 mL / min (20 ppmv HCHO / N 2 : 50 mL / min, pure N 2 : 40 mL / min, pure O 2 : 10 mL / min). 0.05 g of a sample was put in a sample tube having an inner diameter of 4 mm and placed in a 30 ° C. air constant temperature bath. Note that the ratio of the diameter and height of the sample was 1: 4.
In order to compare the effects of manganese oxide loading on HCHO removal in more detail, the time to reach 0.5 ppm, the HCHO environmental regulation value set by the Occupational Safety and Health Administration Bureau, was plotted as the breakthrough time (Fig. 7). In the sample not supported with manganese oxide, PAN-ACNF (PAN-based activated carbon nanofiber) showed the longest breakthrough time of 6 hours or more. When manganese oxide was supported on this PAN-ACNF, the breakthrough time increased with the increase in the supported amount up to 5 wt. However, the breakthrough time was shorter in the sample with 20 wt. This is thought to be because excess manganese oxide formed large clusters on the outer surface of PAN-ACNF, and the HCHO adsorption ability of PAN-ACNF decreased. On the other hand, in FE100 and FE300, the improvement of HCHO removal ability by supporting manganese oxide was observed, but it remained at a low level compared with PAN-ACNF. FE100, which has a specific surface area close to that of PAN-ACNF, has a slightly longer breakthrough time due to manganese oxide loading, but the dependence on loading is not clear at this time. In the case of FE300, when the loading amount was 5 wt.%, The removal activity was 2.5 times larger than that of unloading, but when the loading amount was increased to 20 wt.%, The breakthrough time was shorter than that of unsupported manganese oxide. . When the same measurement was performed using 50 mg of commercially available MnO 2 powder (unsupported), the breakthrough time was about 1 hour. That is, it became clear that the activity was improved in any of the three types of carbon material-manganese oxide composites used here by supporting manganese oxide. In particular, PAN-ACNF showed the greatest effect and showed the highest activity at a loading of 5 wt.%.

図7において、更に、酸化マンガン未担持のPAN-ACNF(PAN系活性炭素ナノ繊維)と酸化マンガンを担持した通常のPAN系炭素繊維(FE100及びFE300)を比較したところ、触媒未担持のPAN-ACNFの破過時間は、触媒担持のFE100及びFE300の全ての場合より長くなっていることがわかった。これは活性炭素ナノ繊維の触媒担体のみならず、吸着材としての性能も非常に優れていることを明らかにしている。   In FIG. 7, PAN-ACNF (PAN-based activated carbon nanofibers) not supporting manganese oxide and ordinary PAN-based carbon fibers (FE100 and FE300) supporting manganese oxide were compared. It was found that the ACNF breakthrough time was longer than in all cases of the catalyst-supported FE100 and FE300. This reveals that not only the active carbon nanofiber catalyst support but also the performance as an adsorbent is very excellent.

<6>湿潤条件における活性評価
実施例7
乾燥条件で最も高い活性を示した酸化マンガン5%担持PAN-ACNFと未担持PAN-ACNFについて相対湿度50%の条件でHCHO除去活性評価を行った。湿度の調整は約80〜100℃にて発生させた水蒸発と流速50mL/minのN2/O2(4/1,v/v)の混合をニードルバルブの開閉度合いを制御することで行った。水蒸気発生装置の概要を図8に示す。
この水蒸気を含むキャリアーガスと20ppmHCHO/N2ガスを30℃空気恒温槽内に設置した試料管の直前に混合した。試料を通過したガス中のHCHO濃度は検知管を用いて測定した。検知管はガステク社のホルムアルデヒド専用で2〜20ppmの測定範囲を持っているものを使用した。30分ごと測定をおこなって二つのサンプルの破過時間(検知管で検知できる2ppm以上のHCHO濃度になるまでの時間)を測定した。
相対湿度50%で測定結果、未担持PAN-ACNFの場合は約4時間40分で破過したのに対し、5wt.%の酸化マンガンを担持したPAN-ACNFは31時間以上破過が起こらないことが明らかとなった。酸化マンガン担持PAN-ACNFについて注目すると、乾燥条件と比較して湿潤条件では破過時間が2.4倍以上に延伸した。また、未担持PAN-ACNFに比べ酸化マンガン担持PAN-ACNFのHCHO除去能は6倍以上に相当し、湿潤下において酸化マンガン担持効果はより顕著であることがわかった。
なお、今後活性炭素ナノ繊維の構造の最適化並びに担持触媒の最適化を図ることで、さらなる性能アップとコストダウンも期待できる。
<6> Example 7 of activity evaluation under wet conditions
HCHO removal activity was evaluated under the conditions of 50% relative humidity for 5% manganese oxide-supported PAN-ACNF and unsupported PAN-ACNF, which showed the highest activity under dry conditions. Humidity adjustment is performed by controlling the degree of opening and closing of the needle valve to mix water evaporation generated at about 80-100 ° C and N 2 / O 2 (4/1, v / v) at a flow rate of 50 mL / min. It was. An outline of the steam generator is shown in FIG.
This carrier gas containing water vapor and 20 ppm HCHO / N 2 gas were mixed just before the sample tube placed in a 30 ° C. air thermostat. The concentration of HCHO in the gas that passed through the sample was measured using a detector tube. A detector tube with a measuring range of 2 to 20 ppm dedicated to formaldehyde manufactured by GASTECH was used. Measurements were taken every 30 minutes to measure the breakthrough time of the two samples (the time required to reach an HCHO concentration of 2 ppm or higher that can be detected with a detector tube).
As a result of measurement at 50% relative humidity, unsupported PAN-ACNF broke through in about 4 hours and 40 minutes, whereas PAN-ACNF loaded with 5 wt.% Manganese oxide did not break through for more than 31 hours It became clear. Focusing on PAN-ACNF with manganese oxide, the breakthrough time was extended 2.4 times or more under wet conditions compared to dry conditions. In addition, the HCHO removal ability of manganese oxide-supported PAN-ACNF was more than 6 times that of unsupported PAN-ACNF, and it was found that the manganese oxide support effect was more remarkable under wet conditions.
In the future, further improvements in performance and cost can be expected by optimizing the structure of activated carbon nanofibers and the supported catalyst.

本発明による常温分解触媒は揮発性有機化合物の除去、完全無害化に有効に利用でき、特に日本のような高湿度の気候を持つ環境において屋内空気清浄器又はエアコンフィルター等として広範に利用できる。   The room temperature decomposition catalyst according to the present invention can be effectively used for removing volatile organic compounds and making them completely harmless, and can be widely used as an indoor air purifier or an air conditioner filter in an environment having a high humidity climate such as Japan.

Claims (1)

賦活により導入される細孔を持つ活性炭素ナノ繊維に金属酸化物を高分散させた活性炭素ナノ繊維からなる揮発性有害物質除去材であって、
前記活性炭素ナノ繊維の前駆体が、繊径1μm以下のPAN(ポリアクリロニトリル)系炭素ナノ繊維であり、
前記金属酸化物が、主としてMn の構造を有する酸化マンガンで、平均粒径が20nm以下のナノサイズで活性炭素ナノ繊維上に担持量が0.1〜20質量%で高分散されており、
揮発性有害物質であるホルムアルデヒド(HCHO)を除去する
ことを特徴とする揮発性有害物質除去材。
A volatile harmful substance removing material comprising activated carbon nanofibers in which metal oxides are highly dispersed in activated carbon nanofibers having pores introduced by activation ,
The precursor of the activated carbon nanofiber is a PAN (polyacrylonitrile) -based carbon nanofiber having a fine diameter of 1 μm or less,
The metal oxide is mainly manganese oxide having a structure of Mn 3 O 4 and is highly dispersed at a supported amount of 0.1 to 20% by mass on activated carbon nanofibers with an average particle diameter of 20 nm or less in nano size. And
A volatile harmful substance removing material, characterized by removing formaldehyde (HCHO) which is a volatile harmful substance.
JP2009127614A 2009-05-27 2009-05-27 Volatile harmful substance removal material Expired - Fee Related JP5360478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009127614A JP5360478B2 (en) 2009-05-27 2009-05-27 Volatile harmful substance removal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127614A JP5360478B2 (en) 2009-05-27 2009-05-27 Volatile harmful substance removal material

Publications (2)

Publication Number Publication Date
JP2010274178A JP2010274178A (en) 2010-12-09
JP5360478B2 true JP5360478B2 (en) 2013-12-04

Family

ID=43421636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127614A Expired - Fee Related JP5360478B2 (en) 2009-05-27 2009-05-27 Volatile harmful substance removal material

Country Status (1)

Country Link
JP (1) JP5360478B2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101527102B1 (en) * 2010-11-26 2015-06-10 (주)바이오니아 Device for eliminating harmful substance
JP2013022498A (en) * 2011-07-20 2013-02-04 Ube Industries Ltd Detoxifying method of hydrogen sulfide
JP5690303B2 (en) * 2012-05-29 2015-03-25 中越パルプ工業株式会社 Bamboo fiber and manufacturing method thereof
JP6089579B2 (en) * 2012-10-23 2017-03-08 新日鐵住金株式会社 Carbon dioxide adsorbent, carbon dioxide recovery device using the same, and carbon dioxide recovery method
CN103263893A (en) * 2013-01-14 2013-08-28 无锡市凯利药业有限公司 Compound adsorption type formaldehyde decomposition agent
JP6396045B2 (en) * 2014-03-14 2018-09-26 フタムラ化学株式会社 Method for ozone oxidation reaction of VOC and / or gas phase inorganic reducing compound and method for producing ultrafine oxide particles used in the method
CN104437657A (en) * 2014-12-24 2015-03-25 天津工业大学 Fiber catalytic material for purifying formaldehyde gas and preparation method thereof
CN106140108B (en) * 2015-03-27 2020-10-23 中国科学院上海应用物理研究所 Polyantimonic acid/polyacrylonitrile composite ion exchanger and preparation method and application thereof
DE102015222486A1 (en) 2015-11-13 2017-05-18 Raumedic Ag Neutralization additive
CN107626200A (en) * 2016-07-18 2018-01-26 康宁股份有限公司 Mixed-metal oxides Formaldehyde decomposition catalyst filter and its manufacture method
CN106140090B (en) * 2016-08-31 2019-07-23 南京尚易环保科技有限公司 It is a kind of for removing the MnO of indoor formaldehyde2- ACF material and preparation method thereof
CN109963639A (en) * 2016-11-03 2019-07-02 科隆柏工业公司 Surface modified carbon and adsorbent for improved efficiency of gas contaminant removal
KR101947308B1 (en) * 2018-01-30 2019-02-12 연세대학교 산학협력단 Activated hollow porous carbon nano fiber for decreasing voc and its method
CN108298731B (en) * 2018-03-22 2021-10-29 沈阳建筑大学 Deep arsenic removal method
CN108434979A (en) * 2018-04-10 2018-08-24 苏州市晶协高新电子材料有限公司 A kind of processing system of organic exhaust gas
CN108906034A (en) * 2018-06-27 2018-11-30 宁波智通环保科技有限公司 A kind of catalysis material and preparation method thereof of room-temperature decomposition formaldehyde
CN108854424A (en) * 2018-07-12 2018-11-23 浙江四逸环保科技有限公司 A kind of composition capable of purifying air
JP7106390B2 (en) * 2018-08-21 2022-07-26 日本製紙株式会社 activated carbon fiber material
CN108939813B (en) * 2018-09-18 2020-10-20 北京林业大学 Preparation method of modified activated carbon for efficiently removing indoor formaldehyde
CN109364947A (en) * 2018-11-30 2019-02-22 中冶建筑研究总院有限公司 A kind of metal nanoparticle load type active carbon and its production equipment
CN109926044A (en) * 2019-02-14 2019-06-25 北京氦舶科技有限责任公司 A kind of manganese oxide-active carbon composite catalyst and its preparation method and application
CN112588298A (en) * 2020-12-29 2021-04-02 苏州美吉科环保科技有限公司 Composite catalyst for air purification and preparation method and application thereof
CN112588299A (en) * 2020-12-29 2021-04-02 苏州美吉科环保科技有限公司 Method for treating polluted air based on composite catalyst
CN112619607A (en) * 2021-01-07 2021-04-09 深圳市奇信集团股份有限公司 Formaldehyde adsorbent
CN113198488B (en) * 2021-03-31 2023-02-03 浙江工业大学 Activated carbon fiber loaded bimetallic catalyst for formaldehyde catalytic oxidation reaction and preparation and application thereof
CN113952975A (en) * 2021-10-19 2022-01-21 中国科学院江西稀土研究院 B, N co-doped carbon fiber-based catalytic material and preparation method thereof
CN114289055A (en) * 2021-12-30 2022-04-08 清华大学 Supported catalyst, preparation method and application thereof
CN114522666A (en) * 2022-02-17 2022-05-24 哈尔滨悟山青环保科技有限公司 Preparation method of multistage porous carbon fiber cloth integrating adsorption and degradation of formaldehyde
CN114713221B (en) * 2022-04-25 2023-12-08 南京工业大学 Preparation method of efficient sulfur poisoning resistant catalyst for VOCs treatment
CN114737392A (en) * 2022-05-19 2022-07-12 山东宽原新材料科技有限公司 Lyocell-based activated carbon fiber and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116236A (en) * 1993-10-20 1995-05-09 Kuraray Chem Corp Refrigerator deodorizing method
JPH08994A (en) * 1994-06-21 1996-01-09 Kuraray Chem Corp Metal oxide adsorptive activated carbon
JP2775399B2 (en) * 1995-01-24 1998-07-16 工業技術院長 Porous photocatalyst and method for producing the same
KR101188153B1 (en) * 2003-09-19 2012-10-05 데이진 가부시키가이샤 Fibrous activated carbon and nonwoven fabric made of same
JP4049774B2 (en) * 2004-12-20 2008-02-20 シャープ株式会社 Porous filter, method for producing porous filter, air cleaning device and air cleaning method
JP2007070738A (en) * 2005-09-05 2007-03-22 Gun Ei Chem Ind Co Ltd Extra fine phenol resin fiber, its assembly and method for producing the same
JP4744270B2 (en) * 2005-11-04 2011-08-10 株式会社Snt Sulfur compound removing agent, method for producing the same, and sulfur compound removing filter
JP4910137B2 (en) * 2006-08-08 2012-04-04 国立大学法人九州大学 Carbon fiber composite having excellent desulfurization characteristics and method for producing the same
JP5267760B2 (en) * 2007-03-07 2013-08-21 東洋紡株式会社 Carbon nanofiber sheet

Also Published As

Publication number Publication date
JP2010274178A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP5360478B2 (en) Volatile harmful substance removal material
CN109309213B (en) Carbon-coated nickel nano composite material and preparation method and application thereof
CN107876035B (en) Carbon quantum dot/titanium dioxide composite photocatalytic material and preparation method and application thereof
Ji et al. In-situ reduction of Ag nanoparticles on oxygenated mesoporous carbon fabric: Exceptional catalyst for nitroaromatics reduction
Sharma et al. Effects of structural disorder and nitrogen content on the oxygen reduction activity of polyvinylpyrrolidone-derived multi-doped carbon
JP5037843B2 (en) Method for producing photocatalyst-supported gas-adsorbing filter medium
KR20130023328A (en) Photocatalyst-graphenes-carbon nano-fiber composite and filter comprising the same
Wang et al. Promoting the generation of active oxygen over Ag-modified nanoflower-like α-MnO2 for soot oxidation: experimental and DFT studies
KR20130022960A (en) Photocatalyst-graphenes-carbon nano-fiber composite, mehod for producing the same, and filter comprising the same
Cui et al. In situ synthesis of MnO2@ SiO2–TiO2 nanofibrous membranes for room temperature degradation of formaldehyde
Wang et al. Metal–Organic Framework (MOF) template based efficient Pt/ZrO2@ C catalysts for selective catalytic reduction of H2 below 90° C
JP7441296B2 (en) Activated carbon manufacturing method
CN110694619A (en) Platinum and ruthenium bimetal loaded zirconium oxide nanotube composite material, preparation method thereof and application thereof in low-temperature thermal catalytic treatment of toluene
Yan et al. Fluorescent lamp promoted formaldehyde removal over CeO2 catalysts at ambient temperature
Gao et al. Excellent performance and outstanding resistance to SO2 and H2O for formaldehyde abatement over CoMn oxides boosted dual-precursor hierarchical porous biochars derived from liquidambar and orange peel
Wassner et al. Spherical Core–Shell Titanium (Oxy) nitride@ Nitrided Carbon Composites as Catalysts for the Oxygen Reduction Reaction: Synthesis and Electrocatalytic Performance
KR101216497B1 (en) Method for producing Ag-photocatalyst-carbon nano fiber complex, and filter comprising the same
Hernández-Ferrer et al. Effect of temperature and presence of minor amount of metal on porous carbon materials derived from ZIF8 pyrolysis for electrocatalysis
JP2011083693A (en) Material for adsorbing/decomposing volatile organic compound
Han et al. Effect of the well-designed functional groups and defects of porous carbon spheres on the catalytic oxidation performance
Zheng et al. In-situ platinum nanoparticles loaded dialdehyde modified sisal fiber-based activated carbon fiber paper for formaldehyde oxidation
Ma et al. Preparation, characterization and catalytic performance of polyoxometalate immobilized on the surface of halloysite
CN114653356B (en) Preparation method of lanthanum-doped cerium oxide catalyst material and formaldehyde-removing compound
JP6540990B2 (en) Aldehyde removal material using Ru (fcc) support
CN113751007A (en) Catalyst of carbon-coated nickel oxide and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Ref document number: 5360478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees