JP5359544B2 - Non-contact power transmission device, vehicle and non-contact power transmission system - Google Patents

Non-contact power transmission device, vehicle and non-contact power transmission system Download PDF

Info

Publication number
JP5359544B2
JP5359544B2 JP2009119976A JP2009119976A JP5359544B2 JP 5359544 B2 JP5359544 B2 JP 5359544B2 JP 2009119976 A JP2009119976 A JP 2009119976A JP 2009119976 A JP2009119976 A JP 2009119976A JP 5359544 B2 JP5359544 B2 JP 5359544B2
Authority
JP
Japan
Prior art keywords
resonator
resonance coil
power transmission
bobbin
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009119976A
Other languages
Japanese (ja)
Other versions
JP2010268660A (en
Inventor
真士 市川
将 佐々木
達 中村
平 菊池
幸宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009119976A priority Critical patent/JP5359544B2/en
Publication of JP2010268660A publication Critical patent/JP2010268660A/en
Application granted granted Critical
Publication of JP5359544B2 publication Critical patent/JP5359544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact power transmission device which is equipped with a secondary resonance coil capable of delivering power between itself and a primary resonance coil, by resonating with a resonator provided outside and including the primary resonance coil via an electromagnetic field, and in which the secondary resonance coil is cooled. <P>SOLUTION: The noncontact power transmission device 101 includes a resonator 112, capable of either receiving power from the resonator 221 by resonating with the resonator 221 provided outside via an electromagnetic field or transmitting power to the resonator 221 by resonating with the resonator 221 via the electromagnetic field; and the resonator 221 includes the primary resonance coil 240 and the resonator 112 includes a secondary resonance coil 110 and has a cooler for cooling the secondary resonance coil 110. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、非接触電力伝達装置、車両および非接触電力伝達システムに関し、特に、電磁場を介して共鳴することにより電力を伝達する非接触電力伝達装置、車両および非接触電力伝達システムに関する。   The present invention relates to a non-contact power transmission device, a vehicle, and a non-contact power transmission system, and more particularly to a non-contact power transmission device, a vehicle, and a non-contact power transmission system that transmit power by resonating via an electromagnetic field.

特開2000−115915号公報には、電気自動車に電力を供給するための電気自動車充電用コネクタ装置が提案されている。   Japanese Patent Laid-Open No. 2000-115915 proposes an electric vehicle charging connector device for supplying electric power to an electric vehicle.

電気自動車充電用コネクタ装置は、車両側コネクタと電源側コネクタとを備えている。そして、車両側コネクタは、二次コイルユニットと、この二次コイルユニットを保持するケースとを備え、電源側コネクタは、一次コイルユニットと、この一次コイルユニットを保持するケースとを備えている。   The electric vehicle charging connector device includes a vehicle side connector and a power source side connector. The vehicle-side connector includes a secondary coil unit and a case that holds the secondary coil unit, and the power-supply side connector includes a primary coil unit and a case that holds the primary coil unit.

一次コイルユニットは、一次コアと、この一次コアに装着された一次コイルとを含み、二次コイルユニットは、円筒状に形成された二次コアと、この二次コアの内周面に装着された二次コイルとを含む。二次コイルは、中空状に形成されており、この二次コイルの空芯部分に一次コイルが嵌入される。   The primary coil unit includes a primary core and a primary coil attached to the primary core. The secondary coil unit is attached to a cylindrically formed secondary core and an inner peripheral surface of the secondary core. Secondary coil. The secondary coil is formed in a hollow shape, and the primary coil is inserted into the air core portion of the secondary coil.

そして、電気自動車充電用コネクタ装置は、電磁誘導を利用して一次コイルから二次コイルに電力を送電し、電源から車両に搭載された蓄電装置へと電力を供給する。ここで、車両側コネクタおよび電源側コネクタには、両者を接合方向に貫通するように複数の流路が形成されている。   Then, the electric vehicle charging connector device transmits power from the primary coil to the secondary coil using electromagnetic induction, and supplies power from the power source to the power storage device mounted on the vehicle. Here, a plurality of flow paths are formed in the vehicle side connector and the power source side connector so as to penetrate both in the joining direction.

そして、車両側コネクタのケースと、電源側コネクタのケース同士を接合すると、両ケースに亘って流路が連通する。この流路内を冷却風が流れることで、各コネクタが冷却される。   And if the case of a vehicle side connector and the case of a power supply side connector are joined, a flow path will connect across both cases. As the cooling air flows through the flow path, each connector is cooled.

上記特開2000−115915号公報に記載された電気自動車充電用コネクタは、電磁誘導を利用しているため、充電時には、一次コイルと二次コイルとを近接させる必要がある。   Since the electric vehicle charging connector described in the above Japanese Patent Application Laid-Open No. 2000-115915 uses electromagnetic induction, it is necessary to bring the primary coil and the secondary coil close to each other during charging.

このため、特開2000−115915号公報に記載された電気自動車充電用コネクタにおいては、一次コイルの空芯部分に二次コイルを嵌入させている。このように、上記電気自動車充電用コネクタ装置においては充電時に嵌入作業が必要となり、充電作業が煩雑なものと成り易くなっている。   For this reason, in the electric vehicle charging connector described in Japanese Patent Application Laid-Open No. 2000-115915, the secondary coil is fitted into the air core portion of the primary coil. As described above, the electric vehicle charging connector device requires a fitting operation at the time of charging, and the charging operation is likely to be complicated.

上記のような電磁誘導を採用した充電装置においては、コイルが装着されたコアの温度が上昇すると、コアに生じるロスも大きくなる。さらに、コイルを構成する銅の抵抗も、温度が上昇すると大きくなるため、コイルおよびコアの冷却を行う必要がある。   In the charging device employing the electromagnetic induction as described above, when the temperature of the core on which the coil is mounted rises, the loss generated in the core also increases. Furthermore, since the resistance of copper constituting the coil increases as the temperature rises, it is necessary to cool the coil and the core.

このため、特開2000−115915号公報に記載された電気自動車充電用コネクタにおいては、上記のような流路を設けている。   For this reason, the electric vehicle charging connector described in Japanese Patent Laid-Open No. 2000-115915 is provided with the above-described flow path.

上述のように、電磁誘導を利用した電力伝達装置においては、充電作業が煩雑なものと成り易いという課題を有しており、このような課題を解決する手段として、たとえば、国際公開第2007/008646号パンフレットに記載されているように、電磁界を介して一次共振コイルと二次共振コイルとを共鳴させることで電力の授受を行う方法が考えられる。   As described above, the power transmission device using electromagnetic induction has a problem that the charging work tends to be complicated, and as means for solving such a problem, for example, International Publication No. 2007/2007 / As described in the pamphlet of 008646, there can be considered a method of transferring power by resonating the primary resonance coil and the secondary resonance coil via an electromagnetic field.

特開2000−115915号公報JP 2000-115915 A 国際公開第2007/008646号パンフレットInternational Publication No. 2007/008646 Pamphlet

上記国際公開第2007/008646号パンフレットに記載された非接触電力伝達装置においては、一次共振コイルと二次共振コイルとの間をたとえば、数メートル程度、離間させた状態で、二次共振コイルと一次共振コイルとの間で電力の授受を行うことができる。その一方で、電磁場を共鳴させてコイル間で電力を授受させると、コイルの温度が高くなり、コイルのインピーダンスが変化する場合がある。   In the non-contact power transmission device described in the pamphlet of International Publication No. 2007/008646, the secondary resonant coil is separated from the primary resonant coil and the secondary resonant coil by, for example, about several meters. Power can be exchanged with the primary resonance coil. On the other hand, when electric power is transferred between coils by resonating an electromagnetic field, the temperature of the coil increases and the impedance of the coil may change.

このように、コイルのインピーダンスが変化すると、コイル間で共鳴が生じ難くなり、充電効率が低下するという問題が生じる。   Thus, when the impedance of the coil changes, resonance hardly occurs between the coils, and there arises a problem that charging efficiency is lowered.

本発明は、上記のような課題に鑑みてなされたものであって、その目的は、外部に設けられ、一次共振コイルを含む共鳴器と電磁場を介して共鳴することにより、一次共振コイルとの間で電力の受け渡しをすることできる二次共振コイルを備えた非接触電力伝達装置において、二次共鳴コイルの冷却が図られた非接触電力伝達装置を提供することである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a resonance between a primary resonance coil and an externally provided resonator including the primary resonance coil via an electromagnetic field. An object of the present invention is to provide a non-contact power transmission device provided with a secondary resonance coil capable of transferring power between them, in which the secondary resonance coil is cooled.

本発明に係る非接触電力伝達装置は、外部に設けられた第1共鳴器と電磁場を介して共鳴し、第1共鳴器から電力を受電することと、第1共鳴器と電磁場を介して共鳴し、第1共鳴器に電力を送電することとの少なくとも一方が可能な第2共鳴器を備える。そして、上記第1共鳴器は、一次共振コイルを含み、第2共鳴器は、二次共振コイルを含み、非接触電力伝達装置は、二次共振コイルを冷却する冷却装置を有する。なお、本明細書中において、共鳴器とは、二次共振コイルのみで構成されたLC共振器および二次共振コイルおよびキャパシタ111を含むLC共振器のいずれも含む概念である。   The contactless power transmission device according to the present invention resonates with an externally provided first resonator via an electromagnetic field, receives electric power from the first resonator, and resonates with the first resonator via an electromagnetic field. And a second resonator capable of at least one of transmitting power to the first resonator. The first resonator includes a primary resonance coil, the second resonator includes a secondary resonance coil, and the non-contact power transmission device includes a cooling device that cools the secondary resonance coil. In this specification, the term “resonator” is a concept including both an LC resonator including only a secondary resonance coil and an LC resonator including the secondary resonance coil and the capacitor 111.

好ましくは、上記第2共鳴器は、二次共振コイルに接続されたキャパシタを含み、冷却装置は、二次共振コイルを収容する収容ケースと、収容ケース内に冷媒を供給する冷媒供給装置とを含み、キャパシタは、二次共振コイルより冷媒の流通方向上流側に配置される。   Preferably, the second resonator includes a capacitor connected to the secondary resonance coil, and the cooling device includes a storage case that stores the secondary resonance coil, and a refrigerant supply device that supplies the refrigerant into the storage case. The capacitor is disposed upstream of the secondary resonance coil in the refrigerant flow direction.

好ましくは、上記冷却装置は、二次共振コイルが外周面に装着されたボビンを含み、ボビンは、収容ケース内に収容され、ボビンの外周面と収容ケースの内周面とによって、冷媒が流通可能な冷却通路が形成される。   Preferably, the cooling device includes a bobbin in which a secondary resonance coil is mounted on the outer peripheral surface, the bobbin is accommodated in the accommodating case, and the refrigerant flows through the outer peripheral surface of the bobbin and the inner peripheral surface of the accommodating case. Possible cooling passages are formed.

好ましくは、上記冷却装置は、二次共振コイルを収容する収容ケースと、収容ケース内に冷媒を供給する冷媒供給装置と、二次共振コイルが外周面に装着されるボビンとを含む。そして、上記ボビンは、土台部と、土台部に回転可能に設けられた回転部と、回転部に設けられ、冷媒から受ける押圧力で回転部を回転させる羽根部とを含むと共に収容ケース内に配置され、二次共振コイルは、回転部の外周面上に設けられる。好ましくは、上記第2共鳴器は、二次共振コイルに接続されたキャパシタを含み、冷却装置は、キャパシタおよび二次共振コイルを収容する収容ケースと、収容ケース内に冷媒を供給する冷媒供給装置と、二次共振コイルが装着される中空筒状のボビンとを含み、ボビンは、収容ケース内に配置されると共に周壁部に冷媒が流通可能な流通口が形成され、キャパシタは、ボビン内に収容される。   Preferably, the cooling device includes a housing case that houses the secondary resonance coil, a refrigerant supply device that supplies a refrigerant into the housing case, and a bobbin on which the secondary resonance coil is mounted on the outer peripheral surface. The bobbin includes a base part, a rotating part rotatably provided on the base part, and a blade part that is provided on the rotating part and rotates the rotating part with a pressing force received from the refrigerant. The arranged secondary resonance coil is provided on the outer peripheral surface of the rotating part. Preferably, the second resonator includes a capacitor connected to the secondary resonance coil, and the cooling device includes a storage case that stores the capacitor and the secondary resonance coil, and a coolant supply device that supplies a coolant into the storage case. And a hollow cylindrical bobbin on which the secondary resonance coil is mounted. The bobbin is disposed in the housing case, and a circulation port through which the refrigerant can flow is formed in the peripheral wall portion. The capacitor is disposed in the bobbin. Be contained.

好ましくは、上記却装置は、二次共振コイルを収容する収容ケースと、二次共振コイルが外周面に装着される中空筒状のボビンと、ボビン内に冷媒を供給する冷媒供給装置とを含む。   Preferably, the rejection apparatus includes a housing case that houses the secondary resonance coil, a hollow cylindrical bobbin on which the secondary resonance coil is mounted on the outer peripheral surface, and a refrigerant supply device that supplies the refrigerant into the bobbin. .

好ましくは、上記二次共振コイルは、ボビンの内周面に装着される。本発明に係る車両は、上記非接触電力伝達装置を備える。本発明に係る非接触電力伝達システムは、上記第1共鳴器と、上記車両とを備える。   Preferably, the secondary resonance coil is attached to the inner peripheral surface of the bobbin. The vehicle according to the present invention includes the non-contact power transmission device. A non-contact power transmission system according to the present invention includes the first resonator and the vehicle.

本発明に係る非接触電力伝達装置、車両および非接触電力伝達システムによれば、二次共振コイルを含む第2共鳴器と、外部に設けられた一次共振コイルを含む第1共鳴器とを電磁場を介して良好に共鳴させることができ、電力の伝達効率の向上を図ることができる。   According to the non-contact power transmission device, the vehicle, and the non-contact power transmission system according to the present invention, the second resonator including the secondary resonance coil and the first resonator including the primary resonance coil provided outside are connected to the electromagnetic field. It is possible to resonate well via the power transmission, and to improve the power transmission efficiency.

非接触電力伝達装置101を含む車両と、車両外部に設けられた非接触電力伝達装置200とを備えた非接触電力伝達システムの全体構成図である。1 is an overall configuration diagram of a non-contact power transmission system including a vehicle including a non-contact power transmission device 101 and a non-contact power transmission device 200 provided outside the vehicle. 共鳴法による送電の原理を説明するための図である。It is a figure for demonstrating the principle of the power transmission by the resonance method. 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。It is the figure which showed the relationship between the distance from an electric current source (magnetic current source), and the intensity | strength of an electromagnetic field. 非接触電力伝達装置101を示す斜視図である。1 is a perspective view showing a non-contact power transmission device 101. FIG. 二次共振コイル110および二次コイル120等を示す断面図である。It is sectional drawing which shows the secondary resonant coil 110, the secondary coil 120 grade | etc.,. 図5に示すV−V線における断面図である。It is sectional drawing in the VV line shown in FIG. 本実施の形態2に係る非接触電力伝達装置が備える冷却装置131の断面図である。It is sectional drawing of the cooling device 131 with which the non-contact electric power transmission apparatus which concerns on this Embodiment 2 is provided. 図7のVIII−VIII線における断面図である。It is sectional drawing in the VIII-VIII line of FIG. 本実施の形態に係る非接触電力伝達装置の断面図である。It is sectional drawing of the non-contact electric power transmission apparatus which concerns on this Embodiment. 図9のX−X線における断面図である。It is sectional drawing in the XX line of FIG. 本実施の形態3に係る非接触電力伝達装置の冷却装置131の断面図である。It is sectional drawing of the cooling device 131 of the non-contact electric power transmission apparatus which concerns on this Embodiment 3. FIG. 図11に示された冷却装置131を模式的に示す斜視図である。It is a perspective view which shows typically the cooling device 131 shown by FIG. 本発明の実施の形態5に係る非接触電力伝達装置の冷却装置131の側断面図である。It is a sectional side view of the cooling device 131 of the non-contact electric power transmission apparatus which concerns on Embodiment 5 of this invention. 図13に示された冷却装置131の断面図である。It is sectional drawing of the cooling device 131 shown by FIG. 回転部161の外周面のうち、開口部138より、回転方向P後方側に位置する羽根部165を示す断面図である。6 is a cross-sectional view showing a blade portion 165 located on the rear side in the rotation direction P from the opening 138 in the outer peripheral surface of the rotation portion 161. FIG. 回転部161の外周面のうち、開口部138より回転方向P前方側に位置する羽根部165を示す断面図である。7 is a cross-sectional view showing a blade portion 165 located on the front side in the rotational direction P from the opening 138 in the outer peripheral surface of the rotating portion 161. FIG.

本実施の形態に係る非接触電力伝達装置101およびこの非接触電力伝達装置101を備えた車両について、図1から図16を用いて説明する。   A non-contact power transmission device 101 according to the present embodiment and a vehicle including the non-contact power transmission device 101 will be described with reference to FIGS. 1 to 16.

なお、以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。また、以下の実施の形態において、各々の構成要素は、特に記載がある場合を除き、本発明にとって必ずしも必須のものではない。また、以下に複数の実施の形態が存在する場合、特に記載がある場合を除き、各々の実施の形態の特徴部分を適宜組合わせることは、当初から予定されている。   Note that in the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In the following embodiments, each component is not necessarily essential for the present invention unless otherwise specified. In addition, when there are a plurality of embodiments below, it is planned from the beginning to appropriately combine the features of each embodiment unless otherwise specified.

(実施の形態1)
図1は、非接触電力伝達装置101を含む車両と、車両外部に設けられた非接触電力伝達装置200とを備えた非接触電力伝達システムの全体構成図である。図1を参照して、非接触電力伝達システムは、非接触電力伝達装置(非接触受電装置)101を搭載した車両100と、車両100の外部に設けられた非接触電力伝達装置(非接触給電装置)200とを備えている。
(Embodiment 1)
FIG. 1 is an overall configuration diagram of a non-contact power transmission system including a vehicle including a non-contact power transmission device 101 and a non-contact power transmission device 200 provided outside the vehicle. Referring to FIG. 1, a non-contact power transmission system includes a vehicle 100 on which a non-contact power transmission device (non-contact power reception device) 101 is mounted, and a non-contact power transmission device (non-contact power feeding) provided outside the vehicle 100. Device) 200.

車両100は、非接触電力伝達装置101と、蓄電装置150と、パワーコントロールユニット(以下「PCU(Power Control Unit)」とも称する。)160と、モータ170と、車両ECU(Electronic Control Unit)180とを含む。非接触電力伝達装置101は、車両100外部に設けられた非接触電力伝達装置200との間で電力の伝達を行う。   Vehicle 100 includes a non-contact power transmission device 101, a power storage device 150, a power control unit (hereinafter also referred to as “PCU (Power Control Unit)”) 160, a motor 170, and a vehicle ECU (Electronic Control Unit) 180. including. The non-contact power transmission device 101 transmits power to and from the non-contact power transmission device 200 provided outside the vehicle 100.

非接触電力伝達装置101は、二次共振コイル110およびキャパシタ111を含む共鳴器112と、整流器130と、コンバータ140と、シールド122と、二次共振コイル110および二次コイル120を冷却する冷却装置とを備えている。   The non-contact power transmission device 101 includes a resonator 112 including a secondary resonance coil 110 and a capacitor 111, a rectifier 130, a converter 140, a shield 122, a cooling device that cools the secondary resonance coil 110 and the secondary coil 120. And.

シールド122は、銅等の金属材料、銅等の金属材料を含む樹脂、銅等を含むスポンジ等によって構成されており、電磁波を反射可能とされている。このシールド122内に共鳴器112および二次コイル120が収容されている。シールド122の下端部には、開口部が形成されている。   The shield 122 is made of a metal material such as copper, a resin containing a metal material such as copper, a sponge containing copper or the like, and can reflect electromagnetic waves. The resonator 112 and the secondary coil 120 are accommodated in the shield 122. An opening is formed at the lower end of the shield 122.

シールド122および二次共振コイル110は、たとえば車体下部に配設される。二次共振コイル110の両端には、キャパシタ111が接続されており、この二次共振コイル110およびキャパシタ111によって共鳴器112(LC共振器)が構成されている。そして、二次共振コイル110およびキャパシタ111を含むLC共振器が、非接触電力伝達装置200の一次共振コイル240およびキャパシタ232を含む共鳴器221(LC共振器)と電磁場を介して共鳴することで、二次共振コイル110と非接触電力伝達装置200の一次共振コイル240との間で電力の授受が行われる。具体的には、二次共振コイル110が一次共振コイル240から電力を受電することと、一次共振コイル240が二次共振コイル110から電力を受電することとの少なくとも一方が行われる。   The shield 122 and the secondary resonance coil 110 are disposed, for example, at the lower part of the vehicle body. A capacitor 111 is connected to both ends of the secondary resonance coil 110, and the secondary resonance coil 110 and the capacitor 111 constitute a resonator 112 (LC resonator). Then, the LC resonator including the secondary resonance coil 110 and the capacitor 111 resonates with the resonator 221 (LC resonator) including the primary resonance coil 240 and the capacitor 232 via the electromagnetic field via the non-contact power transmission apparatus 200. Electric power is transferred between the secondary resonance coil 110 and the primary resonance coil 240 of the non-contact power transmission device 200. Specifically, at least one of the secondary resonance coil 110 receiving power from the primary resonance coil 240 and the primary resonance coil 240 receiving power from the secondary resonance coil 110 is performed.

非接触電力伝達装置200の一次共振コイル240との距離や、一次共振コイル240を含む共鳴器221と二次共振コイル110を含む共鳴器112との共鳴周波数等に基づいて、一次共振コイル240と二次共振コイル110との共鳴強度を示すQ値(たとえば、Q>100)およびその結合度を示すκ等が大きくなるように二次共振コイル110の巻数が適宜設定される。   Based on the distance from the primary resonance coil 240 of the non-contact power transmission device 200, the resonance frequency between the resonator 221 including the primary resonance coil 240 and the resonator 112 including the secondary resonance coil 110, and the like, The number of turns of the secondary resonance coil 110 is appropriately set so that the Q value (for example, Q> 100) indicating the resonance strength with the secondary resonance coil 110 and κ indicating the coupling degree thereof are increased.

二次コイル120は、二次共振コイル110と同軸上に配設され、電磁誘導により二次共振コイル110と磁気的に結合可能である。この二次コイル120は、二次共振コイル110により受電された電力を電磁誘導により取出して整流器130へ出力する。   The secondary coil 120 is disposed coaxially with the secondary resonance coil 110 and can be magnetically coupled to the secondary resonance coil 110 by electromagnetic induction. The secondary coil 120 takes out the electric power received by the secondary resonance coil 110 by electromagnetic induction and outputs it to the rectifier 130.

整流器130は、二次コイル120によって取出された交流電力を整流する。DC/DCコンバータ140は、車両ECU180からの制御信号に基づいて、整流器130によって整流された電力を蓄電装置150の電圧レベルに変換して蓄電装置150へ出力する。なお、車両の走行中に非接触電力伝達装置200から受電する場合には、DC/DCコンバータ140は、整流器130によって整流された電力をシステム電圧に変換してPCU160へ直接供給してもよい。また、DC/DCコンバータ140は、必ずしも必要ではなく、二次コイル120によって取出された交流電力が整流器130によって整流された後に直接蓄電装置150に与えられるようにしてもよい。   The rectifier 130 rectifies the AC power extracted by the secondary coil 120. DC / DC converter 140 converts the power rectified by rectifier 130 into a voltage level of power storage device 150 based on a control signal from vehicle ECU 180 and outputs the voltage to power storage device 150. When receiving power from non-contact power transmission device 200 while the vehicle is traveling, DC / DC converter 140 may convert the power rectified by rectifier 130 into a system voltage and supply it directly to PCU 160. DC / DC converter 140 is not necessarily required, and the AC power extracted by secondary coil 120 may be directly rectified by rectifier 130 and then directly supplied to power storage device 150.

蓄電装置150は、再充電可能な直流電源であり、たとえばリチウムイオンやニッケル水素などの二次電池から成る。蓄電装置150は、DC/DCコンバータ140から供給される電力を蓄えるほか、モータ170によって発電される回生電力も蓄える。そして、蓄電装置150は、その蓄えた電力をPCU160へ供給する。なお、蓄電装置150として大容量のキャパシタも採用可能であり、非接触電力伝達装置200から供給される電力やモータ170からの回生電力を一時的に蓄え、その蓄えた電力をPCU160へ供給可能な電力バッファであれば如何なるものでもよい。   The power storage device 150 is a rechargeable DC power source, and is composed of, for example, a secondary battery such as lithium ion or nickel metal hydride. The power storage device 150 stores power supplied from the DC / DC converter 140 and also stores regenerative power generated by the motor 170. Then, power storage device 150 supplies the stored power to PCU 160. Note that a large-capacity capacitor can also be used as the power storage device 150, and the power supplied from the non-contact power transmission device 200 and the regenerative power from the motor 170 can be temporarily stored, and the stored power can be supplied to the PCU 160. Any power buffer may be used.

PCU160は、蓄電装置150から出力される電力あるいはDC/DCコンバータ140から直接供給される電力によってモータ170を駆動する。また、PCU160は、モータ170により発電された回生電力を整流して蓄電装置150へ出力し、蓄電装置150を充電する。モータ170は、PCU160によって駆動され、車両駆動力を発生して駆動輪へ出力する。また、モータ170は、駆動輪や図示されないエンジンから受ける運動エネルギーによって発電し、その発電した回生電力をPCU160へ出力する。   PCU 160 drives motor 170 with power output from power storage device 150 or power directly supplied from DC / DC converter 140. PCU 160 also rectifies the regenerative power generated by motor 170 and outputs the rectified power to power storage device 150 to charge power storage device 150. The motor 170 is driven by the PCU 160 to generate a vehicle driving force and output it to driving wheels. Motor 170 generates electricity using kinetic energy received from driving wheels or an engine (not shown), and outputs the generated regenerative power to PCU 160.

車両ECU180は、非接触電力伝達装置200から車両100への給電時、DC/DCコンバータ140を制御する。車両ECU180は、たとえば、DC/DCコンバータ140を制御することによって、整流器130とDC/DCコンバータ140との間の電圧を所定の目標電圧に制御する。また、車両ECU180は、車両の走行時、車両の走行状況や蓄電装置150の充電状態(「SOC(State Of Charge)」とも称される。)に基づいてPCU160を制御する。   Vehicle ECU 180 controls DC / DC converter 140 when power is supplied from non-contact power transmission apparatus 200 to vehicle 100. The vehicle ECU 180 controls the voltage between the rectifier 130 and the DC / DC converter 140 to a predetermined target voltage by controlling the DC / DC converter 140, for example. In addition, vehicle ECU 180 controls PCU 160 based on the traveling state of the vehicle and the state of charge of power storage device 150 (also referred to as “SOC (State Of Charge)”) when the vehicle is traveling.

一方、非接触電力伝達装置200は、、一次コイル230および一次共振コイル240を含む共鳴器221と、交流電源210と、高周波電力ドライバ220と、シールド231とを含む。図1に示す例では、シールド231は、地面に埋め込まれており、シールド231内に一次共振コイル240と一次コイル230とが収容されている。このシールド231は、電磁波を反射可能材料によって構成されており、たとえば、シールド231は、銅等の金属材料、銅等の金属材料を含む樹脂、銅等を含むスポンジ等によって構成されている。なお、シールド231は上方に向けて開口している。   On the other hand, non-contact power transmission device 200 includes a resonator 221 including a primary coil 230 and a primary resonance coil 240, an AC power supply 210, a high-frequency power driver 220, and a shield 231. In the example illustrated in FIG. 1, the shield 231 is embedded in the ground, and the primary resonance coil 240 and the primary coil 230 are accommodated in the shield 231. The shield 231 is made of a material that can reflect electromagnetic waves. For example, the shield 231 is made of a metal material such as copper, a resin containing a metal material such as copper, a sponge containing copper, or the like. The shield 231 opens upward.

交流電源210は、車両外部の電源であり、たとえば系統電源である。高周波電力ドライバ220は、交流電源210から受ける電力を高周波の電力に変換し、その変換した高周波電力を一次コイル230へ供給する。なお、高周波電力ドライバ220が生成する高
周波電力の周波数は、たとえば1M〜10数MHzである。
AC power supply 210 is a power supply external to the vehicle, for example, a system power supply. The high frequency power driver 220 converts power received from the AC power source 210 into high frequency power, and supplies the converted high frequency power to the primary coil 230. Note that the frequency of the high-frequency power generated by the high-frequency power driver 220 is, for example, 1M to 10 and several MHz.

一次コイル230は、一次共振コイル240と同軸上に配設され、電磁誘導により一次共振コイル240と磁気的に結合可能である。そして、一次コイル230は、高周波電力ドライバ220から供給される高周波電力を電磁誘導により一次共振コイル240へ給電する。   The primary coil 230 is disposed coaxially with the primary resonance coil 240 and can be magnetically coupled to the primary resonance coil 240 by electromagnetic induction. The primary coil 230 supplies the high frequency power supplied from the high frequency power driver 220 to the primary resonance coil 240 by electromagnetic induction.

一次共振コイル240は、たとえば地面近傍に配設される。共鳴器221も、車両100の共鳴器112と電磁場を介して共鳴することにより車両100へ電力を送電する。図1に示す例では、二次共振コイル110および一次共振コイル240には、いずれにもキャパシタが接続されているが、いずれのコイルも両端がオープン(非接続)のLC共振コイルとしてもよい。この場合、二次共振コイル110および一次共振コイル240の容量成分は、コイルの浮遊容量である。   Primary resonance coil 240 is disposed near the ground, for example. The resonator 221 also transmits electric power to the vehicle 100 by resonating with the resonator 112 of the vehicle 100 via an electromagnetic field. In the example shown in FIG. 1, a capacitor is connected to both the secondary resonance coil 110 and the primary resonance coil 240, but either coil may be an LC resonance coil with both ends open (not connected). In this case, the capacitance component of the secondary resonance coil 110 and the primary resonance coil 240 is the stray capacitance of the coil.

この一次共振コイル240も、車両100の二次共振コイル110との距離や、一次共振コイル240および二次共振コイル110の共鳴周波数等に基づいて、Q値(たとえば、Q>100)および結合度κ等が大きくなるようにその巻数が適宜設定される。   The primary resonance coil 240 also has a Q value (for example, Q> 100) and a degree of coupling based on the distance from the secondary resonance coil 110 of the vehicle 100, the resonance frequencies of the primary resonance coil 240 and the secondary resonance coil 110, and the like. The number of turns is appropriately set so that κ and the like are increased.

図2は、共鳴法による送電の原理を説明するための図である。図2を参照して、この共鳴法では、2つの音叉が共鳴するのと同様に、同じ固有振動数を有する2つのLC共振コイルが電磁場(近接場)において共鳴することによって、一方のコイルから他方のコイルへ電磁場を介して電力が伝送される。   FIG. 2 is a diagram for explaining the principle of power transmission by the resonance method. Referring to FIG. 2, in this resonance method, in the same way as two tuning forks resonate, two LC resonance coils having the same natural frequency resonate in an electromagnetic field (near field), and thereby, from one coil. Electric power is transmitted to the other coil via an electromagnetic field.

具体的には、高周波電源310に一次コイル320を接続し、電磁誘導により一次コイル320と磁気的に結合される一次共振コイル330へ1M〜10数MHzの高周波電力を給電する。一次共振コイル330には、図示されないキャパシタが接続されており、この一次共振コイル330と図示されないキャパシタとによってLC共振器が構成されている。なお、上記キャパシタは必須の構成ではなく、一次共振コイル330のインダクタンスと、一次共振コイル330自身の浮遊容量とによって、LC共振器を構成してもよい。   Specifically, the primary coil 320 is connected to the high frequency power supply 310, and 1 M to several tens of MHz high frequency power is supplied to the primary resonance coil 330 that is magnetically coupled to the primary coil 320 by electromagnetic induction. A capacitor (not shown) is connected to the primary resonance coil 330, and the LC resonator is configured by the primary resonance coil 330 and a capacitor (not shown). The capacitor is not an essential component, and an LC resonator may be configured by the inductance of the primary resonant coil 330 and the stray capacitance of the primary resonant coil 330 itself.

同様に、二次共振コイル340には、図示されないキャパシタが接続されており、この二次共振コイル340にとこのキャパシタとによってLC共振器が構成されている。なお、二次共振コイル340に接続されたキャパシタは、必須の構成ではなく、二次共振コイル340自身のインダクタンスと、二次共振コイル340自身の浮遊容量とによってLC共振器を構成してもよい。   Similarly, a capacitor (not shown) is connected to the secondary resonance coil 340, and an LC resonator is constituted by the secondary resonance coil 340 and this capacitor. Note that the capacitor connected to the secondary resonance coil 340 is not an essential configuration, and an LC resonator may be configured by the inductance of the secondary resonance coil 340 itself and the stray capacitance of the secondary resonance coil 340 itself. .

一次共振コイル330を含むLC共振器の共鳴周波数と、二次共振コイル340を含むLC共振器の共鳴周波数とは一致している。   The resonance frequency of the LC resonator including the primary resonance coil 330 matches the resonance frequency of the LC resonator including the secondary resonance coil 340.

一次共振コイル330を含むLC共振器は、電磁場(近接場)を介して二次共振コイル340を含むLC共振器と共鳴する。そうすると、一次共振コイル330から二次共振コイル340へ電磁場を介してエネルギー(電力)が移動する。二次共振コイル340へ移動したエネルギー(電力)は、電磁誘導により二次共振コイル340と磁気的に結合される二次コイル350によって取出され、負荷360へ供給される。なお、共鳴法による送電は、一次共振コイル330と二次共振コイル340との共鳴強度を示すQ値がたとえば100よりも大きいときに実現される。   The LC resonator including the primary resonance coil 330 resonates with the LC resonator including the secondary resonance coil 340 via an electromagnetic field (near field). Then, energy (electric power) moves from the primary resonance coil 330 to the secondary resonance coil 340 via the electromagnetic field. The energy (electric power) moved to the secondary resonance coil 340 is taken out by the secondary coil 350 that is magnetically coupled to the secondary resonance coil 340 by electromagnetic induction and supplied to the load 360. Note that power transmission by the resonance method is realized when the Q value indicating the resonance intensity between the primary resonance coil 330 and the secondary resonance coil 340 is greater than 100, for example.

なお、図1との対応関係について説明すると、図1の交流電源210および高周波電力ドライバ220は、図2の高周波電源310に相当する。また、図1の一次コイル230および一次共振コイル240は、それぞれ図2の一次コイル320および一次共振コイル330に相当し、図1の二次共振コイル110および二次コイル120は、それぞれ図2の二次共振コイル340および二次コイル350に相当する。そして、図1の整流器130以降が負荷360として総括的に示されている。   1 will be described. The AC power supply 210 and the high-frequency power driver 220 in FIG. 1 correspond to the high-frequency power supply 310 in FIG. Further, the primary coil 230 and the primary resonance coil 240 in FIG. 1 correspond to the primary coil 320 and the primary resonance coil 330 in FIG. 2, respectively, and the secondary resonance coil 110 and the secondary coil 120 in FIG. It corresponds to the secondary resonance coil 340 and the secondary coil 350. In addition, the rectifier 130 and the subsequent parts in FIG.

図3は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。図3を参照して、電磁界は3つの成分から成る。曲線k1は、波源からの距離に反比例した成分であり、「輻射電磁界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電磁界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電磁界」と称される。   FIG. 3 is a diagram showing the relationship between the distance from the current source (magnetic current source) and the intensity of the electromagnetic field. Referring to FIG. 3, the electromagnetic field is composed of three components. The curve k1 is a component that is inversely proportional to the distance from the wave source, and is referred to as a “radiated electromagnetic field”. A curve k2 is a component inversely proportional to the square of the distance from the wave source, and is referred to as an “induction electromagnetic field”. The curve k3 is a component inversely proportional to the cube of the distance from the wave source, and is referred to as an “electrostatic magnetic field”.

「静電磁界」は、波源からの距離とともに急激に電磁波の強度が減少する領域であり、共鳴法では、この「静電磁界」が支配的な近接場(エバネッセント場)を利用してエネルギー(電力)の伝送が行なわれる。すなわち、「静電磁界」が支配的な近接場において、同じ固有振動数を有する一対の共鳴器(たとえば一対のLC共振コイル)を共鳴させることにより、一方の共鳴器(一次共振コイル)から他方の共鳴器(二次共振コイル)へエネルギー(電力)を伝送する。この「静電磁界」は遠方にエネルギーを伝播しないので、遠方までエネルギーを伝播する「輻射電磁界」によりエネルギー(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギー損失で送電することができる。   The “electrostatic magnetic field” is a region where the intensity of the electromagnetic wave suddenly decreases with the distance from the wave source. In the resonance method, the energy (using the near field (evanescent field) where this “electrostatic magnetic field” is dominant is used. Power) is transmitted. That is, by resonating a pair of resonators having the same natural frequency (for example, a pair of LC resonance coils) in a near field where “electrostatic magnetic field” is dominant, one resonator (primary resonance coil) is resonated with the other. Energy (electric power) is transmitted to the resonator (secondary resonance coil). Since this “electrostatic magnetic field” does not propagate energy far away, the resonance method transmits power with less energy loss than electromagnetic waves that transmit energy (electric power) by “radiant electromagnetic field” that propagates energy far away. be able to.

図4は、非接触電力伝達装置101を示す斜視図である。この図4に示すように、シールド122は、天板部123と、この天板部123の周縁部から下方に向けて垂下する周壁部124とを備えている。シールド122には、下方に向けて開口する開口部125が形成されている。なお、開口部125を樹脂等の電磁波に大きな影響をあたえない材料で覆ってもよい。天板部123は、たとえば、車両100のフロアパネル下に配置される。   FIG. 4 is a perspective view showing the non-contact power transmission device 101. As shown in FIG. 4, the shield 122 includes a top plate portion 123 and a peripheral wall portion 124 that hangs downward from the peripheral portion of the top plate portion 123. The shield 122 has an opening 125 that opens downward. Note that the opening 125 may be covered with a material such as a resin that does not significantly affect electromagnetic waves. The top plate portion 123 is disposed below the floor panel of the vehicle 100, for example.

図5は、二次共振コイル110および二次コイル120等を示す断面図であり、図6は、図5に示すV−V線における断面図である。この図5に示すように、非接触電力伝達装置101は、二次共振コイル110および二次コイル120を収容するボビン収容ケース132と、二次共振コイル110および二次コイル120を冷却する冷却装置131とを備えている。冷却装置131は、二次共振コイル110および二次コイル120を収容するボビン収容ケース132と、このボビン収容ケース132内に冷却風を供給する冷媒供給装置113とを備えている。   5 is a cross-sectional view showing the secondary resonance coil 110, the secondary coil 120, and the like, and FIG. 6 is a cross-sectional view taken along line VV shown in FIG. As shown in FIG. 5, the non-contact power transmission device 101 includes a bobbin housing case 132 that houses the secondary resonance coil 110 and the secondary coil 120, and a cooling device that cools the secondary resonance coil 110 and the secondary coil 120. 131. The cooling device 131 includes a bobbin housing case 132 that houses the secondary resonance coil 110 and the secondary coil 120, and a refrigerant supply device 113 that supplies cooling air into the bobbin housing case 132.

冷媒供給装置113は、ボビン収容ケース132に接続された供気管133および排気管134と、供気管133内に設けられた送風機127とを備えている。なお、供気管133は、たとえば、車両本体に形成された開口部に接続されている。   The refrigerant supply device 113 includes an air supply pipe 133 and an exhaust pipe 134 connected to the bobbin housing case 132, and a blower 127 provided in the air supply pipe 133. The supply pipe 133 is connected to, for example, an opening formed in the vehicle main body.

そして、送風機127が駆動することで、車両外部から外気を取り入れ、取り入れた外気をボビン収容ケース132内に冷却風として供給する。ボビン収容ケース132内に供給された冷却風によって二次共振コイル110および二次コイル120が冷却される。   Then, when the blower 127 is driven, outside air is taken from outside the vehicle, and the taken outside air is supplied as cooling air into the bobbin housing case 132. The secondary resonance coil 110 and the secondary coil 120 are cooled by the cooling air supplied into the bobbin housing case 132.

冷却装置131は、ボビン収容ケース132内に設けられた筒状に形成された樹脂製のボビン128を備えており、二次共振コイル110および二次コイル120は、このボビン128の外周面に装着されている。   The cooling device 131 includes a resin-made bobbin 128 provided in a bobbin housing case 132, and the secondary resonance coil 110 and the secondary coil 120 are mounted on the outer peripheral surface of the bobbin 128. Has been.

二次共振コイル110は、二次コイル120よりも非接触電力伝達装置200に近接するように配置されている。この二次共振コイル110は、たとえば、直径6mmのCu(銅)線を直径60cmのコイル状に5.25回巻くことで構成され、二次共振コイル110の長さは20cm程度とされている。二次共振コイル110の状態においては、二次共振コイル110を構成するコイル線は、二次共振コイル110の中心線方向に間隔があくように巻回されている。非接触電力伝達装置200の一次共振コイル240も二次共振コイル110と同様に構成されている。   The secondary resonance coil 110 is disposed closer to the non-contact power transmission device 200 than the secondary coil 120. The secondary resonance coil 110 is configured by, for example, winding a 6 mm diameter Cu (copper) wire in a coil shape of 60 cm in diameter 5.25 times, and the length of the secondary resonance coil 110 is about 20 cm. . In the state of the secondary resonance coil 110, the coil wire constituting the secondary resonance coil 110 is wound so that there is a gap in the center line direction of the secondary resonance coil 110. The primary resonance coil 240 of the non-contact power transmission apparatus 200 is configured similarly to the secondary resonance coil 110.

そして、図5に示すように、ボビン128は、円筒筒状に形成されており、ボビン128は中空状とされている。   And as shown in FIG. 5, the bobbin 128 is formed in the cylindrical cylinder shape, and the bobbin 128 is made into the hollow shape.

二次コイル120は、二次共振コイル110よりも上方に間隔をあけて、ボビン128に装着されている。二次コイル120には取出部129が接続されており、取出部129には、図1に示す整流器130が接続されている。キャパシタ111は、二次共振コイル110の両端部に接続されている。   The secondary coil 120 is mounted on the bobbin 128 with an interval above the secondary resonance coil 110. An extraction unit 129 is connected to the secondary coil 120, and the rectifier 130 shown in FIG. 1 is connected to the extraction unit 129. The capacitor 111 is connected to both ends of the secondary resonance coil 110.

そして、二次共振コイル110と一次共振コイル240との間で電力の受け渡しが行われると、二次共振コイル110内に電流が流れ、二次共振コイル110の温度が上昇し易くなる。   When power is transferred between the secondary resonance coil 110 and the primary resonance coil 240, a current flows in the secondary resonance coil 110, and the temperature of the secondary resonance coil 110 is likely to rise.

冷却装置131は、二次共振コイル110を冷却することで、二次共振コイル110の温度上昇を抑制する。これにより、二次共振コイル110の温度が上昇することで、二次共振コイル110が変形することを抑制する。そして、二次共振コイル110およびキャパシタ111によって構成された共鳴器112(LC回路)の共鳴周波数(共振周波数)が変動することを抑制する。これにより、蓄電装置150を充電する際や蓄電装置150に充電された電力を外部に供給する過程においても、二次共振コイル110を含む共鳴器112と、一次共振コイル240を含む共鳴器221とを良好に共鳴させることができ、電力の受け渡しを良好に行うことができる。   The cooling device 131 cools the secondary resonance coil 110 to suppress the temperature increase of the secondary resonance coil 110. Accordingly, the secondary resonance coil 110 is prevented from being deformed by the temperature of the secondary resonance coil 110 rising. And it suppresses that the resonance frequency (resonance frequency) of the resonator 112 (LC circuit) comprised by the secondary resonance coil 110 and the capacitor 111 fluctuates. Thereby, even when charging the power storage device 150 or in the process of supplying the power charged in the power storage device 150 to the outside, the resonator 112 including the secondary resonance coil 110 and the resonator 221 including the primary resonance coil 240 Can be made to resonate well, and power can be transferred well.

供気管133内には、送風機127の下流側にキャパシタ111が設けられている。そして、供気管133内に入り込んだ冷却風は、供気管133内のキャパシタ111を冷却し、その後、ボビン収容ケース132内の二次共振コイル110および二次コイル120を冷却する。   A capacitor 111 is provided in the air supply pipe 133 on the downstream side of the blower 127. Then, the cooling air that has entered the supply pipe 133 cools the capacitor 111 in the supply pipe 133, and then cools the secondary resonance coil 110 and the secondary coil 120 in the bobbin housing case 132.

ボビン収容ケース132の内周面は、ボビン128の外周面から間隔をあけて位置しており、ボビン収容ケース132の内周面とボビン128の外周面との間には、冷却風が流通可能な流通路137が規定されている。流通路137は、ボビン128の周方向にのびており、流通路137内を冷却風が流通することで、ボビン128の外周面に装着された二次共振コイル110および二次コイル120を良好に冷却することができる。   The inner circumferential surface of the bobbin housing case 132 is located at a distance from the outer circumferential surface of the bobbin 128, and cooling air can flow between the inner circumferential surface of the bobbin housing case 132 and the outer circumferential surface of the bobbin 128. A flow passage 137 is defined. The flow path 137 extends in the circumferential direction of the bobbin 128, and cooling air flows through the flow path 137 to cool the secondary resonance coil 110 and the secondary coil 120 mounted on the outer peripheral surface of the bobbin 128 well. can do.

ここで、二次共振コイル110および二次コイル120は、ボビン128の外周面に巻回されており、流通路137は、ボビン128の外周面に沿って延びている。このため、流通路137を流れる冷却風の流通方向と二次コイル120および二次共振コイル110を構成するコイル線の延在方向とが略一致しており、冷却風が流通路137内を流通する際の流通抵抗の低減が図られている。二次共振コイル110および二次コイル120を冷却した冷却風は、排気管134からボビン収容ケース132の外部に排気される。   Here, the secondary resonance coil 110 and the secondary coil 120 are wound around the outer peripheral surface of the bobbin 128, and the flow path 137 extends along the outer peripheral surface of the bobbin 128. For this reason, the flow direction of the cooling air flowing through the flow passage 137 substantially coincides with the extending direction of the coil wire constituting the secondary coil 120 and the secondary resonance coil 110, and the cooling air flows through the flow passage 137. The distribution resistance when doing so is reduced. The cooling air that has cooled the secondary resonance coil 110 and the secondary coil 120 is exhausted from the exhaust pipe 134 to the outside of the bobbin housing case 132.

このように、キャパシタ111は、二次共振コイル110よりも冷却風の流通方向上流側に配置されており、キャパシタ111が優先的に冷却されている。キャパシタ111を優先的に冷却することで、キャパシタ111の容量が変動することを抑制する。これにより、キャパシタ111および二次共振コイル110を含む共鳴器112の共鳴周波数が変動することを抑制することができる。   As described above, the capacitor 111 is arranged on the upstream side of the secondary resonance coil 110 in the flow direction of the cooling air, and the capacitor 111 is preferentially cooled. By preferentially cooling the capacitor 111, the capacitance of the capacitor 111 is prevented from fluctuating. Thereby, it is possible to suppress fluctuation of the resonance frequency of resonator 112 including capacitor 111 and secondary resonance coil 110.

供気管133は、たとえば、車両のフロント等に形成された取込口に接続されている。なお、本実施の形態においては、非接触電力伝達装置101に冷却装置131を設けた例について説明したが、図1に示す非接触電力伝達装置200に冷却装置を設けるようにしてもよい。   The supply pipe 133 is connected to, for example, an intake port formed at the front of the vehicle. In the present embodiment, the example in which the cooling device 131 is provided in the non-contact power transmission device 101 has been described. However, the cooling device may be provided in the non-contact power transmission device 200 illustrated in FIG.

(実施の形態2)
図7および図8を用いて、本実施の形態に係る非接触電力伝達装置について説明する。なお、図7および図8に示された構成のうち、上記図1から図6に示された構成と同一または相当する構成する構成については、同一の符号を付してその説明を省略する場合がある。
(Embodiment 2)
The non-contact power transmission apparatus according to the present embodiment will be described with reference to FIGS. 7 and 8, the same or corresponding components as those shown in FIGS. 1 to 6 are designated by the same reference numerals and description thereof is omitted. There is.

図7は、本実施の形態2に係る非接触電力伝達装置が備える冷却装置131の断面図であり、図8は、図7のVIII−VIII線における断面図である。   7 is a cross-sectional view of cooling device 131 provided in the non-contact power transmission apparatus according to the second embodiment, and FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.

これら、図7および図8に示すように、冷却装置131は、キャパシタ111および二次共振コイル110を収容するボビン収容ケース132と、二次共振コイル110が外周面に装着されたボビン128と、ボビン収容ケース132内に冷却風(冷媒)を供給する冷媒供給装置113とを備えている。ボビン128は、中空円筒状に形成されており、キャパシタ111はボビン128内に収容されている。ボビン128の周壁部には流通口135および流通口136が形成されている。   As shown in FIGS. 7 and 8, the cooling device 131 includes a bobbin housing case 132 for housing the capacitor 111 and the secondary resonance coil 110, a bobbin 128 having the secondary resonance coil 110 mounted on the outer peripheral surface, The bobbin housing case 132 is provided with a refrigerant supply device 113 that supplies cooling air (refrigerant). The bobbin 128 is formed in a hollow cylindrical shape, and the capacitor 111 is accommodated in the bobbin 128. A circulation port 135 and a circulation port 136 are formed in the peripheral wall portion of the bobbin 128.

ここで、ボビン収容ケース132には、供気管133の開口部138が形成されている。そして、流通口136は、ボビン128の外周面のうち、開口部138と対向する部分に形成されており、流通口136と開口部138とは冷却風の流通方向に配列している。   Here, an opening 138 of the air supply pipe 133 is formed in the bobbin housing case 132. And the circulation port 136 is formed in the part which opposes the opening part 138 among the outer peripheral surfaces of the bobbin 128, and the circulation port 136 and the opening part 138 are arranged in the distribution direction of cooling air.

このため、開口部138かボビン収容ケース132内に入り込んだ冷却風は、流通口136からボビン128内に流入し、キャパシタ111を冷却する。流通口136から入り込む冷却風は、二次コイル120および二次共振コイル110と接触していないため、キャパシタ111を良好に冷却することができる。   Therefore, the cooling air that has entered the opening 138 or the bobbin housing case 132 flows into the bobbin 128 from the circulation port 136 and cools the capacitor 111. Since the cooling air entering from the circulation port 136 is not in contact with the secondary coil 120 and the secondary resonance coil 110, the capacitor 111 can be cooled well.

流通口135は、キャパシタ111に対して流通口136と反対側に位置している。冷却風が流通口136からボビン128内に入り込み、流通口135から排気されるまでの間に、冷却風がキャパシタ111をとおり、キャパシタ111を良好に冷却することができる。   The circulation port 135 is located on the side opposite to the circulation port 136 with respect to the capacitor 111. The cooling air can pass through the capacitor 111 and cool the capacitor 111 well until the cooling air enters the bobbin 128 from the circulation port 136 and is exhausted from the circulation port 135.

さらに、流通口136からボビン128内に入り込んだ冷却風の一部は、ボビン128の内周面に沿って流れ、ボビン128を冷却する。ボビン128が冷却されることで、キャパシタ111および二次コイル120の熱が良好にボビン128に放熱され、キャパシタ111および二次コイル120も冷却される。   Further, a part of the cooling air that has entered the bobbin 128 from the flow port 136 flows along the inner peripheral surface of the bobbin 128 to cool the bobbin 128. By cooling the bobbin 128, the heat of the capacitor 111 and the secondary coil 120 is dissipated well to the bobbin 128, and the capacitor 111 and the secondary coil 120 are also cooled.

そして、キャパシタ111をボビン128内に収容することで、非接触電力伝達装置101のコンパクト化を図ることができる。   And by accommodating the capacitor 111 in the bobbin 128, the non-contact power transmission device 101 can be made compact.

なお、実施の形態においても、ボビン128とボビン収容ケース132との間に流通路137が規定されており、冷却風が流通路137内を流れることで、二次共振コイル110および二次コイル120が直接的に冷却される。   Also in the embodiment, the flow path 137 is defined between the bobbin 128 and the bobbin housing case 132, and the cooling air flows through the flow path 137, so that the secondary resonance coil 110 and the secondary coil 120 are provided. Is cooled directly.

(実施の形態3)
図9および図10を用いて、本実施の形態3に係る非接触電力伝達装置を備える冷却装置131について説明する。なお、図9および図10に示された構成のうち、上記図1から図8に示された構成と同一または相当する構成については、同一の符号を付してその説明を省略する場合がある。
(Embodiment 3)
A cooling device 131 including the non-contact power transmission device according to the third embodiment will be described with reference to FIGS. 9 and 10. Of the configurations shown in FIGS. 9 and 10, the same or corresponding components as those shown in FIGS. 1 to 8 may be assigned the same reference numerals and descriptions thereof may be omitted. .

図9は、本実施の形態に係る非接触電力伝達装置の断面図であり、図10は、図9のX−X線における断面図である。   9 is a cross-sectional view of the non-contact power transmission apparatus according to the present embodiment, and FIG. 10 is a cross-sectional view taken along line XX of FIG.

これら、図10および図9に示すように、冷却装置131は、二次共振コイル110が収容されたボビン収容ケース132と、ボビン収容ケース132内に設けられ、外周面に二次共振コイル110および二次コイル120が装着されるボビン128と、ボビン128内に冷却風を供給する冷媒供給装置113とを備えている。冷媒供給装置113がボビン128内に冷却風を供給することで、ボビン128の内周面が冷却され、二次共振コイル110および二次コイル120をも冷却することができる。   As shown in FIGS. 10 and 9, the cooling device 131 includes a bobbin housing case 132 in which the secondary resonance coil 110 is housed, a bobbin housing case 132, and the secondary resonance coil 110 and the outer peripheral surface. A bobbin 128 on which the secondary coil 120 is mounted and a refrigerant supply device 113 that supplies cooling air into the bobbin 128 are provided. By supplying the cooling air into the bobbin 128 by the refrigerant supply device 113, the inner peripheral surface of the bobbin 128 is cooled, and the secondary resonance coil 110 and the secondary coil 120 can also be cooled.

冷媒供給装置113は、ボビン128内に設けられた筒状の内筒部141と、この内筒部141の内部と連通する供気管148および排気管149とを備えている。供気管(冷媒流通管)148および排気管(冷媒流通管)149は、ボビン128より上方からボビン128に向けて垂下している。これにより、冷却装置131の設置面積の低減が図られている。   The refrigerant supply device 113 includes a cylindrical inner cylinder part 141 provided in the bobbin 128, and an air supply pipe 148 and an exhaust pipe 149 communicating with the inside of the inner cylinder part 141. The supply pipe (refrigerant flow pipe) 148 and the exhaust pipe (refrigerant flow pipe) 149 are suspended from the bobbin 128 toward the bobbin 128 from above. Thereby, the installation area of the cooling device 131 is reduced.

内筒部141の外周面とボビン128の内周面とは互いに間隔をあけて位置しており、内筒部141の外周面とボビン128の内周面との間には、環状に延びる冷却通路147が形成されている。なお、ボビン128の開口部は、ボビン収容ケース132の底板によって閉塞されている。   The outer peripheral surface of the inner cylindrical portion 141 and the inner peripheral surface of the bobbin 128 are positioned at a distance from each other, and an annularly extending cooling is provided between the outer peripheral surface of the inner cylindrical portion 141 and the inner peripheral surface of the bobbin 128. A passage 147 is formed. Note that the opening of the bobbin 128 is closed by the bottom plate of the bobbin housing case 132.

そして、内筒部141内には、仕切部142が配置されており、この仕切部142によって、内筒部141内が供気室145および排気室146に区画されている。   A partition portion 142 is disposed in the inner cylinder portion 141, and the inner cylinder portion 141 is partitioned into an air supply chamber 145 and an exhaust chamber 146 by the partition portion 142.

供気室145には、供気管148が接続されており、排気室146には排気管149が接続されている。   An air supply pipe 148 is connected to the air supply chamber 145, and an exhaust pipe 149 is connected to the exhaust chamber 146.

内筒部141には、供気室145と冷却通路147とを連通する供気口143と、排気室146と冷却通路147とを連通する排気口144が形成されている。   An air supply port 143 that communicates the air supply chamber 145 and the cooling passage 147 and an exhaust port 144 that communicates the exhaust chamber 146 and the cooling passage 147 are formed in the inner cylinder portion 141.

そして、供気管148から冷却風が供気室145内に供給され、供給された冷却風は、供気口143から冷却通路147内に入り込む。冷却通路147内に入り込んだ冷却風は、ボビン128を冷却しながら冷却通路147内を流通する。その後、排気口144から排気室146内に入り込み、排気管149から排気される。   Then, cooling air is supplied from the air supply pipe 148 into the air supply chamber 145, and the supplied cooling air enters the cooling passage 147 from the air supply port 143. The cooling air that has entered the cooling passage 147 flows through the cooling passage 147 while cooling the bobbin 128. Thereafter, the gas enters the exhaust chamber 146 from the exhaust port 144 and is exhausted from the exhaust pipe 149.

このように、ボビン128内に冷却風を供給することで、ボビン128を積極的に冷却し、このボビン128に装着された二次共振コイル110および二次コイル120の冷却が図られている。   Thus, by supplying cooling air into the bobbin 128, the bobbin 128 is actively cooled, and the secondary resonance coil 110 and the secondary coil 120 mounted on the bobbin 128 are cooled.

なお、供気管148から供給される冷媒は空気等の気体状の冷媒に限られず、水等の液体状の冷媒を採用することができる。   Note that the refrigerant supplied from the supply pipe 148 is not limited to a gaseous refrigerant such as air, and a liquid refrigerant such as water can be employed.

(実施の形態4)
図11および図12を用いて、本発明の実施の形態4に係る非接触電力伝達装置について説明する。なお、図11および図12に示す構成のうち、上記図1から図10に示された構成と同一または相当する構成については、同一の符号を付してその説明を諸略する場合がある。
(Embodiment 4)
A non-contact power transmission apparatus according to Embodiment 4 of the present invention will be described with reference to FIGS. 11 and 12. Of the configurations shown in FIGS. 11 and 12, configurations that are the same as or correspond to the configurations shown in FIGS. 1 to 10 are given the same reference numerals, and descriptions thereof may be omitted.

図11は、本発明に係る実施の形態3に係る非接触電力伝達装置の冷却装置131の断面図である。さらに、図12は、図11に示された冷却装置131を模式的に示す斜視図である。これら図11および図12に示すように、冷却装置131は、内周面に二次共振コイル110および二次コイル120が内周面に装着された筒状のボビン128と、このボビン128内に冷媒を供給する冷媒供給装置113とを備える。冷媒供給装置113は、ボビン128内に設けられた内筒部151と、内筒部151とボビン128との間に規定された冷却通路152内に冷媒を供給する冷媒供給管153と、冷却通路152内の冷媒を外部に排出する冷媒排出管154とを備えている。冷媒供給管153および冷媒排出管154は、ボビン128の上方からボビン128に向けて垂下している。このため、冷却装置131の設置面積の低減が図られている。   FIG. 11 is a cross-sectional view of cooling device 131 of the non-contact power transmission device according to the third embodiment of the present invention. Further, FIG. 12 is a perspective view schematically showing the cooling device 131 shown in FIG. As shown in FIGS. 11 and 12, the cooling device 131 includes a cylindrical bobbin 128 having a secondary resonance coil 110 and a secondary coil 120 mounted on the inner peripheral surface thereof, and the bobbin 128. And a refrigerant supply device 113 for supplying the refrigerant. The refrigerant supply device 113 includes an inner cylinder portion 151 provided in the bobbin 128, a refrigerant supply pipe 153 that supplies refrigerant into the cooling passage 152 defined between the inner cylinder portion 151 and the bobbin 128, and a cooling passage The refrigerant | coolant discharge pipe 154 which discharges | emits the refrigerant | coolant in 152 outside is provided. The refrigerant supply pipe 153 and the refrigerant discharge pipe 154 are suspended from the upper side of the bobbin 128 toward the bobbin 128. For this reason, the installation area of the cooling device 131 is reduced.

ボビン128および内筒部151の開口端面には、閉塞板155が設けられており、ボビン128の開口部および内筒部151の開口部は閉塞板155によって閉塞されている。   A closing plate 155 is provided on the opening end surfaces of the bobbin 128 and the inner cylinder part 151, and the opening part of the bobbin 128 and the opening part of the inner cylinder part 151 are closed by the closing plate 155.

そして、冷媒供給管153から冷却風が冷却通路152内に入り込み、冷媒排出管154から冷却風が排出される。冷却風が冷却通路152内を通ることで、二次コイル120および二次共振コイル110が冷却される。なお、冷媒供給管153から冷却通路152内に入り込む冷却風は、まず、二次共振コイル110および二次コイル120の巻回中心線の延在方向に流れる。そして、二次コイル120は、二次共振コイル110より上方に位置しているため、二次コイル120は、二次共振コイル110よりも冷却風(冷媒)の流通方向の上流側に位置している。このため、二次コイル120を積極的に冷却することができる。   Then, the cooling air enters the cooling passage 152 from the refrigerant supply pipe 153, and the cooling air is discharged from the refrigerant discharge pipe 154. As the cooling air passes through the cooling passage 152, the secondary coil 120 and the secondary resonance coil 110 are cooled. Note that the cooling air entering the cooling passage 152 from the refrigerant supply pipe 153 first flows in the extending direction of the winding center line of the secondary resonance coil 110 and the secondary coil 120. Since the secondary coil 120 is located above the secondary resonance coil 110, the secondary coil 120 is located upstream of the secondary resonance coil 110 in the flow direction of the cooling air (refrigerant). Yes. For this reason, the secondary coil 120 can be actively cooled.

ボビン128の内周面に二次共振コイル110および二次コイル120が装着されており、ボビン128は、二次共振コイル110および二次コイル120を外部から保護する機能と、二次共振コイル110および二次コイル120を所定に位置に固定する機能とを兼ね備える。   The secondary resonance coil 110 and the secondary coil 120 are mounted on the inner peripheral surface of the bobbin 128. The bobbin 128 has a function of protecting the secondary resonance coil 110 and the secondary coil 120 from the outside, and the secondary resonance coil 110. And a function of fixing the secondary coil 120 to a predetermined position.

その一方で、ボビン128の外周面に二次共振コイル110等を装着した場合には、二次共振コイル110を外部から保護するためにケーシングを設ける必要がある一方で、本実施の形態4に係る非接触電力伝達装置101においては、このようなケーシングを設ける必要性がない。   On the other hand, when the secondary resonance coil 110 or the like is mounted on the outer peripheral surface of the bobbin 128, it is necessary to provide a casing to protect the secondary resonance coil 110 from the outside. In the non-contact power transmission apparatus 101, there is no need to provide such a casing.

このように、本実施に形態4に係る非接触電力伝達装置101においては、部品点数の低減も図ることができる。なお、本実施の形態に係る非接触電力伝達装置101においては、二次共振コイル110は、浮遊容量を有しており、コイル自身のインダクタンスと浮遊容量とによる共鳴器(LC共振器)となっている。   Thus, in the non-contact power transmission apparatus 101 according to the fourth embodiment, the number of parts can be reduced. In the non-contact power transmission apparatus 101 according to the present embodiment, the secondary resonance coil 110 has a stray capacitance, and becomes a resonator (LC resonator) based on the inductance of the coil itself and the stray capacitance. ing.

(実施の形態5)
図13および図14を用いて、本発明の実施の形態5に係る非接触電力伝達装置101について説明する。なお、図13および図14に示す構成のうち、上記図1から図12に示された構成と同一または相当する構成については、同一の符号を付してその説明を省略する。
(Embodiment 5)
A non-contact power transmission apparatus 101 according to Embodiment 5 of the present invention will be described with reference to FIGS. 13 and 14. Of the configurations shown in FIG. 13 and FIG. 14, configurations that are the same as or correspond to the configurations shown in FIG. 1 to FIG.

図13は、本発明の実施の形態5に係る非接触電力伝達装置の冷却装置131の側断面図であり、図14は、図13に示された冷却装置131の断面図である。   13 is a side sectional view of cooling device 131 of the non-contact power transmission apparatus according to Embodiment 5 of the present invention, and FIG. 14 is a sectional view of cooling device 131 shown in FIG.

これら図13および図14に示すように、冷却装置131は、二次共振コイル110および二次コイル120を収容するボビン収容ケース132と、このボビン収容ケース132内に冷媒としての冷却風を供給する冷媒供給装置113と、ボビン収容ケース132内に設けられ、外周面に二次共振コイル110および二次コイル120が装着されたボビン128とを備えている。   As shown in FIGS. 13 and 14, the cooling device 131 supplies a bobbin housing case 132 that houses the secondary resonance coil 110 and the secondary coil 120, and supplies cooling air as a refrigerant into the bobbin housing case 132. The refrigerant supply device 113 and a bobbin 128 provided in the bobbin housing case 132 and having the secondary resonance coil 110 and the secondary coil 120 mounted on the outer peripheral surface thereof are provided.

そして、冷媒供給装置は、ボビン収容ケース132に接続された供気管133および排気管134と、供気管133内に設けられ、ボビン収容ケース132内に冷却風を供給する送風機127とを備えている。   The refrigerant supply device includes an air supply pipe 133 and an exhaust pipe 134 connected to the bobbin storage case 132, and a blower 127 that is provided in the air supply pipe 133 and supplies cooling air into the bobbin storage case 132. .

ボビン128は、ボビン収容ケース132に固定された土台部163と、土台部163の下端面に設けられたベアリング162と、ベアリング162によって、土台部163に対して相対的に回転可能に設けられた回転部161と、回転部161の外周面に複数設けられた羽根部165とを備えている。   The bobbin 128 is provided so as to be relatively rotatable with respect to the base part 163 by the base part 163 fixed to the bobbin housing case 132, the bearing 162 provided on the lower end surface of the base part 163, and the bearing 162. A rotating part 161 and a plurality of blade parts 165 provided on the outer peripheral surface of the rotating part 161 are provided.

そして、回転部161の外周面に、二次共振コイル110が装着されており土台部163の外周面に二次コイル120が装着されている。   The secondary resonance coil 110 is attached to the outer peripheral surface of the rotating part 161, and the secondary coil 120 is attached to the outer peripheral surface of the base part 163.

そして、羽根部165は回転部161の周面に沿って間隔をあけて設けられている。なお、この図13および図14に示す例においては、二次共振コイル110にはキャパシタは接続されていない。図13および図14に示す例においては、二次共振コイル110は、浮遊容量を有しており、コイル自身のインダクタンスと浮遊容量とにより構成された共鳴器(LC共振器)となっている。   And the blade | wing part 165 is provided at intervals along the surrounding surface of the rotation part 161. FIG. In the example shown in FIGS. 13 and 14, no capacitor is connected to secondary resonance coil 110. In the example shown in FIGS. 13 and 14, the secondary resonance coil 110 has a stray capacitance, and is a resonator (LC resonator) constituted by the inductance and stray capacitance of the coil itself.

そして、供気管133からボビン収容ケース132内に冷却風が入り込むと、羽根部165が冷却風を受け止め、羽根部165に加えられた押圧力によって、回転部161が回転方向Pに回転する。   When the cooling air enters the bobbin housing case 132 from the air supply pipe 133, the blade portion 165 receives the cooling air, and the rotating portion 161 rotates in the rotation direction P by the pressing force applied to the blade portion 165.

回転部161が回転すると、回転部161に装着された二次共振コイル110も回転し、二次共振コイル110のうち、開口部138と対向する部分も順次移る。これにより、二次共振コイル110のうち、開口部138からボビン収容ケース132内に入り込む冷却風によって直接冷却される部分が順次移り、二次共振コイル110の全周を略均等に冷却することができる。これにより、二次共振コイル110の位置によって熱歪みの大きさにばらつきが生じることを抑制することができる。   When the rotating part 161 rotates, the secondary resonant coil 110 attached to the rotating part 161 also rotates, and the part of the secondary resonant coil 110 that faces the opening 138 also moves sequentially. As a result, portions of the secondary resonant coil 110 that are directly cooled by the cooling air entering the bobbin housing case 132 from the opening 138 sequentially move, and the entire circumference of the secondary resonant coil 110 can be cooled substantially uniformly. it can. Thereby, it is possible to suppress the variation in the magnitude of the thermal strain depending on the position of the secondary resonance coil 110.

流通路137は、ボビン128によって分岐しており、開口部138かボビン収容ケース132内に入り込んだ冷却風は、回転方向P前方および回転方向P後方に向けて流れる。   The flow passage 137 is branched by the bobbin 128, and the cooling air that has entered the opening 138 or the bobbin housing case 132 flows forward in the rotational direction P and backward in the rotational direction P.

図15および図16は、羽根部165およびその周囲に位置する構成を示す断面図である。そして、図15は、回転部161の外周面のうち、開口部138より、回転方向P後方側に位置する羽根部165を示し、図16は、回転部161の外周面のうち、開口部138より回転方向P前方側に位置する羽根部165を示す。   15 and 16 are cross-sectional views showing the blade portion 165 and the configuration located in the periphery thereof. 15 shows the blade portion 165 located on the rear side in the rotation direction P from the opening portion 138 in the outer peripheral surface of the rotating portion 161. FIG. 16 shows the opening portion 138 in the outer peripheral surface of the rotating portion 161. The blade | wing part 165 located in the rotation direction P front side more is shown.

この図15および図16に示すように、羽根部165には、軸部166を中心に回転可能に設けられている。   As shown in FIGS. 15 and 16, the blade portion 165 is provided to be rotatable about a shaft portion 166.

羽根部165は、受風面168と、ストッパ面167と、斜面169とを含み、回転部161の回転中心線方向から見ると、略三角形形状となるように形成されている。   The blade portion 165 includes a wind receiving surface 168, a stopper surface 167, and an inclined surface 169, and is formed to have a substantially triangular shape when viewed from the rotation center line direction of the rotating portion 161.

ここで、受風面168はストッパ面167より面積が大きく、軸部166は、受風面168とストッパ面167とによって規定される角部に設けられている。   Here, the wind receiving surface 168 has a larger area than the stopper surface 167, and the shaft portion 166 is provided at a corner defined by the wind receiving surface 168 and the stopper surface 167.

これにより、図16および図14に示すように、開口部138より回転方向P前方側に位置する羽根部165の姿勢は、受風面168が回転部161の外周面から立ち上がるような姿勢となっている。さらに、ストッパ面167が受風面168の前方側に位置し、回転部161の外周面と当接している。このように、ストッパ面167が回転部161の外周面と当接することで、羽根部165の姿勢が保持されている。   As a result, as shown in FIGS. 16 and 14, the posture of the blade portion 165 located on the front side in the rotational direction P from the opening 138 is such that the wind receiving surface 168 rises from the outer peripheral surface of the rotating portion 161. ing. Further, the stopper surface 167 is located on the front side of the wind receiving surface 168 and is in contact with the outer peripheral surface of the rotating portion 161. As described above, the stopper surface 167 is in contact with the outer peripheral surface of the rotating portion 161 so that the posture of the blade portion 165 is maintained.

そして、受風面168に冷却風が吹き付けられることで、回転部161は回転方向Pに回転する。   Then, when the cooling air is blown onto the wind receiving surface 168, the rotating unit 161 rotates in the rotation direction P.

その後、羽根部165が排気管134を過ぎると、羽根部165は、斜面169側から冷却風を受け始める。このように、羽根部165が冷却風を受けると、羽根部165が軸部166を中心に回転する。   Thereafter, when the blade portion 165 passes the exhaust pipe 134, the blade portion 165 starts to receive cooling air from the slope 169 side. As described above, when the blade portion 165 receives the cooling air, the blade portion 165 rotates around the shaft portion 166.

そして、図15および図14に示すように、羽根部165が開口部138より回転方向P後方側に移動すると、羽根部165は、図16に示す状態から回転する。このため、165の受風面168が回転部161の外周面と接触すると共に、ストッパ面167が冷却風を受け止めている。この図15に示す状態では、ストッパ面167の姿勢は、冷却風の流通方向の上流側から下流側に向けて、回転部161の外周面から離れるように傾斜するような姿勢となっており、ストッパ面167は冷却風を受け流すような姿勢となっている。   As shown in FIGS. 15 and 14, when the blade 165 moves to the rear side in the rotation direction P from the opening 138, the blade 165 rotates from the state shown in FIG. 16. For this reason, the wind receiving surface 168 of 165 is in contact with the outer peripheral surface of the rotating portion 161 and the stopper surface 167 receives the cooling air. In the state shown in FIG. 15, the posture of the stopper surface 167 is a posture that inclines away from the outer peripheral surface of the rotating portion 161 from the upstream side to the downstream side in the flow direction of the cooling air. The stopper surface 167 is configured to receive cooling air.

このため、図16に示す羽根部165が冷却風から受ける押圧力の方が、図15に示す羽根部165が冷却風から受ける押圧力の方よりも大きくなり、回転部161が回転方向P方向に回転する。そして、羽根部165が開口部138より、回転方向P前方側に移動すると、回転部161の表面を流れる冷却風が羽根部165を起こし、羽根部165は図16に示すような姿勢となる。なお、本実施の形態5においては、回転部161は羽根部165に加えられた押圧力によって回転しているが、羽根部165にかえて、モータ等の駆動部から動力によって回転するようにしてもよい。   For this reason, the pressing force that the blade 165 shown in FIG. 16 receives from the cooling air is larger than the pressing force that the blade 165 shown in FIG. 15 receives from the cooling air, and the rotating portion 161 is in the direction P in the rotation direction. Rotate to. And if the blade | wing part 165 moves to the rotation direction P front side from the opening part 138, the cooling air which flows through the surface of the rotation part 161 will raise | generate the blade | wing part 165, and the blade | wing part 165 will have an attitude | position as shown in FIG. In the fifth embodiment, the rotating part 161 is rotated by the pressing force applied to the blade part 165. Instead of the blade part 165, the rotating part 161 is rotated by power from a driving part such as a motor. Also good.

以上のように本発明の実施の形態について説明を行なったが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での0および範囲にかぎられない。   Although the embodiment of the present invention has been described above, it should be considered that the embodiment disclosed this time is illustrative and not restrictive in all respects. The scope of the present invention is defined by the terms of the claims, and is not limited to 0 and the scope within the scope and meaning equivalent to the terms of the claims.

本発明は、非接触電力伝達装置、車両および非接触電力伝達システムに好適である。   The present invention is suitable for a non-contact power transmission device, a vehicle, and a non-contact power transmission system.

100 車両、101,200 非接触電力伝達装置、110 二次共振コイル、111,232 キャパシタ、112,221 共鳴器、113 冷媒供給装置、120 二次コイル、122,231 シールド、127 送風機、128 ボビン、129 取出部、130 整流器、131 冷却装置、132 ボビン収容ケース、141,151 内筒部、142 仕切部、143 供気口、144 排気口、150 蓄電装置、152 冷却通路、161 回転部、162 ベアリング、163 土台部、165 羽根部、170 モータ、200 非接触電力伝達装置、210 交流電源、220 高周波電力ドライバ、230 一次コイル、240 一次共振コイル。   100 Vehicle, 101, 200 Non-contact power transmission device, 110 Secondary resonance coil, 111, 232 Capacitor, 112, 221 Resonator, 113 Refrigerant supply device, 120 Secondary coil, 122, 231 Shield, 127 Blower, 128 Bobbin, 129 Extraction part, 130 Rectifier, 131 Cooling device, 132 Bobbin housing case, 141, 151 Inner cylinder part, 142 Partition part, 143 Air supply port, 144 Exhaust port, 150 Power storage device, 152 Cooling passage, 161 Rotating part, 162 Bearing 163, base part, 165 blade part, 170 motor, 200 non-contact power transmission device, 210 AC power supply, 220 high frequency power driver, 230 primary coil, 240 primary resonance coil.

Claims (9)

非接触電力伝達装置であって、
外部に設けられた第1共鳴器と電磁場を介して共鳴し、前記第1共鳴器から電力を受電することと、前記第1共鳴器と電磁場を介して共鳴し、前記第1共鳴器に電力を送電することとの少なくとも一方が可能な第2共鳴器を備え、
前記第1共鳴器は、一次共振コイルを含み、
前記第2共鳴器は、二次共振コイルを含み、
前記非接触電力伝達装置は、
前記二次共振コイルを冷却する冷却装置をさらに備え、
前記第2共鳴器は、前記二次共振コイルに接続されたキャパシタを含み、
前記冷却装置は、前記二次共振コイルを収容する収容ケースと、前記収容ケース内に冷媒を供給する冷媒供給装置とを含み、
前記キャパシタは、前記二次共振コイルより前記冷媒の流通方向上流側に配置された、非接触電力伝達装置。
A non-contact power transmission device,
Resonating with the first resonator provided outside via the electromagnetic field, receiving power from the first resonator, resonating with the first resonator via the electromagnetic field, and supplying power to the first resonator Including a second resonator capable of transmitting at least one of
The first resonator includes a primary resonance coil;
The second resonator includes a secondary resonance coil,
The non-contact power transmission device is
A cooling device for cooling the secondary resonant coil;
The second resonator includes a capacitor connected to the secondary resonance coil,
The cooling device includes a housing case that houses the secondary resonance coil, and a refrigerant supply device that supplies a refrigerant into the housing case,
The non- contact power transmission device, wherein the capacitor is disposed upstream of the secondary resonant coil in the refrigerant flow direction.
前記冷却装置は、前記二次共振コイルが外周面に装着されたボビンを含み、
前記ボビンは、前記収容ケース内に収容され、
前記ボビンの外周面と前記収容ケースの内周面とによって、前記冷媒が流通可能な冷却通路が形成された、請求項に記載の非接触電力伝達装置。
The cooling device includes a bobbin in which the secondary resonance coil is mounted on an outer peripheral surface,
The bobbin is housed in the housing case;
Wherein by the outer peripheral surface and the inner peripheral surface of the housing case of the bobbin, the cooling passages of the refrigerant can flow is formed, the non-contact power transmission device according to claim 1.
非接触電力伝達装置であって、
外部に設けられた第1共鳴器と電磁場を介して共鳴し、前記第1共鳴器から電力を受電することと、前記第1共鳴器と電磁場を介して共鳴し、前記第1共鳴器に電力を送電することとの少なくとも一方が可能な第2共鳴器を備え、
前記第1共鳴器は、一次共振コイルを含み、
前記第2共鳴器は、二次共振コイルを含み、
前記非接触電力伝達装置は、
前記二次共振コイルを冷却する冷却装置をさらに備え、
前記冷却装置は、前記二次共振コイルを収容する収容ケースと、前記収容ケース内に冷媒を供給する冷媒供給装置と、前記二次共振コイルが外周面に装着されるボビンとを含み、
前記ボビンは、土台部と、前記土台部に回転可能に設けられた回転部と、前記回転部に設けられ、前記冷媒から受ける押圧力で前記回転部を回転させる羽根部とを含むと共に前記収容ケース内に配置され、
前記二次共振コイルは、前記回転部に設けられた、非接触電力伝達装置。
A non-contact power transmission device,
Resonating with the first resonator provided outside via the electromagnetic field, receiving power from the first resonator, resonating with the first resonator via the electromagnetic field, and supplying power to the first resonator Including a second resonator capable of transmitting at least one of
The first resonator includes a primary resonance coil;
The second resonator includes a secondary resonance coil,
The non-contact power transmission device is
A cooling device for cooling the secondary resonant coil;
The cooling device includes a housing case that houses the secondary resonance coil, a refrigerant supply device that supplies a refrigerant into the housing case, and a bobbin on which the secondary resonance coil is mounted on an outer peripheral surface,
The bobbin includes a base portion, a rotating portion that is rotatably provided on the base portion, and a blade portion that is provided on the rotating portion and rotates the rotating portion with a pressing force received from the refrigerant. Placed in the case,
The secondary resonance coil is a non- contact power transmission device provided in the rotating part.
非接触電力伝達装置であって、
外部に設けられた第1共鳴器と電磁場を介して共鳴し、前記第1共鳴器から電力を受電することと、前記第1共鳴器と電磁場を介して共鳴し、前記第1共鳴器に電力を送電することとの少なくとも一方が可能な第2共鳴器を備え、
前記第1共鳴器は、一次共振コイルを含み、
前記第2共鳴器は、二次共振コイルを含み、
前記非接触電力伝達装置は、
前記二次共振コイルを冷却する冷却装置をさらに備え、
前記第2共鳴器は、前記二次共振コイルに接続されたキャパシタを含み、
前記冷却装置は、前記キャパシタおよび前記二次共振コイルを収容する収容ケースと、前記収容ケース内に冷媒を供給する冷媒供給装置と、前記二次共振コイルが外周面に装着される中空筒状のボビンとを含み、
前記ボビンは、前記収容ケース内に配置されると共に周壁部に前記冷媒が流通可能な流通口が形成され、
前記キャパシタは、前記ボビン内に収容された、非接触電力伝達装置。
A non-contact power transmission device,
Resonating with the first resonator provided outside via the electromagnetic field, receiving power from the first resonator, resonating with the first resonator via the electromagnetic field, and supplying power to the first resonator Including a second resonator capable of transmitting at least one of
The first resonator includes a primary resonance coil;
The second resonator includes a secondary resonance coil,
The non-contact power transmission device is
A cooling device for cooling the secondary resonant coil;
The second resonator includes a capacitor connected to the secondary resonance coil,
The cooling device includes a housing case that houses the capacitor and the secondary resonance coil, a refrigerant supply device that supplies a refrigerant into the housing case, and a hollow cylindrical shape in which the secondary resonance coil is mounted on an outer peripheral surface. Including bobbins,
The bobbin is disposed in the housing case, and a circulation port through which the refrigerant can flow is formed in the peripheral wall portion,
The capacitor is a non- contact power transmission device housed in the bobbin.
非接触電力伝達装置であって、
外部に設けられた第1共鳴器と電磁場を介して共鳴し、前記第1共鳴器から電力を受電することと、前記第1共鳴器と電磁場を介して共鳴し、前記第1共鳴器に電力を送電することとの少なくとも一方が可能な第2共鳴器を備え、
前記第1共鳴器は、一次共振コイルを含み、
前記第2共鳴器は、二次共振コイルを含み、
前記非接触電力伝達装置は、
前記二次共振コイルを冷却する冷却装置をさらに備え、
前記冷却装置は、前記二次共振コイルを収容する収容ケースと、前記二次共振コイルが装着される中空筒状のボビンと、前記ボビン内に冷媒を供給する冷媒供給装置とを含む、非接触電力伝達装置。
A non-contact power transmission device,
Resonating with the first resonator provided outside via the electromagnetic field, receiving power from the first resonator, resonating with the first resonator via the electromagnetic field, and supplying power to the first resonator Including a second resonator capable of transmitting at least one of
The first resonator includes a primary resonance coil;
The second resonator includes a secondary resonance coil,
The non-contact power transmission device is
A cooling device for cooling the secondary resonant coil;
The cooling device includes a housing case that houses the secondary resonance coil, a hollow cylindrical bobbin in which the secondary resonance coil is mounted, the supplying device supplying a refrigerant into said bobbin, noncontact Power transmission device.
前記二次共振コイルは、前記ボビンの内周面に装着された、請求項に記載の非接触電力伝達装置。 The non-contact power transmission device according to claim 5 , wherein the secondary resonance coil is attached to an inner peripheral surface of the bobbin. 前記冷媒供給装置は、前記ボビンの上方から前記ボビンに向けて垂下し、前記ボビンの内部と連通する冷媒流通管を含む、請求項または請求項に記載の非接触電力伝達装置。 The coolant supply apparatus, drooping toward the bobbin from above of the bobbin, comprising a coolant flow pipe communicating with the interior of the bobbin, a non-contact power transmission device according to claim 5 or claim 6. 請求項1から請求項のいずれかに記載の非接触電力伝達装置を備えた車両。 A vehicle comprising the non-contact power transmission device according to any one of claims 1 to 7 . 前記第1共鳴器と、請求項に記載の車両とを備えた、非接触電力伝達システム。 A non-contact power transmission system comprising the first resonator and the vehicle according to claim 8 .
JP2009119976A 2009-05-18 2009-05-18 Non-contact power transmission device, vehicle and non-contact power transmission system Active JP5359544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009119976A JP5359544B2 (en) 2009-05-18 2009-05-18 Non-contact power transmission device, vehicle and non-contact power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009119976A JP5359544B2 (en) 2009-05-18 2009-05-18 Non-contact power transmission device, vehicle and non-contact power transmission system

Publications (2)

Publication Number Publication Date
JP2010268660A JP2010268660A (en) 2010-11-25
JP5359544B2 true JP5359544B2 (en) 2013-12-04

Family

ID=43365128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009119976A Active JP5359544B2 (en) 2009-05-18 2009-05-18 Non-contact power transmission device, vehicle and non-contact power transmission system

Country Status (1)

Country Link
JP (1) JP5359544B2 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222749B1 (en) * 2010-12-14 2013-01-16 삼성전기주식회사 Wireless power transmission apparatus and transmission method thereof
US8664803B2 (en) * 2010-12-28 2014-03-04 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
JP5888542B2 (en) * 2011-01-18 2016-03-22 矢崎総業株式会社 Resonance coil holding member, resonance coil unit, and non-contact power transmission device
WO2012098851A1 (en) * 2011-01-18 2012-07-26 Yazaki Corporation Resonance-coil holding device, resonance coil unit and non-contact type electric power transmission apparatus
JP5888541B2 (en) * 2011-01-18 2016-03-22 矢崎総業株式会社 Resonance coil holding member, resonance coil unit, and non-contact power transmission device
JP5776703B2 (en) * 2011-02-04 2015-09-09 トヨタ自動車株式会社 Vehicle and external power supply device
JP2012178531A (en) * 2011-02-28 2012-09-13 Equos Research Co Ltd Antenna
US9124126B2 (en) * 2011-03-11 2015-09-01 Toyota Jidosha Kabushiki Kaisha Coil unit, power transmission device, external power feeding apparatus, and vehicle charging system
JP2012216569A (en) * 2011-03-31 2012-11-08 Equos Research Co Ltd Power transmission system
JP2012254782A (en) * 2011-05-17 2012-12-27 Nissan Motor Co Ltd Mounting structure of non-contact charger
JP2012257443A (en) * 2011-05-17 2012-12-27 Nissan Motor Co Ltd Mounting structure of contactless charger
JP5682446B2 (en) * 2011-05-18 2015-03-11 トヨタ自動車株式会社 Secondary coil unit and power transmission system
JP5673810B2 (en) * 2011-05-19 2015-02-18 トヨタ自動車株式会社 Power receiving device, power transmitting device, and power transmission system
JP5708251B2 (en) * 2011-05-27 2015-04-30 日産自動車株式会社 Non-contact power feeding device
JP2012249490A (en) * 2011-05-31 2012-12-13 Kojima Press Industry Co Ltd Vehicle-mounted charger and vehicle-mounted power supply device
BR112013031015A2 (en) 2011-06-03 2016-11-29 Toyota Motor Co Ltd vehicle, fixture, and power transmission / reception system
WO2012164742A1 (en) * 2011-06-03 2012-12-06 トヨタ自動車株式会社 Vehicle and power transmission/reception system
US9531217B2 (en) 2011-06-27 2016-12-27 Toyota Jidosha Kabushiki Kaisha Power reception device, power transmission device and power transfer system
EP2763149B1 (en) * 2011-09-28 2018-03-21 Toyota Jidosha Kabushiki Kaisha Power receiving device, power transmitting device, and power transmission system
EP2763148B1 (en) * 2011-09-28 2019-07-31 Toyota Jidosha Kabushiki Kaisha Power receiving device, power transmitting device, and power transmission system
WO2013051105A1 (en) * 2011-10-04 2013-04-11 トヨタ自動車株式会社 Power reception device, power transmission device, and power transmission system
JP5949773B2 (en) * 2011-10-07 2016-07-13 トヨタ自動車株式会社 Power receiving device, vehicle including the same, and power transmission system
JP5834825B2 (en) * 2011-11-25 2015-12-24 トヨタ自動車株式会社 vehicle
JP5810944B2 (en) * 2012-01-31 2015-11-11 トヨタ自動車株式会社 Vehicle and power transmission system
JP6009174B2 (en) * 2012-02-23 2016-10-19 矢崎総業株式会社 Shield case for non-contact power feeding system and non-contact power feeding system
JP5848182B2 (en) 2012-04-05 2016-01-27 トヨタ自動車株式会社 vehicle
JP6151246B2 (en) * 2012-05-21 2017-06-21 株式会社テクノバ Contactless power transformer
JPWO2013183106A1 (en) * 2012-06-04 2016-01-21 トヨタ自動車株式会社 Power receiving device, power transmitting device and vehicle
US9787138B2 (en) * 2012-06-04 2017-10-10 Toyota Jidosha Kabushiki Kaisha Power reception device and power transmission device
JP6078278B2 (en) * 2012-09-19 2017-02-08 小島プレス工業株式会社 Power supply unit
JP2014060888A (en) * 2012-09-19 2014-04-03 Kojima Press Industry Co Ltd Electric vehicle
JP6131915B2 (en) * 2014-06-11 2017-05-24 トヨタ自動車株式会社 Power transmission device and power reception device
GB2529630A (en) * 2014-08-26 2016-03-02 Bombardier Transp Gmbh A receiving device for receiving a magnetic field and for producing electric energy by magnetic induction, in particular for use by a vehicle
JP6500601B2 (en) 2015-05-27 2019-04-17 株式会社Ihi Cooling system and non-contact power feeding system
US10784035B2 (en) 2015-08-25 2020-09-22 Ihi Corporation Coil device and coil system
JP6343635B2 (en) * 2016-06-27 2018-06-13 本田技研工業株式会社 Power receiving device, transportation device, and detection method
CN107627896A (en) * 2017-10-29 2018-01-26 长沙修恒信息科技有限公司 A kind of automobile wireless charging system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3302843B2 (en) * 1994-11-02 2002-07-15 東海旅客鉄道株式会社 Maglev train current collector
JP2001110659A (en) * 1999-10-05 2001-04-20 Toyota Autom Loom Works Ltd Receptacle for electrical charge for charging
JP2002184632A (en) * 2000-12-13 2002-06-28 Toyota Industries Corp Coil wiring structure of coupler for power supply, and the coupler for power supply and the power supply unit
JP3664650B2 (en) * 2000-12-18 2005-06-29 三菱電機株式会社 Control device integrated motor
JP4146670B2 (en) * 2002-06-05 2008-09-10 北陸電機製造株式会社 High frequency induction heating device
JP4865450B2 (en) * 2006-08-24 2012-02-01 三菱重工業株式会社 Power receiving device, energy supply system, and vehicle
JP4453741B2 (en) * 2007-10-25 2010-04-21 トヨタ自動車株式会社 Electric vehicle and vehicle power supply device
JP2010074937A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Non-contact power receiving apparatus and vehicle equipped with the same

Also Published As

Publication number Publication date
JP2010268660A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5359544B2 (en) Non-contact power transmission device, vehicle and non-contact power transmission system
JP4868089B2 (en) Non-contact power receiving device, non-contact power transmission device, non-contact power feeding system and vehicle
JP4962621B2 (en) Non-contact power transmission device and vehicle equipped with non-contact power transmission device
US20130193749A1 (en) Vehicle and power transfer system
JP5668676B2 (en) Power receiving device, vehicle including the same, power transmitting device, and power transmission system
JP5825337B2 (en) Shield and vehicle equipped with it
JP4743244B2 (en) Non-contact power receiving device
JP4947241B2 (en) Coil unit, contactless power receiving device, contactless power transmitting device, contactless power feeding system, and vehicle
JP5776703B2 (en) Vehicle and external power supply device
JP5077340B2 (en) Non-contact power receiving apparatus and manufacturing method thereof
JP5673822B2 (en) Power receiving device, power transmitting device, and power transmission system
WO2010038297A1 (en) Self-resonant coil, contactless power transferring apparatus, and vehicle
JP2011135729A (en) Coil unit, contactless power receiving apparatus, contactless power transmitting apparatus, and vehicle
JP2012222956A (en) Vehicle-side coil unit, equipment-side coil unit, and power transmission system
JP5682446B2 (en) Secondary coil unit and power transmission system
JP2011204836A (en) Coil unit, noncontact power receiving device, noncontact power transmitting device, and vehicle
JP2010074937A (en) Non-contact power receiving apparatus and vehicle equipped with the same
JPWO2012157114A1 (en) Power receiving device, power transmitting device, and power transmission system
JP5949773B2 (en) Power receiving device, vehicle including the same, and power transmission system
JP2010267917A (en) Coil unit, noncontact power transmitter, noncontact power supply system, and motor-driven vehicle
JP2010073885A (en) Resonance coil and non-contact feeding system
JP2013198356A (en) Non-contact power receiving device, non-contact power sending device, and non-contact power sending/receiving system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R151 Written notification of patent or utility model registration

Ref document number: 5359544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151