JP5358425B2 - High-performance large-aperture ratio imaging lens consisting of two lenses with an F-number of 3 or less - Google Patents

High-performance large-aperture ratio imaging lens consisting of two lenses with an F-number of 3 or less Download PDF

Info

Publication number
JP5358425B2
JP5358425B2 JP2009292279A JP2009292279A JP5358425B2 JP 5358425 B2 JP5358425 B2 JP 5358425B2 JP 2009292279 A JP2009292279 A JP 2009292279A JP 2009292279 A JP2009292279 A JP 2009292279A JP 5358425 B2 JP5358425 B2 JP 5358425B2
Authority
JP
Japan
Prior art keywords
lens
curvature
diffractive optical
imaging lens
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009292279A
Other languages
Japanese (ja)
Other versions
JP2011133631A5 (en
JP2011133631A (en
Inventor
久則 鈴木
慎吾 渡邊
健一 鎌田
和雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kantatsu Co Ltd
Original Assignee
Kantatsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kantatsu Co Ltd filed Critical Kantatsu Co Ltd
Priority to JP2009292279A priority Critical patent/JP5358425B2/en
Priority to PCT/JP2010/072630 priority patent/WO2011078048A1/en
Publication of JP2011133631A publication Critical patent/JP2011133631A/en
Publication of JP2011133631A5 publication Critical patent/JP2011133631A5/ja
Application granted granted Critical
Publication of JP5358425B2 publication Critical patent/JP5358425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses

Abstract

Provided with a first lens, a diaphragm, and a second lens in this order from the object side, wherein the first surface of the first lens is a convex surface, the second surface thereof is a concave surface, the first surface of the second lens is a concave surface, and the second surface thereof is a convex surface. Each lens surface is formed with an aspheric surface, and the first surface of the second lens is formed with a diffractive optical surface that exhibits chromatic dispersion. Optical components satisfy the following conditional equations: (1) -0.11 < (L/R)/(V1/V2) < -0.07 and (2) 0.09 < De/f < 0.18, provided that R is the average radius of curvature of the first surface of the second lens, L is the distance from the diaphragm to the first surface of the second lens, V1 is the Abbe number of the e-line of the first lens material, V2 is the Abbe number of the e-line of the second lens material, De is the distance in the optical axis direction on the respective effective diameters of the first surface of the first lens and the second surface of the first lens, f is the focal distance of the entire system, and the sign of the radius of curvature is negative when the center of curvature is left of the refracting interface and is positive when right of the same.

Description

本発明は、例えば、携帯電話等に搭載されることを目的とする小型撮像レンズに関するものであり、白色光等の広帯域光で且つ広画角の物体を撮影するための2枚構成から成るF値が3以下の高性能大口径比撮像レンズを提供するものである。   The present invention relates to a small imaging lens that is intended to be mounted on, for example, a mobile phone and the like, and is composed of a two-lens configuration for photographing a wide-angle light such as white light and an object with a wide angle of view. A high-performance large-aperture ratio imaging lens having a value of 3 or less is provided.

近年撮像レンズは写真フィルムからCCDやCMOSなどの撮像素子への移行に伴い小型化が急速に進み携帯電話等への搭載が可能となり大量消費による低価格化の要求が強まる一方、極端な薄型化や電子式受光素子のための光線入射角度の制約等の技術的課題も満足しなくてはならない。   In recent years, with the shift from photographic film to image sensors such as CCD and CMOS, imaging lenses have rapidly become smaller and can be mounted on mobile phones and the like. In addition, technical problems such as restrictions on the light incident angle for electronic light receiving elements must also be satisfied.

さらに、近年では撮像素子の高画素化が進み特許文献1〜3で示すように、2〜4枚構成のガラス又はプラスチックレンズが主流となっている一方、携帯電話等の普及が急速に進むにつれ低価格であっても高画質を望む市場要求が強くなり、少ない構成枚数でより高性能な撮像レンズが望まれている。   Furthermore, in recent years, as the number of pixels of the image pickup device has increased, as shown in Patent Documents 1 to 3, glass or plastic lenses having 2 to 4 sheets have become mainstream, while the popularization of mobile phones and the like has rapidly progressed. There is a strong market demand for high image quality even at a low price, and a higher-performance imaging lens with fewer components is desired.

特開2007−298719号公報JP 2007-298719 A 特開2005−326682号公報JP 2005-326682 A 特開2005−284153号公報JP 2005-284153 A

従来小型で低価格な撮像レンズとしては、2枚の非球面を用いたプラスチックレンズで構成されたものがよく知られていて3枚構成に比べ生産効率も高く安価に供給されているが、画質に関しては3枚構成のものに比べ大きな差がある。しかし、3枚構成のものは設計性能には優れているが2枚構成のものに比べ公差に敏感なため、2枚構成に比べ歩留まりが悪く部品コストが高いだけではなく組立コストが大幅に高くなる欠点がある。   Conventionally, as a small-sized and low-priced imaging lens, a lens composed of two aspherical plastic lenses is well known, and its production efficiency is high and cheaper than that of a three-lens configuration. There is a big difference compared to the three-sheet configuration. However, the three-sheet configuration is superior in design performance, but is more sensitive to tolerances than the two-sheet configuration, so the yield is worse and the parts cost is higher than the two-sheet configuration, and the assembly cost is significantly higher. There are disadvantages.

この問題を解決するためにコスト面からみると撮像レンズは必然的に2枚構成に成らざるを得ないが、構成枚数が少ないことから広帯域光のための色収差補正が困難であり、高い空間周波数に対して十分な解像性能を得ることができない。   In order to solve this problem, from the viewpoint of cost, the imaging lens inevitably has a two-lens configuration. However, since the number of components is small, it is difficult to correct chromatic aberration for broadband light, and a high spatial frequency. In contrast, sufficient resolution performance cannot be obtained.

本発明は効果的に色収差を補正すことにより、これらの問題を解決し最小構成で高性能な2枚構成から成るF値が3以下の高性能大口径比撮像レンズを提供することを目的とするものである。   An object of the present invention is to solve these problems by effectively correcting chromatic aberration, and to provide a high-performance large-aperture-ratio imaging lens having an F value of 3 or less and having a high-performance two-lens configuration with a minimum configuration. To do.

本発明に関わる撮像レンズは、白色光等の広帯域光で且つ広画角の物体を撮像するための撮像レンズを2枚構成のレンズでもって提供するものであり、次のような特徴を有している。   The imaging lens according to the present invention provides an imaging lens for imaging an object with a wide-angle light such as white light and a wide angle of view with a lens having two lenses, and has the following characteristics. ing.

物体側より順に、プラスチック材料から成る第1レンズ、絞り、プラスチック材料から成る第2レンズを具備する2枚のレンズ系から構成されおり、第1レンズの第1面が凸面、第2面が凹面で構成され、第2レンズの第1面が凹面、第2面が凸面で構成され、レンズの各々の面が非球面で構成されかつ第2レンズの第1面に色分散機能を発揮する回折光学面が配置されている。
In order from the object side, the lens is composed of two lens systems including a first lens made of a plastic material , an aperture, and a second lens made of a plastic material . The first surface of the first lens is convex and the second surface is concave. Diffraction in which the first surface of the second lens is a concave surface, the second surface is a convex surface, each surface of the lens is an aspheric surface, and exhibits a color dispersion function on the first surface of the second lens. An optical surface is arranged.

また、前述のような撮像レンズは基準点から物体方向を負、像面方向を正とする座標系において、各光学要素が以下の条件式を満足するように構成されることが好ましい。
(1)−0.11<(L/R)/(V1/V2)<−0.07
(2)0.09<De/f0.155
ただし、
R :第2レンズ第1面の平均曲率半径
なお、平均曲率半径とは非球面の光軸方向の変位を最小二乗法で近似した球面の曲率半径を表す。
L :絞りから第2レンズ第1面までの距離
V1:第1レンズ材質のe線のアッベ数
V2:第2レンズ材質のe線のアッベ数
De:第1レンズ第1面及び第1レンズ第2面のそれぞれの有効径に於ける光軸方向の距離
f :全系の焦点距離
The imaging lens as described above is preferably configured such that each optical element satisfies the following conditional expression in a coordinate system in which the object direction is negative and the image plane direction is positive from the reference point.
(1) −0.11 <(L / R) / (V1 / V2) <− 0.07
(2) 0.09 <De / f 0.1 55
However,
R: Average radius of curvature of the first surface of the second lens The average radius of curvature represents the radius of curvature of the spherical surface obtained by approximating the displacement of the aspherical surface in the optical axis direction by the least square method.
L: Distance from the diaphragm to the first surface of the second lens V1: Abbe number of e-line of the first lens material V2: Abbe number of e-line of the second lens material De: First lens first surface and first lens first The distance f in the optical axis direction at each effective diameter of the two surfaces: focal length of the entire system

また、色分散機能を有する回折光学面とは、レンズ面上に回折レリーフを形成し、その面がレンズ材質の色分散度に比して大となる色分散度を発揮することを特徴とする光学面のことをいう。   A diffractive optical surface having a chromatic dispersion function is characterized in that a diffractive relief is formed on a lens surface, and the surface exhibits a chromatic dispersion that is larger than the chromatic dispersion of a lens material. The optical surface.

本発明は広帯域光で且つ広画角の物体を良好に撮像するための撮像レンズを2枚構成のレンズ系で実現するものである。2枚構成は、広画角に対応するための像面湾曲補正を実現するために一定のペッツバール和を確保し最適な収差補正を行い、且つ電子式受光素子に対して最適な入射角度で光が入射するようレンズからの光線の射出角を確保するために必要な構成枚数である。   The present invention realizes an imaging lens for satisfactorily imaging an object with wide-band light and a wide angle of view with a lens system having two lenses. The two-lens configuration secures a constant Petzval sum and achieves optimal aberration correction in order to achieve field curvature correction to accommodate a wide angle of view, and light at an optimal incident angle with respect to an electronic light receiving element. Is the number of components necessary to secure the exit angle of the light beam from the lens so that is incident.

しかし、レンズ構成を2枚構成にすることで光線収差は良好に補正できるものの色収差補正は不十分で、広帯域光に対して結像映像に色収差に依存するにじみが残る結果となりより多くの画素を持った電子式受光素子に対して満足した解像度を得られない。   However, the two-lens configuration can correct the light aberration satisfactorily, but the chromatic aberration correction is insufficient, resulting in blurring depending on the chromatic aberration in the formed image with respect to the broadband light. Satisfactory resolution cannot be obtained for the electronic light receiving element.

また、近年受光素子が急速に小型化されることによりレンズ系全体が小型化され、個別部品精度がそれに比例して厳しくなってきている。これにより量産品質を一定に保つために各部品の高精度化と組立精度の確保が要求されるようになり構成枚数が多くなると製造に困難が伴うようになってきた。   In recent years, the size of the light receiving element has been rapidly reduced, so that the entire lens system has been reduced in size, and the accuracy of individual components has become proportionally stricter. As a result, in order to keep the mass production quality constant, it is required to increase the accuracy of each part and ensure the assembly accuracy. As the number of components increases, manufacturing becomes difficult.

本発明は2枚構成でレンズ系を構成することにより製造を容易にし、色分散機能を発揮する回折光学面を最適に配置することで前述の問題を解決し、2枚構成から成るF値が3以下の高性能大口径比撮像レンズを提供するものである。   The present invention facilitates manufacturing by configuring the lens system with a two-lens configuration, solves the above-mentioned problem by optimally arranging the diffractive optical surface that exhibits the chromatic dispersion function, and has an F-number consisting of two lenses. The present invention provides a high-performance large-aperture ratio imaging lens of 3 or less.

実施例1に関わる撮像レンズの構成図である。2 is a configuration diagram of an imaging lens according to Example 1. FIG. 実施例1に関わる撮像レンズの収差図である。FIG. 4 is an aberration diagram of the imaging lens according to Example 1. 実施例1に関わる第2レンズ第1面に回折光学面を配した場合の回折効率を表す図である。FIG. 6 is a diagram illustrating diffraction efficiency when a diffractive optical surface is arranged on the first surface of the second lens relating to Example 1. 実施例1に関わる第1レンズ第2面に回折光学面を配した場合の回折効率を表す図である。6 is a diagram illustrating diffraction efficiency when a diffractive optical surface is disposed on the second surface of the first lens relating to Example 1. FIG. 実施例2に関わる撮像レンズの収差図である。6 is an aberration diagram of the imaging lens according to Example 2. FIG. 実施例3に関わる撮像レンズの収差図である。10 is an aberration diagram of the imaging lens according to Example 3. FIG. 比較例に関わる撮像レンズの収差図である。FIG. 6 is an aberration diagram of an imaging lens according to a comparative example.

以下、本発明の実施例について図面を用いて説明する。先ず本発明の代表例として実施例1を詳細に説明する。以下の各実施例においては重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. First, Example 1 will be described in detail as a representative example of the present invention. In the following embodiments, duplicate descriptions are omitted.

図1に本発明の実施例1に関わる撮像レンズの構成図を示す。   FIG. 1 shows a configuration diagram of an imaging lens according to Embodiment 1 of the present invention.

実施例1の撮像レンズは図1に示す通り、物体側より順に、第1レンズ、絞りR4、第2レンズを具備するレンズ系から構成されおり、第1レンズの第1面が凸面、第2面が凹面で構成され、第2レンズの第1面が凹面、第2面が凸面で構成され、レンズの各々の面が非球面で構成されかつ第2レンズの第1面に色分散機能を有する回折光学面が配置されている。レンズは非球面形成の容易さと最適な分散を得るために材質としてシクロオレフィン系またはポリカーボネート系のプラスチックを使用している。   As shown in FIG. 1, the imaging lens according to the first exemplary embodiment includes, in order from the object side, a lens system including a first lens, a diaphragm R4, and a second lens. The first surface of the first lens is a convex surface, and the second surface is a second surface. The surface is configured as a concave surface, the first surface of the second lens is configured as a concave surface, the second surface is configured as a convex surface, each surface of the lens is configured as an aspheric surface, and a color dispersion function is provided on the first surface of the second lens. A diffractive optical surface is disposed. The lens uses a cycloolefin-based or polycarbonate-based plastic as a material in order to easily form an aspherical surface and obtain an optimum dispersion.

本実施例においては、第1レンズと第2レンズとの間に光量を制御するための鏡枠に相当する仮想面R3、R5が配置されその中間に絞りR4が配されており、撮像レンズの第2レンズ第2面R7と結像面Sとの間に平行平面R8、R9で構成されるカバーガラスが配されている。また、図1においてd1、d2・・・d9は面間隔を、Xは光軸をそれぞれ表している。   In the present embodiment, virtual surfaces R3 and R5 corresponding to a lens frame for controlling the amount of light are arranged between the first lens and the second lens, and a diaphragm R4 is arranged between them. A cover glass composed of parallel planes R8 and R9 is disposed between the second lens second surface R7 and the imaging surface S. Further, in FIG. 1, d1, d2,..., D9 represent surface intervals, and X represents an optical axis.

なお、レンズ面R1、R2、R6及びR7は数1で表される基本となる非球面で構成され、レンズ面R6には基本となる非球面の上に数2で表される光路差関数としての回折光学面が形成されている。   The lens surfaces R1, R2, R6, and R7 are formed of a basic aspherical surface expressed by Equation 1, and the lens surface R6 has an optical path difference function expressed by Equation 2 on the basic aspherical surface. Diffractive optical surfaces are formed.

Figure 0005358425
Figure 0005358425

Figure 0005358425
Figure 0005358425

また、実施例1の撮像レンズは以下の条件式を満足するような構成になっている。
(1)−0.11<(L/R)/(V1/V2)<−0.07
(2)0.09<De/f0.155
ただし、
R :第2レンズ第1面の平均曲率半径
なお、平均曲率半径とは非球面の光軸方向の変位を最小二乗法で近似した球面の曲率半径
を表す。
L :絞りから第2レンズ第1面までの距離
V1:第1レンズ材質のe線のアッベ数
V2:第2レンズ材質のe線のアッベ数
De:第1レンズ第1面及び第1レンズ第2面のそれぞれの有効径に於ける光軸方向の距離
f :全系の焦点距離
以下、本発明の骨子の詳細を説明する。
Further, the imaging lens of Example 1 is configured to satisfy the following conditional expression.
(1) −0.11 <(L / R) / (V1 / V2) <− 0.07
(2) 0.09 <De / f 0.1 55
However,
R: Average radius of curvature of the first surface of the second lens The average radius of curvature represents the radius of curvature of the spherical surface obtained by approximating the displacement of the aspherical surface in the optical axis direction by the least square method.
L: Distance from the diaphragm to the first surface of the second lens V1: Abbe number of e-line of the first lens material V2: Abbe number of e-line of the second lens material De: First lens first surface and first lens first The distance f in the optical axis direction at the effective diameters of the two surfaces is the focal length of the entire system. The details of the present invention will be described below.

先ず、本撮像レンズの基本構成は、物体側より順に、第1面が凸面、第2面が凹面からなる第1レンズ、絞り、第1面が凹面、第2面が凸面からなる第2レンズにより構成されており、レンズの各々の面が非球面で構成されかつ第2レンズの第1面に色分散機能を有する回折光学面が配置されている。   First, the basic configuration of the imaging lens is, in order from the object side, a first lens whose first surface is a convex surface and a second surface is a concave surface, an aperture, a second lens whose first surface is a concave surface, and whose second surface is a convex surface. Each surface of the lens is aspherical, and a diffractive optical surface having a color dispersion function is disposed on the first surface of the second lens.

広画角に対して良好に収差補正を行うためには像面湾曲を良好に補正することが必要であり、像面湾曲補正を目的とし負のパワーをもった面を絞りに近い位置に配置することによりペッツバール和を小さくし、負のパワーを有した面を絞りの両側に配置し第1レンズの第1面と第2レンズの第2面を凸面にすることにより、系全体が絞りを挟んでコンセントリックに近い構成になることでディストーションを良好に保つことが可能となる。   In order to correct aberrations well over a wide field angle, it is necessary to correct field curvature well, and a surface with negative power is placed close to the stop for the purpose of field curvature correction. By reducing the Petzval sum, the surfaces having negative power are arranged on both sides of the diaphragm, and the first surface of the first lens and the second surface of the second lens are convex surfaces. It becomes possible to keep the distortion favorable by sandwiching the structure close to the concentric.

しかし、2枚構成では軸上色収差に関して補正手段がなく、色のにじみが発生し結果として空間周波数の高い領域での解像性能が劣化してしまう。本発明はこの問題を、色分散機能を有する回折光学面を配することで解決を図ったものである。   However, in the two-lens configuration, there is no correction means for axial chromatic aberration, and color blurring occurs, resulting in degradation of resolution performance in a region with a high spatial frequency. The present invention solves this problem by providing a diffractive optical surface having a chromatic dispersion function.

回折光学面は光路差関数で定義される光路差を発生させるレリーフにより構成されるものであり、通常ガラスの分散がe線のアッベ数で25から80であるのに対して同約−3.5と逆符号でおおよそ一桁大きな分散を示す性質がある。また、ガラス等の一般の光学材料で色収差を補正する場合少なくとも2種類の分散の異なる材料を組み合わせてレンズを構成する必要があるが、回折光学面をレンズに1面配置するだけで前述の大きな色分散機能を発揮し効果的に色収差補正を実現することが可能である。後述の表8は本発明の実施例1と比較例として回折光学面が無い本発明に類似した構成のレンズの軸上色収差を比較したものであるが、比較例のg線からC線までのスペクトル線の波長における軸上色収差の広がりが0.025mmに対し実施例1の同広がりは0.006mmと約1/4の大きさになっており、色収差が極めて良好に補正されていることが判る。   The diffractive optical surface is constituted by a relief that generates an optical path difference defined by an optical path difference function. Usually, the dispersion of glass is 25 to 80 in terms of the Abbe number of the e-line, and about −3. 5 and the reverse sign have the property of showing a dispersion that is approximately one digit larger. In addition, when correcting chromatic aberration with a general optical material such as glass, it is necessary to configure a lens by combining at least two types of materials having different dispersions. It is possible to effectively correct chromatic aberration by exhibiting a chromatic dispersion function. Table 8 described below compares the axial chromatic aberration of a lens having a structure similar to the present invention having no diffractive optical surface as Example 1 of the present invention and a comparative example, but from the g line to the C line of the comparative example. The spread of axial chromatic aberration at the wavelength of the spectral line is 0.025 mm, whereas the spread of the first embodiment is 0.006 mm, which is about 1/4, and the chromatic aberration is corrected extremely well. I understand.

一方、回折光学面は設計基準波長に対しては回折効率が極めて高いが、設計基準波長を外れたり光線入射角が大きくなると回折効率が低下したりする欠点があるので、これらの欠点の影響が出来る限り小さくなるような設計が要求される。   On the other hand, diffractive optical surfaces have extremely high diffraction efficiency with respect to the design reference wavelength, but there are drawbacks in that the diffraction efficiency decreases when the design reference wavelength is deviated or the light incident angle is increased. A design that is as small as possible is required.

回折光学面を用いない一般的なガラス等で構成されるレンズ系は色収差を補正するために用いられる色収差補正面等の光学要素は絞りに比較的近い位置に配するのが一般的である。回折光学面も同様に絞りに近い位置に配することで軸上、軸外共に色収差補正が可能である。しかし、実施例1のようにF/2.8というように比較的大口径比で画角が大きくなると光線入射角が大きくなることで回折効率の急激な低下を招き周辺部のコントラストを大きく低下させることになる。   In a lens system composed of general glass or the like that does not use a diffractive optical surface, an optical element such as a chromatic aberration correction surface used for correcting chromatic aberration is generally arranged at a position relatively close to the stop. Similarly, by arranging the diffractive optical surface at a position close to the stop, it is possible to correct chromatic aberration both on-axis and off-axis. However, as in the first embodiment, when the angle of view increases with a relatively large aperture ratio such as F / 2.8, the incident angle of the light increases as the field angle increases, resulting in a sharp decrease in diffraction efficiency and a significant decrease in the contrast at the periphery. I will let you.

本発明は大きな画角に対応するために絞りから適宜離れた凹面に回折光学面を配することでこの問題の解決を図っている。前述の光線入射角の変化により回折効率が低下する問題を解決するためには絞りを挟みコンセントリックに近い面に回折光学面を配することが望ましいが、本発明の構成では絞りの直後にある第2レンズの第1面に回折光学面を配している。   The present invention solves this problem by arranging a diffractive optical surface on a concave surface appropriately separated from the stop in order to cope with a large angle of view. In order to solve the above-described problem that the diffraction efficiency is lowered due to the change in the incident angle of the light beam, it is desirable to arrange the diffractive optical surface on the surface close to the concentric with the aperture interposed therebetween. A diffractive optical surface is disposed on the first surface of the second lens.

本発明の撮像レンズは主に携帯電話に搭載されるカメラ用撮像レンズユニットを想定しており、撮像素子が要求する光線入射角の制約とコンパクト化を同時に成立するために、絞り位置を出来るだけ物体側に寄せることが必要である。しかし、絞りを第1レンズの前に置くと第1レンズ第2面により上側光線が大きく跳ね上げられ収差補正が困難となるため、結果として第1レンズ第2面の近傍に配されることとなる。また、同様な理由により第2レンズ第2面により撮像素子の特性に合わせて光線射出角を制御するため第2レンズの厚みが大きくなる。一方、回折光学素子は分散が非常に大きいため絞りから遠くに配置すると倍率の色収差が大きくなりすぎて補正が過剰になる欠点を持っている。   The imaging lens of the present invention mainly assumes an imaging lens unit for a camera mounted on a mobile phone, and the aperture position is set as much as possible in order to simultaneously satisfy the restrictions on the light incident angle required by the imaging device and the compactness. It is necessary to move to the object side. However, if the stop is placed in front of the first lens, the upper ray is greatly bounced up by the first lens second surface, making it difficult to correct aberrations. As a result, it is disposed near the second lens second surface. Become. For the same reason, the second lens second surface controls the light emission angle in accordance with the characteristics of the image sensor, so that the thickness of the second lens is increased. On the other hand, since the diffractive optical element has a very large dispersion, if it is arranged far from the stop, the chromatic aberration of magnification becomes too large and the correction becomes excessive.

以上のような理由により本発明に於いて回折光学面を配する位置は絞りの直後の第2レンズ第1面が最適であるとの結論に至った。しかし、回折光学面が絞りからやや離れた位置にあることと色収差以外の光線収差補正との兼ね合いから倍率の色収差に影響が出るため、第1レンズと第2レンズの分散を適正にとることによって軸上色収差と倍率の色収差を最適に補正することが可能である。   For the reasons described above, the present inventors have concluded that the position of the diffractive optical surface in the present invention is optimal for the first surface of the second lens immediately after the stop. However, since the chromatic aberration of magnification is affected by the balance between the diffractive optical surface being slightly away from the stop and the correction of ray aberrations other than chromatic aberration, the dispersion of the first lens and the second lens is appropriately taken. It is possible to optimally correct axial chromatic aberration and lateral chromatic aberration.

条件式(1)は絞りと回折光学面の位置関係を表すものであり、色収差をおよび他の光線収差を良好に補正しかつ良好な回折効率を保つために一定の関係がある。また、絞りと回折光学面との距離は第2レンズの材料の分散の大きさにより異なり、倍率の色収差補正の観点から2つのレンズ材質のアッベ数の比V1/V2と回折光学面の平均曲率半径及び絞りから回折光学面までの距離の3要素のバランスで最適値が定まり、(L/R)/(V1/V2)の値は大凡一定の値をとることが好ましい。条件式(1)はこのバランスに関わるものであり、(L/R)/(V1/V2)の値が大きくなると相対的にレンズ面が絞りに近づくか面の平均曲率半径が大きくなり倍率の色収差が補正不足となるため(V1/V2)の値を小さくすることで倍率の色収差を最適に補正する必要がある。また、(L/R)/(V1/V2)の値が小さくなると前述と逆の現象が起こり、(V1/V2)の値を大きくすることで倍率の色収差を最適に補正しなくてはならない。後述の各実施例によれば(L/R)と(V1/V2)はそれぞれに大きく異なる値をとっても、その比である(L/R)/(V1/V2)は−0.09前後のほぼ一定の値をとっている。条件式の範囲を外れると軸上色収差補正と倍率の色収差補正を同時に行うことが困難となり、他の収差補正に悪影響を及ぼすこととなり所望の性能を実現できなくなる。   Conditional expression (1) represents the positional relationship between the stop and the diffractive optical surface, and has a certain relationship in order to satisfactorily correct chromatic aberration and other light aberrations and maintain good diffraction efficiency. The distance between the stop and the diffractive optical surface differs depending on the dispersion of the material of the second lens. From the viewpoint of correcting the chromatic aberration of magnification, the ratio V1 / V2 of the Abbe numbers of the two lens materials and the average curvature of the diffractive optical surface The optimum value is determined by the balance of the three elements of the radius and the distance from the stop to the diffractive optical surface, and the value of (L / R) / (V1 / V2) is preferably approximately constant. Conditional expression (1) relates to this balance. When the value of (L / R) / (V1 / V2) increases, the lens surface relatively approaches the stop or the average radius of curvature of the surface increases, and the magnification is increased. Since chromatic aberration is undercorrected, it is necessary to optimally correct the chromatic aberration of magnification by reducing the value of (V1 / V2). Further, when the value of (L / R) / (V1 / V2) is reduced, the reverse phenomenon occurs, and the chromatic aberration of magnification must be optimally corrected by increasing the value of (V1 / V2). . According to each example described later, even though (L / R) and (V1 / V2) have different values, the ratio (L / R) / (V1 / V2) is about -0.09. The value is almost constant. Outside the range of the conditional expression, it becomes difficult to perform axial chromatic aberration correction and lateral chromatic aberration correction at the same time, adversely affecting other aberration corrections, and the desired performance cannot be realized.

なお、平均曲率半径とは非球面形状式で与えられた非球面形状を最小二乗法によって導出された球面の曲率半径のことを表す。平均曲率半径を用いることは、非球面における近軸的な曲率半径では屈折面周辺部の形状を正しく表すことが困難で、大きな画角における色収差に影響を与える絞りから離れた回折光学面の影響と条件式との相関関係をより的確に表すために有用である。   The average radius of curvature represents the radius of curvature of the spherical surface derived from the aspherical shape given by the aspherical shape formula by the least square method. Using an average radius of curvature means that it is difficult to accurately represent the shape of the periphery of the refractive surface with a paraxial radius of curvature on an aspherical surface, and the influence of a diffractive optical surface away from the aperture that affects chromatic aberration at large angles of view. This is useful for more accurately expressing the correlation between and the conditional expression.

条件式(2)は第1レンズ縁厚にかかわる条件で、携帯電話用撮像レンズ等の特に小型の撮像レンズに特有な制約であり、機構上の制約と性能との関係を表している。本発明が主に対象としているのは口径比F2.8前後、最大半画角:ω=33°前後の非常に小型の撮像レンズである。本発明のようなレンズ構成は絞りを挟んでコンセントリックに近い形状に屈折面が配置されるため一般的に非点収差、コマ収差、ディストーションなどの補正に有利であるが、撮像素子の要求する光線入射角に合わせて射出光線角を一定の条件に合わせるため絞りに対してパワー配置の非対称性が大きくなり収差の補正バランスが崩れてしまう。それに加え光学回折面が絞りに対して非対称に配置されるため結果として絞り位置が像面からより遠い位置に配置されるような構成になる。この結果軸外収差補正を良好に行うためには第1レンズの厚みを薄くすることが好ましいが、前述の使用目的のような場合大きな口径比と広い画角のため相対的に縁厚が薄くなり機構上レンズの厚みに制約が生ずることとなる。   Conditional expression (2) is a condition relating to the first lens edge thickness, and is a restriction peculiar to a particularly small imaging lens such as an imaging lens for a mobile phone, and represents a relationship between the restriction on the mechanism and the performance. The main object of the present invention is a very small imaging lens having an aperture ratio of about F2.8 and a maximum half angle of view of about ω = 33 °. The lens configuration as in the present invention is generally advantageous for correcting astigmatism, coma aberration, distortion, and the like because the refractive surface is arranged in a shape close to concentric across the diaphragm, but is required by the image sensor. Since the exit ray angle is adjusted to a constant condition in accordance with the ray incident angle, the asymmetry of the power arrangement with respect to the stop is increased, and the aberration correction balance is lost. In addition, since the optical diffractive surface is arranged asymmetrically with respect to the stop, the stop position is arranged at a position farther from the image plane. As a result, it is preferable to reduce the thickness of the first lens in order to satisfactorily correct off-axis aberrations. However, in the case of the above-mentioned purpose of use, the edge thickness is relatively thin due to a large aperture ratio and a wide angle of view. Therefore, the lens thickness is limited due to the mechanism.

また、第1レンズの縁厚を増大させることは、大きな口径比と広い画角の影響により機構上の制約だけではなく第1レンズ第1面及び第2レンズ第2面の有効径内における法線角度が増大することなり、特にレンズの成型加工上の問題を引き起こす要因となる。よって、条件式(2)においてDeが下限を下回ると機構上レンズを保持できなくなり、Deが上限を超えると性能が低下すると共にレンズ面の法線角が大きくなりレンズの成型加工上問題が生じる結果となる。   Further, increasing the edge thickness of the first lens is not only a mechanism limitation due to the influence of a large aperture ratio and a wide angle of view, but also a method within the effective diameter of the first lens first surface and the second lens second surface. This increases the line angle, and in particular causes a problem in lens molding. Therefore, in the conditional expression (2), if De is below the lower limit, the lens cannot be held by the mechanism, and if De exceeds the upper limit, the performance is lowered and the normal angle of the lens surface is increased, causing a problem in lens molding processing. Result.

回折光学面を備えた2枚構成のレンズは既に特2004−191844号公報ならびに特2008−89949号公報等により公知であるが、何れも回折光学面を持たない基本構成レンズに回折光学面を付加した例であり回折光学面の配置位置及びその形状が明確に規定されていない。大きな分散を有する回折光学面はその特質からレンズ構成と配置位置及びその形状を最適化しないと有効的な効果を上げることが困難である。単色光や画角が小さいなどの特定条件においては回折光学面の配置に関する自由度は大きいが、当該実施例のように白色光かつ広画角の撮像レンズにおいて回折光学面を有効に作用させるためには本発明の形態が最適である。また、本発明の目的とする白色光かつ広画角の撮像レンズに関わるレンズは特開平10−161020号公報等により公知であるが何れもFナンバー:8程度と口径比が小さく本発明のような大口径比のレンズに求められるような性能や機構的な条件が大きく異なるため条件式(2)のような制約が課されない。
Although two lenses of a lens having a diffractive optical surface is already known from JP-Open 2004-191844 Patent Publication and Laid-Open 2008-89949 Patent Publication, both the diffractive optical surface to the basic structure lens having no diffractive optical surface In this example, the arrangement position and shape of the diffractive optical surface are not clearly defined. Due to the nature of diffractive optical surfaces having large dispersion, it is difficult to achieve effective effects unless the lens configuration, arrangement position, and shape thereof are optimized. Although the degree of freedom regarding the arrangement of the diffractive optical surface is large under specific conditions such as monochromatic light and a small angle of view, in order to make the diffractive optical surface act effectively in an imaging lens with white light and a wide angle of view as in this embodiment For this, the form of the present invention is optimal. Further, lenses related to an imaging lens having white light and a wide angle of view, which are the object of the present invention, are known from Japanese Patent Laid-Open No. 10-161020, etc., but all have a small aperture ratio of about F number: 8 as in the present invention. Since the performance and mechanical conditions required for a lens with a large aperture ratio are greatly different, there is no restriction as in conditional expression (2).

本発明の回折光学面の位置は絞り直後の面間隔Lの位置に配されている。これは軸外光束の光線の入射角の変化を出来るだけ小さくするためである。光線収差的には、第1レンズの第2面に回折光学面を配しても設計は可能であるが、回折光学面への主光線の入射角の変化が大きくなり回折効率が低下する問題がある。実施例1において、第1レンズ第2面と第2レンズ第1面のそれぞれについて主光線入射角より回折効率を比較したものを図3および図4に示す。これより画角が大きくなると回折効率が低下することが判るが第2レンズ第1面に回折光学面を配した方が回折効率の低下が小さいことが解る。   The position of the diffractive optical surface of the present invention is arranged at the position of the surface interval L immediately after the stop. This is to make the change in the incident angle of the off-axis light beam as small as possible. In terms of light aberration, design is possible even if a diffractive optical surface is arranged on the second surface of the first lens, but the change in the incident angle of the principal ray on the diffractive optical surface becomes large and the diffraction efficiency decreases. There is. FIG. 3 and FIG. 4 show the diffraction efficiency of the first lens second surface and the second lens first surface compared with the principal ray incident angle in the first embodiment. It can be seen that the diffraction efficiency decreases when the angle of view becomes larger than this, but it is understood that the decrease in diffraction efficiency is smaller when the diffractive optical surface is arranged on the first surface of the second lens.

実施例1では、R=−0.354、L/R=−0.168、V1/V2=1.873、(L/R)/(V1/V2)=−0.090、De=0.107であり、条件式(1)および条件式(2)に規定される範囲にある。   In Example 1, R = −0.354, L / R = −0.168, V1 / V2 = 1.873, (L / R) / (V1 / V2) = − 0.090, De = 0. 107, which is in the range defined by conditional expression (1) and conditional expression (2).

表1に、本実施例1の各レンズの曲率半径R(mm)、各面の光軸上の面間隔d(mm)、レンズ材質のe線における屈折率nおよびアッベ数vを示す。また、表の下段に本実施例1の全系の焦点距離f、Fナンバー、半画角ω、ならびに条件式(1)および条件式(2)に対応する値を示す。なお、表1及び以下の表において、各記号に対応する番号は物体側から順次増加するようになっている。   Table 1 shows the radius of curvature R (mm) of each lens of Example 1, the surface spacing d (mm) on the optical axis of each surface, the refractive index n and the Abbe number v at the e-line of the lens material. Further, the lower part of the table shows the focal length f, F number, half angle of view ω, and values corresponding to conditional expression (1) and conditional expression (2) of the entire system of the first embodiment. In Table 1 and the following tables, numbers corresponding to the respective symbols are sequentially increased from the object side.

Figure 0005358425
Figure 0005358425

表2に本実施例1における非球面係数と回折光学面における光路差関数の各定数の値を示す。   Table 2 shows the values of the constants of the aspheric coefficient in Example 1 and the optical path difference function on the diffractive optical surface.

Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425

本実施例2に関わる撮像レンズは実施例1と略同様のレンズ構成となっているが、第1レンズと第2レンズのアッベ数が等しく、平均曲率半径Rの絶対値が大きくなり絞りから第2レンズ第1面までの距離Lが小さくなることによりL/Rの値が相対的に小さくなっている。その結果、実施例2では、R=−0.546、L/R=−0.092、V1/V2=1.0、(L/R)/(V1/V2)=−0.092、De=0.139となり、条件式(1)および条件式(2)に規定される範囲にある。   The imaging lens according to the second embodiment has substantially the same lens configuration as that of the first embodiment, but the Abbe numbers of the first lens and the second lens are equal, and the absolute value of the average radius of curvature R increases, so As the distance L to the first surface of the two lenses becomes smaller, the value of L / R becomes relatively smaller. As a result, in Example 2, R = −0.546, L / R = −0.092, V1 / V2 = 1.0, (L / R) / (V1 / V2) = − 0.092, De. = 0.139, which is in the range defined by conditional expression (1) and conditional expression (2).

表3に、本実施例2の各レンズの曲率半径R(mm)、各面の光軸上の面間隔d(mm)、レンズ材質のe線における屈折率nおよびアッベ数vを示す。また、表の下段に本実施例1の全系の焦点距離f、Fナンバー、半画角ω、ならびに条件式(1)および条件式(2)に対応する値を示す。なお、表1及び以下の表において、各記号に対応する番号は物体側から順次増加するようになっている   Table 3 shows the curvature radius R (mm) of each lens of Example 2, the surface distance d (mm) on the optical axis of each surface, the refractive index n and the Abbe number v at the e-line of the lens material. Further, the lower part of the table shows the focal length f, F number, half angle of view ω, and values corresponding to conditional expression (1) and conditional expression (2) of the entire system of the first embodiment. In Table 1 and the following tables, the numbers corresponding to the respective symbols are sequentially increased from the object side.

Figure 0005358425
Figure 0005358425

表4に本実施例2における非球面係数と回折光学面における光路差関数の各定数の値を示す。   Table 4 shows the values of the constants of the aspheric coefficient and the optical path difference function on the diffractive optical surface in Example 2.

Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425

本実施例3に関わる撮像レンズは実施例1と略同様のレンズ構成となっているが、実施例1と比較して絞りから光学回折面までの距離Lがより大きく第1レンズの縁厚Deがより大きくなることで機構的な構造及びレンズ加工を容易にしている。その結果、実施例3では、R=−0.424、L/R=−0.165、V1/V2=1.877、(L/R)/(V1/V2)=−0.088、De=0.155となり、条件式(1)および条件式(2)に規定される範囲にある。   The imaging lens according to the third embodiment has substantially the same lens configuration as that of the first embodiment, but the distance L from the stop to the optical diffraction surface is larger than that of the first embodiment, and the edge thickness De of the first lens is larger. This makes the mechanical structure and lens processing easy. As a result, in Example 3, R = −0.424, L / R = −0.165, V1 / V2 = 1.877, (L / R) / (V1 / V2) = − 0.088, De. = 0.155, which is within the range defined by conditional expression (1) and conditional expression (2).

表5に、本実施例3の各レンズの曲率半径R(mm)、各面の光軸上の面間隔d(mm)、レンズ材質のe線における屈折率nおよびアッベ数vを示す。また、表の下段に本実施例1の全系の焦点距離f、Fナンバー、半画角ω、ならびに条件式(1)および条件式(2)に対応する値を示す。なお、表1及び以下の表において、各記号に対応する番号は物体側から順次増加するようになっている。   Table 5 shows the curvature radius R (mm) of each lens of Example 3, the surface distance d (mm) on the optical axis of each surface, the refractive index n and the Abbe number v at the e-line of the lens material. Further, the lower part of the table shows the focal length f, F number, half angle of view ω, and values corresponding to conditional expression (1) and conditional expression (2) of the entire system of the first embodiment. In Table 1 and the following tables, numbers corresponding to the respective symbols are sequentially increased from the object side.

Figure 0005358425
Figure 0005358425

表6に本実施例3における非球面係数と回折光学面における光路差関数の各定数の値を示す。 Table 6 shows the values of the constants of the aspheric coefficient and the optical path difference function on the diffractive optical surface in Example 3.

Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425
Figure 0005358425

光学回折面の効果を比較する比較例に基づいて説明すると、回折光学面無しで出来るだけ色収差が小さくなるようなレンズ材質を使用しかつ実施例に近いレンズ構成としたので、光学回折面を持たないものの実施例2に類似した形態となっている。   The effect of the optical diffractive surface will be described based on a comparative example. A lens material that reduces chromatic aberration as much as possible without a diffractive optical surface is used, and the lens configuration is similar to that of the example. Although it does not exist, it becomes a form similar to Example 2.

表7に、比較例の各レンズの曲率半径R(mm)、各面の光軸上の面間隔d(mm)、レンズ材質のe線における屈折率nおよびアッベ数vを示す。また、表の下段に比較例の全系の焦点距離f、Fナンバー、半画角ωに対応する値を示す。   Table 7 shows the radius of curvature R (mm) of each lens of the comparative example, the surface distance d (mm) on the optical axis of each surface, the refractive index n and the Abbe number v at the e-line of the lens material. The lower part of the table shows values corresponding to the focal length f, F number, and half angle of view ω of the entire system of the comparative example.

Figure 0005358425
Figure 0005358425

表8に比較例における非球面係数と回折光学面における光路差関数の各定数の値を示す。   Table 8 shows the values of the constants of the aspheric coefficient in the comparative example and the optical path difference function in the diffractive optical surface.

Figure 0005358425
Figure 0005358425

表9に実施例1、実施例2、実施例3及び比較例の軸上色収差量を示す。なお、色収差量はe線の波長546.1nmを基準として波長435.8nmから656.3nmの範囲における色収差の幅を「広がり」として表す。数値は単位がmmである。   Table 9 shows the amount of axial chromatic aberration in Examples 1, 2, and 3 and the comparative example. Note that the amount of chromatic aberration represents the width of chromatic aberration in the range of wavelengths from 435.8 nm to 656.3 nm as “spread” with reference to the wavelength of e-line of 546.1 nm. The numerical value is in mm.

Figure 0005358425
Figure 0005358425

以上のように、本発明の撮像レンズによれば、回折光学面を最適な位置に配すことにより、2枚の構成枚数で色収差を極めて良好に補正することが可能であり、かつ、その他の収差を実用的なレベルまで補正することが可能であり、生産効率が高く、電子式受光素子に十分な明るさをもった大口径で高画質に対応した低コストのレンズを提供できる。特に、小型化、低価格化の要求が強い携帯電話搭載用の撮像レンズの分野では効果が大きい。   As described above, according to the imaging lens of the present invention, it is possible to correct chromatic aberration very well with two components by arranging the diffractive optical surface at an optimum position, and the other Aberrations can be corrected to a practical level, and high-efficiency production can be provided, and a low-cost lens that has a large aperture and sufficient image quality and is compatible with high image quality can be provided. This is particularly effective in the field of imaging lenses for mobile phones, where there is a strong demand for downsizing and cost reduction.

R1 第1レンズ第1面の非球面
R2 第1レンズ第2面の非球面
R3、R5 光束を制御するための鏡枠に相当する仮想面
R4 絞り
R6 第2レンズ第1面の回折光学面が形成された非球面
R7 第2レンズ第2面の非球面
R8、R9 カバーガラスの曲率半径
d1〜d8 軸上面間隔
X 光軸
S 結像面
R1 Aspherical surface R1 of the first surface of the first lens R2 Aspherical surfaces R3 and R5 of the first surface of the second lens R5 A virtual surface corresponding to a lens frame for controlling the light beam R4 Aperture R6 The diffractive optical surface of the first surface of the second lens is Aspherical surface R7 formed Aspherical surfaces R8 and R9 of the second surface of the second lens Curvature radii d1 to d8 of the cover glass Axial surface distance X Optical axis S Imaging surface

Claims (2)

物体側より順に、プラスチック材料から成る第1レンズ、絞り、プラスチック材料から成る第2レンズを具備するレンズ系から構成される撮像レンズであって、
第1レンズの第1面が凸面、第2面が凹面で構成され、第2レンズの第1面が凹面、第2面が凸面で構成され、レンズの各々の面が非球面で構成されかつ第2レンズの第1面が色分散機能を発揮する回折光学面であり、以下の条件式(2)を満足することを特徴とする2枚構成から成るF値が3以下の高性能大口径比撮像レンズ。
ただし、
(2)0.09<De/f≦0.155
De:第1レンズ第1面及び第1レンズ第2面のそれぞれの有効径に於ける光軸方向の距離
f :全系の焦点距離
第1レンズおよび第2レンズの物体側の面を第1面、像側の面を第2面とする。
In order from the object side, an imaging lens including a lens system including a first lens made of a plastic material , an aperture, and a second lens made of a plastic material ,
The first surface of the first lens is a convex surface, the second surface is a concave surface, the first surface of the second lens is a concave surface, the second surface is a convex surface, and each surface of the lens is an aspheric surface, and diffractive optical surface der the first face of the second lens to exhibit color dispersion function Ri, F value consisting of two configurations, wherein a satisfies child the following condition (2) is 3 or less high performance Large aperture ratio imaging lens.
However,
(2) 0.09 <De / f ≦ 0.155
De: distance in the optical axis direction at each effective diameter of the first surface of the first lens and the second surface of the first lens
f: Focal length of the entire system The object side surface of the first lens and the second lens is the first surface, and the image side surface is the second surface.
基準点から物体方向を負、像面方向を正とする座標系において、各光学要素が以下の条件式を満足するように構成されてなることを特徴とする請求項1記載の2枚構成から成るF値が3以下の高性能大口径比撮像レンズ。
(1)−0.11<(L/R)/(V1/V2)<−0.07
ただし、
R :第2レンズ第1面の平均曲率半径
なお、平均曲率半径とは非球面の光軸方向の変位を最小二乗法で近似した球面の曲率半径を表す
L :絞りから第2レンズ第1面までの距離
V1:第1レンズ材料のe線のアッベ数
V2:第2レンズ材料のe線のアッベ数
2. The two-element configuration according to claim 1, wherein each optical element is configured to satisfy the following conditional expression in a coordinate system in which the object direction is negative from the reference point and the image plane direction is positive. A high-performance large-aperture ratio imaging lens having an F value of 3 or less.
(1) −0.11 <(L / R) / (V1 / V2) <− 0.07
However,
R: Average radius of curvature of the first surface of the second lens Note that the average radius of curvature represents the radius of curvature of the spherical surface obtained by approximating the displacement of the aspherical surface in the optical axis direction by the least square method. L: First surface of the second lens from the stop Distance V1: Abbe number of e-line of first lens material V2: Abbe number of e-line of second lens material
JP2009292279A 2009-12-24 2009-12-24 High-performance large-aperture ratio imaging lens consisting of two lenses with an F-number of 3 or less Active JP5358425B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009292279A JP5358425B2 (en) 2009-12-24 2009-12-24 High-performance large-aperture ratio imaging lens consisting of two lenses with an F-number of 3 or less
PCT/JP2010/072630 WO2011078048A1 (en) 2009-12-24 2010-12-16 High-performance large aperture ratio imaging lens comprising two-lens structure with f value of no more than 3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009292279A JP5358425B2 (en) 2009-12-24 2009-12-24 High-performance large-aperture ratio imaging lens consisting of two lenses with an F-number of 3 or less

Publications (3)

Publication Number Publication Date
JP2011133631A JP2011133631A (en) 2011-07-07
JP2011133631A5 JP2011133631A5 (en) 2013-04-18
JP5358425B2 true JP5358425B2 (en) 2013-12-04

Family

ID=44195578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009292279A Active JP5358425B2 (en) 2009-12-24 2009-12-24 High-performance large-aperture ratio imaging lens consisting of two lenses with an F-number of 3 or less

Country Status (2)

Country Link
JP (1) JP5358425B2 (en)
WO (1) WO2011078048A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10161020A (en) * 1996-12-02 1998-06-19 Olympus Optical Co Ltd Photographic optical system using diffraction optical element
JP2000089107A (en) * 1998-09-17 2000-03-31 Fuji Photo Optical Co Ltd Image reading lens
JP2001083414A (en) * 1999-09-09 2001-03-30 Canon Inc Lens for reading image
JP2007333883A (en) * 2006-06-13 2007-12-27 Matsushita Electric Ind Co Ltd Single-focal imaging lens and imaging apparatus equipped with the same
JP2009292279A (en) * 2008-06-04 2009-12-17 Mazda Motor Corp Arrangement structure of vehicular air-conditioning unit

Also Published As

Publication number Publication date
WO2011078048A1 (en) 2011-06-30
JP2011133631A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
CN113238358B (en) Camera lens
JP5588858B2 (en) Imaging lens
JP6021617B2 (en) Imaging lens
JP4466713B6 (en) Imaging lens and imaging device
US9201223B2 (en) Imaging lens, camera and hand-held data terminal device
CN108333714B (en) Camera lens
JP6005941B2 (en) Imaging lens
JP5227780B2 (en) Imaging lens
CN108693630B (en) Image pickup lens comprising 5 optical elements
JP2013250330A (en) Imaging lens
JP5688334B2 (en) Imaging lens
US7458737B2 (en) Taking lens system
CN108303781B (en) Camera lens
JP2014010331A (en) Imaging lens
JP6001430B2 (en) Imaging lens
JP2015187675A (en) Imaging lens composed of five optical elements
JP2019203990A (en) Image capturing lens
JP2005345919A (en) Imaging lens
JP2019184723A (en) Image capturing lens
JP4579796B2 (en) Imaging lens and imaging module having the same
JP5358425B2 (en) High-performance large-aperture ratio imaging lens consisting of two lenses with an F-number of 3 or less
WO2010047033A1 (en) Imaging optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5358425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250