JP2001083414A - Lens for reading image - Google Patents

Lens for reading image

Info

Publication number
JP2001083414A
JP2001083414A JP25565799A JP25565799A JP2001083414A JP 2001083414 A JP2001083414 A JP 2001083414A JP 25565799 A JP25565799 A JP 25565799A JP 25565799 A JP25565799 A JP 25565799A JP 2001083414 A JP2001083414 A JP 2001083414A
Authority
JP
Japan
Prior art keywords
lens
optical element
image reading
diffractive optical
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25565799A
Other languages
Japanese (ja)
Inventor
Kazuyuki Imamichi
和行 今道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25565799A priority Critical patent/JP2001083414A/en
Publication of JP2001083414A publication Critical patent/JP2001083414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a lens for reading an image which is constituted of the small number of lenses, whose various aberration are sufficiently corrected and which is provided with high optical performance. SOLUTION: This lens is provided with the 1st positive meniscus lens 1 whose convex surface faces a document surface, a diaphragm SP and the 2nd negative meniscus lens 2 whose convex surface faces an image surface, in this order from the document surface. The lens surface of the 1st lens facing the document surface and that of the 2nd lens facing the image surface are constituted of the aspherical surface and a diffraction optical element is added to at least one lens surface of the 1st and the 2nd lenses.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は画像読取用レンズに
関し、特に2群2枚という少ないレンズ構成枚数で諸収
差を良好に補正した、例えばイメージスキャナーやフィ
ルムスキャナー、あるいはデジタル複写機等の画像読取
装置に好適な画像読取用レンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image reading lens, and more particularly, to an image reading apparatus such as an image scanner, a film scanner, or a digital copying machine, in which various aberrations are satisfactorily corrected with a small number of lens elements such as two in two groups. The present invention relates to an image reading lens suitable for an apparatus.

【0002】[0002]

【従来の技術】従来より原稿面上の画像情報を画像読取
用レンズにより所定の縮小倍率で固体撮像素子列(ライ
ンセンサー)面上に結像させて、該画像情報を読み取る
ようにした装置、例えばイメージスキャナーやフィルム
スキャナー、あるいはデジタル複写機等の装置が種々と
提案されている。このような装置に用いられる画像読取
用レンズとしてはレンズ構成枚数が少なく、レンズ系全
体が小型で、しかも高い光学性能を有していることが要
求されている。
2. Description of the Related Art Conventionally, an image forming apparatus forms an image on a document surface at a predetermined reduction magnification on a solid-state image sensor array (line sensor) surface by an image reading lens, and reads the image information. For example, various devices such as an image scanner, a film scanner, and a digital copying machine have been proposed. An image reading lens used in such an apparatus is required to have a small number of lens components, to have a small lens system as a whole, and to have high optical performance.

【0003】ここで高性能な画像読取用レンズとは球面
収差、コマ収差、そして像面湾曲収差等が十分に補正さ
れ、結像面において、高コントラストで焦点深度が深
く、像面湾曲の少ないレンズのことである。更にカラー
画像読取装置に用いられる画像読取用レンズの場合には
軸上色収差や倍率色収差等も十分に補正されていること
が必要である。
Here, a high-performance image reading lens has a spherical aberration, a coma aberration, a field curvature aberration, and the like that are sufficiently corrected, and has a high contrast, a deep depth of focus, and a small field curvature on an image forming surface. It is a lens. Furthermore, in the case of an image reading lens used in a color image reading apparatus, it is necessary that axial chromatic aberration, chromatic aberration of magnification, and the like be sufficiently corrected.

【0004】従来、この種の画像読取用レンズとしては
原稿面(物体)側から順に凸レンズ、凹レンズ、そして
凹レンズと凸レンズの貼り合わせレンズから成る3群4
枚構成のテッサータイプのもの、あるいは原稿面側から
順に凸レンズ、そして凸レンズと凹レンズとの貼り合わ
せレンズが、絞りを挟んで略対称に配置された4群6枚
構成のガウスタイプのものが用いられてきた。
Conventionally, an image reading lens of this type includes a convex lens, a concave lens, and a cemented lens of a concave lens and a convex lens in order from the document surface (object) side.
A four-element, six-element, four-group, six-element structure, in which a convex lens and a cemented lens of a convex lens and a concave lens are arranged approximately symmetrically with respect to the aperture, are used. Have been.

【0005】一方、レンズ系全体が小型で安価な画像読
取用レンズとはプラスチックのような軽量で、低コスト
な材料を用いて、かつ少ないレンズ構成枚数で前述の諸
収差を良好に補正したレンズのことであり、例えばこの
ようなレンズとして2群2枚構成の画像読取用レンズが
従来より種々と提案されている。
On the other hand, an image reading lens in which the entire lens system is small and inexpensive is a lens in which a light-weight and low-cost material such as plastic is used and the above-mentioned various aberrations are satisfactorily corrected with a small number of lenses. For example, various types of image reading lenses having two groups and two elements have been conventionally proposed as such lenses.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記に示
した従来の画像読取用レンズでは以下に示す種々の問題
点があった。
However, the above-mentioned conventional image reading lens has the following various problems.

【0007】まずレンズ構成枚数が3群4枚、あるいは
4群6枚の画像読取用レンズにおいては球面収差、コマ
収差、そして像面湾曲収差等の諸収差は十分補正されて
いるが色収差、特に軸上色収差に関してはあるレベルま
では補正されているものの十分満足できるものとは言え
なかった。即ち、軸上色収差としては可視波長域の短波
長側では補正過剰となり、長波長側では補正不足とな
り、可視波長域の広い範囲においては完全には補正され
ておらず、残存色収差(二次スペクトル)を有してい
た。その為、このような画像読取用レンズを、例えばカ
ラー画像読取装置に用いた場合にはR(赤),G
(緑),B(青)の各色光でのピント位置が若干異な
り、読取り画質の劣化が生ずるという問題点があった。
またレンズ構成枚数が多いため、装置全体の小型化や低
コスト化を図るのが難しかった。
First, in an image reading lens having four lenses in three groups or six in four groups, various aberrations such as spherical aberration, coma aberration and field curvature aberration are sufficiently corrected, but chromatic aberration, particularly The axial chromatic aberration was corrected to a certain level, but was not sufficiently satisfactory. That is, the axial chromatic aberration is overcorrected on the short wavelength side of the visible wavelength range, is undercorrected on the long wavelength side, and is not completely corrected over a wide range of the visible wavelength range. ). Therefore, when such an image reading lens is used in, for example, a color image reading apparatus, R (red), G
There is a problem in that the focus positions for the (green) and B (blue) color lights are slightly different, and the read image quality is degraded.
Also, because of the large number of lens components, it has been difficult to reduce the size and cost of the entire apparatus.

【0008】一方、レンズ構成枚数が2群2枚の画像読
取用レンズにおいては非球面を多用し、前述の諸収差は
十分補正されているものの、色収差に関しては全く考慮
されておらず、単色光源を用いたモノクロ読取用のレン
ズにしか使用できなかった。即ち、レンズ構成枚数が少
なく小型で低コストではあるものの色収差が十分補正さ
れておらず、この為、カラー画像読取装置用の画像読取
用レンズには使用することが難しいという問題点があっ
た。
On the other hand, in an image reading lens having two lenses and two groups, an aspherical surface is frequently used, and although the above-mentioned various aberrations are sufficiently corrected, no consideration is given to chromatic aberration at all. Can be used only for a lens for monochrome reading using. That is, although the number of lens components is small, the size is small and the cost is low, but the chromatic aberration is not sufficiently corrected. Therefore, there is a problem that it is difficult to use the lens for an image reading lens for a color image reading apparatus.

【0009】本発明は画像読取用レンズを2群2枚とい
う少ないレンズ構成枚数で適切に構成し、かつ2つのレ
ンズのうちの少なくとも1つのレンズ面に回折光学素子
を付加することにより、諸収差、特に軸上色収差を十分
に補正することができ、またカラー画像読取装置にも使
用可能な高性能で小型な画像読取用レンズの提供を目的
とする。
According to the present invention, various kinds of aberrations can be obtained by appropriately configuring an image reading lens with a small number of lenses such as two in two groups and adding a diffractive optical element to at least one lens surface of the two lenses. In particular, it is an object of the present invention to provide a high-performance and small-sized image reading lens which can sufficiently correct axial chromatic aberration and can be used for a color image reading apparatus.

【0010】[0010]

【課題を解決するための手段】請求項1の発明の画像読
取用レンズは、原稿面側より順に該原稿面側に凸面を向
けたメニスカス状の正の第1レンズ、絞り、そして像面
側に凸面を向けたメニスカス状の負の第2レンズの2つ
のレンズを有し、該第1レンズの原稿面側のレンズ面
と、該第2レンズの像面側のレンズ面は非球面より成
り、かつ該第1、第2レンズのうちの少なくとも1つの
レンズ面に回折光学素子を付加したことを特徴としてい
る。
According to a first aspect of the present invention, there is provided an image reading lens comprising: a meniscus-shaped positive first lens having a convex surface facing the document surface in order from the document surface; an aperture; and an image surface. The second lens has a meniscus negative second lens having a convex surface, and the lens surface of the first lens on the original surface side and the lens surface of the second lens on the image surface side are aspherical. In addition, a diffractive optical element is added to at least one lens surface of the first and second lenses.

【0011】請求項2の発明は請求項1の発明におい
て、前記画像読取用レンズにおいて、全系の焦点距離を
f、前記第1レンズの焦点距離をf1 、前記第1、第2
の2つのレンズの材質のアッベ数を各々順にν1 ,ν
2 、前記回折光学素子のパワーをφd としたとき 0.35 < f1 /f <0.55 25 < ν1 −ν2 0.015< f・φd <0.05 なる条件を満足することを特徴としている。
According to a second aspect of the present invention, in the first aspect of the present invention, in the image reading lens, the focal length of the entire system is f, the focal length of the first lens is f 1 , and the first and second lenses are the same.
Abbe numbers of the materials of the two lenses are ν 1 and ν, respectively.
2, satisfies 0.35 <f 1 / f <0.55 25 <ν 1 -ν 2 0.015 <f · φ d <0.05 condition: when the power of the diffractive optical element was phi d It is characterized by:

【0012】請求項3の発明は請求項1又は2の発明に
おいて、前記回折光学素子は前記第1レンズの両レンズ
面のうち少なくとも一方のレンズ面に付加されているこ
とを特徴としている。
According to a third aspect of the present invention, in the first or second aspect, the diffractive optical element is added to at least one of the two lens surfaces of the first lens.

【0013】[0013]

【発明の実施の形態】図1〜図4は各々順に本発明の後
述する数値実施例1〜4のレンズ断面図、図5〜図8は
各々順に本発明の後述する数値実施例1〜4の縦収差
図、図9〜図12は各々順に本発明の後述する数値実施
例1〜4の横収差図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 4 are lens sectional views of Numerical Examples 1 to 4 of the present invention, respectively, and FIGS. 5 to 8 are Numerical Examples 1 to 4 of the present invention, respectively. 9 to 12 are lateral aberration diagrams of Numerical Examples 1 to 4 of the present invention, respectively, which will be described later.

【0014】図1〜図4において10,20,30,4
0は各々画像読取用レンズであり、原稿面(物体)P側
より順に該原稿面P側に凸面を向けたメニスカス状の正
の第1レンズ(凸レンズ)1、絞りSP、そして像面Q
側に凸面を向けたメニスカス状の負の第2レンズ(凹レ
ンズ)2の2つのレンズを有し、該第1レンズ1の原稿
面側のレンズ面と、該第2レンズ2の像面側のレンズ面
を非球面より形成しており、かつ該第1、第2レンズの
うちの少なくとも1つのレンズ面に回折光学素子を付加
している。
1 to 4, 10, 20, 30, 4
Reference numeral 0 denotes an image reading lens, which is a meniscus-shaped positive first lens (convex lens) 1 having a convex surface facing the original surface P in order from the original surface (object) P side, an aperture SP, and an image surface Q
The lens has two meniscus-shaped negative second lenses (concave lenses) 2 with convex surfaces directed to the sides. The first lens 1 has a lens surface on the original surface side, and the second lens 2 has an image surface side on the image surface side. The lens surface is formed of an aspherical surface, and a diffractive optical element is added to at least one of the first and second lenses.

【0015】回折光学素子は図1、図2、図4では第1
レンズ1の像面側のレンズ面に付加されており、図3で
は第1レンズ1の原稿面側のレンズ面に付加されてい
る。この回折光学素子(DOE)は、所謂マルチ位相レ
ベルと呼ばれるものであり、フォトマスクを用いてエッ
チングを繰り返して製作しても良く、又は切除して製作
しても良い。
The diffractive optical element is the first diffractive optical element in FIGS. 1, 2 and 4.
It is added to the lens surface of the lens 1 on the image side, and in FIG. 3 is added to the lens surface of the first lens 1 on the original side. This diffractive optical element (DOE) is what is called a multi-phase level, and may be manufactured by repeating etching using a photomask or may be manufactured by cutting.

【0016】次に本実施形態の光学的作用及び効果につ
いて説明する。
Next, the optical function and effect of this embodiment will be described.

【0017】一般に像面湾曲収差と色収差とを補正する
ためには正の屈折力を有する凸レンズと負の屈折力を有
する凹レンズの2枚の組み合わせが必要である。
In general, in order to correct the field curvature aberration and the chromatic aberration, a combination of two convex lenses having a positive refractive power and concave lenses having a negative refractive power is required.

【0018】本実施形態の画像読取用レンズは基本的に
はこの凸レンズと凹レンズとの2群2枚構成である。そ
して凸レンズと凹レンズの外側の面、即ち絞り(瞳)位
置から離れていて軸上及び軸外の光線通過位置が高くな
る面に非球面を導入することにより、球面収差及びコマ
収差を良好に補正している。
The image reading lens according to the present embodiment basically has a two-group structure consisting of a convex lens and a concave lens. Spherical aberration and coma can be corrected satisfactorily by introducing an aspherical surface on the outer surface of the convex lens and the concave lens, that is, the surface that is away from the stop (pupil) position and has high on-axis and off-axis light ray passing positions. are doing.

【0019】一方、色収差に関しては凸レンズと凹レン
ズとの組み合わせにより、ある程度の補正は可能である
が、一般的な光学ガラスの組み合わせでは限界があり、
残存色収差(二次スペクトル)が存在する。
On the other hand, chromatic aberration can be corrected to some extent by a combination of a convex lens and a concave lens, but there is a limit in a general combination of optical glass.
There is residual chromatic aberration (secondary spectrum).

【0020】そこで本実施形態はこの残存色収差を補正
するために回折光学素子を凸レンズ(第1レンズ)及び
凹レンズ(第2レンズ)のうちの少なくとも1つのレン
ズ面に付加することにより、軸上色収差を良好に補正し
ている。
Therefore, in the present embodiment, in order to correct the residual chromatic aberration, a diffractive optical element is added to at least one lens surface of a convex lens (first lens) and a concave lens (second lens), thereby obtaining axial chromatic aberration. Is corrected favorably.

【0021】この回折光学素子はアッベ数の符号が負で
あるという光学特性を持ち、通常の屈折型レンズの屈折
により発生する色収差と反対の色収差が発生するため、
通常の屈折型レンズと回折光学素子とを組み合わせるこ
とにより、色収差を良好に補正することができる。
This diffractive optical element has an optical characteristic that the sign of the Abbe number is negative, and a chromatic aberration opposite to the chromatic aberration caused by the refraction of the ordinary refraction type lens occurs.
By combining a normal refractive lens and a diffractive optical element, chromatic aberration can be favorably corrected.

【0022】本実施形態は上述の如く画像読取用レンズ
のレンズ構成及びレンズ形状等を適切に設定することに
より、球面収差、コマ収差、像面湾曲収差、そして色収
差等を良好に補正している。
In the present embodiment, spherical aberration, coma aberration, field curvature aberration, chromatic aberration, etc. are satisfactorily corrected by appropriately setting the lens configuration and lens shape of the image reading lens as described above. .

【0023】更に本実施形態では画像読取用レンズにお
いて、全系の焦点距離をf、第1レンズの焦点距離をf
1 、第1、第2レンズの材質のアッベ数を各々順にν
1 ,ν 2 、回折光学素子のパワーをφd としたとき 0.35 < f1 /f <0.55 ‥‥‥(1) 25 < ν1 −ν2 ‥‥‥(2) 0.015< f・φd <0.05 ‥‥‥(3) なる条件を満足させている。
In this embodiment, the image reading lens is used.
Where f is the focal length of the entire system and f is the focal length of the first lens.
1 , The Abbe number of the material of the first and second lenses is sequentially ν
1 , Ν Two , The power of the diffractive optical element is φd 0.35 <f1 /F<0.55‥‥‥(1) 25 <ν1 −νTwo ‥‥‥ (2) 0.015 <f ・ φd The condition of <0.05 ‥‥‥ (3) is satisfied.

【0024】次に上記の各条件式(1)〜(3)の技術
的意味について説明する。
Next, the technical meaning of each of the conditional expressions (1) to (3) will be described.

【0025】条件式(1)は全系の焦点距離fに対する
第1レンズの焦点距離f1 の比を規定し、かつ色収差以
外の諸収差に関するものであり、条件式(1)の上限値
又は下限値を越えると球面収差、コマ収差、そして像面
湾曲収差をバランス良く補正することが困難となってく
るので良くない。
Conditional expression (1) defines the ratio of the focal length f 1 of the first lens to the focal length f of the entire system, and relates to various aberrations other than chromatic aberration. Exceeding the lower limit is not preferable because it becomes difficult to correct spherical aberration, coma aberration, and field curvature aberration in a well-balanced manner.

【0026】条件式(2)は色収差に関するものであ
り、条件式(2)を外れると屈折系での残存色収差が大
きくなる為、必然的に回折光学素子のパワーが大きくな
り、球面収差や像面湾曲収差等に影響を与えずに色収差
を良好に補正するのが困難となってくるので良くない。
Conditional expression (2) relates to chromatic aberration. If conditional expression (2) is not satisfied, the residual chromatic aberration in the refracting system will increase, so that the power of the diffractive optical element will inevitably increase, and spherical aberration and image quality will increase. It is difficult to satisfactorily correct chromatic aberration without affecting surface curvature aberration and the like, which is not good.

【0027】条件式(3)は全系の焦点距離fに対する
回折光学素子のパワーφd (1/焦点距離)の比を規定
するものであり、条件式(3)の上限値を超えると回折
光学素子のパワーが大きくなり、色収差が補正過剰とな
ると共に面形状として中心部と周辺部とでのピッチの差
が大きくなり、製作上難しくなってくるので良くない。
又条件式(3)の下限値を超えると回折光学素子のパワ
ーφd が小さくなり、色収差が補正不足となるとともに
1次回折光以外のフレア成分が増大してくるので良くな
い。
Condition (3) defines the ratio of the power φ d (1 / focal length) of the diffractive optical element to the focal length f of the whole system. The power of the optical element is increased, the chromatic aberration is overcorrected, and the difference in pitch between the central portion and the peripheral portion is increased as the surface shape.
If the lower limit of conditional expression (3) is exceeded, the power φ d of the diffractive optical element becomes small, chromatic aberration is insufficiently corrected, and flare components other than the first-order diffracted light increase.

【0028】[他の実施形態]前述の数値実施例1〜4
における回折光学素子部の回折格子形状101は図13
に示すキノフォーム形状をしていた。図14は図13に
示す回折光学素子の1次回折効率の波長依存特性を示し
ている。実際の回折格子の構成は、基材102の表面に
紫外線硬化樹脂を塗布し、樹脂部に波長530nmで1
次回折効率が100%となるような格子厚dの格子10
3を形成している。
[Other Embodiments] Numerical Examples 1 to 4 described above.
The diffraction grating shape 101 of the diffractive optical element portion in FIG.
The kinoform shape shown in FIG. FIG. 14 shows the wavelength dependence of the first-order diffraction efficiency of the diffractive optical element shown in FIG. The actual configuration of the diffraction grating is as follows. An ultraviolet curable resin is applied to the surface of the base material 102, and the wavelength of 530 nm is applied to the resin portion.
Grating 10 having a grating thickness d such that the next diffraction efficiency becomes 100%
3 is formed.

【0029】図14で明らかなように設計次数での回折
効率は最適化した波長530nmから離れるに従って低
下し、一方設計次数近傍の次数0次、2次回折光が増大
している。この設計次数以外の回折光の増加は、フレア
となり、光学系の解像度の低下につながる。
As is apparent from FIG. 14, the diffraction efficiency at the design order decreases as the distance from the optimized wavelength of 530 nm increases, while the 0th-order and second-order diffracted lights near the design order increase. This increase in diffracted light other than the design order causes a flare, which leads to a reduction in the resolution of the optical system.

【0030】図15に図13の格子形状で前述の数値実
施例1を作成した場合の空間周波数に対するMTF特性
を示す。この図で、低周波数領域のMTFが所望の値よ
り低下していることがわかる。
FIG. 15 shows the MTF characteristics with respect to the spatial frequency in the case where the above-mentioned Numerical Example 1 is prepared with the lattice shape shown in FIG. From this figure, it can be seen that the MTF in the low frequency region is lower than a desired value.

【0031】そこで他の実施形態として図16に示す積
層型の回折格子を本発明の実施形態における回折光学素
子部の格子形状とする。図17はこの構成の回折光学素
子の1次回折効率の波長依存特性である。具体的な構成
としては、基材上に紫外線硬化樹脂(nd=1.49
9、νd=54)からなる第1の回折格子104を形成
し、その上に別の紫外線硬化樹脂(nd=1.598、
νd=28)からなる第2の回折格子105を形成して
いる。この材質の組み合わせでは、第1の回折格子部の
格子厚d1はd1=13.8μm、第2の回折格子部の
格子厚d2はd=10.5μmとしている。図17から
かわるように積層構造の回折格子にすることで、設計次
数の回折効率は、使用波長全域で95%以上の高い回折
効率を有している。
Therefore, as another embodiment, a laminated diffraction grating shown in FIG. 16 is used as the grating shape of the diffractive optical element in the embodiment of the present invention. FIG. 17 shows the wavelength dependence of the first-order diffraction efficiency of the diffractive optical element having this configuration. As a specific configuration, an ultraviolet curable resin (nd = 1.49) is provided on a base material.
9, a first diffraction grating 104 composed of νd = 54), and another ultraviolet curable resin (nd = 1.598,
νd = 28) is formed. In this combination of materials, the grating thickness d1 of the first diffraction grating portion is d1 = 13.8 μm, and the grating thickness d2 of the second diffraction grating portion is d = 10.5 μm. By using a diffraction grating having a laminated structure as shown in FIG. 17, the diffraction efficiency of the design order has a high diffraction efficiency of 95% or more over the entire use wavelength range.

【0032】図18にこの場合の空間周波数に対するM
TF特性を示す。積層構造の回折格子を用いることで、
低周波数のMTFは改善され、所望のMTF特性が得ら
れている。このように、本発明の実施形態の回折光学素
子として積層構造の回折格子を用いることで、光学性能
はさらに改善される。
FIG. 18 shows M for the spatial frequency in this case.
4 shows TF characteristics. By using a diffraction grating with a laminated structure,
The low-frequency MTF is improved, and a desired MTF characteristic is obtained. As described above, by using a diffraction grating having a laminated structure as the diffractive optical element of the embodiment of the present invention, the optical performance is further improved.

【0033】なお前述の積層構造の回折光学素子とし
て、材質を紫外線硬化樹脂に限定するものではなく、他
のプラスチック材なども使用できるし、基材によって
は、第1の回折格子部104を直接基材にしてもよい。
また各格子厚が異なる必要はなく、材料の組み合わせに
よっては図19に示すように2つの格子厚を等しくでき
る。この場合は、回折光学素子表面に格子形状が形成さ
れないので、防塵性に優れ、回折光学素子の組み立て作
業性が向上し、より安価な光学系を提供できる。
The material of the above-mentioned diffractive optical element having a laminated structure is not limited to an ultraviolet curable resin, but other plastic materials can be used. Depending on the base material, the first diffraction grating portion 104 can be directly formed. It may be a substrate.
Further, it is not necessary that the grating thicknesses be different, and depending on the combination of materials, the two grating thicknesses can be made equal as shown in FIG. In this case, since the grating shape is not formed on the surface of the diffractive optical element, it is excellent in dust resistance, the workability of assembling the diffractive optical element is improved, and a more inexpensive optical system can be provided.

【0034】次に本発明の数値実施例1〜4を示す。数
値実施例1〜4においてfは焦点距離、FnoはFナン
バー、βは倍率、riは原稿面(物体)側より順に第i
番目のレンズ面の曲率半径、diは原稿面側より第i番
目のレンズ厚及び空気間隔、niとνiは各々原稿面側
より順に第i番目のレンズのガラスの屈折率とアッベ数
である。
Next, numerical embodiments 1 to 4 of the present invention will be described. In Numerical Examples 1 to 4, f is the focal length, Fno is the F-number, β is the magnification, and ri is the i-th lens element in order from the document surface (object) side.
The radius of curvature of the lens surface, di is the i-th lens thickness and air gap from the document surface side, and ni and νi are the refractive index of the glass of the i-th lens and the Abbe number in order from the document surface side.

【0035】又、非球面形状は光軸方向をX軸、光軸と
垂直な方向の高さをH、レンズの頂点とX軸の交点を原
点にとり、rをレンズ面の近軸曲率半径、A、B、C、
D、Eを各々非球面係数としたとき、
In the aspherical shape, the optical axis direction is the X axis, the height in the direction perpendicular to the optical axis is H, the intersection point between the vertex of the lens and the X axis is the origin, and r is the paraxial radius of curvature of the lens surface. A, B, C,
When D and E are aspheric coefficients, respectively,

【0036】[0036]

【数1】 (Equation 1)

【0037】成る式で表わされる。Is expressed by the following equation.

【0038】又、回折光学素子の回折面は位相関数をφ
(H)として、光軸からの高さをH、波長をλ、位相係
数を各々C2 ,C4 ,C6 ,C8 ,C10としたとき、
The diffraction surface of the diffractive optical element has a phase function of φ
As (H), when the height from the optical axis is H, the wavelength is λ, and the phase coefficients are C 2 , C 4 , C 6 , C 8 , and C 10 respectively,

【0039】[0039]

【数2】 (Equation 2)

【0040】成る式で表わされる。This is expressed by the following equation.

【0041】尚、収差図において実線が基準波長のe
線、二点鎖線が波長433nmのg線、一点鎖線が波長
630nmのd線である。
In the aberration diagrams, the solid line represents the reference wavelength e.
The two-dot chain line is a g-line with a wavelength of 433 nm, and the one-dot chain line is a d-line with a wavelength of 630 nm.

【0042】又、前述の各条件式(1)〜(3)と数値
実施例における諸数値との関係を表−1に示す。
Table 1 shows the relationship between the above-mentioned conditional expressions (1) to (3) and various numerical values in the numerical examples.

【0043】 (数値実施例1) f=31.02 Fno=6.2 β=-0.857 *r1= 6.239 d1=3.61 n1=1.63246 ν1=63.8 *r2= 14.919(DOE面) d2=0.38 r3= 絞り(SP) d3=0.57 n2=1.72250 ν2=29.2 r4=-5.473 d4=4.12 *r5=-10.524 * 非球面 r1 面非球面係数 r2 面非球面係数 A= 3.56580×10-3 A= 0 B= 6.85547×10-4 B= 1.04647×10-3 C= 5.11124×10-5 C= 2.07682×10-4 D=-2.02789×10-6 D=-3.81153×10-5 E= 2.94303×10-7 E= 6.60737×10-6 r5 面非球面係数 r2面位相係数 A= 7.79486×10-4 C2 =-5.17468×10-4 B= 2.26185×10-4 C4 = 4.57263×10-5 C= 2.61035×10-5 C6 =-4.50112×10-5 D=-3.96086×10-6 C8 = 1.57800×10-5 E= 2.23315×10-7 C10=-1.90291×10-6 (数値実施例2) f=30.99 Fno=6.2 β=-0.857 *r1= 9.991 d1=4.78 n1=1.63246 ν1=63.8 r2= 30.975(DOE面) d2=0.32 r3= 絞り(SP) d3=0.70 n2=1.72250 ν2=29.2 r4=-5.228 d4=4.18 *r5=-11.071 * 非球面 r1 面非球面係数 r5 面非球面係数 A= 1.87829×10-2 A=-5.01648×10-3 B= 5.31558×10-4 B= 2.38892×10-4 C= 1.13883×10-5 C= 3.08624×10-6 D= 6.41452×10-7 D= 1.21164×10-6 E= 4.31297×10-9 E=-7.91730×10-8 r2面位相係数 C2 =-6.30030×10-4 C4 = 4.69069×10-5 C6 =-1.09462×10-5 C8 = 3.90636×10-6 C10=-4.45734×10-7 (数値実施例3) f=31.03 Fno=6.2 β=-0.857 *r1= 6.444 (DOE面) d1=3.18 n1=1.63246 ν1=63.8 *r2= 13.254 d2=0.61 r3= 絞り(SP) d3=0.60 n2=1.72250 ν2=29.2 r4=-5.552 d4=4.06 *r5=-10.892 * 非球面 r1 面非球面係数 r2 面非球面係数 A= 1.00336×10-2 A= 0 B= 9.42399×10-4 B= 1.36745×10-3 C= 5.18011×10-5 C= 1.60776×10-4 D=-6.97473×10-7 D=-1.71626×10-5 E= 3.08865×10-7 E= 4.53421×10-6 r5 面非球面係数 r1面位相係数 A= 2.52600×10-4 C2 =-3.28885×10-4 B= 2.49284×10-4 C4 = 9.79888×10-6 C= 2.20345×10-5 C6 =-4.35091×10-6 D=-3.33450×10-6 C8 = 6.31878×10-7 E= 1.98045×10-7 C10=-4.50247×10-8 (数値実施例4) f=31.00 Fno=6.2 β=-0.857 *r1= 6.034 d1=3.33 n1=1.69400 ν1=56.3 *r2= 19.178(DOE面) d2=0.28 r3= 絞り(SP) d3=0.49 n2=1.72250 ν2=29.2 r4=-5.461 d4=4.71 *r5=-10.033 * 非球面 r1 面非球面係数 r2 面非球面係数 A=-3.19862×10-3 A= 0 B= 6.57482×10-4 B= 8.86602×10-4 C= 5.99460×10-5 C= 1.19611×10-4 D=-2.78137×10-6 D=-3.29487×10-5 E= 4.03351×10-7 E= 6.07813×10-6 r5 面非球面係数 r2面位相係数 A= 9.09793×10-3 C2 =-5.36469×10-4 B= 3.28101×10-4 C4 = 3.77223×10-5 C= 2.40705×10-5 C6 =-2.74963×10-5 D=-3.20768×10-6 C8 = 9.99486×10-6 E= 1.67736×10-7 C10=-1.26914×10-6 (Numerical Example 1) f = 31.02 Fno = 6.2 β = -0.857 * r 1 = 6.239 d 1 = 3.61 n 1 = 1.63246 ν 1 = 63.8 * r 2 = 14.919 (DOE plane) d 2 = 0.38 r 3 = stop (SP) d 3 = 0.57 n 2 = 1.72250 ν 2 = 29.2 r 4 = -5.473 d 4 = 4.12 * r 5 = -10.524 * aspherical r 1 aspherical surface coefficient r 2 aspherical surface coefficients A = 3.56580 × 10 -3 A = 0 B = 6.85547 × 10 -4 B = 1.04647 × 10 -3 C = 5.11124 × 10 -5 C = 2.07682 × 10 -4 D = -2.02789 × 10 -6 D = -3.81153 × 10 -5 E = 2.94303 × 10 -7 E = 6.60737 × 10 -6 r 5- plane aspherical coefficient r 2- plane phase coefficient A = 7.79486 × 10 -4 C 2 = -5.17468 × 10 -4 B = 2.26185 × 10 -4 C 4 = 4.57263 × 10 -5 C = 2.61035 × 10 -5 C 6 = -4.50112 × 10 -5 D = -3.96086 × 10 -6 C 8 = 1.57800 × 10 -5 E = 2.23315 × 10 -7 C 10 = -1.90291 × 10 -6 (Numerical Example 2) f = 30.99 Fno = 6.2 β = -0.857 * r 1 = 9.991 d 1 = 4.78 n 1 = 1.63246 ν 1 = 63.8 r 2 = 30.975 (DOE surface) d 2 = 0.32 r 3 = Aperture (SP) d 3 = 0.70 n 2 = 1.72250 ν 2 = 29.2 r 4 = -5.228 d 4 = 4.18 * r 5 = -11.071 * Aspheric surface r 1- plane aspheric coefficient r 5- plane aspheric coefficient A = 1.87829 × 10 -2 A = -5.01648 × 10 -3 B = 5.31558 × 10 -4 B = 2.38892 × 10 -4 C = 1.13883 × 10 -5 C = 3.08624 × 10 -6 D = 6.41452 × 10 -7 D = 1.21164 × 10 -6 E = 4.31297 × 10 - 9 E = -7.91730 × 10 -8 r 2 plane phase coefficient C 2 = -6.30030 × 10 -4 C 4 = 4.69069 × 10 -5 C 6 = -1.09462 × 10 -5 C 8 = 3.90636 × 10 -6 C 10 = -4.45734 × 10 -7 (Numerical example 3) f = 31.03 Fno = 6.2 β = -0.857 * r 1 = 6.444 (DOE plane) d 1 = 3.18 n 1 = 1.63246 ν 1 = 63.8 * r 2 = 13.254 d 2 = 0.61 r 3 = Aperture (SP) d 3 = 0.60 n 2 = 1.72250 ν 2 = 29.2 r 4 = -5.552 d 4 = 4.06 * r 5 = -10.892 * Aspheric surface r 1 surface aspherical coefficient r 2 surface non Spherical coefficient A = 1.00336 × 10 -2 A = 0 B = 9.42399 × 10 -4 B = 1.36745 × 10 -3 C = 5.18011 × 10 -5 C = 1.60776 × 10 -4 D = -6.97473 × 10 -7 D = -1.71626 × 10 -5 E = 3.08865 × 10 -7 E = 4.53421 × 10 -6 r 5- plane aspherical coefficient r 1- plane phase coefficient A = 2.52600 × 10 -4 C 2 = -3.28885 × 10 -4 B = 2.49284 × 10 -4 C 4 = 9.79888 × 10 -6 C = 2.20345 × 10 -5 C 6 = -4.35091 × 10 -6 D = -3.33450 × 10 -6 C 8 = 6.31878 × 10 -7 E = 1.98045 × 10 - 7 C 10 = -4.50247 × 10 -8 (Numerical example 4) f = 31.00 Fno = 6.2 β = -0.85 7 * r 1 = 6.034 d 1 = 3.33 n 1 = 1.69400 ν 1 = 56.3 * r 2 = 19.178 (DOE plane) d 2 = 0.28 r 3 = Aperture (SP) d 3 = 0.49 n 2 = 1.72250 ν 2 = 29.2 r 4 = -5.461 d 4 = 4.71 * r 5 = -10.033 * Aspheric surface r 1- plane aspherical coefficient r 2- plane aspherical coefficient A = -3.19862 × 10 -3 A = 0 B = 6.57482 × 10 -4 B = 8.86602 × 10 -4 C = 5.99460 × 10 -5 C = 1.19611 × 10 -4 D = -2.78137 × 10 -6 D = -3.29487 × 10 -5 E = 4.03351 × 10 -7 E = 6.07813 × 10 -6 r 5 aspherical surface coefficient r 2 surface phase coefficient A = 9.09793 × 10 - 3 C 2 = -5.36469 × 10 -4 B = 3.28101 × 10 -4 C 4 = 3.77223 × 10 -5 C = 2.40705 × 10 -5 C 6 = -2.74963 × 10 -5 D = -3.20768 × 10 -6 C 8 = 9.99486 × 10 -6 E = 1.67736 × 10 -7 C 10 = -1.26914 × 10 -6

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】本発明によれば前述の如く画像読取用レ
ンズを2群2枚という少ないレンズ構成枚数で適切に構
成し、かつ2つのレンズのうちの少なくとも1つのレン
ズ面に回折光学素子を付加することにより、諸収差、特
に軸上色収差を十分に補正することができ、またカラー
画像読取装置にも使用可能な高性能で小型な画像読取用
レンズを達成することができる。
According to the present invention, as described above, the image reading lens is appropriately constituted by a small number of lens elements such as two groups and two lenses, and the diffractive optical element is provided on at least one lens surface of the two lenses. By adding, it is possible to sufficiently correct various aberrations, especially axial chromatic aberration, and to achieve a high-performance and compact image reading lens that can be used in a color image reading apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の数値実施例1のレンズ断面図FIG. 1 is a sectional view of a lens according to a numerical example 1 of the present invention.

【図2】 本発明の数値実施例2のレンズ断面図FIG. 2 is a sectional view of a lens according to a numerical example 2 of the present invention.

【図3】 本発明の数値実施例3のレンズ断面図FIG. 3 is a sectional view of a lens according to a numerical example 3 of the present invention.

【図4】 本発明の数値実施例4のレンズ断面図FIG. 4 is a sectional view of a lens according to a numerical example 4 of the present invention.

【図5】 本発明の数値実施例1の縦収差図FIG. 5 is a longitudinal aberration diagram according to Numerical Example 1 of the present invention.

【図6】 本発明の数値実施例2の縦収差図FIG. 6 is a longitudinal aberration diagram according to Numerical Example 2 of the present invention.

【図7】 本発明の数値実施例3の縦収差図FIG. 7 is a longitudinal aberration diagram of Numerical Example 3 of the present invention.

【図8】 本発明の数値実施例4の縦収差図FIG. 8 is a longitudinal aberration diagram of Numerical Example 4 of the present invention.

【図9】 本発明の数値実施例1の横収差図FIG. 9 is a lateral aberration diagram of Numerical Example 1 of the present invention.

【図10】 本発明の数値実施例2の横収差図FIG. 10 is a lateral aberration diagram of Numerical Example 2 of the present invention.

【図11】 本発明の数値実施例3の横収差図FIG. 11 is a lateral aberration diagram of a numerical example 3 of the present invention.

【図12】 本発明の数値実施例4の横収差図FIG. 12 is a lateral aberration diagram of a numerical example 4 of the present invention.

【図13】 本発明に係る回折光学素子の説明図FIG. 13 is an explanatory view of a diffractive optical element according to the present invention.

【図14】 本発明に係る回折光学素子の波長依存特性
の説明図
FIG. 14 is an explanatory diagram of a wavelength dependence characteristic of the diffractive optical element according to the present invention.

【図15】 本発明に係る回折光学素子のMTF特性図FIG. 15 is an MTF characteristic diagram of the diffractive optical element according to the present invention.

【図16】 本発明に係る回折光学素子の説明図FIG. 16 is an explanatory diagram of a diffractive optical element according to the present invention.

【図17】 本発明に係る回折光学素子の波長依存特性
の説明図
FIG. 17 is an explanatory diagram of a wavelength dependence characteristic of the diffractive optical element according to the present invention.

【図18】 本発明に係る回折光学素子のMTF特性図FIG. 18 is an MTF characteristic diagram of the diffractive optical element according to the present invention.

【図19】 本発明に係る回折光学素子の説明図FIG. 19 is an explanatory view of a diffractive optical element according to the present invention.

【符号の説明】[Explanation of symbols]

10,20,30,40 画像読取用レンズ 1 第1レンズ(凸レンズ) 2 第2レンズ(凹レンズ) SP 絞り ΔM メリディオナル像面 ΔS サジタル像面 10, 20, 30, 40 Image reading lens 1 First lens (convex lens) 2 Second lens (concave lens) SP stop ΔM Meridional image plane ΔS Sagittal image plane

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原稿面側より順に該原稿面側に凸面を向
けたメニスカス状の正の第1レンズ、絞り、そして像面
側に凸面を向けたメニスカス状の負の第2レンズの2つ
のレンズを有し、該第1レンズの原稿面側のレンズ面
と、該第2レンズの像面側のレンズ面は非球面より成
り、かつ該第1、第2レンズのうちの少なくとも1つの
レンズ面に回折光学素子を付加したことを特徴とする画
像読取用レンズ。
1. A meniscus-shaped positive first lens having a convex surface facing the original surface side, an aperture, and a meniscus-shaped negative second lens having a convex surface facing the image surface side. A lens surface of the first lens on the document surface side and a lens surface of the second lens on the image surface side are aspherical surfaces, and at least one of the first and second lenses An image reading lens characterized in that a diffractive optical element is added to the surface.
【請求項2】 前記画像読取用レンズにおいて、全系の
焦点距離をf、前記第1レンズの焦点距離をf1 、前記
第1、第2の2つのレンズの材質のアッベ数を各々順に
ν1 ,ν2 、前記回折光学素子のパワーをφd としたと
き 0.35 < f1 /f <0.55 25 < ν1 −ν2 0.015< f・φd <0.05 なる条件を満足することを特徴とする請求項1の画像読
取用レンズ。
2. In the image reading lens, the focal length of the entire system is f, the focal length of the first lens is f 1 , and the Abbe numbers of the materials of the first and second lenses are respectively ν. 1, ν 2, 0.35 <f 1 / f <0.55 25 <ν 1 -ν 2 0.015 <f · φ d <0.05 condition: when the power of the diffractive optical element and phi d 2. The image reading lens according to claim 1, wherein the following condition is satisfied.
【請求項3】 前記回折光学素子は前記第1レンズの両
レンズ面のうち少なくとも一方のレンズ面に付加されて
いることを特徴とする請求項1又は2の画像読取用レン
ズ。
3. The image reading lens according to claim 1, wherein the diffractive optical element is added to at least one of the two lens surfaces of the first lens.
JP25565799A 1999-09-09 1999-09-09 Lens for reading image Pending JP2001083414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25565799A JP2001083414A (en) 1999-09-09 1999-09-09 Lens for reading image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25565799A JP2001083414A (en) 1999-09-09 1999-09-09 Lens for reading image

Publications (1)

Publication Number Publication Date
JP2001083414A true JP2001083414A (en) 2001-03-30

Family

ID=17281806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25565799A Pending JP2001083414A (en) 1999-09-09 1999-09-09 Lens for reading image

Country Status (1)

Country Link
JP (1) JP2001083414A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302064A (en) * 2003-03-31 2004-10-28 Fuji Photo Optical Co Ltd Laser array imaging lens and image forming apparatus
WO2011078048A1 (en) * 2009-12-24 2011-06-30 カンタツ株式会社 High-performance large aperture ratio imaging lens comprising two-lens structure with f value of no more than 3
US8120858B2 (en) 2008-12-04 2012-02-21 Samsung Electronics Co., Ltd. Micro lens, method and apparatus for manufacturing micro lens, and camera module including micro lens
US8305699B2 (en) 2009-09-23 2012-11-06 Samsung Electronics Co., Ltd. Wafer-level lens module with extended depth of field and imaging device including the wafer-level lens module
US8520137B2 (en) 2009-08-13 2013-08-27 Samsung Electronics Co., Ltd. Wafer-level lens module and image pickup device including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302064A (en) * 2003-03-31 2004-10-28 Fuji Photo Optical Co Ltd Laser array imaging lens and image forming apparatus
US8120858B2 (en) 2008-12-04 2012-02-21 Samsung Electronics Co., Ltd. Micro lens, method and apparatus for manufacturing micro lens, and camera module including micro lens
US8520137B2 (en) 2009-08-13 2013-08-27 Samsung Electronics Co., Ltd. Wafer-level lens module and image pickup device including the same
US8305699B2 (en) 2009-09-23 2012-11-06 Samsung Electronics Co., Ltd. Wafer-level lens module with extended depth of field and imaging device including the wafer-level lens module
WO2011078048A1 (en) * 2009-12-24 2011-06-30 カンタツ株式会社 High-performance large aperture ratio imaging lens comprising two-lens structure with f value of no more than 3

Similar Documents

Publication Publication Date Title
JP3990025B2 (en) Zoom lens
US5978159A (en) Hybrid photographic objective
JP4004140B2 (en) Zoom lens using diffractive optical element and image pickup apparatus using the same
JPH11295598A (en) Zoom lens using diffraction optical element
JPH1164726A (en) Wide-angle lens
JP7112894B2 (en) imaging lens
US6078434A (en) Zoom lens system
JP3359277B2 (en) Diffractive refraction rear attachment lens
JPH10115777A (en) Photographic lens
JP3832935B2 (en) Zoom lens
JPH1152235A (en) Zoom lens
US6101044A (en) Zoom lens system
JP3792846B2 (en) Zoom lens
JP2000066093A (en) Original reading lens and original reader using the same
JPH10339843A (en) Achromatic reading lens system
JP3880147B2 (en) camera
JP7409859B2 (en) imaging lens
JP4932208B2 (en) Image reading lens and image reading apparatus
JPH11149043A (en) Small zoom lens
JP2001083414A (en) Lens for reading image
JPH06130298A (en) Compact zoom lens
JPH1152238A (en) Zoom lens
JP2010039261A (en) Wide-angle lens
JP4208293B2 (en) Zoom lens
JP2000147373A (en) Photographing optical system and camera