JP2014010331A - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
JP2014010331A
JP2014010331A JP2012147403A JP2012147403A JP2014010331A JP 2014010331 A JP2014010331 A JP 2014010331A JP 2012147403 A JP2012147403 A JP 2012147403A JP 2012147403 A JP2012147403 A JP 2012147403A JP 2014010331 A JP2014010331 A JP 2014010331A
Authority
JP
Japan
Prior art keywords
lens
imaging
imaging lens
refractive power
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012147403A
Other languages
Japanese (ja)
Other versions
JP5985904B2 (en
Inventor
Tomohiro Yonezawa
友浩 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kantatsu Co Ltd
Original Assignee
Kantatsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kantatsu Co Ltd filed Critical Kantatsu Co Ltd
Priority to JP2012147403A priority Critical patent/JP5985904B2/en
Priority to US13/927,370 priority patent/US9541744B2/en
Priority to CN201320376469.6U priority patent/CN203365784U/en
Publication of JP2014010331A publication Critical patent/JP2014010331A/en
Priority to US14/482,321 priority patent/US9494773B2/en
Application granted granted Critical
Publication of JP5985904B2 publication Critical patent/JP5985904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Abstract

PROBLEM TO BE SOLVED: To obtain an imaging lens of a wide angle of view, in which F number is small and both a smaller size and higher definition are achieved.SOLUTION: An imaging lens, composed of five lenses for solid imaging element, comprises in order from an object side to the image side: an aperture diaphragm; a first lens of positive refractive power, the convex face of which is oriented toward the object side; a second lens of negative refractive power, the concave face of which is oriented toward the image side; a third lens of positive refractive power, the convex face of which is oriented toward the image side; a fourth lens of negative refractive power, both faces of which are aspheric and the concave face of which is oriented toward the object side near an optical axis; and a fifth lens of negative refractive power, with a meniscus shape, both faces of which are aspheric, and the concave face of which is oriented toward the image side near the optical axis. The fifth lens has a shape that decreases the negative refractive power as it is located farther from the optical axis. The imaging lens satisfies the following conditional formula (1): 0.55<f1/f<1.0 in which f is the focal distance of the entire imaging lens and f1 is the focal distance of the first lens.

Description

本発明は、携帯電話機やスマートフォンなどの携帯端末、PDA(Personal Digital Assistance)等に搭載される比較的小型で薄型のCCDセンサやCMOSセンサ等の固体撮像素子を用いた撮像装置に搭載される撮像レンズに関するものである。   The present invention provides an imaging device mounted on an imaging device using a solid-state imaging device such as a relatively small and thin CCD sensor or a CMOS sensor mounted on a portable terminal such as a mobile phone or a smartphone, a PDA (Personal Digital Assistance), or the like. It relates to lenses.

近年、携帯電話機やスマートフォンなどの携帯端末、PDA等の機器には、今や当然のようにカメラ機能が付加されるようになっている。また、携帯性、利便性向上のため、これらの機器において、ますます小型化や薄型化の検討が進められており、同時に高画素化に対応したカメラ機能の向上も検討されている。そのため、これらの機器に搭載される撮像装置に使用される撮像素子は、ますます小型化と高画素化が進む状況にある。また、撮像装置に搭載される撮像レンズに対しても、高画素化に対応した高い解像力を備えるばかりでなく、小型化、薄型化への適応が求められている。さらに、高密度化された撮像素子に適応するための、明るいレンズ系や、広範囲において被写体の像を撮影可能な、広い画角に対応することへの要求も強くなってきている。   2. Description of the Related Art In recent years, a camera function is now naturally added to portable terminals such as mobile phones and smartphones, and devices such as PDAs. In addition, in order to improve portability and convenience, these devices are being studied for further miniaturization and thinning, and at the same time, improvement of camera functions corresponding to higher pixels is also being considered. For this reason, image sensors used in image pickup apparatuses mounted on these devices are in a situation where the size and the number of pixels are increasing. In addition, an imaging lens mounted on an imaging device is required not only to have a high resolving power corresponding to an increase in the number of pixels but also to be adapted to a reduction in size and thickness. In addition, there is an increasing demand for a bright lens system for adapting to high-density imaging devices and a wide angle of view capable of capturing a subject image in a wide range.

従来、上述した機器に搭載される撮像レンズとして、ある程度収差を補正することができ、サイズ、コストの面で有利な3枚構成の撮像レンズが多く採用されてきたが、撮像素子の高画素化に伴い、3枚構成よりも高性能化が望める4枚構成の撮像レンズも多く提案されるようになっている。しかし、近年、撮像装置の高画素化はますます進化しており、5メガピクセルを遥かに超えたカメラ機能を備えた機器も登場するようになった。このような高画素化の流れに対応するために、4枚構成よりもさらに高解像度化、高性能化が可能な5枚構成の撮像レンズが提案されるようになってきている。   Conventionally, as an imaging lens mounted on the above-described device, an aberration of some degree can be corrected, and an imaging lens having a three-lens configuration which is advantageous in terms of size and cost has been widely used. Accordingly, many imaging lenses having a four-lens configuration that can be expected to have higher performance than the three-lens configuration have been proposed. However, in recent years, the increase in the number of pixels in image pickup devices has further evolved, and devices equipped with camera functions far exceeding 5 megapixels have also appeared. In order to cope with such a trend of increasing the number of pixels, an imaging lens having a five-lens configuration capable of achieving higher resolution and higher performance than the four-lens configuration has been proposed.

例えば、特許文献1には、物体側から順に、物体側の面が凸形状の正の第1レンズと像面側に凹面を向けた負のメニスカス形状の第2レンズと像面側に凸面を向けた正のメニスカス形状の第3レンズと両面が非球面形状で光軸近傍において像面側の面が凹形状の負の第4レンズと両面が非球面形状の正または負の第5レンズとを備えた撮像レンズが開示されている。   For example, in Patent Document 1, in order from the object side, a positive first lens having a convex surface on the object side, a second meniscus second lens having a concave surface on the image surface side, and a convex surface on the image surface side are disclosed. A positive meniscus third lens directed to the opposite side, a negative fourth lens having aspherical surfaces on both sides and a concave surface near the optical axis, and a positive or negative fifth lens having aspherical surfaces on both sides An imaging lens having the above is disclosed.

また、特許文献2には、物体側から、物体側に凸状の第1レンズを含む第1レンズ群、結像側に凹状の第2レンズを含む第2レンズ群、物体側に凹状のメニスカス形状の第3レンズを含む第3レンズ群、物体側に凹状のメニスカス形状の第4レンズを含む第4レンズ群、及び物体側に変曲点を有する非球面が配されたメニスカス形状の第5レンズを含む第5レンズ群を備えた撮像レンズ系が開示されている。   Patent Document 2 discloses a first lens group including a first lens convex from the object side to the object side, a second lens group including a concave second lens on the imaging side, and a concave meniscus on the object side. A third lens group including a third lens having a shape, a fourth lens group including a fourth lens having a concave meniscus shape on the object side, and a fifth meniscus shape having an aspheric surface having an inflection point on the object side. An imaging lens system including a fifth lens group including a lens is disclosed.

特開2007−264180号公報JP 2007-264180 A 特開2011−085733号公報JP 2011-085733 A

上記特許文献1に記載の撮像レンズは、5枚構成において、レンズ材料およびレンズの面形状を最適化することで、軸上色収差および倍率色収差の補正効果を得、高画素化に対応した高性能の撮像レンズ系を実現している。しかし、光学全長は8mm前後であり、薄型化が進む装置への適用に課題が残る。また、F値は2.8程度、画角は32°程度であり、近年要求されている明るいレンズ系や広い画角に十分に対応することはできない。   The imaging lens described in Patent Document 1 has a five-lens configuration and optimizes the lens material and the surface shape of the lens, thereby obtaining a correction effect for axial chromatic aberration and lateral chromatic aberration, and high performance corresponding to an increase in the number of pixels. The imaging lens system is realized. However, the total optical length is about 8 mm, and there remains a problem in application to devices that are becoming thinner. Further, the F value is about 2.8 and the angle of view is about 32 °, and it cannot sufficiently cope with a bright lens system and a wide angle of view that have recently been required.

また、上記特許文献2に記載の撮像レンズは、高解像力を具備しながら、光学全長は6mm前後で、比較的小型化および薄型化が実現されている。しかし、F値は2.8程度、画角は32°程度で、この文献に記載の撮像レンズにおいても、近年要求されている仕様(高解像度、小型、薄型、明るいレンズ系、広画角)を十分に満足することはできない。   In addition, the imaging lens described in Patent Document 2 has a high optical resolution and an optical total length of about 6 mm, and is relatively small and thin. However, the F value is about 2.8 and the angle of view is about 32 °, and the specifications (high resolution, small size, thin, bright lens system, wide angle of view) that have recently been required for the imaging lens described in this document. Can not be satisfied enough.

本発明は、上述した課題に鑑みてなされたものであり、その目的は、5枚レンズ構成でありながら小型化および薄型化が可能で、高解像度を実現しながら、F値が小さく、広い画角に対応できる撮像レンズを提供することにある。
なお、ここで言う小型化、薄型化とは、撮像レンズによって結像する像の最大像高をIH、撮像レンズを構成する最も物体側の面から撮像面までの光軸上の距離を光学全長TTLとしたときに、TTL/(2IH)<1.0を満足する程度に小型化されたレベルを指している。例えて言うなら、撮像素子の有効撮像面の対角線の長さよりも、撮像レンズの光学全長の方が短いというレベルを指している。
また、F値については、F2.6以下程度の明るさであり、画角については全画角で70°以上の広い画角のレベルを指している。
The present invention has been made in view of the above-described problems. The object of the present invention is to reduce the size and thickness of the five-lens configuration, and to achieve a high resolution while having a small F value and a wide image. An object of the present invention is to provide an imaging lens that can handle corners.
Note that the terms “miniaturization” and “thinning” as used herein mean that the maximum image height of an image formed by the imaging lens is IH, and the distance on the optical axis from the most object side surface constituting the imaging lens to the imaging surface is the optical total length. When TTL is used, it indicates a level that is miniaturized to the extent that TTL / (2IH) <1.0 is satisfied. For example, this indicates a level where the optical total length of the imaging lens is shorter than the diagonal length of the effective imaging surface of the imaging device.
The F value has a brightness of about F2.6 or less, and the field angle indicates a wide field angle level of 70 ° or more over the entire field angle.

本発明による撮像レンズは、固体撮像素子用の5枚のレンズから構成される撮像レンズであって、物体側から像側に向かって順に、開口絞り、物体側に凸面を向けた正の屈折力を有する第1レンズ、像側に凹面を向けた負の屈折力を有する第2レンズ、像側に凸面を向けた正の屈折力を有する第3レンズ、両面が非球面で形成され、光軸近傍で物体側に凹面を向けた負の屈折力を有する第4レンズ、両面が非球面で形成され、光軸近傍で像側に凹面を向けたメニスカス形状の負の屈折力を有する第5レンズからなり、前記第5レンズは、光軸から離れるに従って負の屈折力が弱まる形状を有することを特徴とする。さらに当該構成において、次の条件式(1)を満足する。
(1)0.55<f1/f<1.0
ただし、fは撮像レンズ全系の焦点距離、f1は第1レンズの焦点距離とする。
An imaging lens according to the present invention is an imaging lens composed of five lenses for a solid-state imaging device, and has a positive refractive power with an aperture stop and a convex surface facing the object side in order from the object side to the image side. A first lens having a negative refractive power with a concave surface facing the image side, a third lens having a positive refractive power with a convex surface facing the image side, both surfaces formed of aspherical surfaces, and an optical axis A fourth lens having negative refractive power with a concave surface facing the object side in the vicinity, and a fifth lens having negative meniscus shape with both surfaces formed of aspheric surfaces and having a concave surface facing the image side near the optical axis The fifth lens has a shape in which the negative refractive power decreases as the distance from the optical axis increases. Further, in this configuration, the following conditional expression (1) is satisfied.
(1) 0.55 <f1 / f <1.0
Here, f is the focal length of the entire imaging lens system, and f1 is the focal length of the first lens.

上記構成の撮像レンズは、5枚で構成されるレンズのうち、第1レンズ、第2レンズ、第3レンズを前群とし、第4レンズと第5レンズを後群としたとき、前群は全体として正の屈折力を有し、後群は全体として負の屈折力を有する、所謂テレフォトタイプに近い構成を採っている。このような構成を採り、且つ第5レンズの像側の面を凹面にすることで、光学全長の短縮化を容易にしている。また、第4レンズ、及び第5レンズの両面に適切な非球面形状を形成することによって、諸収差の補正効果と、撮像素子へ入射する光線の角度を抑制する効果を得ている。   The imaging lens having the above-described configuration includes, among the five lenses, when the first lens, the second lens, and the third lens are the front group, and the fourth lens and the fifth lens are the rear group, the front group is The rear group has a structure close to a so-called telephoto type having a positive refractive power as a whole and a negative refractive power as a whole. By adopting such a configuration and making the image side surface of the fifth lens concave, it is easy to shorten the optical total length. In addition, by forming appropriate aspheric shapes on both surfaces of the fourth lens and the fifth lens, various aberration correction effects and an effect of suppressing the angle of light rays incident on the image sensor are obtained.

条件式(1)は第1レンズの焦点距離と撮像レンズ全系の焦点距離との比を適切な範囲に規定するものであり、光学全長の短縮化と軸外の諸収差の発生を抑制し、良好な収差補正を可能とするための条件である。条件式(1)の上限値を上回ると、撮像レンズ全系のパワーに占める第1レンズの正のパワーが弱くなり過ぎるため、レンズの製造誤差感度の低減には有利となるが、光学全長の短縮化に不利となり、小型化や薄型化の実現が困難となる。一方、条件式(1)の下限値を下回ると、撮像レンズ全系のパワーに占める第1レンズの正のパワーが強くなり過ぎ、特に非点収差と像面湾曲の補正が困難となる。また、レンズの製造誤差感度が高くなり、組立精度が悪化してしまうため好ましくない。   Conditional expression (1) regulates the ratio of the focal length of the first lens and the focal length of the entire imaging lens to an appropriate range, and suppresses shortening of the total optical length and occurrence of off-axis aberrations. This is a condition for enabling good aberration correction. If the upper limit of conditional expression (1) is exceeded, the positive power of the first lens occupying the power of the entire imaging lens system becomes too weak, which is advantageous in reducing the manufacturing error sensitivity of the lens. It is disadvantageous for shortening, and it is difficult to realize miniaturization and thinning. On the other hand, if the lower limit value of conditional expression (1) is not reached, the positive power of the first lens occupying the power of the entire imaging lens system becomes too strong, and it is particularly difficult to correct astigmatism and curvature of field. In addition, the manufacturing error sensitivity of the lens is increased, and the assembly accuracy is deteriorated.

また、本発明の撮像レンズは以下の条件式(2)から条件式(6)を満足することが望ましい。
(2)50<ν1<70
(3)ν2<35
(4)50<ν3<70
(5)50<ν4<70
(6)50<ν5<70
ただし、ν1は第1レンズのアッベ数、ν2は第2レンズのアッベ数、ν3は第3レンズのアッベ数、ν4は第4レンズのアッベ数、ν5は第5レンズのアッベ数である。
Moreover, it is desirable that the imaging lens of the present invention satisfies the following conditional expressions (2) to (6).
(2) 50 <ν1 <70
(3) ν2 <35
(4) 50 <ν3 <70
(5) 50 <ν4 <70
(6) 50 <ν5 <70
Where ν1 is the Abbe number of the first lens, ν2 is the Abbe number of the second lens, ν3 is the Abbe number of the third lens, ν4 is the Abbe number of the fourth lens, and ν5 is the Abbe number of the fifth lens.

条件式(2)から条件式(6)は、各レンズ材料のアッベ数の範囲を規定するものであり、軸上の色収差および倍率色収差を良好に補正するための条件である。条件式(2)から条件式(6)によれば、第2レンズは高分散の材料で形成され、第1レンズ、第3レンズ、第4レンズ、第5レンズは低分散の材料で形成される。5枚のレンズのうち4枚のレンズのアッベ数を、50よりも大きな値とすることで、軸上の色収差及び倍率色収差をより良好に補正することができる。なお、アッベ数が70を超える材料を使用するとレンズ材料が高額なものになり、低コスト化に不利になるため好ましくない。   Conditional expressions (2) to (6) define the Abbe number range of each lens material, and are conditions for satisfactorily correcting axial chromatic aberration and lateral chromatic aberration. According to conditional expressions (2) to (6), the second lens is formed of a high dispersion material, and the first lens, the third lens, the fourth lens, and the fifth lens are formed of a low dispersion material. The By setting the Abbe number of four of the five lenses to a value greater than 50, axial chromatic aberration and lateral chromatic aberration can be corrected more favorably. If a material with an Abbe number exceeding 70 is used, the lens material becomes expensive, which is disadvantageous for cost reduction.

ところで、色収差を補正するための方法としては、高分散の材料と低分散の材料とを組み合わせる方法が一般に知られている。5枚構成の撮像レンズの場合であれば、低分散の材料で形成される正のパワーを有するレンズと高分散の材料で形成される負のパワーを有するレンズとを交互に組み合わせることにより、色収差の補正が可能である。しかし、このような補正方法を採用すると、さらなる薄型化を図ろうとした場合に、色収差の補正に限界が生じてしまう。すなわち、高分散の材料と低分散の材料とを交互に組み合わせて色収差補正をするレンズ構成では、光学全長を短縮していったときに、主に軸外の光線において、低像高部から高像高部に向かうにつれて倍率色収差が補正不足(基準波長に対し短波長がマイナス方向に増大)の状態から補正過剰(基準波長に対し短波長がプラス方向に増大)の状態に変化することが多く、倍率色収差を撮像面全体にわたって良好に補正することが困難になるからである。本発明のように、条件式(2)から条件式(6)を満足することによって、倍率色収差の補正不足、補正過剰の問題を回避し、薄型化と倍率色収差の良好な補正を両立することができる。   By the way, as a method for correcting chromatic aberration, a method of combining a high dispersion material and a low dispersion material is generally known. In the case of a five-lens imaging lens, chromatic aberration can be obtained by alternately combining a lens having a positive power formed of a low dispersion material and a lens having a negative power formed of a high dispersion material. Can be corrected. However, when such a correction method is employed, there is a limit to the correction of chromatic aberration when further thinning is attempted. In other words, in a lens configuration that corrects chromatic aberration by alternately combining a high-dispersion material and a low-dispersion material, when the overall optical length is shortened, mainly in off-axis rays, The chromatic aberration of magnification often changes from an undercorrected state (short wavelength increases in the negative direction to the reference wavelength) to an overcorrected state (short wavelength increases in the positive direction with respect to the reference wavelength) toward the image height. This is because it is difficult to satisfactorily correct lateral chromatic aberration over the entire imaging surface. By satisfying conditional expressions (2) to (6) as in the present invention, the problem of undercorrection and overcorrection of lateral chromatic aberration can be avoided, and both thinning and good correction of lateral chromatic aberration can be achieved. Can do.

また、本発明の撮像レンズは以下の条件式(7)を満足することが望ましい。
(7)−1.6<f2/f<−0.7
ただし、f2は第2レンズの焦点距離である。
Moreover, it is desirable that the imaging lens of the present invention satisfies the following conditional expression (7).
(7) -1.6 <f2 / f <-0.7
Here, f2 is the focal length of the second lens.

条件式(7)は撮像レンズ全系の焦点距離に占める第2レンズの焦点距離の比を適切な範囲に規定するものであり、軸上および軸外における諸収差の発生を抑制しながら、光学全長の短縮化を図るための条件である。条件式(7)の上限値を上回ると、撮像レンズ全系のパワーに占める第2レンズの負のパワーが強くなり過ぎ、軸上および軸外の色収差が補正過剰(基準波長の色収差に対して短波長の色収差がプラス方向に増大)となる。また、結像面が像側に湾曲することとなり、良好な結像性能を得ることが困難となる。さらに、第2レンズの像側の面の曲率半径が小さくなり過ぎることにより、軸外の光線が全反射して迷光が発生する可能性も高くなり、ゴーストやフレアーの発生要因につながり易くなる。一方、条件式(7)の下限値を下回る場合には、撮像レンズ全系のパワーに占める第2レンズの負のパワーが弱くなり過ぎ、光学全長の短縮化には有利となるが、軸上および軸外の色収差が補正不足(基準波長の色収差に対して短波長の色収差がマイナス方向に増大)となる。また、結像面が物体側に湾曲することとなり、この場合も、良好な結像性能を得ることが困難となる。   Conditional expression (7) defines the ratio of the focal length of the second lens to the focal length of the entire imaging lens system within an appropriate range, and suppresses the occurrence of various aberrations on and off the axis, This is a condition for shortening the overall length. If the upper limit of conditional expression (7) is exceeded, the negative power of the second lens occupying the power of the entire imaging lens system becomes too strong, and the on-axis and off-axis chromatic aberration is overcorrected (with respect to the chromatic aberration of the reference wavelength). Short wavelength chromatic aberration increases in the positive direction). In addition, the imaging surface is curved toward the image side, making it difficult to obtain good imaging performance. Furthermore, since the radius of curvature of the image-side surface of the second lens becomes too small, the possibility that stray light is generated due to total reflection of off-axis light rays is increased, which is likely to cause ghost and flare. On the other hand, if the lower limit value of conditional expression (7) is not reached, the negative power of the second lens occupying the power of the entire imaging lens system becomes too weak, which is advantageous for shortening the optical total length. In addition, off-axis chromatic aberration is undercorrected (short wavelength chromatic aberration increases in the negative direction with respect to chromatic aberration at the reference wavelength). In addition, the imaging surface is curved toward the object side, and in this case, it is difficult to obtain good imaging performance.

また、本発明の撮像レンズは、以下の条件式(8)を満足することが望ましい。
(8)1.05<f12/f<1.60
ただし、f12は第1レンズと第2レンズの合成焦点距離である。
Moreover, it is desirable that the imaging lens of the present invention satisfies the following conditional expression (8).
(8) 1.05 <f12 / f <1.60
Here, f12 is a combined focal length of the first lens and the second lens.

条件式(8)は第1レンズと第2レンズの合成焦点距離と撮像レンズ全系の焦点距離との比を適切な範囲に規定するものであり、光学全長の短縮化および広画角化を図りながら、バックフォーカスの確保と良好な収差補正を可能とするための条件である。条件式(8)の上限値を上回ると、撮像レンズ全系のパワーに占める第1レンズと第2レンズの正の合成パワーが弱くなり過ぎるため、焦点距離が長くなり、光学全長の短縮化および広画角化が困難となる。一方、条件式(8)の下限値を下回ると、撮像レンズ全系のパワーに占める第1レンズと第2レンズの正の合成パワーが強くなりすぎるため、焦点距離が短くなり、広画角化には有利となるが、バックフォーカスの確保が困難となる。なお、バックフォーカスを確保するために、第4レンズ及び第5レンズの負のパワーを大きくしてしまうと、軸外において主に非点収差が発生し、良好な結像性能を得ることが困難となる。また、大きなパワーを得ようとしてレンズの曲率半径を小さくすると、製造誤差感度が高くなってしまうため好ましくない。第1レンズと第2レンズの正の合成パワーを条件式(8)の範囲に規定することで、これらの問題を回避することが出来る。   Conditional expression (8) defines the ratio between the combined focal length of the first lens and the second lens and the focal length of the entire imaging lens system within an appropriate range, and shortens the optical total length and widens the angle of view. This is a condition for enabling securing of back focus and good aberration correction. If the upper limit value of conditional expression (8) is exceeded, the positive combined power of the first lens and the second lens occupying the power of the entire imaging lens system becomes too weak, so that the focal length becomes long and the optical total length is shortened. A wide angle of view becomes difficult. On the other hand, if the lower limit value of the conditional expression (8) is not reached, the positive combined power of the first lens and the second lens occupying the power of the entire imaging lens system becomes too strong, so the focal length is shortened and the angle of view is increased. However, it is difficult to secure the back focus. If the negative power of the fourth lens and the fifth lens is increased in order to ensure the back focus, astigmatism mainly occurs off-axis, making it difficult to obtain good imaging performance. It becomes. In addition, if the radius of curvature of the lens is made small in order to obtain a large power, the manufacturing error sensitivity becomes high, which is not preferable. By defining the positive combined power of the first lens and the second lens within the range of conditional expression (8), these problems can be avoided.

また、本発明の撮像レンズにおいては、第4レンズの物体側の面は、周辺に向かうに従って負のパワーが弱まる非球面形状であり、像側の面は周辺に向かうに従って正のパワーが弱まる非球面形状であることが望ましい。開口絞りから離れている第4レンズの形状をこのような非球面形状にすることによって、第4レンズを通過する際の光線の光路長を調整することができる。その結果、各像高の諸収差、主に非点収差を良好に補正することができる。   In the imaging lens of the present invention, the object side surface of the fourth lens has an aspherical shape in which the negative power is weakened toward the periphery, and the image side surface is a non-spherical shape in which the positive power is weakened toward the periphery. A spherical shape is desirable. By making the shape of the fourth lens away from the aperture stop into such an aspherical shape, the optical path length of the light beam when passing through the fourth lens can be adjusted. As a result, it is possible to satisfactorily correct various aberrations at each image height, mainly astigmatism.

また、本発明の撮像レンズにおいては、以下の条件式(9)を満足することが望ましい。
(9)1.7<ν1/ν2<2.7
ただし、ν1は第1レンズのアッベ数、ν2は第2レンズのアッベ数である。
In the imaging lens of the present invention, it is preferable that the following conditional expression (9) is satisfied.
(9) 1.7 <ν1 / ν2 <2.7
Here, ν1 is the Abbe number of the first lens, and ν2 is the Abbe number of the second lens.

条件式(9)は、さらに倍率色収差と軸上色収差とを小さく抑制するための条件である。   Conditional expression (9) is a condition for further suppressing the lateral chromatic aberration and the axial chromatic aberration.

また、本発明の撮像レンズにおいては、以下の条件式(10)を満足することが望ましい。
(10)−0.80<f1/f2<−0.45
f1:第1レンズの焦点距離
f2:第2レンズの焦点距離
In the imaging lens of the present invention, it is preferable that the following conditional expression (10) is satisfied.
(10) −0.80 <f1 / f2 <−0.45
f1: Focal length of the first lens f2: Focal length of the second lens

条件式(10)は第1レンズの焦点距離と第2レンズの焦点距離との比を適切な範囲に規定するものであり、撮像レンズの小型化および広画角化を図りつつ、色収差、球面収差、およびコマ収差を良好な範囲内に抑制するための条件である。条件式(10)の上限値を上回ると、第1レンズの正のパワーに対して第2レンズの負のパワーが相対的に弱くなるため、撮像レンズの小型化には有利となるものの、軸上の色収差および軸外の倍率色収差が補正不足(基準波長に対し短波長がマイナス方向に増大)となり、この場合も良好な結像性能を得ることが困難となる。一方、条件式(10)の下限値を下回ると、第1レンズの正のパワーに対して第2レンズの負のパワーが相対的に強くなり、軸外の倍率色収差が補正過剰(基準波長に対し短波長がプラス方向に増大)となる。また、軸外の光束に対してコマ収差が増大する。このため、良好な結像性能を得ることが困難となる。なお、これらの収差を第2レンズ以降に配置されたレンズで補正しようとすると、光学全長が長くなってしまい、小型化が困難となる。   Conditional expression (10) defines the ratio between the focal length of the first lens and the focal length of the second lens within an appropriate range, and reduces chromatic aberration and spherical surface while reducing the size and wide angle of the imaging lens. This is a condition for suppressing the aberration and the coma aberration within a favorable range. If the upper limit value of conditional expression (10) is exceeded, the negative power of the second lens becomes relatively weaker than the positive power of the first lens, which is advantageous for downsizing the imaging lens. The upper chromatic aberration and off-axis lateral chromatic aberration are undercorrected (short wavelength increases in the minus direction with respect to the reference wavelength), and in this case, it is difficult to obtain good imaging performance. On the other hand, if the lower limit value of conditional expression (10) is not reached, the negative power of the second lens becomes relatively stronger than the positive power of the first lens, and the off-axis lateral chromatic aberration is overcorrected (to the reference wavelength). On the other hand, the short wavelength increases in the positive direction). Also, coma increases for off-axis light flux. For this reason, it is difficult to obtain good imaging performance. If these aberrations are corrected by a lens arranged after the second lens, the total optical length becomes long, and it is difficult to reduce the size.

本発明により、小型化および薄型化が可能で、高解像度を実現しながら、且つF値が小さく、広い画角に対応できる撮像レンズを得ることが出来る。   According to the present invention, it is possible to obtain an imaging lens that can be reduced in size and thickness, achieves high resolution, has a small F-number, and can handle a wide angle of view.

実施例1の撮像レンズの概略構成を示す図である。FIG. 3 is a diagram illustrating a schematic configuration of an imaging lens of Example 1. 実施例1の撮像レンズの球面収差、非点収差、歪曲収差を示す図である。FIG. 3 is a diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens of Example 1. 実施例2の撮像レンズの概略構成を示す図である。6 is a diagram illustrating a schematic configuration of an imaging lens of Example 2. FIG. 実施例2の撮像レンズの球面収差、非点収差、歪曲収差を示す図である。6 is a diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens of Example 2. FIG. 実施例3の撮像レンズの概略構成を示す図である。6 is a diagram illustrating a schematic configuration of an imaging lens of Example 3. FIG. 実施例3の撮像レンズの球面収差、非点収差、歪曲収差を示す図である。6 is a diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens of Example 3. FIG. 実施例4の撮像レンズの概略構成を示す図である。6 is a diagram illustrating a schematic configuration of an imaging lens of Example 4. FIG. 実施例4の撮像レンズの球面収差、非点収差、歪曲収差を示す図である。It is a figure which shows the spherical aberration, astigmatism, and distortion of the imaging lens of Example 4. 実施例5の撮像レンズの概略構成を示す図である。FIG. 6 is a diagram illustrating a schematic configuration of an imaging lens of Example 5. 実施例5の撮像レンズの球面収差、非点収差、歪曲収差を示す図である。FIG. 6 is a diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens of Example 5. 実施例6の撮像レンズの概略構成を示す図である。FIG. 6 is a diagram illustrating a schematic configuration of an imaging lens of Example 6. 実施例6の撮像レンズの球面収差、非点収差、歪曲収差を示す図である。It is a figure which shows the spherical aberration, astigmatism, and distortion of the imaging lens of Example 6.

以下、本発明に係る実施形態について図面を参照しながら詳細に説明する。
図1、図3、図5、図7、図9、図11はそれぞれ、本実施形態の実施例1〜6に係る撮像レンズの概略構成図を示している。いずれも基本的なレンズ構成は同一であるため、ここでは実施例1の概略構成図を参照しながら、本実施形態の撮像レンズ構成について説明する。
Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.
1, 3, 5, 7, 9, and 11 are schematic configuration diagrams of imaging lenses according to Examples 1 to 6 of the present embodiment, respectively. Since both have the same basic lens configuration, the imaging lens configuration of the present embodiment will be described with reference to the schematic configuration diagram of Example 1.

図1に示すように、本実施形態の撮像レンズは、物体側から像面側に向かって順に、正の屈折力を有する第1レンズL1と、負の屈折力を有する第2レンズL2と、正の屈折力を有する第3レンズL3と、負の屈折力を有する第4レンズL4と、負の屈折力を有する第5レンズL5とで構成されている。また、開口絞りSTは第1レンズL1の物体側に配置されている。第5レンズL5と像面IMとの間にはフィルタIRが配置されている。なお、このフィルタIRは省略することが可能である。また、撮像レンズの光学全長を算出する際は、フィルタを取り外した際の値を採用するものとする。   As shown in FIG. 1, the imaging lens of the present embodiment includes, in order from the object side to the image plane side, a first lens L1 having a positive refractive power, a second lens L2 having a negative refractive power, The lens includes a third lens L3 having a positive refractive power, a fourth lens L4 having a negative refractive power, and a fifth lens L5 having a negative refractive power. The aperture stop ST is disposed on the object side of the first lens L1. A filter IR is disposed between the fifth lens L5 and the image plane IM. The filter IR can be omitted. Moreover, when calculating the optical total length of an imaging lens, the value when a filter is removed shall be employ | adopted.

上記5枚構成の撮像レンズにおいて、第1レンズL1は物体側の面r1と像側の面r2が共に凸面で形成された両凸形状のレンズであり、第2レンズL2は物体側の面r3が凸面で、像側の面r4が凹面のメニスカス形状のレンズであり、第3レンズL3は物体側の面r5が凹面であり、像側の面r6が凸面のメニスカス形状のレンズであり、第4レンズL4は光軸Xの近傍で物体側の面r7が凹面で像側の面r8が凸面のメニスカス形状のレンズであり、第5レンズL5は光軸Xの近傍で物体側の面r9が凸面で像側の面r10が凹面のメニスカス形状のレンズである。
なお、第2レンズL2の物体側の面r3は、第2レンズL2の焦点距離に対して弱い屈折力を有するレンズ面であり、比較的大きな曲率半径の値になっている。第2レンズL2の物体側の面r3の形状は凸面に限定されるものではなく、凹面であってもかまわない。本実施形態の実施例3における第2レンズL2は物体側の面r3と像側の面r4が共に凹面の両凹レンズの例である。
In the five-lens imaging lens, the first lens L1 is a biconvex lens in which both the object-side surface r1 and the image-side surface r2 are formed as convex surfaces, and the second lens L2 is the object-side surface r3. Is a meniscus lens having a convex surface and an image side surface r4 being a concave surface, and the third lens L3 is a meniscus lens having an object side surface r5 having a concave surface and an image side surface r6 having a convex surface. The fourth lens L4 is a meniscus lens in which the object-side surface r7 is concave and the image-side surface r8 is convex near the optical axis X, and the fifth lens L5 is an object-side surface r9 near the optical axis X. A convex meniscus lens having a concave surface r10 on the image side.
The object side surface r3 of the second lens L2 is a lens surface having a weak refractive power with respect to the focal length of the second lens L2, and has a relatively large radius of curvature. The shape of the object-side surface r3 of the second lens L2 is not limited to a convex surface, and may be a concave surface. The second lens L2 in Example 3 of the present embodiment is an example of a biconcave lens in which the object-side surface r3 and the image-side surface r4 are both concave.

上記の構成は、5枚で構成されるレンズL1〜L5のうち、第1レンズL1、第2レンズL2、第3レンズL3を前群とし、第4レンズL4と第5レンズL5を後群としたとき、前群は全体として正の屈折力を有し、後群は全体として負の屈折力を有する所謂テレフォトタイプに近い構成であり、このパワー構成にさらに第5レンズの像側の面を凹面とすることによって、光学全長の短縮化が図られている。また、第4レンズL4、及び第5レンズL5の両面に適切な非球面形状を形成することによって、諸収差の補正効果と、撮像素子へ入射する光線の角度を抑制する効果を得ている。   In the above configuration, of the five lenses L1 to L5, the first lens L1, the second lens L2, and the third lens L3 are the front group, and the fourth lens L4 and the fifth lens L5 are the rear group. In this case, the front group has a positive refractive power as a whole, and the rear group has a negative refractive power as a whole, which is a structure close to a so-called telephoto type. By making the surface concave, the overall optical length is shortened. In addition, by forming appropriate aspheric shapes on both surfaces of the fourth lens L4 and the fifth lens L5, it is possible to obtain various effects of correcting aberrations and suppressing the angle of light rays incident on the image sensor.

また、本実施形態の撮像レンズはすべてプラスチック材料を採用している。全ての実施形態において、第1レンズL1、第3レンズL3、第4レンズL4、第5レンズL5にオレフィン系のプラスチック材料を、第2レンズL2にポリカーボネート系のプラスチック材料を用いている。
すべてのレンズにプラスチック材料を採用することで、安定した大量生産が可能となり、低コスト化が容易である。また、第1レンズL1、第3レンズL3、第4レンズL4、第5レンズL5は同一の材料で構成されているため製造が容易である。
In addition, all the imaging lenses of the present embodiment employ a plastic material. In all the embodiments, an olefin plastic material is used for the first lens L1, the third lens L3, the fourth lens L4, and the fifth lens L5, and a polycarbonate plastic material is used for the second lens L2.
By adopting plastic materials for all lenses, stable mass production is possible and cost reduction is easy. Further, the first lens L1, the third lens L3, the fourth lens L4, and the fifth lens L5 are made of the same material, so that they are easy to manufacture.

本発明の撮像レンズは以下の条件式を満足する。
(1)0.55<f1/f<1.0
(2)50<ν1<70
(3)ν2<35
(4)50<ν3<70
(5)50<ν4<70
(6)50<ν5<70
(7)−1.6<f2/f<−0.7
(8)1.05<f12/f<1.60
(9)1.7<ν1/ν2<2.7
(10)−0.80<f1/f2<−0.45
ただし、
f:撮像レンズ全系の焦点距離
f1:第1レンズの焦点距離
f2:第2レンズの焦点距離
f12:第1レンズと第2レンズの合成焦点距離
ν1:第1レンズのアッベ数
ν2:第2レンズのアッベ数
ν3:第3レンズのアッベ数
ν4:第4レンズのアッベ数
ν5:第5レンズのアッベ数
The imaging lens of the present invention satisfies the following conditional expression.
(1) 0.55 <f1 / f <1.0
(2) 50 <ν1 <70
(3) ν2 <35
(4) 50 <ν3 <70
(5) 50 <ν4 <70
(6) 50 <ν5 <70
(7) -1.6 <f2 / f <-0.7
(8) 1.05 <f12 / f <1.60
(9) 1.7 <ν1 / ν2 <2.7
(10) −0.80 <f1 / f2 <−0.45
However,
f: focal length of the entire imaging lens f1: focal length of the first lens f2: focal length of the second lens f12: combined focal length of the first lens and the second lens ν1: Abbe number of the first lens ν2: second Abbe number of lens ν3: Abbe number of third lens ν4: Abbe number of fourth lens ν5: Abbe number of fifth lens

本実施形態では、すべてのレンズ面を非球面で形成している。これらのレンズ面に採用する非球面形状は光軸方向の軸をZ、光軸に直交する方向の高さをH、円錐係数をk、非球面係数をA4、A6、A8、A10、A12、A14、A16としたとき次式により表わされる。   In the present embodiment, all lens surfaces are aspherical. The aspherical shape adopted for these lens surfaces is Z in the optical axis direction, H in the direction perpendicular to the optical axis, k in the conical coefficient, A4, A6, A8, A10, A12, When A14 and A16 are set, they are expressed by the following formula.

Figure 2014010331
Figure 2014010331

次に本実施の形態に係る撮像レンズの実施例を示す。各実施例において、fは撮像レンズ全系の焦点距離を、FnoはFナンバーを、ωは半画角を、IHは最大像高をそれぞれ示す。また、iは物体側から数えた面番号、rは曲率半径、dは光軸上のレンズ面間の距離(面間隔)、Ndはd線(基準波長)に対する屈折率、νdはd線に対するアッベ数をそれぞれ示す。なお、非球面に関しては、面番号iの後に*(アスタリスク)の符号を付加して示す。   Next, examples of the imaging lens according to the present embodiment will be described. In each embodiment, f represents the focal length of the entire imaging lens system, Fno represents the F number, ω represents the half field angle, and IH represents the maximum image height. Further, i is a surface number counted from the object side, r is a radius of curvature, d is a distance (surface interval) between lens surfaces on the optical axis, Nd is a refractive index with respect to d-line (reference wavelength), and νd is with respect to d-line. The Abbe numbers are shown. As for the aspherical surface, a surface number i is added after the symbol * (asterisk).

基本的レンズデータを以下の表1に示す。

Figure 2014010331
Figure 2014010331
The basic lens data is shown in Table 1 below.
Figure 2014010331
Figure 2014010331

実施例1の撮像レンズは、表7に示すように条件式(1)〜(10)の全てを満たしている。   The imaging lens of Example 1 satisfies all conditional expressions (1) to (10) as shown in Table 7.

図2は実施例1の撮像レンズについて、球面収差(mm)、非点収差(mm)、歪曲収差(%)を示したものである。これら収差図は、F線(486nm)、d線(588nm)、C線(656nm)の各波長に対する収差量を示している。また、非点収差図にはサジタル像面S、タンジェンシャル像面Tにおける収差量をそれぞれ示している(図4、図6、図8、図10、図12においても同じ)。図2に示すように、各収差は良好に補正されていることが分かる。   FIG. 2 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Example 1. These aberration diagrams show the amount of aberration with respect to each wavelength of the F-line (486 nm), d-line (588 nm), and C-line (656 nm). The astigmatism diagrams show the aberration amounts on the sagittal image surface S and the tangential image surface T (the same applies to FIGS. 4, 6, 8, 10, and 12). As shown in FIG. 2, it can be seen that each aberration is well corrected.

また、光学全長TTLは4.56mmと短く、最大像高IHとの比(TTL/2IH)は0.82であり、5枚構成でありながら小型化が実現されている。さらに、F値は2.52と明るく、半画角は約35.8°で広い画角が実現されている。   Further, the total optical length TTL is as short as 4.56 mm, and the ratio (TTL / 2IH) with respect to the maximum image height IH is 0.82, and downsizing is realized despite the five-lens configuration. Further, the F value is as bright as 2.52, and the half angle of view is about 35.8 °, realizing a wide angle of view.

基本的レンズデータを以下の表2に示す。

Figure 2014010331
Figure 2014010331
The basic lens data is shown in Table 2 below.
Figure 2014010331
Figure 2014010331

実施例2の撮像レンズは、表7に示すように条件式(1)〜(10)の全てを満たしている。   The imaging lens of Example 2 satisfies all conditional expressions (1) to (10) as shown in Table 7.

図4は実施例2の撮像レンズについて、球面収差(mm)、非点収差(mm)、歪曲収差(%)を示したものである。図4に示すように、各収差は良好に補正されていることが分かる。   FIG. 4 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Example 2. As shown in FIG. 4, it can be seen that each aberration is well corrected.

また、光学全長TTLは4.48mmと短く、最大像高IHとの比(TTL/2IH)は0.80であり、5枚構成でありながら小型化が実現されている。さらに、F値は2.38と明るく、半画角は約36.0°で広い画角が実現されている。   Further, the total optical length TTL is as short as 4.48 mm, and the ratio (TTL / 2IH) with respect to the maximum image height IH is 0.80. Further, the F value is bright as 2.38, the half angle of view is about 36.0 °, and a wide angle of view is realized.

基本的レンズデータを以下の表3に示す。

Figure 2014010331
Figure 2014010331
実施例3の撮像レンズは、表7に示すように条件式(1)〜(10)の全てを満たしている。 Basic lens data is shown in Table 3 below.
Figure 2014010331
Figure 2014010331
The imaging lens of Example 3 satisfies all conditional expressions (1) to (10) as shown in Table 7.

図6は実施例3の撮像レンズについて、球面収差(mm)、非点収差(mm)、歪曲収差(%)を示したものである。図6に示すように、各収差は良好に補正されていることが分かる。   FIG. 6 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Example 3. As shown in FIG. 6, it can be seen that each aberration is corrected satisfactorily.

また、光学全長TTLは4.65mmと短く、最大像高IHとの比(TTL/2IH)は0.83であり、5枚構成でありながら小型化が実現されている。さらに、F値は2.58と明るく、半画角は約35.3°で比較的広い画角が実現されている。   Further, the total optical length TTL is as short as 4.65 mm, and the ratio (TTL / 2IH) with respect to the maximum image height IH is 0.83. Further, the F value is as bright as 2.58, and the half angle of view is about 35.3 °, so that a relatively wide angle of view is realized.

基本的レンズデータを以下の表4に示す。

Figure 2014010331
Figure 2014010331
Basic lens data is shown in Table 4 below.
Figure 2014010331
Figure 2014010331

実施例4の撮像レンズは、表7に示すように条件式(1)〜(10)の全てを満たしている。   The imaging lens of Example 4 satisfies all conditional expressions (1) to (10) as shown in Table 7.

図8は実施例4の撮像レンズについて、球面収差(mm)、非点収差(mm)、歪曲収差(%)を示したものである。図8に示すように、各収差は良好に補正されていることが分かる。   FIG. 8 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Example 4. As shown in FIG. 8, it can be seen that each aberration is corrected satisfactorily.

また、光学全長TTLは4.59mmと短く、最大像高IHとの比(TTL/2IH)は0.82であり、5枚構成でありながら小型化が実現されている。さらに、F値は2.34と明るく、半画角は約35.6°で広い画角が実現されている。   Further, the total optical length TTL is as short as 4.59 mm, the ratio (TTL / 2IH) to the maximum image height IH is 0.82, and miniaturization is realized even though the configuration is five sheets. Further, the F value is bright as 2.34, the half angle of view is about 35.6 °, and a wide angle of view is realized.

基本的レンズデータを以下の表5に示す。

Figure 2014010331
Figure 2014010331
Basic lens data is shown in Table 5 below.
Figure 2014010331
Figure 2014010331

実施例5の撮像レンズは、表7に示すように条件式(1)〜(10)の全てを満たしている。   The imaging lens of Example 5 satisfies all conditional expressions (1) to (10) as shown in Table 7.

図10は実施例5の撮像レンズについて、球面収差(mm)、非点収差(mm)、歪曲収差(%)を示したものである。図10に示すように、各収差は良好に補正されていることが分かる。   FIG. 10 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Example 5. As shown in FIG. 10, it can be seen that each aberration is corrected satisfactorily.

また、光学全長TTLは4.69mmと短く、最大像高IHとの比(TTL/2IH)は0.84であり、5枚構成でありながら小型化が実現されている。さらに、F値は2.52と明るく、半画角は約35.8°で広い画角が実現されている。   Further, the total optical length TTL is as short as 4.69 mm, and the ratio (TTL / 2IH) to the maximum image height IH is 0.84. Further, the F value is as bright as 2.52, and the half angle of view is about 35.8 °, and a wide angle of view is realized.

基本的レンズデータを以下の表6に示す。

Figure 2014010331
Figure 2014010331
Basic lens data is shown in Table 6 below.
Figure 2014010331
Figure 2014010331

実施例6の撮像レンズは、表7に示すように条件式(1)〜(10)の全てを満たしている。   The imaging lens of Example 6 satisfies all conditional expressions (1) to (10) as shown in Table 7.

図12は実施例6の撮像レンズについて、球面収差(mm)、非点収差(mm)、歪曲収差(%)を示したものである。図12に示すように、各収差は良好に補正されていることが分かる。   FIG. 12 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Example 6. As shown in FIG. 12, it can be seen that each aberration is corrected satisfactorily.

また、光学全長TTLは4.49mmと短く、最大像高IHとの比(TTL/2IH)は0.80であり、5枚構成でありながら小型化が実現されている。さらに、F値は2.53と明るく、半画角は約35.7°で広い画角が実現されている。   Further, the total optical length TTL is as short as 4.49 mm, and the ratio (TTL / 2IH) to the maximum image height IH is 0.80. Further, the F value is as bright as 2.53, and the wide angle of view is realized with a half angle of view of about 35.7 °.

本発明の実施形態に係る撮像レンズは、5枚構成でありながら、光学全長TTLが5mm以下であり、光学全長と最大像高IHとの比(TTL/2IH)は0.85以下を達成するほどの小型化が図られている。また、収差が良好に補正されており、F値は2.5程度で明るく、全画角は72°前後で広い画角の撮影を可能にする。   Although the imaging lens according to the embodiment of the present invention has a five-lens configuration, the optical total length TTL is 5 mm or less, and the ratio (TTL / 2IH) between the optical total length and the maximum image height IH is 0.85 or less. The miniaturization has been achieved. In addition, the aberrations are well corrected, the F value is about 2.5 and it is bright, and the entire angle of view is around 72 °, which enables photographing with a wide angle of view.

表7に実施例1〜6の条件式(1)〜(10)の値を示す。

Figure 2014010331
Table 7 shows values of conditional expressions (1) to (10) of Examples 1 to 6.
Figure 2014010331

本発明の各実施の形態に係る5枚構成の撮像レンズは、近年、薄型化、高画素化が進む携帯電話機やスマートフォンなどの携帯端末、PDA(Personal Digital Assistance)等に搭載される撮像光学系に好適に適用することができる。本発明の撮像レンズによれば、当該撮像光学系等の高性能化と小型化、広画角化を図ることができる。   The imaging lens having a five-lens configuration according to each embodiment of the present invention is an imaging optical system that is mounted on a mobile terminal such as a mobile phone or a smartphone, a PDA (Personal Digital Assistance), etc. It can be suitably applied to. According to the imaging lens of the present invention, the imaging optical system and the like can be improved in performance, size, and wide angle of view.

ST 開口絞り
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
L5 第5レンズ
IR フィルタ
ST Aperture stop L1 First lens L2 Second lens L3 Third lens L4 Fourth lens L5 Fifth lens IR filter

Claims (7)

固体撮像素子用の5枚のレンズから構成される撮像レンズであって、物体側から像側に向かって順に、開口絞り、物体側に凸面を向けた正の屈折力を有する第1レンズ、像側に凹面を向けた負の屈折力を有する第2レンズ、像側に凸面を向けた正の屈折力を有する第3レンズ、両面が非球面で形成され、光軸近傍で物体側に凹面を向けた負の屈折力を有する第4レンズ、両面が非球面で形成され、光軸近傍で像側に凹面を向けたメニスカス形状の負の屈折力を有する第5レンズからなり、前記第5レンズは、光軸から離れるに従って負の屈折力が弱まる形状を有し、以下の条件式(1)を満足することを特徴とする撮像レンズ。
(1)0.55<f1/f<1.0
ただし、
f :撮像レンズ全系の焦点距離
f1:第1レンズの焦点距離
An imaging lens composed of five lenses for a solid-state imaging device, in order from the object side to the image side, an aperture stop, a first lens having a positive refractive power with a convex surface facing the object side, and an image A second lens having a negative refractive power with the concave surface facing the side, a third lens having a positive refractive power with the convex surface facing the image side, and both surfaces are formed of an aspheric surface, and the concave surface on the object side in the vicinity of the optical axis A fourth lens having negative refractive power directed to the lens, and a fifth lens having negative meniscus power having both surfaces formed of aspheric surfaces and having a concave surface facing the image side in the vicinity of the optical axis, Is an imaging lens having a shape in which the negative refractive power is weakened with distance from the optical axis, and satisfies the following conditional expression (1).
(1) 0.55 <f1 / f <1.0
However,
f: focal length of the entire imaging lens f1: focal length of the first lens
以下の条件式(2)から(6)を満足することを特徴とする請求項1に記載の撮像レンズ。
(2)50<ν1<70
(3)ν2<35
(4)50<ν3<70
(5)50<ν4<70
(6)50<ν5<70
ただし、
ν1:第1レンズのアッベ数
ν2:第2レンズのアッベ数
ν3:第3レンズのアッベ数
ν4:第4レンズのアッベ数
ν5:第5レンズのアッベ数
The imaging lens according to claim 1, wherein the following conditional expressions (2) to (6) are satisfied.
(2) 50 <ν1 <70
(3) ν2 <35
(4) 50 <ν3 <70
(5) 50 <ν4 <70
(6) 50 <ν5 <70
However,
ν1: Abbe number of the first lens ν2: Abbe number of the second lens ν3: Abbe number of the third lens ν4: Abbe number of the fourth lens ν5: Abbe number of the fifth lens
以下の条件式(7)を満足することを特徴とする請求項1または2に記載の撮像レンズ。
(7)−1.6<f2/f<−0.7
ただし、
f2:第2レンズの焦点距離
The imaging lens according to claim 1, wherein the following conditional expression (7) is satisfied.
(7) -1.6 <f2 / f <-0.7
However,
f2: focal length of the second lens
以下の条件式(8)を満足することを特徴とする請求項1に記載の撮像レンズ。
(8)1.05<f12/f<1.60
ただし、
f12:第1レンズと第2レンズの合成焦点距離
The imaging lens according to claim 1, wherein the following conditional expression (8) is satisfied.
(8) 1.05 <f12 / f <1.60
However,
f12: Composite focal length of the first lens and the second lens
前記第4レンズの物体側の面は、周辺に向かうに従って負のパワーが弱まる非球面形状であり、像側の面は周辺に向かうに従って正のパワーが弱まる非球面形状であることを特徴とする請求項1に記載の撮像レンズ。   The object-side surface of the fourth lens has an aspherical shape in which negative power is weakened toward the periphery, and the image-side surface has an aspherical shape in which positive power is weakened toward the periphery. The imaging lens according to claim 1. 以下の条件式(9)を満足することを特徴とする請求項2に記載の撮像レンズ。
(9)1.7<ν1/ν2<2.7
ただし、
ν1:第1レンズのアッベ数
ν2:第2レンズのアッベ数
The imaging lens according to claim 2, wherein the following conditional expression (9) is satisfied.
(9) 1.7 <ν1 / ν2 <2.7
However,
ν1: Abbe number of the first lens ν2: Abbe number of the second lens
以下の条件式(10)を満足することを特徴とする請求項1または2に記載の撮像レンズ。
(10)−0.80<f1/f2<−0.45
ただし、
f1:第1レンズの焦点距離
f2:第2レンズの焦点距離
The imaging lens according to claim 1, wherein the following conditional expression (10) is satisfied.
(10) −0.80 <f1 / f2 <−0.45
However,
f1: Focal length of the first lens f2: Focal length of the second lens
JP2012147403A 2012-06-29 2012-06-29 Imaging lens Active JP5985904B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012147403A JP5985904B2 (en) 2012-06-29 2012-06-29 Imaging lens
US13/927,370 US9541744B2 (en) 2012-06-29 2013-06-26 Image pickup lens
CN201320376469.6U CN203365784U (en) 2012-06-29 2013-06-27 Shooting lens
US14/482,321 US9494773B2 (en) 2012-06-29 2014-09-10 Image pickup lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012147403A JP5985904B2 (en) 2012-06-29 2012-06-29 Imaging lens

Publications (2)

Publication Number Publication Date
JP2014010331A true JP2014010331A (en) 2014-01-20
JP5985904B2 JP5985904B2 (en) 2016-09-06

Family

ID=49777872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012147403A Active JP5985904B2 (en) 2012-06-29 2012-06-29 Imaging lens

Country Status (3)

Country Link
US (2) US9541744B2 (en)
JP (1) JP5985904B2 (en)
CN (1) CN203365784U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022306A (en) * 2013-07-16 2015-02-02 玉晶光電股▲ふん▼有限公司 Optical image capturing lens
JP2015187675A (en) * 2014-03-27 2015-10-29 カンタツ株式会社 Imaging lens composed of five optical elements
KR101578647B1 (en) * 2014-08-11 2015-12-18 주식회사 코렌 Photographic Lens Optical System
CN109031594A (en) * 2018-08-03 2018-12-18 瑞声声学科技(深圳)有限公司 Camera optical camera lens
CN113640940A (en) * 2020-05-11 2021-11-12 新巨科技股份有限公司 Five-piece infrared single-focus lens group

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5513641B1 (en) * 2013-02-20 2014-06-04 株式会社AAC Technologies Japan R&D Center Imaging lens
KR101547462B1 (en) * 2013-12-31 2015-08-27 주식회사 코렌 Photographic lens optical system
TWI512326B (en) * 2014-07-14 2015-12-11 Largan Precision Co Ltd Photographing optical lens assembly, imaging device and mobile terminal
KR101724265B1 (en) * 2014-12-08 2017-04-07 주식회사 코렌 Photographing lens system
CN105068224A (en) * 2015-07-27 2015-11-18 山东大学(威海) Laser telecentric optical lens
KR20170043279A (en) * 2015-10-13 2017-04-21 삼성전기주식회사 Optical Imaging System
JP6719840B2 (en) * 2017-12-26 2020-07-08 カンタツ株式会社 Imaging lens
CN108254890A (en) * 2017-12-29 2018-07-06 玉晶光电(厦门)有限公司 Optical imaging lens
JP7230443B2 (en) * 2018-11-09 2023-03-01 株式会社リコー Distance measuring device and moving object
CN116841007A (en) * 2020-09-24 2023-10-03 玉晶光电(厦门)有限公司 Optical lens group

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264180A (en) * 2006-03-28 2007-10-11 Fujinon Corp Imaging lens
JP2010048996A (en) * 2008-08-21 2010-03-04 Konica Minolta Opto Inc Imaging lens
JP2011085733A (en) * 2009-10-15 2011-04-28 Hitachi Maxell Ltd Imaging lens system
US20130057973A1 (en) * 2011-09-01 2013-03-07 Yoji Kubota Imaging lens
WO2013099255A1 (en) * 2011-12-28 2013-07-04 富士フイルム株式会社 Imaging lens and imaging device provided with imaging lens
US20130329307A1 (en) * 2012-06-12 2013-12-12 Samsung Electro-Mechanics Co., Ltd. Lens module

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298572A (en) 2006-04-27 2007-11-15 Kyocera Corp Imaging lens, optical module and personal digital assistant
JP5601857B2 (en) 2009-04-07 2014-10-08 富士フイルム株式会社 IMAGING LENS, IMAGING DEVICE, AND PORTABLE TERMINAL DEVICE
CN102483512B (en) 2009-09-02 2015-01-14 柯尼卡美能达株式会社 Single-focus optical system, image pickup device, and digital apparatus
TWI401485B (en) * 2010-06-10 2013-07-11 Largan Precision Co Ltd Imaging optical lens assembly
JP2012008164A (en) 2010-06-22 2012-01-12 Olympus Corp Imaging optical system and imaging apparatus with the same
TWI435135B (en) * 2010-10-06 2014-04-21 Largan Precision Co Ltd Optical lens system
CN102466854B (en) 2010-11-10 2014-08-20 大立光电股份有限公司 Optical lens system
TWI429944B (en) 2011-01-07 2014-03-11 Largan Precision Co Image pickup optical lens assembly
TWI424216B (en) * 2011-06-28 2014-01-21 Largan Precision Co Optical imaging lens assembly
JP5754670B2 (en) 2011-06-29 2015-07-29 株式会社オプトロジック Imaging lens
TWI438470B (en) 2011-07-22 2014-05-21 Largan Precision Co Ltd Optical lens assembly for image taking
KR101301314B1 (en) 2011-10-10 2013-08-29 삼성전기주식회사 Image Lense Unit
TWI437312B (en) 2011-12-28 2014-05-11 Largan Precision Co Ltd Image capturing lens system
US8547649B2 (en) * 2011-12-28 2013-10-01 Newmax Technology Co., Ltd. Five-piece optical lens system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264180A (en) * 2006-03-28 2007-10-11 Fujinon Corp Imaging lens
JP2010048996A (en) * 2008-08-21 2010-03-04 Konica Minolta Opto Inc Imaging lens
JP2011085733A (en) * 2009-10-15 2011-04-28 Hitachi Maxell Ltd Imaging lens system
US20130057973A1 (en) * 2011-09-01 2013-03-07 Yoji Kubota Imaging lens
JP2013054099A (en) * 2011-09-01 2013-03-21 Optical Logic Inc Imaging lens
WO2013099255A1 (en) * 2011-12-28 2013-07-04 富士フイルム株式会社 Imaging lens and imaging device provided with imaging lens
US20130329307A1 (en) * 2012-06-12 2013-12-12 Samsung Electro-Mechanics Co., Ltd. Lens module
JP2013257527A (en) * 2012-06-12 2013-12-26 Samsung Electro-Mechanics Co Ltd Lens module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022306A (en) * 2013-07-16 2015-02-02 玉晶光電股▲ふん▼有限公司 Optical image capturing lens
US9491341B2 (en) 2013-07-16 2016-11-08 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
JP2015187675A (en) * 2014-03-27 2015-10-29 カンタツ株式会社 Imaging lens composed of five optical elements
KR101578647B1 (en) * 2014-08-11 2015-12-18 주식회사 코렌 Photographic Lens Optical System
US9405103B2 (en) 2014-08-11 2016-08-02 Kolen Co., Ltd. Photographic lens optical system
CN109031594A (en) * 2018-08-03 2018-12-18 瑞声声学科技(深圳)有限公司 Camera optical camera lens
CN109031594B (en) * 2018-08-03 2022-07-12 诚瑞光学(常州)股份有限公司 Image pickup optical lens
CN113640940A (en) * 2020-05-11 2021-11-12 新巨科技股份有限公司 Five-piece infrared single-focus lens group

Also Published As

Publication number Publication date
US9541744B2 (en) 2017-01-10
US20140376110A1 (en) 2014-12-25
JP5985904B2 (en) 2016-09-06
US20140002909A1 (en) 2014-01-02
US9494773B2 (en) 2016-11-15
CN203365784U (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5985904B2 (en) Imaging lens
JP6105317B2 (en) Wide-angle imaging lens
JP5894839B2 (en) Imaging lens
JP5963360B2 (en) Imaging lens
JP6403711B2 (en) Imaging lens
JP5992868B2 (en) Imaging device
JP5894838B2 (en) Imaging lens
JP5973240B2 (en) Imaging lens
JP5894847B2 (en) Imaging lens
JP5800438B2 (en) Imaging lens and imaging device provided with imaging lens
JP5818702B2 (en) Imaging lens
JP5665229B2 (en) Imaging lens
JP6226369B2 (en) Wide-angle imaging lens
JP6144954B2 (en) Imaging lens
JP6324824B2 (en) Imaging lens
JP6171184B2 (en) Imaging lens
JP6332851B2 (en) Imaging lens
JP6066179B2 (en) Imaging lens
JP2014202766A (en) Imaging lens and imaging apparatus
JP2013054099A (en) Imaging lens
JP2014112131A (en) Imaging lens
JP5513648B1 (en) Imaging lens
JP2015138158A (en) Image capturing lens
JP2013145330A (en) Imaging lens
JP2015102849A (en) Image capturing lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160308

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160804

R150 Certificate of patent or registration of utility model

Ref document number: 5985904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250