JP5355659B2 - Interferometry apparatus and measurement origin determination method - Google Patents

Interferometry apparatus and measurement origin determination method Download PDF

Info

Publication number
JP5355659B2
JP5355659B2 JP2011241561A JP2011241561A JP5355659B2 JP 5355659 B2 JP5355659 B2 JP 5355659B2 JP 2011241561 A JP2011241561 A JP 2011241561A JP 2011241561 A JP2011241561 A JP 2011241561A JP 5355659 B2 JP5355659 B2 JP 5355659B2
Authority
JP
Japan
Prior art keywords
light
signal
interference
light beam
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011241561A
Other languages
Japanese (ja)
Other versions
JP2012022012A (en
Inventor
秀次郎 門脇
公 石塚
成樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011241561A priority Critical patent/JP5355659B2/en
Publication of JP2012022012A publication Critical patent/JP2012022012A/en
Application granted granted Critical
Publication of JP5355659B2 publication Critical patent/JP5355659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an interference measuring apparatus capable of highly accurately setting an origin after measurement and capable of highly accurately measuring the displacement information (absolute displacement information) of an object to be measured. <P>SOLUTION: The interference measuring apparatus includes: first multiplexing means for multiplexing a first beam from first light source means and a second beam from second light source means; an optical system for dividing the beam obtained by multiplexing the first beam and the second beam into two beams, making one beam incident on a measuring surface of the object to be measured, making the other beam incident on a reference surface, and multiplexing a reflected beam from the measurement surface and a reflected beam from the reference surface; light receiving means for receiving a beam formed by two divided first beams included in the reflected beams from the measurement surface and the reference surface and a beam formed by two second beams; and determination means for determining a measurement origin by using a first signal based on the first beams received by the light receiving means and a second signal based on the second beams received by the light receiving means. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、非接触にて物体の位置変動情報を検出する干渉測定装置及び測定原点決定方法に関し、特に変位情報を検出するときに、原点となる原点位置を付加し、絶対位置変移情報を検出する際に好適なものである。   The present invention relates to an interference measuring apparatus and a measurement origin determining method for detecting position variation information of an object without contact, and in particular, when detecting displacement information, an origin position as an origin is added to detect absolute position transition information. It is suitable when doing.

ナノメータレベルの精度、分解能で長さを計測する装置には、レーザ光を用いたマイケルソン干渉装置等のレーザ干渉測定装置が広く使用されている。   Laser interference measuring devices such as Michelson interferometers using laser light are widely used as devices that measure length with nanometer-level accuracy and resolution.

レーザ干渉測定装置は被測定対象の変位によって発生する干渉波が正弦波であり、その波数を積算し、さらに正弦波の位相を読み取ることによりナノメータレベルの精度、分解能で変位量を得ることができる。   In the laser interference measurement device, the interference wave generated by the displacement of the object to be measured is a sine wave, and the amount of displacement can be obtained with nanometer level accuracy and resolution by accumulating the wave numbers and reading the phase of the sine wave. .

マイケルソン干渉装置で得られる干渉信号を用いて、被測定面の変位情報(位置情報)を得る装置が種々と提案されている(特許文献1)。   Various devices for obtaining displacement information (positional information) of a surface to be measured using an interference signal obtained by a Michelson interferometer have been proposed (Patent Document 1).

特許文献1の変位検出装置では、光干渉を利用して、磁気ヘッドアームに設けた被測定面の変位情報を検出している。   In the displacement detection apparatus of Patent Document 1, displacement information of a surface to be measured provided on a magnetic head arm is detected using optical interference.

具体的には磁気ヘッドアームの回転軸と同軸に位置決め用のプローブ指示アームを設けている。   Specifically, a probe indicating arm for positioning is provided coaxially with the rotation axis of the magnetic head arm.

そしてプローブ指示アームには、磁気ヘッドアームの端面位置(被測定面)が適正な位置にあるか否かを検出する光学的位置検出センサユニットが取り付けられている。   An optical position detection sensor unit for detecting whether or not the end face position (surface to be measured) of the magnetic head arm is at an appropriate position is attached to the probe instruction arm.

この光学的位置検出センサユニットには、干渉信号を利用して、磁気ヘッドアームの側面の位置決めを行う1/4波長板、位相回折格子、受光素子等を含む検出系が設けられている。   This optical position detection sensor unit is provided with a detection system including a quarter-wave plate, a phase diffraction grating, a light receiving element, and the like for positioning the side surface of the magnetic head arm using an interference signal.

この他被測定面の光軸方向の位置情報を検出する為に偏向板、集光レンズ、4分割センサ等を含むフォーカス検出光学系が設けられている。   In addition, a focus detection optical system including a deflection plate, a condensing lens, a four-divided sensor, and the like is provided in order to detect positional information of the measurement target surface in the optical axis direction.

特開2001−76325号公報JP 2001-76325 A

干渉測定装置によるレーザ干渉は出力信号が正弦波で得られる。このため、波数と位相からナノメータオーダーの分解能の計測が可能であるが、変位のみで絶対位置は計測できない。測定物の絶対変位情報を得る方法として別に基準点(原点)を設けそこからの相対位置を得る必要がある。   As for laser interference by the interference measuring device, an output signal is obtained as a sine wave. For this reason, it is possible to measure nanometer-order resolution from the wave number and phase, but it is impossible to measure the absolute position only by displacement. As a method for obtaining the absolute displacement information of the measured object, it is necessary to provide a reference point (origin) and obtain the relative position therefrom.

この場合、正確な絶対位置を得るにはレーザ干渉の出力正弦波の波長(上記例では0.2μm)以下の精度の基準点(原点)が必要となってくる。   In this case, in order to obtain an accurate absolute position, a reference point (origin) having an accuracy equal to or less than the wavelength of the output sine wave of laser interference (in the above example, 0.2 μm) is required.

特許文献1の、変位検出装置におけるフォーカス検出光学系では、被測定面の原点を4分割センサの各センサに入射する光量比を検出して求めており、干渉信号を利用していない。   In the focus detection optical system of the displacement detection apparatus of Patent Document 1, the origin of the surface to be measured is obtained by detecting the ratio of the amount of light incident on each sensor of the four-divided sensor and does not use an interference signal.

この為、被測定面の位置情報を波長オーダーの精度で検出するのが難しい。   For this reason, it is difficult to detect the position information of the surface to be measured with the accuracy of the wavelength order.

本発明は原点を高精度に設定することができる干渉測定装置及び測定原点決定方法の提供を目的とする。 The present invention has an object to provide an interference measuring apparatus and the origin determination method capable of setting an origin with high accuracy.

本発明の干渉測定装置は、可干渉性の第1の光束を放射する第1の光源手段と、前記第1の光束よりも可干渉性の低い第2の光束を放射する第2の光源手段と、前記第1の光束と前記第2の光束を合波する第1の合波手段と、前記第1の光束と前記第2の光束が合波された光束を前記第1の光束の一部と前記第2の光束一部それぞれが含む2つの光束に分割し、前記分割により得られた一方の光束測定面に入射させ、前記分割により得られた他方の光束を参照面に入射させ、前記測定面からの反射光束と前記参照面からの反射光束を合波し、前記合波のなされた前記測定面からの反射光束と前記参照面からの反射光束とにそれぞれ含まれている2つの前記第1の光束を干渉させ、前記合波のなされた前記測定面からの反射光束と前記参照面からの反射光束とにそれぞれ含まれている2つの前記第2の光束を干渉させる光学系と、前記2つの前記第1の光束の干渉により形成される光束を受光して第1の信号を出力し、前記2つの前記第2の光束の干渉により形成される光束を受光して第2の信号を出力する受光手段と、第1の信号と前記第2の信号とに基づいて測定原点を決定する決定手段と、を有することを特徴としている。 Interference measuring apparatus of the present invention, the first light source means and said first second light source means for emitting a second light beam having low coherence than the light beam that emits first light flux coherent When the a first multiplexing means for first multiplexing said optical beam second beam, said first beam and said second light beam and the light beam is combined, the first a portion of a part and the second light flux of the light beam is divided into two beams, each including the division by applying light beams of one resulting et a the measuring surface, the other obtained by the division A light beam is incident on a reference surface, the reflected light beam from the measurement surface and the reflected light beam from the reference surface are combined , and the reflected light beam from the measurement surface and the reflected light beam from the reference surface are combined. Reflected from the measurement surface on which the two light beams included in the first and second light beams included in the first and second light beams are combined. The receiving light beams formed by the interference of the reflected light beam and to an optical system for interfering two of said second light beam contained respectively, said two first light beam from the reference surface and 1 Based on the first signal and the second signal, and a light receiving means for receiving the light beam formed by the interference of the two second light beams and outputting the second signal, Determining means for determining a measurement origin.

本発明の測定原点決定方法は、干渉測定のための測定原点決定方法であって、可干渉性の第1の光束と前記第1の光束よりも可干渉性の低い第2の光束を合波すステップと、前記第1の光束と前記第2の光束が合波された光束を前記第1の光束の一部と前記第2の光束一部それぞれが含む2つの光束に分割し、前記分割により得られた一方の光束測定面に入射させ、前記分割により得られた他方の光束を参照面に入射させ、前記測定面からの反射光束と前記参照面からの反射光束を合波前記合波のなされた前記測定面からの反射光束と前記参照面からの反射光束とにそれぞれ含まれている2つの前記第1の光束を干渉させ、前記合波のなされた前記測定面からの反射光束と前記参照面からの反射光束とにそれぞれ含まれている2つの前記第2の光束を干渉させるステップと、前記2つの前記第1の光束の干渉により形成される光束を受光して第1の信号を出力し前記2つの前記第2の光束の干渉により形成される光束受光して第2の信号を出力ステップと、前記第1の信号と前記第2の信号とに基づいて測定原点を決定するステップと、を有することを特徴としている。 Measurement origin determination method of the present invention, the measurement a starting point determination method, if a second beam having low coherence than the first light flux and the first light flux of coherent for interference measurements a step you wave the first light flux which the light flux and the second light beams are combined, a portion of two each containing part and the second light flux of the first light flux divided into light beams, one of the light beams obtained by the division to be incident on the measurement surface, said other light beam obtained by the division is incident on the reference surface, and the reflected light beam from the measuring surface from the reference surface the reflected light flux multiplexes, by interfering two of the first light beam that is included in each of the reflected light beam from the reference surface and the reflected light beam from said measurement plane made the multiplexing, the multiplexing Included in the reflected light beam from the measurement surface and the reflected light beam from the reference surface, respectively. A step of interfering two of said second light beam is, the light beams formed by the interference of two of the first light flux and outputs a first signal by receiving said two of said second beam wherein the steps receiving light flux you output a second signal formed by interference, determining a measurement origin based on the first signal and the second signal, to have a It is said.

本発明によれば原点を高精度に設定することができる干渉測定装置及び測定原点決定方法が得られる。 According to the present invention, it is possible to obtain an interference measurement apparatus and a measurement origin determination method that can set the origin with high accuracy.

実施例1の光学配置の概略図Schematic of optical arrangement of Example 1 実施例1の光LD及び光SLDのパワースペクトルの説明図Explanatory drawing of the power spectrum of optical LD and optical SLD of Example 1 実施例1の光SLDのビジビリティの説明図Explanatory drawing of visibility of optical SLD of Example 1 実施例1のUVW干渉信号出力の波形図Waveform diagram of UVW interference signal output of Example 1 実施例1の干渉信号UVW出力から計算したA相、B相の波形図Waveform diagram of A phase and B phase calculated from interference signal UVW output of Example 1 実施例1のU干渉信号出力及びO干渉信号出力の波形図Waveform diagram of U interference signal output and O interference signal output of Example 1 実施例2の光学配置の概略図Schematic of optical arrangement of Example 2 実施例2の光LD及び光SLDのパワースペクトルの説明図Explanatory drawing of the power spectrum of optical LD and optical SLD of Example 2 実施例3のU干渉信号出力及び(U+O)干渉信号出力の波形図Waveform diagram of U interference signal output and (U + O) interference signal output of Example 3

本発明の干渉測定装置は、可干渉性の第1の光束を放射する第1の光源手段と、第1の光源手段よりも可干渉性の低い第2の光束を放射する第2の光源手段と、前記第1の光束と前記第2の光束を合波する第1の合波手段とを有する。前記第1の光束と前記第2の光束が合波された光束を、それぞれ前記第1の光束と前記第2の光束の少なくとも一部を含む2つの光束に分割する。   The interference measuring apparatus according to the present invention includes a first light source unit that emits a coherent first light beam, and a second light source unit that emits a second light beam having a coherence lower than that of the first light source unit. And first combining means for combining the first light flux and the second light flux. The light beam obtained by combining the first light beam and the second light beam is divided into two light beams each including at least a part of the first light beam and the second light beam.

前記分割された一方の光束を被測定物の測定面に入射させ、他方の光束を参照面に入射させ、前記測定面からの反射光束と前記参照面からの反射光束を合波する光学系とを有する。前記光学系を介して前記測定面からの反射光束と前記参照面からの反射光束とに含まれている前記分割された2つの第1の光束により形成される光束を受光する受光手段を有する。更に受光手段は前記測定面からの反射光束と前記参照面からの反射光束とに含まれている前記分割された2つの第2の光束により形成される光束を受光する。   An optical system that causes one of the divided light beams to enter the measurement surface of the object to be measured, the other light beam to enter the reference surface, and combines the reflected light beam from the measurement surface and the reflected light beam from the reference surface; Have Light receiving means for receiving the light beam formed by the two divided first light beams included in the reflected light beam from the measurement surface and the reflected light beam from the reference surface via the optical system. Further, the light receiving means receives a light beam formed by the two divided second light beams included in the reflected light beam from the measurement surface and the reflected light beam from the reference surface.

前記受光手段の出力に基づいて測定原点を決定する決定手段と、を有する。前記決定手段は、前記受光手段で受光した前記第1の光束に基づく第1の信号と前記受光手段で受光した前記第2の光束に基づく第2の信号とを用いて前記測定原点を決定する。   Determining means for determining a measurement origin based on the output of the light receiving means. The determining means determines the measurement origin using a first signal based on the first light beam received by the light receiving means and a second signal based on the second light beam received by the light receiving means. .

このとき、前記光学系は、前記第1の光束と前記第2の光束が合波された光束を、それぞれ前記第1の光束と前記第2の光束の少なくとも一部を含む2つの光束に分割する分割面を含む。前記第2の信号は前記分割面から前記測定面の光路と、前記分割面から前記参照面までの光路の光路長が等しい或いはほぼ等しい場合に出力される信号である。   At this time, the optical system divides the light beam obtained by combining the first light beam and the second light beam into two light beams each including at least a part of the first light beam and the second light beam. Including splitting surfaces. The second signal is a signal that is output when the optical path length from the divided surface to the measurement surface is equal to or substantially equal to the optical path length from the divided surface to the reference surface.

このとき、前記決定手段は、前記第2の信号のピークを検出する検出手段を含み、前記検出手段の出力と周期信号である前記第1の信号との関係が所定の関係である場合に前記測定原点を決定する。   At this time, the determination unit includes a detection unit that detects a peak of the second signal, and the relationship between the output of the detection unit and the first signal that is a periodic signal is a predetermined relationship. Determine the measurement origin.

また本発明の測定原点決定方法は、第1の光源からの可干渉性の第1の光束と、第2の光源からの第1の光束よりも可干渉性の低い第2の光束を合波する合波ステップを有する。前記第1の光束と前記第2の光束が合波された光束を、それぞれ前記第1の光束と前記第2の光束の少なくとも一部を含む2つの光束に分割する。そして、前記分割された一方の光束を被測定物の測定面に入射させ、他方の光束を参照面に入射させ、前記測定面からの反射光束と前記参照面からの反射光束を合波する分割合波ステップを有する。   Further, the measurement origin determining method of the present invention combines the coherent first light beam from the first light source and the second light beam having a lower coherence than the first light beam from the second light source. And a multiplexing step. The light beam obtained by combining the first light beam and the second light beam is divided into two light beams each including at least a part of the first light beam and the second light beam. Then, the split one light beam is incident on the measurement surface of the object to be measured, the other light beam is incident on the reference surface, and the reflected light beam from the measurement surface and the reflected light beam from the reference surface are combined. Has a ratio wave step.

前記測定面からの反射光束と前記参照面からの反射光束とに含まれている前記分割された2つの第1の光束により形成される光束を受光する受光ステップを有する。更に受光ステップは、前記測定面からの反射光束と前記参照面からの反射光束とに含まれている前記分割された2つの第2の光束により形成される光束を受光手段により受光する。前記受光手段で受光した前記第1の光束に基づく第1の信号と前記受光手段で受光した前記第2の光束に基づく第2の信号とを用いて前記測定原点を決定ステップと、を有する。   A light receiving step of receiving a light beam formed by the two divided first light beams included in the reflected light beam from the measurement surface and the reflected light beam from the reference surface; Further, in the light receiving step, a light beam formed by the two divided second light beams included in the reflected light beam from the measurement surface and the reflected light beam from the reference surface is received by a light receiving unit. Determining the measurement origin using a first signal based on the first light beam received by the light receiving means and a second signal based on the second light beam received by the light receiving means.

本発明の実施例は、シングルモード半導体レーザ等の高可干渉性のレーザ光の光学系と同一光学系上に、スペクトル半値幅が30nm程度の低可干渉性の光を合波している。そしてこの低可干渉性の光の干渉出力のピーク(振幅のピーク)と高可干渉性のレーザ光の干渉出力から原点(測定原点)を決定している。   In the embodiment of the present invention, low-coherence light having a spectral half-width of about 30 nm is multiplexed on the same optical system as that of a high-coherence laser beam such as a single mode semiconductor laser. The origin (measurement origin) is determined from the interference output peak (amplitude peak) of the low coherence light and the interference output of the high coherence laser light.

すなわち、低可干渉性の光のスペクトル幅が大きいと、低可干渉性の光の干渉出力の波形は、被測定面が参照面と基準点から等光路近辺で高可干渉性のレーザ光の干渉出力の波形と略同じ波形となる。   That is, when the spectral width of low coherence light is large, the interference output waveform of the low coherence light is such that the measured surface of the high coherence laser light is near the reference optical path and the reference point near the optical path. The waveform is substantially the same as the waveform of the interference output.

又、参照面と被測定面との距離が等しいとき最大になる。これにより高可干渉性のレーザ光の干渉出力と同期した原点を決定している。   The maximum is obtained when the distance between the reference surface and the surface to be measured is equal. Thereby, the origin synchronized with the interference output of the high coherence laser beam is determined.

[実施例1]
図1(A)、(B)は、本発明の実施例1の要部側面図と要部正面図である。
[Example 1]
1A and 1B are a main part side view and a main part front view of Example 1 of the present invention.

実施例1は、小型の干渉測定装置に原点検出手段を適用したものである。   In the first embodiment, the origin detecting means is applied to a small interference measuring apparatus.

シングルモード半導体レーザLD(以下「半導体レーザLD」という)(第1の光源手段)に発振レーザ波長が安定な波長0.78μmのDFB(Distributed Feedback) レーザを使用している。   A single-mode semiconductor laser LD (hereinafter referred to as “semiconductor laser LD”) (first light source means) uses a DFB (Distributed Feedback) laser having a stable oscillation laser wavelength of 0.78 μm.

この半導体レーザLDから放射された直線偏光発散光、光LD(第1の光束)をコリメーターレンズCOL1で平行光としている。   The linearly polarized divergent light and light LD (first light beam) emitted from the semiconductor laser LD are converted into parallel light by the collimator lens COL1.

一方光LDと中心波長が異なり低可干渉であるスペクトル半値幅ΔΛが約30nmで中心波長が約0.84μmのスーパールミネッセントダイオードSLD(以下「ダイオードSLD」という)(第2の光源手段)を用いている。   On the other hand, a super luminescent diode SLD (hereinafter referred to as a “diode SLD”) having a center wavelength of about 30 nm and a center wavelength of about 0.84 μm, which has a different center wavelength from that of the light LD and has low coherence (second light source means) Is used.

ダイオードSLDからの光SLD(第2の光束)をコリメーターレンズCOL2により平行光としている。コリメーターレンズCOL1からの光LDとCOL2からの光SLDをダイクロイックミラー(合波手段)DM1で同一光軸上(双方の光束の主光線が一致)に合波する。そして、レンズLNS1によりハーフミラーNBSを介してレンズLNS2の焦点面の位置P1を集光照明している。   Light SLD (second light flux) from the diode SLD is converted into parallel light by the collimator lens COL2. The light LD from the collimator lens COL1 and the light SLD from the COL2 are combined on the same optical axis (the principal rays of both light beams coincide) by the dichroic mirror (combining means) DM1. The lens LNS1 condenses and illuminates the focal plane position P1 of the lens LNS2 via the half mirror NBS.

位置P1からの光束をレンズLNS2より、光軸がわずかに斜めの平行光束を射出させている。そして偏光ビームスプリッタ(光分割手段)PBS1にて偏光成分にて2光束に分離する。偏光ビームスプリッタPBS1からの反射光(S偏光)を参照ミラー(参照面)M1に入射させ、偏光ビームスプリッタPBS1からの透過光(P偏光)を被測定対象面としての測定ミラー(測定面)M2に入射させている。   The light beam from the position P1 is emitted from the lens LNS2 as a parallel light beam whose optical axis is slightly oblique. Then, it is separated into two light beams by the polarization component by the polarization beam splitter (light splitting means) PBS1. Reflected light (S-polarized light) from the polarization beam splitter PBS1 is incident on a reference mirror (reference surface) M1, and transmitted light (P-polarized light) from the polarization beam splitter PBS1 is a measurement mirror (measurement surface) M2 as a measurement target surface. It is made incident on.

そしてそれぞれの反射光を、該偏光ビームスプリッタPBS1を介して合成し、レンズLNS2の焦点面の位置P2を集光照明し、その近傍に設けられた反射膜MOにより、元の光路に戻している。   Then, the respective reflected lights are combined via the polarization beam splitter PBS1, and the focal plane position P2 of the lens LNS2 is condensed and illuminated, and returned to the original optical path by the reflection film MO provided in the vicinity thereof. .

位置P2からの反射光は、レンズLNS2より平行光束として射出させ、偏光ビームスプリッタPBS1にて2光束に分離し、反射光(S偏光)で参照ミラーM1を照明している。このとき第1の光束LDと第2の光束SLDの光分割手段PBS1により分割されて参照面M1に入射して、参照面M1で反射される光束の光路は共通である。   The reflected light from the position P2 is emitted as a parallel light beam from the lens LNS2, separated into two light beams by the polarization beam splitter PBS1, and the reference mirror M1 is illuminated with the reflected light (S-polarized light). At this time, the optical paths of the light beams that are split by the light splitting means PBS1 of the first light beam LD and the second light beam SLD, enter the reference surface M1, and are reflected by the reference surface M1 are common.

又、透過光(P偏光)で被測定ミラー(被測定面)M2を照明している。   Further, the measured mirror (measured surface) M2 is illuminated with transmitted light (P-polarized light).

それぞれの反射光を、該偏光ビームスプリッタPBS1を介して、合波してレンズLNS2の焦点面の位置P1を集光照明し、そこから光源側に光束を取り出す。(S偏光は、参照面M1とビームスプリッタPBS1の間を2往復し、P偏光は、被測定面M2とビームスプリッタPBS1の間を2往復する)。これらの光束は、非偏光ビームスプリッタ(ハーフミラー)NBSにより、受光系側に取り出し、1/4波長板QWPを透過させて、位相差の変化に応じて偏光方位回転する直線偏光に変換する。   The respective reflected lights are combined through the polarization beam splitter PBS1 to collect and illuminate the focal plane position P1 of the lens LNS2, and the light flux is extracted from there to the light source side. (S-polarized light makes two reciprocations between the reference surface M1 and the beam splitter PBS1, and P-polarized light makes two reciprocations between the measured surface M2 and the beam splitter PBS1). These light beams are extracted to the light receiving system side by a non-polarizing beam splitter (half mirror) NBS, transmitted through the quarter-wave plate QWP, and converted into linearly polarized light whose polarization azimuth rotates in accordance with a change in phase difference.

その後、光LDと光SLDを分離するため、集光レンズCON、アパーチャーAPを介してダイクロイックミラーDM1と同じ構成のダイクロイックミラーDM2により第1の光束である光LDを透過、第2の光束である光SLDを反射し分離する。 Thereafter, in order to separate the light LD and the light SLD, the light LD, which is the first light flux, is transmitted through the dichroic mirror DM2 having the same configuration as the dichroic mirror DM1 through the condenser lens CON and the aperture AP, and the second light flux Reflects and separates the light SLD.

光LDは受光系LD(第1の受光手段)で検出している。即ちビーム分割素子GBSにて3光束に分割し、それぞれの光束を互いに60°ずつ偏光軸をずらして配置した偏光素子アレイ3CH−POLを介して3分割受光素子PDAの各受光部に入射させている。これにより被測定対象面(ミラー)M2の面外変位に基づく3つの互いに位相が120度づつずれた干渉信号UVWを検出する。この干渉信号UVWから、演算手段SPCで位相が90°ずれたA相、B相をA=2/3×{U−(V+W)/2}、B=1/√3×(V−W)の計算よって得ている。   The light LD is detected by a light receiving system LD (first light receiving means). That is, the light is split into three light beams by the beam splitting element GBS, and the respective light beams are incident on the respective light receiving portions of the three-split light receiving element PDA via the polarizing element array 3CH-POL arranged by shifting the polarization axes by 60 °. Yes. As a result, three interference signals UVW whose phases are shifted from each other by 120 degrees based on the out-of-plane displacement of the measurement target surface (mirror) M2 are detected. From this interference signal UVW, the A phase and B phase whose phases are shifted by 90 ° by the calculation means SPC are set to A = 2/3 × {U− (V + W) / 2}, B = 1 / √3 × (V−W). It is obtained by the calculation of

一方ダイクロイックミラーDM2で反射した光SLDは受光系SLD(第2の受光手段)で検出している。即ち偏光素子POL2を介して受光素子PD2に入射し、被測定面が参照面と等光路付近の ときに干渉信号Oを出力する。   On the other hand, the light SLD reflected by the dichroic mirror DM2 is detected by a light receiving system SLD (second light receiving means). That is, the light enters the light receiving element PD2 via the polarizing element POL2, and outputs the interference signal O when the surface to be measured is near the optical path with the reference surface.

ここでU出力に対応する偏光素子アレイ3CH−POLの偏光素子3CH−POL−1と光SLDに対する偏光素子POL2の偏向方向を被測定面と参照面の光路差がゼロのときでピークになる方向に配置している。これによりU波形およびA相は被測定面M2と参照面M1の光路差ゼロを原点とするコサイン波形になる。   Here, the polarization direction of the polarization element 3CH-POL-1 of the polarization element array 3CH-POL corresponding to the U output and the polarization direction of the polarization element POL2 with respect to the light SLD becomes a peak when the optical path difference between the measured surface and the reference surface is zero. Is arranged. As a result, the U waveform and the A phase become cosine waveforms having the origin at the zero optical path difference between the measured surface M2 and the reference surface M1.

またO出力も被測定面M2が被測定面M2と参照面M1の光路差ゼロを原点とし、原点から遠ざかると減衰するコサイン波形状に出力することが出来る。   Further, the O output can be output in the form of a cosine wave in which the measured surface M2 has a zero optical path difference between the measured surface M2 and the reference surface M1, and attenuates as the distance from the origin is increased.

尚、被測定面M2及び参照面M1から受光素子PD2、PDA至る光路中の部材は干渉部の一要素を形成している。   The members in the optical path from the measured surface M2 and the reference surface M1 to the light receiving elements PD2 and PDA form one element of the interference part.

図2は半導体レーザLDからの光LDとダイオードSLDからの光SLDのパワースペクトルを示している。   FIG. 2 shows power spectra of the light LD from the semiconductor laser LD and the light SLD from the diode SLD.

半導体レーザLDからの光LDのパワースペクトルは0.78μmの輝線である。ダイオードSLDからの光SLDのパワースペクトルは中心波長0.84μmで半値幅が30nmのローレンツ型のパワースペクトルに近似したものである。光SLDの中心波長(0.84μm)からの波長ずれΔλに対するパワースペクトルS(Δλ)は次式よる。   The power spectrum of the light LD from the semiconductor laser LD is an emission line of 0.78 μm. The power spectrum of the light SLD from the diode SLD is approximated to a Lorentz type power spectrum having a center wavelength of 0.84 μm and a half width of 30 nm. The power spectrum S (Δλ) with respect to the wavelength shift Δλ from the center wavelength (0.84 μm) of the optical SLD is given by the following equation.

S(Δλ)=(ΔΛ/2)2/{Δλ+(ΔΛ/2)} ・・・(1式)
:ΔΛは半値幅を示し、ここでは30nmである。
S (Δλ) = (ΔΛ / 2) 2 2 / {Δλ 2 + (ΔΛ / 2) 2 } (1)
: ΔΛ indicates a half width, which is 30 nm here.

図2から図1に示すダイクロイックミラーDM1、DM2は波長0.8μm近傍に透過、反射特性の境界を持ち、ダイクロイックミラーDM1で光束を合波、ダイクロイックミラーDM2で光束を分波することが出来る。   The dichroic mirrors DM1 and DM2 shown in FIGS. 2 to 1 have a boundary between transmission and reflection characteristics in the vicinity of a wavelength of 0.8 μm. The dichroic mirror DM1 can multiplex the light flux and the dichroic mirror DM2 can demultiplex the light flux.

さて、半導体レーザLDによる干渉信号UVWは十分長い可干渉を持つ。これに対し、ダイオードSLDによる干渉信号Oの可干渉性、ビジビリティV(ΔVl)は1式の逆フーリエ変換から次式で近似できる。   Now, the interference signal UVW from the semiconductor laser LD has a sufficiently long coherence. On the other hand, the coherence and visibility V (ΔVl) of the interference signal O by the diode SLD can be approximated by the following equation from the inverse Fourier transform of one equation.

V(ΔVl)=EXP{−πΔΛ/λ}ΔVl ・・・(2式)
:λは光SLDの中心波長、ここでは0.84μm
:ΔVlは光路長差
図3は、このときの光路長差Δ1に対するビジビリティVとの関係を示す図である。
V (ΔVl) = EXP {−πΔΛ / λ 2 } ΔVl (Expression 2)
: Λ is the center wavelength of the optical SLD, here 0.84 μm
: ΔVl is optical path length difference FIG. 3 is a diagram showing the relationship between the optical path length difference Δ1 and the visibility V at this time.

一方、受光素子PDAで得られる半導体レーザLDによる干渉信号UVWを図4に示す。又干渉信号UVWから作られた90°位相のずれた干渉信号A,B相を図5にしめす。又、受光素子PD2で得られる等光路近傍のダイオードSLDによる干渉信号Oと半導体レーザLDによる干渉信号Uを図6に示す。横軸は被測定面と参照面SLDの光路差を示し、光は二往復するので被測定面の変位は1/4である。図からダイオードSLDによる干渉信号Oが、等光路のところ(光路差O)で半導体レーザLDによる干渉信号Uとほぼ同じコサインカーブで、そのピークは隣接するピークより大きく判別可能である。   On the other hand, an interference signal UVW obtained by the semiconductor laser LD obtained by the light receiving element PDA is shown in FIG. FIG. 5 shows the interference signals A and B, which are generated from the interference signal UVW and are 90 ° out of phase. FIG. 6 shows an interference signal O obtained by the diode SLD in the vicinity of the equal optical path obtained by the light receiving element PD2 and an interference signal U obtained by the semiconductor laser LD. The horizontal axis indicates the optical path difference between the surface to be measured and the reference surface SLD. Since the light reciprocates twice, the displacement of the surface to be measured is 1/4. From the figure, the interference signal O due to the diode SLD is substantially the same cosine curve as the interference signal U due to the semiconductor laser LD at the equal optical path (optical path difference O), and the peak can be determined to be larger than the adjacent peak.

従ってダイオードSLDによる干渉信号Oのピーク(強度)を検出することにより、半導体レーザLDによる干渉信号Uと同期した原点を高精度に定めている。   Therefore, by detecting the peak (intensity) of the interference signal O from the diode SLD, the origin synchronized with the interference signal U from the semiconductor laser LD is determined with high accuracy.

尚、干渉信号Oのピーク値でなくても、予め設定した値と干渉信号Bとの関係より原点を定めても良い。   Note that the origin may be determined from the relationship between the preset value and the interference signal B, instead of the peak value of the interference signal O.

半導体レーザLDによる干渉信号UVWから作られた90°位相のずれた干渉信号A,B相は、2往復光路による干渉測長を原理としている。このため半導体レーザLDによる干渉信号U源の波長の1/4を周期とする正弦波状信号である。   The interference signals A and B, which are generated from the interference signal UVW by the semiconductor laser LD and are 90 ° out of phase, are based on interference measurement using two reciprocating optical paths. For this reason, it is a sinusoidal signal having a period of 1/4 of the wavelength of the interference signal U source by the semiconductor laser LD.

波長0.78μmの半導体レーザLDを 使用した場合には、周期が0.195μmの正弦波信号が得られる。波数を計数し更にtan-1(B/A)により位相を計算して、ナノメータオーダーの分解能の相対位置ずれを検出できる。 When a semiconductor laser LD with a wavelength of 0.78 μm is used, a sine wave signal with a period of 0.195 μm is obtained. By counting the wave number and calculating the phase by tan -1 (B / A), it is possible to detect the relative displacement with nanometer order resolution.

また上記波数計数を、ダイオードSLDによる干渉信号Oのピークでリセットすることで、原点もナノメータオーダーの分解能の絶対値測定が可能となる。   Further, by resetting the wave number counting at the peak of the interference signal O generated by the diode SLD, the absolute value can be measured with a resolution of nanometer order at the origin.

以上のように、実施例1では、干渉部において光LD同士により形成される干渉信号と光SLD同士により形成される干渉信号を受光手段としての受光素子PDAと受光素子PD2で検出している。 As described above, in the first embodiment, the interference signal formed by the light LDs and the interference signal formed by the light SLDs in the interference unit are detected by the light receiving element PDA and the light receiving element PD2 as light receiving means.

そして受光手段で得られる干渉信号から、測定反射面Mと参照面M1の光分割手段PBS1からの等光路の位置を、変位情報の測定原点として測定し、絶対変位情報を求めている。   Then, from the interference signal obtained by the light receiving means, the position of the equal optical path from the light splitting means PBS1 of the measurement reflecting surface M and the reference surface M1 is measured as the measurement origin of the displacement information to obtain the absolute displacement information.

具体的には、受光手段PD2で設けられる干渉信号の強度情報から、測定反射面M2と参照面M1の光分割手段PBS1の等光路の位置を受光手段PDAで得られる干渉信号の周期より設定している。そして変位情報の測定原点として、絶対変位情報を求めている。   Specifically, from the intensity information of the interference signal provided by the light receiving means PD2, the position of the equal optical path of the light splitting means PBS1 on the measurement reflecting surface M2 and the reference surface M1 is set by the period of the interference signal obtained by the light receiving means PDA. ing. Then, absolute displacement information is obtained as a measurement origin of the displacement information.

[実施例2]
図7は本発明の実施例2の要部概略図である。実施例2は実施例1に比べて次の点が異なっている。
(イ)半導体レーザLDとダイオードSLDの駆動を原点検出時に交互にON−OFFする。
(ロ)SLD受光系は半導体レーザLDによる干渉信号の受光系LDのうち、偏光素子アレイ3CH−POLと3分割の受光素子PDAを兼ねている。そして光SLDの干渉信号Oは3分割受光素子PDA(PDA1〜PDA3)の干渉信号Uに対応するPDA−1からの信号を使用する。
[Example 2]
FIG. 7 is a schematic view of the essential portions of Embodiment 2 of the present invention. The second embodiment differs from the first embodiment in the following points.
(A) The driving of the semiconductor laser LD and the diode SLD is alternately turned on and off when the origin is detected.
(B) The SLD light receiving system also serves as the polarizing element array 3CH-POL and the three-divided light receiving element PDA in the light receiving system LD for interference signals from the semiconductor laser LD. The interference signal O of the optical SLD uses a signal from PDA-1 corresponding to the interference signal U of the three-divided light receiving element PDA (PDA1 to PDA3).

各々の点灯に合わせて光LDによる干渉信号UVWと光SLDによる干渉信号Oを信号処理SPCによってサンプリングし分離し、各干渉信号がOFFの間は補間推定し連続した光LDによる干渉信号UVWと光SLDの干渉信号Oを得る。
(ハ)波長による分離がいらない。図8に示す光LDと光SLDのパワースペクトルのように、光LDと光SLDの波長差を小さくすることで、偏光ビームスプリッタPBS等の波長による特性のズレを少なくすることが出来る、その為合波手段HMとしてハーフミラーを使用している。
According to each lighting, the interference signal UVW by the light LD and the interference signal O by the light SLD are sampled and separated by the signal processing SPC, and interpolation estimation is performed while each interference signal is OFF, and the interference signal UVW and light by the continuous light LD An SLD interference signal O is obtained.
(C) No separation by wavelength is required. As shown in the power spectrum of the light LD and the light SLD shown in FIG. 8, by reducing the wavelength difference between the light LD and the light SLD, the characteristic deviation due to the wavelength of the polarization beam splitter PBS or the like can be reduced. A half mirror is used as the multiplexing means HM.

こうして得られた光SLDの干渉信号Oと光LDの干渉信号UVWから、実施例1と同様に光LDによる干渉信号と同期し原点を定めている。   From the interference signal O of the optical SLD and the interference signal UVW of the optical LD thus obtained, the origin is determined in synchronism with the interference signal from the optical LD as in the first embodiment.

実施例2は、原点検出時に、光SLDをON−OFFして時系列でサンプリングする為、被測定面M2の動きがサンプリング周波数より十分遅い必要がある。   In the second embodiment, when the origin is detected, the light SLD is turned on and off and sampling is performed in time series. Therefore, the movement of the measurement target surface M2 needs to be sufficiently slower than the sampling frequency.

一般に被測定面M2はメカニカルな動きである限り電気的サンプリングにくらべ一般的に遅く、原点検出は容易である。   In general, the surface to be measured M2 is generally slower than electrical sampling as long as it is mechanically moved, and the origin detection is easy.

[実施例3]
本発明の実施例3の構成は、図7と略同じである。
[Example 3]
The configuration of the third embodiment of the present invention is substantially the same as FIG.

実施例3は、実施例2で半導体レーザLDとダイオードSLDを原点検出時に交互の駆動をON−OFFする代わりに、半導体レーザLDを常時点灯している。そしてダイオードSLDの駆動のON−OFFに合わせている。   In the third embodiment, the semiconductor laser LD is always lit instead of turning on and off alternately when the origin of the semiconductor laser LD and the diode SLD is detected in the second embodiment. Then, the driving of the diode SLD is adjusted to ON / OFF.

具体的には、ダイオードSLDがOFFのとき半導体レーザLDによる干渉信号UVWを用いている。   Specifically, the interference signal UVW from the semiconductor laser LD is used when the diode SLD is OFF.

又、ONのとき半導体レーザLDによる干渉信号UVWとダイオードSLDの干渉信号Oが重畳した信号を信号処理SPCのよってサンプリングし分離している。そして各干渉信号は推定補間し、連続した干渉信号UVWと干渉信号UVWに干渉信号Oが重畳した信号を得ている。   When ON, a signal in which the interference signal UVW from the semiconductor laser LD and the interference signal O from the diode SLD are superimposed is sampled and separated by the signal processing SPC. Each interference signal is estimated and interpolated to obtain a continuous interference signal UVW and a signal in which the interference signal O is superimposed on the interference signal UVW.

図9に測定面M2と参照面M1の光分割手段PBSから等光路近傍での、推定補間された連続した干渉信号UVWのうちの信号Uの波形と干渉信号UVWに干渉信号Oが重畳した干渉信号の信号(U+O)の波形を示す。   In FIG. 9, the interference U is superimposed on the interference signal UVW and the waveform of the signal U of the continuous interference signal UVW estimated and interpolated in the vicinity of the equal optical path from the light splitting means PBS on the measurement surface M2 and the reference surface M1. The waveform of the signal (U + O) of the signal is shown.

こうして得られた光SLDによる干渉信号Oに光LDによる干渉信号Uが重畳した信号(U+O)と光LDの干渉信号UVWから、実施例1と同様に光LDによる干渉信号Vと同期し原点を定めている。   From the signal (U + O) obtained by superimposing the interference signal U from the optical LD on the interference signal O from the optical SLD and the interference signal UVW from the optical LD obtained in this way, the origin is synchronized with the interference signal V from the optical LD as in the first embodiment. It has established.

実施例3では、半導体レーザLDを常時点灯としたが、逆にダイオードSLDを常時点灯とし半導体レーザLDの駆動をON−OFFしても良い。   In the third embodiment, the semiconductor laser LD is always lit, but conversely, the diode SLD may be lit constantly to drive the semiconductor laser LD on and off.

半導体レーザLDはレーザ発振を安定化させるため一定温度に維持することが好ましい。   The semiconductor laser LD is preferably maintained at a constant temperature in order to stabilize laser oscillation.

しかしながら、ON−OFFすると半導体レーザ素子の熱抵抗のためON時に半導体レーザ素子の発光部の温度変化が起き、レーザシングルモード発振が不安定なる恐れがある。このため実施例3のように半導体レーザLDを常時点灯した方が好ましい。   However, when ON-OFF, due to the thermal resistance of the semiconductor laser element, the temperature change of the light emitting portion of the semiconductor laser element occurs at the time of ON, and there is a possibility that the laser single mode oscillation becomes unstable. For this reason, it is preferable to always turn on the semiconductor laser LD as in the third embodiment.

以上のように実施例3では2つの光源手段の一方のみの駆動をON−OFFしている。そして一方の光源手段の消灯に合わせて他方の光源手段からの光束に基づく干渉光を検出している。そして一方の光源手段の点灯に合わせて光LDの干渉光に光SLDの干渉光を重畳した干渉波形を受光手段で受光している。そしてON−OFFした一方の光源手段からの光束に基づく干渉信号波形または他方の光源手段からの光束に基づく干渉信号波形を推定補間している。これにより測定反射面と参照面の光分割手段からの等光路の位置を測定原点としている。   As described above, in the third embodiment, the driving of only one of the two light source means is turned on and off. The interference light based on the light flux from the other light source means is detected in accordance with the extinction of one of the light source means. The light receiving means receives an interference waveform in which the interference light of the light SLD is superimposed on the interference light of the light LD in accordance with the lighting of one of the light source means. Then, the interference signal waveform based on the light flux from one light source means turned on or off or the interference signal waveform based on the light flux from the other light source means is estimated and interpolated. Thereby, the position of the equal optical path from the light splitting means on the measurement reflecting surface and the reference surface is set as the measurement origin.

以上説明してきた各実施例では、低可干渉光の光源としてスーパールミネッセントダイオードSLDを用い、パワースペクトルをローレンツ型に近似したが厳密には異なり、その場合ビジビリティ及び干渉信号Oの包絡線も違ってくる。   In each of the embodiments described above, a super luminescent diode SLD is used as a light source of low coherence light, and the power spectrum is approximated to a Lorentz type. However, in this case, the visibility and the envelope of the interference signal O are also different. It ’s different.

しかしながらパワースペクトルの半値幅が大きいほど原点のピークが隣接するピークより大きく検知しやすくなり、スペクトルの半値幅が小さいと検知が難しくなる。パワースペクトルは低可干渉光の干渉信号が参照面と被測定面が等光路長のときのピーク(振幅のピーク)が検出できることが必要である。   However, as the half-value width of the power spectrum is larger, the peak at the origin is easier to detect than the adjacent peak, and detection is difficult when the half-value width of the spectrum is small. The power spectrum needs to be able to detect the peak (amplitude peak) of the interference signal of the low coherent light when the reference surface and the surface to be measured have equal optical path lengths.

低可干渉光の小型の光源としては指向性が広く光の利用効率が低いが、電流狭窄型の点光源発光ダイオードも有用である。   As a small light source of low coherent light, the directivity is wide and the light use efficiency is low, but a current confinement type point light source light emitting diode is also useful.

また被測定対象にコーナーキューブを用いたガスレーザ干渉測長装置にも適応できる。低可干渉光の光源としてキセノンランプ光源とピンホールからなる白色点光源も有用である。   It can also be applied to a gas laser interferometer that uses a corner cube as an object to be measured. A white point light source composed of a xenon lamp light source and a pinhole is also useful as a light source of low coherent light.

DFBレーザダイオード以外に、安定した高可干渉光源としては一定温度に制御されたシングルモード面発光型半導体レーザ(VCSEL)、He−Ne等のガスレーザ等が適用できる。   In addition to the DFB laser diode, a single mode surface emitting semiconductor laser (VCSEL) controlled at a constant temperature, a gas laser such as He-Ne, or the like can be used as a stable high coherence light source.

以上のように各実施例によれば、ナノメータオーダーの分解能の原点を、レーザ干渉の出力正弦波に同期して得ることができる。   As described above, according to each embodiment, the origin of nanometer-order resolution can be obtained in synchronization with the output sine wave of laser interference.

従ってナノメータオーダーの分解能で絶対位置情報を測定することが容易となる。   Therefore, it becomes easy to measure absolute position information with a resolution of nanometer order.

LD シングルモードレーザ光源 SLD スーパールミネッセントダイオード
COL1、COL2、COL3 コリメータレンズ LNS1、LNS2 レンズ
DM1、DM2 ダイクロイックミラー HM ハーフミラー
PBS 偏光ビームスプリッタ NBS 非偏光ビームスプリッタ
GRN 屈折率分布型ロッド状レンズ 3CH−POL、POL2 偏光素子
PDA 受光素子アレイ PD 受光素子 M1 被測定反射面
M2 参照反射面 P1,P2,P3 集光位置 f 焦点距離
GBS 光束分割素子
LD Single mode laser light source SLD Super luminescent diode COL1, COL2, COL3 Collimator lens LNS1, LNS2 Lens DM1, DM2 Dichroic mirror HM Half mirror PBS Polarizing beam splitter NBS Non-polarizing beam splitter GRN Refractive index distribution type rod-shaped lens 3CH-POL POL2 Polarizing element PDA Light receiving element array PD Light receiving element M1 Reflective surface to be measured M2 Reference reflective surface P1, P2, P3 Condensing position f Focal length GBS Beam splitting element

Claims (15)

可干渉性の第1の光束を放射する第1の光源手段と、
前記第1の光束よりも可干渉性の低い第2の光束を放射する第2の光源手段と、
前記第1の光束と前記第2の光束を合波する第1の合波手段と、
前記第1の光束と前記第2の光束が合波された光束を前記第1の光束の一部と前記第2の光束一部それぞれが含む2つの光束に分割し、前記分割により得られた一方の光束測定面に入射させ、前記分割により得られた他方の光束を参照面に入射させ、前記測定面からの反射光束と前記参照面からの反射光束を合波し、前記合波のなされた前記測定面からの反射光束と前記参照面からの反射光束とにそれぞれ含まれている2つの前記第1の光束を干渉させ、前記合波のなされた前記測定面からの反射光束と前記参照面からの反射光束とにそれぞれ含まれている2つの前記第2の光束を干渉させる光学系と、
前記2つの前記第1の光束の干渉により形成される光束を受光して第1の信号を出力し、前記2つの前記第2の光束の干渉により形成される光束を受光して第2の信号を出力する受光手段と、
前記第1の信号と前記第2の信号とに基づいて測定原点を決定する決定手段と、を有することを特徴とする干渉測定装置。
First light source means for emitting a coherent first light beam;
A second light source means for radiating a second light beam having low coherence than the first light flux,
First combining means for combining the first light flux and the second light flux;
Wherein the first light flux which the light flux and the second light beams are combined, and divided into a portion of a part and the second light flux of the first light beam into two light beams each containing the one of the light beam resulting et a by division is incident on the measurement surface, said other light beam obtained by the division is incident on the reference surface, if a reflected light beam from the reference surface and the reflected light beam from the measuring surface And the two reflected first light beams included in the reflected light beam from the measurement surface and the reflected light beam from the reference surface are made to interfere with each other, and the measurement is performed. An optical system for interfering the two second light beams respectively included in the reflected light beam from the surface and the reflected light beam from the reference surface ;
A light beam formed by the interference of the two first light beams is received and a first signal is output , and a light beam formed by the interference of the two second light beams is received and a second signal is received. Light receiving means for outputting
Interference measuring apparatus characterized by having a determining means for determining a measurement origin on the basis of said second signal and said first signal.
前記決定手段は、前記第2の信号のピークと前記第1の信号との関係に基づいて前記測定原点を決定することを特徴とする請求項1に記載の干渉測定装置。 The interference measuring apparatus according to claim 1, wherein the determining unit determines the measurement origin based on a relationship between a peak of the second signal and the first signal . 前記決定手段は、前記第2の信号の予め設定した値と前記第1の信号との関係に基づいて前記測定原点を決定することを特徴とする請求項1または請求項2に記載の干渉測定装置。 The interference measurement according to claim 1 , wherein the determination unit determines the measurement origin based on a relationship between a preset value of the second signal and the first signal. apparatus. 前記光学系は、前記分割をなす分割面を含み、
前記第2の信号は、前記分割面から前記測定面までの光路と、前記分割面から前記参照面まで光路長が等し場合に最大値を有することを特徴とする請求項1ないし請求項3のうちいずれか1項に記載の干渉測定装置。
The optical system includes a dividing surface forming the split,
The second signal according to claim 1, characterized in that it comprises an optical path length from the divided face to the measuring surface, a maximum value when the optical path length are equal from the splitting surface to the reference plane The interference measuring apparatus according to any one of claims 3 to 3 .
前記第1の光源手段および前記第2の光源手段を交互に駆動することを特徴とする請求項1ないし請求項4のうちいずれか1項に記載の干渉測定装置。5. The interference measuring apparatus according to claim 1, wherein the first light source unit and the second light source unit are driven alternately. 前記第1の信号および前記第2の信号を補間することを特徴とする請求項5に記載の干渉測定装置。The interference measurement apparatus according to claim 5, wherein the first signal and the second signal are interpolated. 前記第1の光源手段および前記第2の光源手段のうちの一方の駆動を行っている間に前記第1の光源手段および前記第2の光源手段のうちの他方の駆動および該駆動の停止を行い、While one of the first light source means and the second light source means is being driven, the other of the first light source means and the second light source means is driven and stopped. Done
前記受光手段は、前記第1の信号および前記第2の信号のうちの一方として、前記2つの前記第1の光束の干渉により形成される光束および前記2つの前記第2の光束の干渉により形成される光束のうちの両方を受光して得られる信号を出力し、前記第1の信号および前記第2の信号のうちの他方として、前記2つの前記第1の光束の干渉により形成される光束および前記2つの前記第2の光束の干渉により形成される光束のうちの一方を受光して得られる信号を出力することを特徴とする請求項1ないし請求項4のうちいずれか1項に記載の干渉測定装置。  The light receiving means is formed as one of the first signal and the second signal by a light beam formed by interference of the two first light beams and by interference of the two second light beams. A light beam formed by interference between the two first light fluxes as the other of the first signal and the second signal. And outputting a signal obtained by receiving one of the light beams formed by the interference of the two second light beams. Interference measurement device.
前記両方を受光して得られる信号と前記一方を受光して得られる信号とに基づいて、前記2つの前記第1の光束の干渉により形成される光束および前記2つの前記第2の光束の干渉により形成される光束のうちの他方を受光して得られる信号を推定することを特徴とする請求項7に記載の干渉測定装置。Based on a signal obtained by receiving both and a signal obtained by receiving the one, a light beam formed by interference of the two first light beams and an interference of the two second light beams The interference measurement apparatus according to claim 7, wherein a signal obtained by receiving the other of the light beams formed by the step is estimated. 前記第1の光束と前記第2の光束とは互いに異なる中心波長を有し、The first light flux and the second light flux have different center wavelengths,
前記光学系は、前記合波のなされた前記測定面からの反射光束と前記参照面からの反射光束とをそれぞれ波長により分離し、  The optical system separates the reflected light beam from the measurement surface and the reflected light beam from the reference surface by the wavelength, respectively,
前記受光手段は、前記分離により得られた2つの光束をそれぞれ受光して前記第1の信号と前記第2の信号とを出力することを特徴とする請求項1ないし請求項4のうちいずれか1項に記載の干渉測定装置。  5. The light receiving unit according to claim 1, wherein the light receiving unit receives the two light fluxes obtained by the separation and outputs the first signal and the second signal. The interference measurement apparatus according to item 1.
干渉測定のための測定原点決定方法であって、
干渉性の第1の光束と前記第1の光束よりも可干渉性の低い第2の光束を合波すステップと、
前記第1の光束と前記第2の光束が合波された光束を前記第1の光束の一部と前記第2の光束一部それぞれが含む2つの光束に分割し、前記分割により得られた一方の光束測定面に入射させ、前記分割により得られた他方の光束を参照面に入射させ、前記測定面からの反射光束と前記参照面からの反射光束を合波前記合波のなされた前記測定面からの反射光束と前記参照面からの反射光束とにそれぞれ含まれている2つの前記第1の光束を干渉させ、前記合波のなされた前記測定面からの反射光束と前記参照面からの反射光束とにそれぞれ含まれている2つの前記第2の光束を干渉させるステップと、
前記2つの前記第1の光束の干渉により形成される光束を受光して第1の信号を出力し前記2つの前記第2の光束の干渉により形成される光束受光して第2の信号を出力ステップと、
前記第1の信号と前記第2の信号とに基づいて測定原点を決定するステップと、を有することを特徴とする測定原点決定方法。
A method for determining a measurement origin for interference measurement,
A step you multiplexes the second beam having low coherence than the first light flux and the first light flux of coherent,
Wherein the first light flux which the light flux and the second light beams are combined, and divided into a portion of a part and the second light flux of the first light beam into two light beams each containing the one of the light beams obtained by the division to be incident on the measurement surface, said other light beam obtained by the division is incident on the reference surface, multiplexes the reflected light beam from the reference surface and the reflected light beam from the measuring surface And the two first light beams included in the reflected light beam from the measurement surface and the reflected light beam from the reference surface, which are combined, are caused to interfere with each other, so that the measurement surface is combined. Interfering the two second light beams respectively included in the reflected light beam from the reference beam and the reflected light beam from the reference surface;
The receiving light beams formed by the interference of two of the first light flux and outputs a first signal, a second signal by receiving the light beams formed by the interference of the two said second beam and step you output,
And determining a measurement origin based on the first signal and the second signal .
前記第1の光束および前記第2の光束を交互に放射することを特徴とする請求項10に記載の測定原点決定方法。The measurement origin determination method according to claim 10, wherein the first light flux and the second light flux are alternately emitted. 前記第1の信号および前記第2の信号を補間することを特徴とする請求項11に記載の測定原点決定方法。 The measurement origin determination method according to claim 11, wherein the first signal and the second signal are interpolated . 前記第1の光束および前記第2の光束のうちの一方の放射を行っている間に前記第1の光束および前記第2の光束のうちの他方の放射および該放射の停止を行い、Performing the other radiation of the first light flux and the second light flux and stopping the radiation while performing the radiation of one of the first light flux and the second light flux;
前記第1の信号および前記第2の信号のうちの一方として、前記2つの前記第1の光束の干渉により形成される光束および前記2つの前記第2の光束の干渉により形成される光束のうちの両方を受光して得られる信号を出力し、前記第1の信号および前記第2の信号のうちの他方として、前記2つの前記第1の光束の干渉により形成される光束および前記2つの前記第2の光束の干渉により形成される光束のうちの一方を受光して得られる信号を出力することを特徴とする請求項10に記載の測定原点決定方法。  As one of the first signal and the second signal, a light beam formed by interference of the two first light beams and a light beam formed by interference of the two second light beams And outputs a signal obtained by receiving both of the light beam and the other of the first signal and the second signal as a light beam formed by interference of the two first light beams and the two of the two signals. 11. The measurement origin determining method according to claim 10, wherein a signal obtained by receiving one of the light beams formed by the interference of the second light beam is output.
前記両方を受光して得られる信号と前記一方を受光して得られる信号とに基づいて、前記2つの前記第1の光束の干渉により形成される光束および前記2つの前記第2の光束の干渉により形成される光束のうちの他方を受光して得られる信号を推定することを特徴とする請求項13に記載の測定原点決定方法。Based on a signal obtained by receiving both and a signal obtained by receiving the one, a light beam formed by interference of the two first light beams and an interference of the two second light beams The measurement origin determination method according to claim 13, wherein a signal obtained by receiving the other of the light beams formed by the step is estimated. 前記第1の光束と前記第2の光束とは互いに異なる中心波長を有し、The first light flux and the second light flux have different center wavelengths,
前記合波のなされた前記測定面からの反射光束と前記参照面からの反射光束とをそれぞれ波長により分離し、  The reflected light beam from the measurement surface that has been combined and the reflected light beam from the reference surface are each separated by wavelength,
前記分離により得られた2つの光束をそれぞれ受光して前記第1の信号と前記第2の信号とを出力することを特徴とする請求項10に記載の測定原点決定方法。  11. The measurement origin determining method according to claim 10, wherein the two light beams obtained by the separation are respectively received and the first signal and the second signal are output.
JP2011241561A 2011-11-02 2011-11-02 Interferometry apparatus and measurement origin determination method Active JP5355659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011241561A JP5355659B2 (en) 2011-11-02 2011-11-02 Interferometry apparatus and measurement origin determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011241561A JP5355659B2 (en) 2011-11-02 2011-11-02 Interferometry apparatus and measurement origin determination method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005218980A Division JP4914040B2 (en) 2005-07-28 2005-07-28 Interference measurement device

Publications (2)

Publication Number Publication Date
JP2012022012A JP2012022012A (en) 2012-02-02
JP5355659B2 true JP5355659B2 (en) 2013-11-27

Family

ID=45776366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011241561A Active JP5355659B2 (en) 2011-11-02 2011-11-02 Interferometry apparatus and measurement origin determination method

Country Status (1)

Country Link
JP (1) JP5355659B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2516281A (en) * 2013-07-17 2015-01-21 Cambridge Consultants Optical apparatus and methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309804A (en) * 1987-06-11 1988-12-16 Tokyo Seimitsu Co Ltd Laser interference measuring method
JPH05149708A (en) * 1991-11-27 1993-06-15 Jasco Corp Method and device for deciding reference position for double-beam interferometer
JPH07190712A (en) * 1993-12-27 1995-07-28 Nikon Corp Interferometer
JPH11183116A (en) * 1997-12-18 1999-07-09 Nikon Corp Method and device for light wave interference measurement
JP3310945B2 (en) * 1999-03-11 2002-08-05 株式会社東京精密 Non-contact surface shape measurement method
JP3921129B2 (en) * 2002-05-27 2007-05-30 富士通株式会社 Method and apparatus for measuring prism array shape

Also Published As

Publication number Publication date
JP2012022012A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP4804058B2 (en) Interference measurement device
JP4914040B2 (en) Interference measurement device
JP2553276B2 (en) Three-wavelength optical measuring device and method
JP5149486B2 (en) Interferometer, shape measurement method
JPH0552540A (en) Interferometer laser surface roughness meter
JPH0198902A (en) Light wave interference length measuring instrument
JP4198929B2 (en) Laser length measuring instrument and laser length measuring method
US20080062428A1 (en) Synchronous frequency-shift mechanism in Fizeau interferometer
US20130088722A1 (en) Measurement apparatus
JP2006112974A (en) Position detection device and method
US6914682B2 (en) Interferometer and position measuring device
JP2010038552A (en) Multiwavelength interferometric displacement measuring method and apparatus
JP5355659B2 (en) Interferometry apparatus and measurement origin determination method
JP4665290B2 (en) Interval measuring device and surface shape measuring device
JP4998738B2 (en) Dimension measuring apparatus and dimension measuring method
JPH0843015A (en) Interference length measuring system
JPH11183116A (en) Method and device for light wave interference measurement
JP2006349382A (en) Phase shift interferometer
JP6503618B2 (en) Distance measuring device and method thereof
JP3410802B2 (en) Interferometer device
JP2006064451A (en) Interferometer
Dobosz et al. A new method of non-contact gauge block calibration using a fringe-counting technique: I. Theoretical basis
JP3795976B2 (en) Non-contact temperature measuring device
Minoni et al. Interferometric distance sensors
Iwasinska et al. Interferometric dimension comparator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R151 Written notification of patent or utility model registration

Ref document number: 5355659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03