JP5355358B2 - 二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム - Google Patents

二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム Download PDF

Info

Publication number
JP5355358B2
JP5355358B2 JP2009266939A JP2009266939A JP5355358B2 JP 5355358 B2 JP5355358 B2 JP 5355358B2 JP 2009266939 A JP2009266939 A JP 2009266939A JP 2009266939 A JP2009266939 A JP 2009266939A JP 5355358 B2 JP5355358 B2 JP 5355358B2
Authority
JP
Japan
Prior art keywords
steam
pressure turbine
fossil fuel
carbon dioxide
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009266939A
Other languages
English (en)
Other versions
JP2011111925A (ja
Inventor
信義 三島
尊 杉浦
哲也 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009266939A priority Critical patent/JP5355358B2/ja
Priority to CA2722195A priority patent/CA2722195C/en
Priority to US12/952,969 priority patent/US20110120130A1/en
Priority to EP10192643.4A priority patent/EP2333255B1/en
Publication of JP2011111925A publication Critical patent/JP2011111925A/ja
Application granted granted Critical
Publication of JP5355358B2 publication Critical patent/JP5355358B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Control Of Eletrric Generators (AREA)

Description

本発明は、二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムに関する。
本発明に係る二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムとしては、化石燃料、例えば石炭焚ボイラの排気ガスから二酸化炭素を分離し回収する装置(PCC:Post Combustion CO2 Capture)を備えたシステムがある。
特許第4274846号公報には、ボイラの排ガスに含まれる二酸化炭素の回収システムとして、高圧タービン、中圧タービン及び低圧タービンを有する蒸気タービンと、これらを駆動する蒸気を発生させるためのボイラと、ボイラの燃焼排ガスから二酸化炭素を吸収除去するための二酸化炭素吸収液を備える二酸化炭素吸収塔と、二酸化炭素を吸収した該二酸化炭素吸収液を再生するための再生塔と、除去された二酸化炭素を圧縮するためのコンプレッサと、高圧タービンの排出蒸気の一部により駆動するコンプレッサ用のタービンと、中圧タービンの排出蒸気の一部により駆動する補機用タービンと、コンプレッサ用タービン及び補機用タービンの排出蒸気を再生塔のリボイラに加熱源として供給するための供給管とを有する二酸化炭素の回収システムが開示されている。
一般的にボイラの排ガス中から二酸化炭素を回収する二酸化炭素回収装置では、吸収液循環ポンプを駆動して吸収液を吸収塔と再生塔との間で循環させ、吸収塔にてボイラ排ガスに含まれた二酸化炭素を吸収液に吸収させ、再生塔でこの吸収液に吸収した二酸化炭素を分離して回収している。
即ち、ボイラ排ガス中の二酸化炭素成分と吸収液を吸収塔内で接触させて約40℃程度の吸収液がガス中の二酸化炭素との化学反応(発熱反応)により二酸化炭素を吸収する。
この時の吸収液と二酸化炭素の化学反応により約70℃程度の二酸化炭素に富んだリッチ吸収液は吸収塔を出た後で、再生塔から供給される再生された約120℃の吸収液(リーン吸収液と呼ぶ)と熱交換を行い、約110℃程度に加熱されて再び吸収塔に流入する。
熱交換された後のリッチ吸収液は再生塔でさらに120℃〜130℃程度に加熱されてリッチ吸収液に吸収した二酸化炭素を分離する。
再生塔で二酸化炭素を分離した吸収液はリーン吸収液となって再度吸収塔に導入されてボイラ排ガス中の二酸化炭素を吸収する。
この際、再生塔内の吸収液を二酸化炭素を分離させてリーン吸収液となるように加熱する為に、再生塔に加熱蒸気を供給するリボイラは多量の蒸気を発生させる必要がある。
特許第4274846号公報
前記特許第4274846号公報に記載された二酸化炭素の回収システムでは、何らかの原因によって二酸化炭素分離回収装置の吸収塔と再生塔との間で二酸化炭素を吸収、並びに分離する吸収液を循環させるポンプ塔がトリップして二酸化炭素分離回収装置が緊急停止した場合に、蒸気タービンの高圧タービン及び中圧タービンの排出蒸気により駆動するコンプレッサ用のタービン及び補機用タービンからリボイラに供給される排出蒸気の行き場がなくなるので前記コンプレッサ用のタービン及び補機用タービンの負荷が大幅に変動し、蒸気タービンプラントに大きな負荷変動が生じて蒸気タービンの出力が低下してしまうという問題がある。
本発明の目的は、二酸化炭素分離回収装置の運転が緊急停止時に、化石燃料焚き火力発電システムに生じる負荷変動を抑制することを可能にする二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムを提供することにある。
本発明の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムは、化石燃料を燃焼させて蒸気を発生させるボイラと、前記ボイラで発生した蒸気によって駆動されて発電する高圧タービンを有する蒸気タービンとを備えた化石燃料焚き火力発電システムと、前記化石燃料焚き火力発電システムのボイラから化石燃料を燃焼して排出されたボイラ排ガスに含まれる二酸化炭素を吸収液に吸収させて回収する吸収塔と、前記吸収塔との間で吸収液を循環させて二酸化炭素を吸収した吸収液から二酸化酸素を分離する吸収液の再生塔を備えた二酸化炭素分離回収装置と、を有する二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおいて、
前記化石燃料焚き火力発電システムの高圧タービンから抽気配管を通じて抽気した抽気蒸気によって駆動される背圧タービンを設置し、前記二酸化炭素分離回収装置の再生塔に加熱蒸気を供給するリボイラを設置し、前記化石燃料焚き火力発電システムの背圧タービンを流下した蒸気を前記リボイラに熱源として供給する蒸気配管を配設し、前記化石燃料焚き火力発電システムの高圧タービンから抽気した抽気蒸気を背圧タービンに供給する前記抽気配管と連通しており、前記抽気配管を流下した抽気蒸気を背圧タービンをバイパスして復水器に流下させる非常用逃がし配管を配設し、前記非常用逃がし配管に該非常用逃がし配管を流れる抽気蒸気の流下を制御する非常用逃がし弁を設けたことを特徴とする。
また本発明の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムは、化石燃料を燃焼させて蒸気を発生させるボイラと、前記ボイラで発生した蒸気によって駆動されて発電する高圧タービン及び中圧タービンを有する蒸気タービンとを備えた化石燃料焚き火力発電システムと、前記化石燃料焚き火力発電システムのボイラから化石燃料を燃焼して排出されたボイラ排ガスに含まれる二酸化炭素を吸収液に吸収させて回収する吸収塔と、前記吸収塔との間で吸収液を循環させて二酸化炭素を吸収した吸収液から二酸化酸素を分離する吸収液の再生塔を備えた二酸化炭素分離回収装置と、を有する二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおいて、
前記化石燃料焚き火力発電システムのボイラから中圧タービンに該ボイラで再熱した再熱蒸気を供給する高温再熱蒸気管から分岐する再熱蒸気抽気管を配設し、この再熱蒸気抽気管を通じて抽気した再熱蒸気を減温する減温器を設け、前記減温器で減温した再熱蒸気によって駆動される背圧タービンを設置し、前記二酸化炭素分離回収装置の再生塔に加熱蒸気を供給するリボイラを設置し、前記化石燃料焚き火力発電システムの背圧タービンを流下した蒸気を前記リボイラに熱源として供給する蒸気配管を配設し、前記化石燃料焚き火力発電システムの再熱蒸気抽気管を通じて抽気した再熱蒸気を背圧タービンに供給する前記再熱蒸気抽気管と連通しており、前記再熱蒸気抽気管を流下した再熱蒸気を背圧タービンをバイパスして復水器に流下させる第2の非常用逃がし配管を配設し、前記第2の非常用逃がし配管に該第2の非常用逃がし配管を流れる再熱蒸気の流下を制御する第2の非常用逃がし弁を設けたことを特徴とする。
また本発明の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムは、化石燃料を燃焼させて蒸気を発生させるボイラと、前記ボイラで発生した蒸気によって駆動されて発電する高圧タービン及び中圧タービンを有する蒸気タービンとを備えた化石燃料焚き火力発電システムと、前記化石燃料焚き火力発電システムのボイラから化石燃料を燃焼して排出されたボイラ排ガスに含まれる二酸化炭素を吸収液に吸収させて回収する吸収塔と、前記吸収塔との間で吸収液を循環させて二酸化炭素を吸収した吸収液から二酸化酸素を分離する吸収液の再生塔を備えた二酸化炭素分離回収装置と、を有する二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおいて、
前記化石燃料焚き火力発電システムの高圧タービンから第1の抽気配管を通じて抽気した抽気蒸気によって駆動される背圧タービンを設置し、前記化石燃料焚き火力発電システムの中圧タービンから低圧タービンに供給する中圧タービンの排気蒸気の一部を分岐する第2の蒸気抽気管を配設し、この第2の蒸気抽気管を通じて抽気した抽気蒸気を前記背圧タービンに供給する第1の蒸気配管を配設し、前記二酸化炭素分離回収装置の再生塔に加熱蒸気を供給するリボイラを設置し、前記化石燃料焚き火力発電システムの背圧タービンを流下した蒸気を前記リボイラに熱源として供給する第2の蒸気配管を配設し、前記化石燃料焚き火力発電システムの高圧タービンから抽気した抽気蒸気を背圧タービンに供給する前記第1の抽気配管と連通しており、前記第1の抽気配管を流下した抽気蒸気を背圧タービンをバイパスして復水器に流下させる第1の非常用逃がし配管を配設し、前記第1の非常用逃がし配管に該第1の非常用逃がし配管を流れる抽気蒸気の流下を制御する非常用逃がし弁を設け、前記化石燃料焚き火力発電システムの第2の蒸気抽気管を通じて抽気した抽気蒸気を前記背圧タービンに供給する第1の蒸気配管と連通しており、前記第1の蒸気配管を流下する抽気蒸気を背圧タービンをバイパスして復水器に流下させる第3の非常用逃がし配管を配設し、前記第3の非常用逃がし配管に該第3の非常用逃がし配管を流れる再熱蒸気の流下を制御する第3の非常用逃がし弁を設けたことを特徴とする二酸化炭素分離回収装置を備えたことを特徴とする。
本発明によれば、二酸化炭素分離回収装置の運転が緊急停止した場合に、化石燃料焚き火力発電システムに生じる負荷変動を抑制することを可能にする二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムが実現できる。
本発明の第1実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムを示す概略系統図。 図1に示した第1実施例における化石燃料焚き火力発電システムを示す部分図。 本発明の実施例である化石燃料焚き火力発電システムの蒸気タービン及び背圧タービンにおける定格負荷と部分負荷での膨張線を説明する蒸気I−S線図。 本発明の第2実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムを示す概略系統図。 図2に示した第2実施例における化石燃料焚き火力発電システムを示す部分図。 本発明の第3実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムを示す概略系統図。 図3に示した第3実施例における化石燃料焚き火力発電システムを示す部分図。
本発明の実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムについて図面を参照して以下に説明する。
本発明の第1実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムについて図1及び図2を引用して説明する。
図1は本発明の第1実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムを示すものである。。
図1に示した第1実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムを構成する化石燃料焚き火力発電システム100は、化石燃料を燃焼させて復水器から供給された復水を加熱し、高温高圧の蒸気を発生する化石燃料焚きボイラ1と、このボイラ1で発生した蒸気を該ボイラ1から主蒸気管2を通じて導いて駆動する高圧タービン3を備えている。
高圧タービン3で動力を発生をして減圧され、高圧タービン排気管4を流下した蒸気は低温再熱蒸気管14を通じて前記ボイラ1に供給され、このボイラ1で再度加熱されて再熱蒸気となる。
前記ボイラ1で加熱された再熱蒸気を該ボイラ1から高温再熱蒸気管15を通じて導いて駆動する中圧タービン16を備えており、この中圧タービン16で動力を発生して圧力が低下し、該中圧タービン16から中圧タービン排気管17を流下した蒸気は低圧タービン18(図示せず)に供給される。
前記高圧タービン3、中圧タービン16及び低圧タービン18によって駆動される発電機80によって蒸気タービンの出力が電力として取り出されている。また、75は脱気器である。
前記化石燃料焚き火力発電システム100には、高圧タービン3の高圧タービン排気管4を流下した蒸気をボイラ1に供給する低温再熱管14から分岐して該低温再熱管14を流下する蒸気の一部を背圧タービン駆動のために抽気する第1抽気管5と、この第1抽気管5を通じて抽気した蒸気によって駆動される背圧タービン7とが設置されている。
前記背圧タービン7の入口側には背圧タービン7の出力を制御する背圧タービン制御弁6が設置され、前記背圧タービン7の出口側には該背圧タービン7を経た背圧タービン排気を流下させる背圧タービン排気管路8と、この背圧タービン排気管路8に設けられて流下する背圧タービン排気の圧力を調節する背圧タービン排気圧力制御弁9と、前記背圧タービン排気管路8と連通しており、後述する二酸化炭素分離回収装置200に設置されたリボイラ20及びリクレーマ21に背圧タービン排気を送気する背圧タービン出口送気管10とが備えられている。
前記背圧タービン7には背圧タービン用発電機13が設けられており、背圧タービン7の動力を電力として取り出すように構成されている。
高圧タービン排気管4を通じて高圧タービン3を流下してボイラ1に供給される蒸気が流れる低温再熱管14には、第1非常用逃がし弁11を備えた第1非常用逃がし管12が連通されている。
そして何らかの原因によって背圧タービン7の運転が停止した場合に、前記低温再熱管14から分岐した第1抽気管5を通じて高圧タービン3を流下して背圧タービン7に供給される抽気蒸気は、前記第1非常用逃がし管12に設けられた第1非常用逃がし弁11を開弁操作して該第1非常用逃がし管12を通じて復水器に流下するように構成されている。
図1に示した第1実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムには、前記した化石燃料焚き火力発電システム100と、この化石燃料焚き火力発電システム100のボイラ1から化石燃料を燃焼して排出されたボイラ排ガスに含まれる二酸化炭素を分離し回収する二酸化炭素分離回収装置200とが設置されている。
図1に示した酸化炭素分離回収装置200では、ボイラ1から排出され、ボイラ排ガス系統71から分岐供給される二酸化炭素を含んだボイラ排ガスは、ボイラ排ガス管40を通じて流下し、該ボイラ排ガス管40に設けたボイラ排ガス昇圧ファン41によって昇圧された後に、ボイラ排ガス冷却器42に供給されて冷却され、ボイラ排ガス冷却器42から二酸化炭素ガスを吸収液に吸収させる吸収塔26に供給される。
前記吸収塔26でボイラ排ガスに含まれた二酸化炭素ガスを吸収液に吸収され、二酸化炭素を含まないボイラ排ガスとなった処理ガスは、吸収塔26から吸収塔出口ボイラ排ガス管45を通じて煙突46に供給され、この煙突46から大気に排出される。
また、ボイラ1からボイラ排ガス系統71を通じて供給される二酸化炭素を含んだボイラ排ガスのうち、前記吸収塔26に供給しないボイラ排ガスは、二酸化炭素分離回収装置200をバイパスするバイパスガス管44に設けたバイパスバタフライ弁43の開弁操作によって、前記バイパスガス管44を通じて煙突46に直接導かれるようになっている。
前記吸収塔26にてボイラ1から供給されるボイラ排ガスに含まれた二酸化炭素ガスを吸収して二酸化炭素を多く含むリッチ吸収液は、吸収塔26の吸収液を再生塔23に供給する吸収液の供給経路に設けたリッチ吸収液移送ポンプ27によって昇圧され、同じく吸収液の供給経路に設けた吸収液熱交換器28に供給されて該吸収液熱交換器28で加熱された後に再生塔23に供給される。
吸収塔26から再生塔23に供給されたリッチ吸収液は、リボイラ20及びリクレーマ21に熱源として供給された背圧タービン排気で加熱されて発生した水蒸気を該リボイラ20及びリクレーマ21から再生塔23に供給することによって加熱されて、前記再生塔23の内部にてリッチ吸収液に吸収された二酸化炭素ガスを該リッチ吸収液から分離する。
リボイラ20から供給された水蒸気による加温によって前記再生塔23の内部でリッチ吸収液から分離した二酸化炭素は再生塔23から排出されるが、再生塔23の出口側に設けた出口ガス冷却器31で冷却された後に、水分を分離するリフラックスドラム32に供給されて二酸化炭素のガスに含まれる水分を分離し、二酸化炭素ガスのみを該リフラックスドラム32から二酸化炭素ガス排気管47を通じて二酸化炭素の液化貯留設備(図示せず)に供給して貯留する。
また、前記リフラックスドラム32で分離された水分はリフラックスドラムポンプ33で昇圧されて前記再生塔23に戻されるように構成されている。
そして前記再生塔23内の吸収液の一部は、再生塔内吸収液抜き出し管24を通じて抜き出されてリボイラ20及びリクレーマ21にそれぞれ分岐して供給され、化石燃料焚き火力発電システム100の蒸気タービンサイクルから抽気した加熱蒸気、即ち高圧タービン3から抽気した抽気蒸気によって駆動する背圧タービン7を流下した背圧タービン排気を熱源として供給されるリボイラ20によって加温される。
またリクレーマ21は背圧タービン7を流下した背圧タービン排気を熱源として吸収液を加熱し、この吸収液に含まれる不純物を分離させて系外に排出する吸収液の浄化装置である。
このリボイラ20及びリクレーマ21の加熱に必要な加熱蒸気は、化石燃料焚き火力発電システム100を構成する前記背圧タービン7を流下した背圧タービン排気を背圧タービン排気管10を通じてリボイラ20とリクレーマ21にそれぞれ送気することによって得ている。
前記再生塔23での吸収液の加熱によって二酸化炭素を分離した吸収液は、再生塔23から吸収液を吸収塔26に戻す吸収液の戻し経路に設けたリーン吸収液移送ポンプ29によって昇圧され、同じく吸収液の戻し経路に設けたリーン吸収液冷却器30に供給されて該リーン吸収液冷却器30で冷却された後に前記吸収塔26に戻されて、吸収液が前記吸収塔26と前記再生塔23との間を循環するようになっている。
そして前記背圧タービン排気管10を通じて背圧タービン7から流下した背圧タービン排気をリボイラ20とリクレーマ21に熱源として供給し、再生塔23から再生塔内吸収液抜き出し管24を通じて抜き出された吸収液を前記リボイラ20で間接的に加熱して所望の温度、圧力の清浄な蒸気をそれぞれ発生させ、これらの発生蒸気をリボイラ出口蒸気配管25を通じて再生塔23に供給するように構成されている。
前記リボイラ20及びリクレーマ21の上流側となる背圧タービン出口送気管10にはリボイラ加熱蒸気圧力制御弁34及びリクレーマ加熱蒸気圧力制御弁35がそれぞれ設置されており、前記リボイラ20で発生する蒸気が所望の温度、圧力となるようにリボイラ20に供給する背圧タービン排気の流量を調節するようになっている。
また、前記リボイラ20及びリクレーマ21の下流側には該リボイラ20及びリクレーマ21で熱源として使用されて温度が低下した背圧タービン排気をタービン復水系のドレン回収系統に導くリボイラおよびリクレーマ加熱蒸気ドレン管22が配設されている。
図2は図1に示した第1実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおける化石燃料焚き火力発電システム100の部分を示す部分図である。
図2に示した本実施例の化石燃料焚き火力発電システム100には、高圧タービン排気管4を通じて高圧タービン3から流下した蒸気が流れる低温再熱管14と連通し、この低温再熱管14に流入した蒸気を背圧タービン7をバイパスさせて復水器(図示せず)に排出する第1非常用逃がし弁11を備えた第1非常用逃がし管12を配設している。
また、制御装置300が設置されており、このタービン制御装置300によって前記背圧タービン7の運転は制御されている。
即ち、制御装置300の指令信号によって第1背圧タービン制御弁6の開度を調節し、前記背圧タービン7に供給される蒸気の流量を制御する。また、制御装置300の指令信号によって背圧タービン排気圧力調整弁9の開度を調節し、背圧タービン7を流下して該背圧タービン排気圧力調整弁9の下流側の背圧タービン出口送気管10を流れてリボイラ20に供給される背圧タービン排気の圧力制御を行なっている。
ところで、二酸化炭素分離回収装置200の主要機器が何らかの原因によってトリップした場合、例えば、吸収液を移送するリッチ吸収液移送ポンプ27又はリーン吸収液移送ポンプ29がトリップして二酸化炭素分離回収装置200の運転が緊急停止した際に、化石燃料焚き火力発電システム100から二酸化炭素分離回収装置200に供給される余剰蒸気(通常運転時には背圧タービン7からリボイラ20に、背圧タービン7を流下した背圧タービン排気が熱源として供給されている)を背圧タービン7をバイパスさせて第1非常用逃がし弁11を備えた第1非常用逃がし管12を通じて復水器に逃がすようにしたものである。
リボイラ20が必要とする蒸気量はリクレーマ21が必要とする蒸気量よりもはるかに多くボイラ全蒸発量の約15%〜20%程度必要であり、よって二酸化炭素分離回収装置200が緊急停止時にリボイラ20へ供給する蒸気量の急激な減少に対応させて、余剰となる蒸気を復水器に流下させる第1非常用逃がし弁11を有する第1非常用逃がし管12からなる非常用逃がし系統は有効に余剰蒸気の緊急逃がし機能を発揮できる。
図2に示した化石燃料焚き火力発電システム100には背圧タービン7の運転制御、及び二酸化炭素分離回収装置200の緊急停止時に余剰蒸気を復水器に逃がすための第1非常用逃がし管12に設けた第1非常用逃がし弁11の制御を行なう、制御装置300が設置されている。
そして二酸化炭素分離回収装置200の主要機器であるリッチ吸収液移送ポンプ27又はリーン吸収液移送ポンプ29がトリップして二酸化炭素分離回収装置200の運転が緊急停止し、化石燃料焚き火力発電システム100の蒸気タービンサイクルからリボイラ20に供給される蒸気を直ちに停止する必要が生じた場合には、リッチ吸収液移送ポンプ27及びリーン吸収液移送ポンプ29に夫々設置したセンサーから入力するリッチ吸収液移送ポンプのトリップ信号27a又はリーン吸収液移送ポンプのトリップ信号29aに基づいて前記制御装置300で二酸化炭素分離回収装置200の緊急停止を検知し、背圧タービン7の運転を停止させるために制御装置300からの指令信号によって背圧タービン7の入口側に設けた第1背圧タービン制御弁6を全閉させて背圧タービン7に流入する蒸気を遮断する。
そして同時に、制御装置300からの指令信号によって第1非常用逃がし弁11を開けて低温再熱蒸気管14を通じて背圧タービン7に流入していた余剰となる蒸気をこの低温再熱蒸気管14と連通した第1非常用逃がし管12を通じて背圧タービン7をバイパスさせて復水器に流下するように切り替える。
制御装置300の制御で上記した制御操作を行なうことによって二酸化炭素分離回収装置200の緊急停止に起因した余剰蒸気によるボイラ1や蒸気タービンの負荷変動が抑制されるので、二酸化炭素分離回収装置200の緊急停止の際にも化石燃料焚き火力発電システム100の安定した運転が継続可能となる。
復水器に流下する余剰蒸気はその後、第1非常用逃がし弁11の開度を調節して流量を減少するように操作される。
その後、制御装置300による第1非常用逃がし管12を経由して復水器に流下する余剰蒸気の流量減少の操作に合わせて、ボイラ1で発生するボイラ蒸発量も化石燃料焚き火力発電システム100から二酸化炭素分離回収装置200のリボイラ20に供給する蒸気量の減少に対応させて減少させる運転に移行することになる。
ところで、一般的に化石燃料焚き火力発電システム100と二酸化炭素分離回収装置200とは離れて設置されているので、背圧タービン7の背圧タービン排気をリボイラ20に供給する背圧タービン出口送気管10の長さが長くなる。また、背圧タービン排気の蒸気量が多く配管口径も大きくなるので、この背圧タービン出口送気管10内での蒸気の蓄積が無視できない。
そこで、本実施例では二酸化炭素分離回収装置200のリボイラ20またはリクレーマ21の近傍の上流側となる背圧タービン出口送気管10の位置に、リボイラ入口圧力調整弁34とリクレーマ入口圧力調整弁35を背圧タービン出口送気管10にそれぞれ設置して、前記制御装置300からの制御信号によってリボイラ入口圧力調整弁34とリクレーマ入口圧力調整弁35の開度を調節することにより対応することが可能である。
図3は本発明の第1実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムを構成する高圧蒸気タービン3、中圧タービン16、及び低圧タービン18を有する蒸気タービンに関して、100%負荷の定格負荷時を太線の実線で、50%負荷の部分負荷時を太線の一点鎖線でそれぞれ示したタービン蒸気膨張線と、背圧タービン7の定格負荷時、及び部分負荷時を太線の破線でそれぞれ示した蒸気膨張線を蒸気I−S線図(蒸気エンタルピーI−蒸気エントロピS線図)に記載したものである。
図3の蒸気I〜S線図に示したように、蒸気タービンの高圧タービン3を流下してボイラ1に供給される蒸気が流れる低温再熱管14から分岐した第1抽気管5を通じて背圧タービン7に供給される抽気蒸気は、第1背圧タービン制御弁6の操作によってその流量が調節されて背圧タービン7の出力制御が行なわれる。
そして、背圧タービン7の排気圧力が前記二酸化炭素分離回収装置200に設置されたリボイラ20で所望の温度と圧力の水蒸気を発生させるために必要となる圧力約0.5MPaに、配管及び弁による圧力損失約0.1MPaを考量した約0.6MPa程度となるように背圧タービン排気の圧力が調節する。
この条件下における背圧タービン7の膨張線の軌跡は、図3の蒸気I〜S線図に太線の破線で示されている。
背圧タービン7内で膨張して仕事をして該背圧タービン7を流下した蒸気は、背圧タービン排気管8、背圧タービン排気圧力調整弁9を通過し背圧タービン排気管10を通じて二酸化炭素分離回収装置200のリボイラ20またはリクレーマ21に熱源として供給される。
そして第1実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムでは、図3の蒸気I〜S線図に示したように、蒸気タービンが定格負荷運転の定格主蒸気圧力(25MPa)から、例えば50%負荷の部分負荷運転に移行すると、主蒸気圧力は定格主蒸気圧力(25MPa)から50%負荷蒸気圧力(12.5MPa)に低下するが、主蒸気温度は定格負荷運転から部分負荷運転になってもほぼ一定に保持される。
上記した主蒸気圧力の低下に伴なって部分負荷運転下で高圧タービン排気管4を通じて高圧タービン3を流下して低温再熱管14に供給された蒸気の圧力も低下するが、この低温再熱管14に供給された蒸気は二酸化炭素分離回収装置200のリボイラ20が蒸気を発生するために要求する圧力約0.5MPaと温度約170℃の条件の蒸気が十分に確保されている様子を示している。
同時に、この低温再熱管14から背圧タービン7を経由して背圧タービン出口送気管10を流下しリボイラ20に至る蒸気は、図3の下方に細線で示した蒸気の飽和線から十分離れており、前記背圧タービン7から背圧タービン出口送気管10を流下する途中で蒸気がドレン化する不具合も回避されることを示している。
上記した本発明の実施例によれば、二酸化炭素分離回収装置が緊急停止した場合に、化石燃料焚き火力発電システムの負荷変動を抑制し得る二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムが実現できる。
本発明の第2実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムについて図4及び図5を用いて説明する。
本実施例である第2実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムは、先に説明した第1実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムと基本的な構成は共通しているので、両者に共通した構成の説明は省略し、相違する部分についてのみ以下に説明する。
図4に示した第2実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムには、蒸気タービンヒートサイクルを構成する化石燃料焚き火力発電システム100と、ボイラ排ガスから二酸化炭素を分離し回収する二酸化炭素分離回収装置200とが備えられている。
前記化石燃料焚き火力発電システム100においては、ボイラ1から中圧タービン17に高温再熱情気を供給する高温再熱蒸気管15の途中から分岐した高温再熱蒸気抽気管50を通じて高温再熱蒸気の一部が抽気されており、この抽気された高温再熱蒸気が高温再熱抽気減温器51に供給するように構成されている。
前記高温再熱抽気減温器51では、別途、高温再熱抽気減温器スプレー弁52を経由して導いた冷却水によってこの高温再熱蒸気を減温した後に、減温器51の出口側に配設した第2抽気管53を通じて供給されて第2背圧タービン制御弁54から背圧タービン7に導入される。
この高温再熱蒸気抽気管50を通じて背圧タービン7に導入された再熱蒸気は背圧タービン7内で膨張して仕事をして発電に寄与する。そして前記背圧タービン7を流下した後の蒸気は背圧タービン7から背圧タービン排気管8及び背圧タービン排気圧力調整弁9を通過し、背圧タービン排気管10を通じて二酸化炭素分離回収装置200に設置されたリボイラ20またはリクレーマ21に熱源として供給されるように構成されている。
ところで、前記化石燃料焚き火力発電システム100において、蒸気タービンが定格負荷運転から部分負荷運転に負荷が減少する運転に移行すると、ボイラ1から高温再熱蒸気管15を通じて中圧タービン17に供給される再熱蒸気の高温再熱蒸気圧力は低下するが、高温再熱蒸気温度は定格負荷運転から部分負荷運転になってもほぼ一定に保持される。
そこで、前記化石燃料焚き火力発電システム100の蒸気タービンが定格負荷運転から部分負荷運転に移行した場合に、ボイラ1から中圧タービン17に供給される高温再熱蒸気の一部を高温再熱蒸気管15から分岐し、高温再熱蒸気抽気管50を通じて高温再熱抽気減温器51に供給する。
そして高温再熱抽気減温器51にて、別途、高温再熱抽気減温器スプレー弁52から導いた冷却水によって前記高温再熱蒸気の温度を、後述する二酸化炭素分離回収装置200のリボイラ20またはリクレーマ21が熱源として要求する温度となるように減温し、この減温した再熱蒸気を第2抽気管53及び第2背圧タービン制御弁54を経由して背圧タービン7に導入するように構成されている。
尚、前記背圧タービン7から流下した背圧タービン排気を二酸化炭素分離回収装置200に設けたリボイラ20及びリクレーマ21に熱源として供給し、再生塔23から再生塔内吸収液抜き出し管24を通じて抜き出された吸収液を前記リボイラ20及びリクレーマ21で間接的に加熱して所望の温度、圧力の清浄な蒸気をそれぞれ発生させてこの発生蒸気をリボイラ出口蒸気配管25を通じて再生塔23に供給するように構成されていることは、前記第1実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムと同様であるので、二酸化炭素分離回収装置200についての説明は省略する。
図5は図4に示した第2実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおける化石燃料焚き火力発電システム100の部分を示す部分図である。
図5に示した本実施例の化石燃料焚き火力発電システム100には、高温再熱抽気減温器51を経て第2抽気管53に流下した高温再熱蒸気を、前記第2抽気管53と連通し、この第2抽気管53に流入した蒸気を背圧タービン7をバイパスさせて復水器(図示せず)に排出する第2非常用逃がし弁55を備えた第2非常用逃がし管56を配設している。
上記した構成の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムでは、二酸化炭素分離回収装置のリボイラ20に温度の高い高温再熱蒸気を供給できるので、再生塔23内の吸収液の温度をより高温に昇温させることが可能となる。
二酸化炭素分離回収装置200の主要機器が何らかの原因によってトリップした場合、例えば、吸収液を移送するリッチ吸収液移送ポンプ27又はリーン吸収液移送ポンプ29がトリップして二酸化炭素分離回収装置200の運転が緊急停止した際に、化石燃料焚き火力発電システム100から二酸化炭素分離回収装置200に供給される余剰蒸気(通常運転時には背圧タービン7からリボイラ20に、背圧タービン7を流下した背圧タービン排気が熱源として供給されている)を背圧タービン7をバイパスさせて第2非常用逃がし弁55を備えた第2非常用逃がし管56を通じて復水器に逃がすようにしたものである。
図5に示した化石燃料焚き火力発電システム100には背圧タービン7の運転制御、及び二酸化炭素分離回収装置200の緊急停止時に余剰蒸気を復水器に逃がすための第2非常用逃がし管56に設けた第2非常用逃がし弁55の制御を行なう、制御装置400が設置されている。
そして二酸化炭素分離回収装置200の主要機器であるリッチ吸収液移送ポンプ27又はリーン吸収液移送ポンプ29がトリップして二酸化炭素分離回収装置200の運転が緊急停止し、化石燃料焚き火力発電システム100の蒸気タービンサイクルからリボイラ20に供給される蒸気を直ちに停止する必要が生じた場合には、リッチ吸収液移送ポンプ27及びリーン吸収液移送ポンプ29に夫々設置したセンサーから入力するリッチ吸収液移送ポンプのトリップ信号27a又はリーン吸収液移送ポンプのトリップ信号29aに基づいて前記制御装置400で二酸化炭素分離回収装置200の緊急停止を検知し、背圧タービン7の運転を停止させるために制御装置400からの指令信号によって背圧タービン7の入口側に設けた第2背圧タービン制御弁54を全閉させて背圧タービン7に流入する蒸気を遮断する。
そして同時に、制御装置400からの指令信号によって第2非常用逃がし弁55を開けて第2抽気管53を通じて背圧タービン7に流入していた余剰となる蒸気をこの第2抽気管53と連通した第2非常用逃がし管56を通じて背圧タービン7をバイパスさせて復水器に流下するように切り替える。
制御装置400の制御で上記した制御操作を行なうことによって二酸化炭素分離回収装置200の緊急停止に起因した余剰蒸気によるボイラ1や蒸気タービンの負荷変動が抑制されるので、二酸化炭素分離回収装置200の緊急停止の際にも化石燃料焚き火力発電システム100の安定した運転が継続可能となる。
復水器に流下する余剰蒸気はその後、第2非常用逃がし弁55の開度を調節して流量を減少するように操作される。
その後、制御装置400による第2非常用逃がし管56を経由して復水器に流下する余剰蒸気の流量減少の操作に合わせて、ボイラ1で発生するボイラ蒸発量も化石燃料焚き火力発電システム100から二酸化炭素分離回収装置200のリボイラ20に供給する蒸気量の減少に対応させて減少させる運転に移行することになる。
上記した本発明の実施例によれば、二酸化炭素分離回収装置が緊急停止した場合に、化石燃料焚き火力発電システムの負荷変動を抑制し得る二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムが実現できる。
本発明の第3実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムについて図6を用いて説明する。
本実施例である第3実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムは、先に説明した第1実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムと基本的な構成は共通しているので、両者に共通した構成の説明は省略し、相違する部分についてのみ以下に説明する。
図6に示した二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムには、蒸気タービンヒートサイクルを構成する化石燃料焚き火力発電システム100と、ボイラ排ガスから二酸化炭素を分離し回収する二酸化炭素分離回収装置200とが備えられている。
前記化石燃料焚き火力発電システム100においては、高圧タービン3の高圧タービン排気管4を流下した蒸気をボイラ1に供給する低温再熱管14から分岐して該低温再熱管14を流下する蒸気の一部を背圧タービン駆動のために抽気する第1抽気管5と、この第1抽気管5を通じて抽気した蒸気によって駆動される背圧タービン7とが設置され、背圧タービン7の入口側には背圧タービン7の出力を制御する背圧タービン制御弁6が設置されている。
更に、中圧タービン17を流下して中圧タービン排気管17から低圧タービン18(図示せず)に供給される蒸気の一部が、中圧タービン排気部抽気管60を通じて抽気されており、この中圧タービン排気部抽気管60と連通した背圧タービン入口の第3抽気管61を通じて前記抽気した蒸気が背圧タービン7の入口側に設けた第2背圧タービン制御弁62を経由して背圧タービン7に導入するように構成されている。
図7に示した本実施例の化石燃料焚き火力発電システム100には、高圧タービン排気管4を通じて高圧タービン3から流下した蒸気が流れる低温再熱管14と連通し、この低温再熱管14に流入した蒸気を背圧タービン7をバイパスさせて復水器(図示せず)に排出する第1非常用逃がし弁11を備えた第1非常用逃がし管12を配設している。
更に、前記背圧タービン入口の第3抽気管61には、この前記背圧タービン入口の第3抽気管61を流下する抽気蒸気を復水器に逃がす第3非常用逃がし管64が配設され、この第3非常用逃がし管64に蒸気の流下を制御する第3非常用逃がし弁63が配設されている。
尚、二酸化炭素分離回収装置200については先の第1実施例のものと同様であるので説明は省略する。
前記化石燃料焚き火力発電システム100においては、蒸気タービンが定格負荷運転から部分負荷運転に移行した場合に中圧タービン16の排気の蒸気圧力は下がるので、中圧タービン排気管17から抽気して中圧タービン排気部抽気管60、背圧タービン入口の第3抽気管61及び第2背圧タービン制御弁62を通じて背圧タービン7に中圧タービン排気を供給する方式に替えて、高圧タービン3から低温再熱蒸気管14に流下した高圧の蒸気を第1抽気管5及び背圧タービン制御弁6を通じて背圧タービン7に供給する方式に切り替えて、前記背圧タービン7の駆動に必要な蒸気圧力を確保している。
上記した構成の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムでは、定格負荷運転時に中圧タービン17の排気を背圧タービン7に供給できるため、高圧タービン3の排気のみを背圧タービン7に供給する構成と比較して、蒸気タービンの出力低下を効果的に抑制することが可能となる。
二酸化炭素分離回収装置200の主要機器が何らかの原因によってトリップした場合、例えば、吸収液を移送するリッチ吸収液移送ポンプ27又はリーン吸収液移送ポンプ29がトリップして二酸化炭素分離回収装置200の運転が緊急停止した際に、化石燃料焚き火力発電システム100から二酸化炭素分離回収装置200に供給される余剰蒸気(通常運転時には背圧タービン7からリボイラ20に、背圧タービン7を流下した背圧タービン排気が熱源として供給されている)を背圧タービン7をバイパスさせて第1非常用逃がし弁11を備えた第1非常用逃がし管12を通じて復水器に逃がす、又は背圧タービン7をバイパスさせて第3非常用逃がし弁63を備えた第3非常用逃がし管64を通じて復水器に逃がすようにしたものである。
図7に示した化石燃料焚き火力発電システム100には背圧タービン7の運転制御、及び二酸化炭素分離回収装置200の緊急停止時に余剰蒸気を復水器に逃がすための第1非常用逃がし管12に設けた第1非常用逃がし弁11の制御、並びに第3非常用逃がし管64に設けた第3非常用逃がし弁63の制御、を行なう制御装置500が設置されている。
そして二酸化炭素分離回収装置200の主要機器であるリッチ吸収液移送ポンプ27又はリーン吸収液移送ポンプ29がトリップして二酸化炭素分離回収装置200の運転が緊急停止し、化石燃料焚き火力発電システム100の蒸気タービンサイクルからリボイラ20に供給される蒸気を直ちに停止する必要が生じた場合には、リッチ吸収液移送ポンプ27及びリーン吸収液移送ポンプ29に夫々設置したセンサーから入力するリッチ吸収液移送ポンプのトリップ信号27a又はリーン吸収液移送ポンプのトリップ信号29aに基づいて前記制御装置500で二酸化炭素分離回収装置200の緊急停止を検知し、背圧タービン7の運転を停止させるために制御装置500からの指令信号によって背圧タービン7の入口側に設けた第1背圧タービン制御弁6を全閉させて背圧タービン7に流入する蒸気を遮断する。
そして同時に、化石燃料焚き火力発電システム100の蒸気タービンが定格負荷運転の場合には前記制御装置500からの指令信号によって第3非常用逃がし弁63を開けて中圧タービン排気部抽気管60を通じて背圧タービン7に流入していた余剰蒸気をこの中圧タービン排気部抽気管60と連通した第3非常用逃がし管64を通じて背圧タービン7をバイパスさせて復水器に流下するように切り替える。
また、化石燃料焚き火力発電システム100の蒸気タービンが部分負荷運転の場合には前記制御装置500からの指令信号によって第1非常用逃がし弁11を開けて低温再熱蒸気管14を通じて背圧タービン7に流入していた余剰蒸気をこの低温再熱蒸気管14と連通した第1非常用逃がし管12を通じて背圧タービン7をバイパスさせて復水器に流下するように切り替える。
制御装置500の制御で上記した制御操作を行なうことによって二酸化炭素分離回収装置200の緊急停止に起因した余剰蒸気によるボイラ1や蒸気タービンの負荷変動が抑制されるので、二酸化炭素分離回収装置200の緊急停止の際にも化石燃料焚き火力発電システム100の安定した運転が継続可能となる。
復水器に流下する余剰蒸気はその後、第1非常用逃がし弁11、又は第3非常用逃がし弁63の開度を調節して流量を減少するように操作される。
その後、制御装置300による第1非常用逃がし管12、又は第3非常用逃がし管64を経由して復水器に流下する余剰蒸気の流量減少の操作に合わせて、ボイラ1で発生するボイラ蒸発量も化石燃料焚き火力発電システム100から二酸化炭素分離回収装置200のリボイラ20に供給する蒸気量の減少に対応させて減少させる運転に移行することになる。
上記した本発明の実施例によっても、二酸化炭素分離回収装置が何らかの原因によって緊急停止した場合でも、化石燃料焚き火力発電システムの負荷変動を抑制し得る二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムが実現できる。
本発明の実施例によれば、二酸化炭素分離回収装置が緊急停止した場合に、化石燃料焚き火力発電システムの負荷変動を抑制し得る二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムが実現できる。
本発明は、二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムに適用可能である。
1:ボイラ、2:主蒸気管、3:高圧タービン、4:高圧タービン排気管、5:第1抽気管、6:第1背圧タービン制御弁、7:背圧タービン、8:背圧タービン排気管、9:背圧タービン排気圧力制御弁、10:背圧タービン出口送気管、11:第1非常用逃がし弁、12:第1非常用逃がし管、13:背圧タービン用発電機、14:低温再熱蒸気管、15:高温再熱蒸気管、16:中圧タービン、17:中圧タービン排気管、20:リボイラ、21:リクレーマ、22:リボイラおよびリクレーマ加熱蒸気ドレン管、23:再生塔、24:再生塔内吸収液抜き出し管、25:リボイラ出口蒸気配管、26:吸収塔、27:リッチ吸収液移送ポンプ、28:吸収液熱交換器、29:リーン吸収液移送ポンプ、30:リーン吸収液冷却器、31:再生塔出口ガス冷却器、32:リフラックスドラム、33:リフラックスドラム水回収ポンプ、34:リボイラ加熱蒸気圧力制御弁、35:リクレーマ加熱蒸気圧力制御弁、40:ボイラ排ガス管、41:ボイラ排ガス昇圧ファン、42:ボイラ排ガス冷却器、43:二酸化炭素分離回収装置バイパスバタフライ弁、44:二酸化炭素分離回収装置バイパス管、45:吸収塔出口ボイラ排ガス管、46:煙突、50:高温再熱蒸気抽気管、51:高温再熱蒸気減温器、52:高温再熱蒸気減温器用スプレー弁、53:第2抽気管、54:第2背圧タービン制御弁、55:第2非常用逃がし弁、56:第2非常用逃がし管、60:中圧タービン排気部抽気管、61:背圧タービン入口の第3抽気管、62:第3背圧タービン制御弁、63:第3非常用逃がし弁、64:第3非常用逃がし管、100:化石燃料焚き火力発電システム、200:二酸化炭素分離回収装置、300、400、500:制御装置。

Claims (7)

  1. 化石燃料を燃焼させて蒸気を発生させるボイラと、前記ボイラで発生した蒸気によって駆動されて発電する高圧タービンを有する蒸気タービンとを備えた化石燃料焚き火力発電システムと、
    前記化石燃料焚き火力発電システムのボイラから化石燃料を燃焼して排出されたボイラ排ガスに含まれる二酸化炭素を吸収液に吸収させて回収する吸収塔と、前記吸収塔との間で吸収液を循環させて二酸化炭素を吸収した吸収液から二酸化酸素を分離する吸収液の再生塔を備えた二酸化炭素分離回収装置と、を有する二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおいて、
    前記化石燃料焚き火力発電システムの高圧タービンから抽気配管を通じて抽気した抽気蒸気によって駆動される背圧タービンを設置し、
    前記二酸化炭素分離回収装置の再生塔に加熱蒸気を供給するリボイラを設置し、
    前記化石燃料焚き火力発電システムの背圧タービンを流下した蒸気を前記リボイラに熱源として供給する蒸気配管を配設し、
    前記化石燃料焚き火力発電システムの高圧タービンから抽気した抽気蒸気を背圧タービンに供給する前記抽気配管と連通しており、前記抽気配管を流下した抽気蒸気を背圧タービンをバイパスして復水器に流下させる非常用逃がし配管を配設し、
    前記非常用逃がし配管に該非常用逃がし配管を流れる抽気蒸気の流下を制御する非常用逃がし弁を設けたことを特徴とする二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム。
  2. 化石燃料を燃焼させて蒸気を発生させるボイラと、前記ボイラで発生した蒸気によって駆動されて発電する高圧タービン及び中圧タービンを有する蒸気タービンとを備えた化石燃料焚き火力発電システムと、
    前記化石燃料焚き火力発電システムのボイラから化石燃料を燃焼して排出されたボイラ排ガスに含まれる二酸化炭素を吸収液に吸収させて回収する吸収塔と、前記吸収塔との間で吸収液を循環させて二酸化炭素を吸収した吸収液から二酸化酸素を分離する吸収液の再生塔を備えた二酸化炭素分離回収装置と、を有する二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおいて、
    前記化石燃料焚き火力発電システムのボイラから中圧タービンに該ボイラで再熱した再熱蒸気を供給する高温再熱蒸気管から分岐する再熱蒸気抽気管を配設し、この再熱蒸気抽気管を通じて抽気した再熱蒸気を減温する減温器を設け、前記減温器で減温した再熱蒸気によって駆動される背圧タービンを設置し、
    前記二酸化炭素分離回収装置の再生塔に加熱蒸気を供給するリボイラを設置し、
    前記化石燃料焚き火力発電システムの背圧タービンを流下した蒸気を前記リボイラに熱源として供給する蒸気配管を配設し、
    前記化石燃料焚き火力発電システムの再熱蒸気抽気管を通じて抽気した再熱蒸気を背圧タービンに供給する前記再熱蒸気抽気管と連通しており、前記再熱蒸気抽気管を流下した再熱蒸気を背圧タービンをバイパスして復水器に流下させる第2の非常用逃がし配管を配設し、
    前記第2の非常用逃がし配管に該第2の非常用逃がし配管を流れる再熱蒸気の流下を制御する第2の非常用逃がし弁を設けたことを特徴とする二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム。
  3. 化石燃料を燃焼させて蒸気を発生させるボイラと、前記ボイラで発生した蒸気によって駆動されて発電する高圧タービン及び中圧タービンを有する蒸気タービンとを備えた化石燃料焚き火力発電システムと、
    前記化石燃料焚き火力発電システムのボイラから化石燃料を燃焼して排出されたボイラ排ガスに含まれる二酸化炭素を吸収液に吸収させて回収する吸収塔と、前記吸収塔との間で吸収液を循環させて二酸化炭素を吸収した吸収液から二酸化酸素を分離する吸収液の再生塔を備えた二酸化炭素分離回収装置と、を有する二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおいて、
    前記化石燃料焚き火力発電システムの高圧タービンから第1の抽気配管を通じて抽気した抽気蒸気によって駆動される背圧タービンを設置し、
    前記化石燃料焚き火力発電システムの中圧タービンから低圧タービンに供給する中圧タービンの排気蒸気の一部を分岐する第2の蒸気抽気管を配設し、この第2の蒸気抽気管を通じて抽気した抽気蒸気を前記背圧タービンに供給する第1の蒸気配管を配設し、
    前記二酸化炭素分離回収装置の再生塔に加熱蒸気を供給するリボイラを設置し、
    前記化石燃料焚き火力発電システムの背圧タービンを流下した蒸気を前記リボイラに熱源として供給する第2の蒸気配管を配設し、
    前記化石燃料焚き火力発電システムの高圧タービンから抽気した抽気蒸気を背圧タービンに供給する前記第1の抽気配管と連通しており、前記第1の抽気配管を流下した抽気蒸気を背圧タービンをバイパスして復水器に流下させる第1の非常用逃がし配管を配設し、
    前記第1の非常用逃がし配管に該第1の非常用逃がし配管を流れる抽気蒸気の流下を制御する非常用逃がし弁を設け、
    前記化石燃料焚き火力発電システムの第2の蒸気抽気管を通じて抽気した抽気蒸気を前記背圧タービンに供給する第1の蒸気配管と連通しており、前記第1の蒸気配管を流下する抽気蒸気を背圧タービンをバイパスして復水器に流下させる第3の非常用逃がし配管を配設し、
    前記第3の非常用逃がし配管に該第3の非常用逃がし配管を流れる再熱蒸気の流下を制御する第3の非常用逃がし弁を設けたことを特徴とする二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム。
  4. 請求項1に記載の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおいて、
    前記二酸化炭素分離回収装置が緊急停止時に該二酸化炭素分離回収装置のトリップ信号に基づき前記非常用逃がし弁の開閉を制御する指令信号を出力して、前記化石燃料焚き火力発電システムの前記抽気配管を通じて抽気した抽気蒸気を前記非常用逃がし配管を経由させて背圧タービンをバイパスし復水器に流下させるように制御する制御装置を設置したことを特徴とする二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム。
  5. 請求項2に記載の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおいて、
    前記二酸化炭素分離回収装置が緊急停止時に該二酸化炭素分離回収装置のトリップ信号に基づき前記第2の非常用逃がし弁の開閉を制御する指令信号を出力して、前記化石燃料焚き火力発電システムの前記再熱蒸気抽気管を流下した再熱蒸気を前記第2の非常用逃がし配管を経由させて背圧タービンをバイパスし復水器に流下させるように制御する制御装置を設置したことを特徴とする二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム。
  6. 請求項3に記載の二酸化炭素分離回収装置を備えた化石燃料焚火力発電システムにおいて、
    前記二酸化炭素分離回収装置が緊急停止時に該二酸化炭素分離回収装置のトリップ信号にそれぞれ基づいて、化石燃料焚火力発電システムが部分負荷運転時には前記非常用逃がし弁の開閉を制御する指令信号を出力して、前記化石燃料焚き火力発電システムの前記第1の抽気配管を通じて抽気した抽気蒸気を前記第1の非常用逃がし配管を経由して背圧タービンをバイパスして復水器に流下させ、
    化石燃料焚火力発電システムが全負荷運転時には前記第3の非常用逃がし弁の開閉を制御する指令信号を出力して、前記化石燃料焚き火力発電システムの前記第2の蒸気抽気管を通じて抽気した抽気蒸気を前記第3の非常用逃がし配管を経由させて前記背圧タービンをバイパスし復水器に流下させるように制御する制御装置を設置したことを特徴とする二酸化炭素分離回収装置を備えた化石燃料焚火力発電制御システム。
  7. 請求項4乃至請求項6いずれか1項に記載の二酸化炭素分離回収装置を備えた化石燃料焚火力発電システムにおいて、
    前記二酸化炭素分離回収装置のトリップ信号は、前記二酸化炭素分離回収装置の吸収塔と再生塔との間で吸収液を移送する移送ポンプのトリップ信号であることを特徴とする二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム。
JP2009266939A 2009-11-25 2009-11-25 二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム Active JP5355358B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009266939A JP5355358B2 (ja) 2009-11-25 2009-11-25 二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム
CA2722195A CA2722195C (en) 2009-11-25 2010-11-23 Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit
US12/952,969 US20110120130A1 (en) 2009-11-25 2010-11-23 Fossil Fuel Combustion Thermal Power System Including Carbon Dioxide Separation and Capture Unit
EP10192643.4A EP2333255B1 (en) 2009-11-25 2010-11-25 Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009266939A JP5355358B2 (ja) 2009-11-25 2009-11-25 二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム

Publications (2)

Publication Number Publication Date
JP2011111925A JP2011111925A (ja) 2011-06-09
JP5355358B2 true JP5355358B2 (ja) 2013-11-27

Family

ID=44234460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009266939A Active JP5355358B2 (ja) 2009-11-25 2009-11-25 二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム

Country Status (1)

Country Link
JP (1) JP5355358B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734883B2 (ja) * 2012-01-24 2015-06-17 株式会社東芝 二酸化炭素分離回収装置、二酸化炭素回収型汽力発電システム、及び二酸化炭素回収型汽力発電システムの運転方法
CN107859539B (zh) * 2017-11-30 2023-10-13 华北电力大学(保定) 一种集成碳捕集的二氧化碳双布雷顿循环发电系统
JP2024075964A (ja) * 2022-11-24 2024-06-05 三菱重工業株式会社 二酸化炭素回収システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3716062B2 (ja) * 1996-11-14 2005-11-16 三菱重工業株式会社 余剰蒸気の回収装置
JP4274846B2 (ja) * 2003-04-30 2009-06-10 三菱重工業株式会社 二酸化炭素の回収方法及びそのシステム
JP5317833B2 (ja) * 2009-05-28 2013-10-16 株式会社東芝 蒸気タービン発電設備

Also Published As

Publication number Publication date
JP2011111925A (ja) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5050071B2 (ja) ボイラ装置
JP5317833B2 (ja) 蒸気タービン発電設備
CA2722195C (en) Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit
JP5320423B2 (ja) 火力発電プラント,蒸気タービン設備、およびその制御方法
AU2009259589B2 (en) Method and device for operating a steam power station comprising a steam turbine and a process steam consumer
JP5526219B2 (ja) 火力発電システム、およびその運転方法,火力発電システムの改造方法,火力発電システムに用いられる蒸気タービン設備,二酸化炭素分離回収装置,過熱低減器
JP5885614B2 (ja) 蒸気タービンプラント、その制御方法、およびその制御システム
JP5205365B2 (ja) 二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム
JP2011047364A (ja) 蒸気タービン発電設備およびその運転方法
JP2012158996A (ja) 二酸化炭素分離回収装置を備えた火力発電システム
EP2625405B1 (en) Combined cycle power plant with co2 capture and method to operate it
KR20160059730A (ko) 초임계 이산화탄소 발전시스템
JP5355358B2 (ja) 二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム
TW201604491A (zh) 具有熱整合空氣分離單元之氧鍋爐電廠
JP2017172580A (ja) 複合サイクル発電プラント、および、この複合サイクル発電プラントを動作させるための方法
JP5901194B2 (ja) ガスタービン冷却システム及びガスタービン冷却方法
JP2023003302A (ja) 二酸化炭素回収システムの加熱蒸気系統、二酸化炭素回収システムおよび二酸化炭素回収システムの加熱蒸気系統の運用方法
JP2531801B2 (ja) 排熱回収熱交換器の制御装置
JPH0610619A (ja) 給水加熱装置
JPH04272410A (ja) 加圧流動層ボイラ発電プラント
JP2000248909A (ja) ガス化複合発電プラント

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5355358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250