JP5354214B2 - Catalyst deterioration judgment device - Google Patents

Catalyst deterioration judgment device Download PDF

Info

Publication number
JP5354214B2
JP5354214B2 JP2010175398A JP2010175398A JP5354214B2 JP 5354214 B2 JP5354214 B2 JP 5354214B2 JP 2010175398 A JP2010175398 A JP 2010175398A JP 2010175398 A JP2010175398 A JP 2010175398A JP 5354214 B2 JP5354214 B2 JP 5354214B2
Authority
JP
Japan
Prior art keywords
deterioration determination
deterioration
exhaust
catalyst
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010175398A
Other languages
Japanese (ja)
Other versions
JP2012036762A (en
Inventor
聡 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2010175398A priority Critical patent/JP5354214B2/en
Publication of JP2012036762A publication Critical patent/JP2012036762A/en
Application granted granted Critical
Publication of JP5354214B2 publication Critical patent/JP5354214B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst deterioration determining device capable of accurately determining deterioration of an exhaust emission control means, restricting costs. <P>SOLUTION: When deterioration determination allowing conditions are satisfied during execution of S-purge processing (S10, S12), besides addition of S-purge processing fuel, following additions are performed through a fuel addition valve: addition of desorption atmosphere generating fuel, addition of rich state generating fuel, and addition of catalyst deterioration determining fuel, which is formed of addition (a) of fuel for determination and addition (b) of fuel for determination (S14). A/F deviation is computed based on the A/F minimum values MinAFa and MinAFb of the A/F value corresponding to the fuel additions (a) and (b) for determination detected by an A/F sensor (S16). When the A/F deviation is a predetermined deviation or more, a determination that NOx storage reduction catalyst is deteriorated is done (S18, S20). <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、内燃機関の排気浄化手段の劣化を判定する触媒劣化判定装置に関する。   The present invention relates to a catalyst deterioration determination device that determines deterioration of exhaust purification means of an internal combustion engine.

内燃機関からの排気には、窒素酸化物(NOx)、炭化水素(HC)、一酸化炭素(CO)等の有害な成分が含まれており、それらを無毒化するためにNOx吸蔵還元触媒や酸化触媒等の後処理装置である排気浄化触媒(排気浄化手段)を排気通路に設け、窒素(N)、二酸化炭素(CO)、水(HO)等に無毒化し排出するようにしている。
しかしながら、これらの排気浄化触媒は、排気の熱や燃料或いはオイルに含まれる硫黄分によって被毒することにより触媒性能が次第に劣化し、NOx、HC、CO等の有害な成分を十分に無毒化することが困難となる。
The exhaust from the internal combustion engine contains harmful components such as nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), etc., and in order to detoxify them, NOx storage reduction catalysts, An exhaust purification catalyst (exhaust purification means), which is a post-treatment device such as an oxidation catalyst, is provided in the exhaust passage so that it is detoxified and discharged to nitrogen (N 2 ), carbon dioxide (CO 2 ), water (H 2 O), etc. ing.
However, these exhaust purification catalysts are poisoned by the exhaust heat and sulfur contained in the fuel or oil, so that the catalyst performance gradually deteriorates and sufficiently detoxifies harmful components such as NOx, HC and CO. It becomes difficult.

このようなことから、排気浄化触媒の上流と下流に排気中の酸素濃度を検出するOセンサと排気浄化触媒の温度を検出する触媒温度センサとを設け、上流側Oセンサの上流から燃料(還元剤)を供給し、それぞれのセンサの検出値に基づいて排気浄化触媒の劣化を判定するエンジンの排気浄化装置が開発されている(特許文献1)。 For this reason, an O 2 sensor for detecting the oxygen concentration in the exhaust and a catalyst temperature sensor for detecting the temperature of the exhaust purification catalyst are provided upstream and downstream of the exhaust purification catalyst, and fuel is supplied from the upstream of the upstream O 2 sensor. An exhaust purification device for an engine that supplies (reducing agent) and determines the deterioration of the exhaust purification catalyst based on the detection value of each sensor has been developed (Patent Document 1).

特開2003−83047号公報JP 2003-83047 A

このように、上記特許文献1のエンジンの排気浄化装置では、排気浄化触媒の上流と下流にOセンサを設けて酸素濃度を検出し、更に触媒温度センサを設けて排気浄化触媒の温度を検出するようにしている。
しかしながら、排気浄化触媒の劣化判定を行うために新たにOセンサ及び触媒温度センサを設けることは、コストアップとなり好ましいことではない。
As described above, in the engine exhaust purification device of Patent Document 1, the oxygen concentration is detected by providing the O 2 sensors upstream and downstream of the exhaust purification catalyst, and the temperature of the exhaust purification catalyst is further detected by providing the catalyst temperature sensor. Like to do.
However, it is not preferable to newly provide an O 2 sensor and a catalyst temperature sensor in order to determine the deterioration of the exhaust purification catalyst because of increased costs.

本発明は、この様な問題を解決するためになされたもので、その目的とするところは、コストを抑制しつつ、精度良く排気浄化手段の劣化を判定することのできる触媒劣化判定装置を提供することにある。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a catalyst deterioration determination device that can accurately determine deterioration of exhaust purification means while suppressing cost. There is to do.

上記の目的を達成するために、請求項1の触媒劣化判定装置は、内燃機関の排気通路に設けられ、排気中の被酸化成分を酸化する酸化機能と、酸化雰囲気下で排気中の酸素を吸蔵する一方、還元雰囲気下で該吸蔵した酸素を脱離する酸素ストレージ機能とを有する排気浄化手段と、前記排気浄化手段の上流を流れる排気中に燃料を供給する燃料供給手段と、排気をリッチ状態とするリッチ状態生成供給と、前記排気浄化手段の劣化を判定するための劣化判定供給とを行うように前記燃料供給手段を制御する供給制御手段と、前記排気浄化手段の下流に設けられ排気中の酸素濃度を検出する酸素濃度検出手段と、前記排気浄化手段の酸化機能の劣化を判定する劣化判定手段とを備え、前記供給制御手段は、前記劣化判定手段での前記排気浄化手段の劣化判定時に、排気をリッチ状態とする前記リッチ状態生成供給を連続的に行い、該リッチ状態生成供給の開始から所定時間経過後に所定間隔で該リッチ状態生成供給に加えて複数の前記劣化判定供給を行うように燃料供給手段を制御し、前記劣化判定手段は、前記酸素濃度検出手段にて検出される複数の前記劣化判定供給のそれぞれに対応する排気中の酸素濃度の変化に基づいて、前記排気浄化手段の劣化を判定することを特徴とする。   In order to achieve the above object, a catalyst deterioration determination device according to claim 1 is provided in an exhaust passage of an internal combustion engine and oxidizes an oxidizable component in exhaust gas and oxygen in exhaust gas in an oxidizing atmosphere. Exhaust purification means having an oxygen storage function for desorbing the stored oxygen under a reducing atmosphere, a fuel supply means for supplying fuel into the exhaust flowing upstream of the exhaust purification means, and exhaust rich Supply control means for controlling the fuel supply means so as to perform rich state generation supply to be in a state and deterioration determination supply for determining deterioration of the exhaust purification means, and exhaust gas provided downstream of the exhaust purification means Oxygen concentration detecting means for detecting the oxygen concentration in the exhaust gas, and deterioration determining means for determining deterioration of the oxidation function of the exhaust gas purifying means, wherein the supply control means is the exhaust gas purifying means in the deterioration determining means. When the deterioration is determined, the rich state generation and supply of exhaust gas in a rich state are continuously performed, and a plurality of the deterioration determinations are performed in addition to the rich state generation and supply at predetermined intervals after a lapse of a predetermined time from the start of the rich state generation and supply. The fuel supply means is controlled to supply, and the deterioration determination means is based on a change in oxygen concentration in the exhaust gas corresponding to each of the plurality of deterioration determination supplies detected by the oxygen concentration detection means, The deterioration of the exhaust gas purification means is determined.

また、請求項2の触媒劣化判定装置では、請求項1において、前記劣化判定手段は、前記酸素濃度検出手段にて検出される複数の前記劣化判定供給のそれぞれに対応して変化する排気中の酸素濃度のうち、任意の2回の該劣化判定供給に対応する酸素濃度の最小値であるそれぞれの最小酸素濃度より、任意の2回の該劣化判定供給に対応する該最小酸素濃度の差である濃度偏差を算出し、該濃度偏差が所定濃度偏差以上であれば、前記排気浄化手段が劣化していると判定することを特徴とする。   According to a second aspect of the present invention, there is provided the catalyst deterioration determination device according to the first aspect, wherein the deterioration determination means is in the exhaust gas that changes corresponding to each of the plurality of deterioration determination supplies detected by the oxygen concentration detection means. Among the oxygen concentrations, the difference between the minimum oxygen concentrations corresponding to any two times of the deterioration determination supply is less than the minimum oxygen concentration that is the minimum value of the oxygen concentration corresponding to any two times of the deterioration determination supply. A certain concentration deviation is calculated, and if the concentration deviation is equal to or greater than a predetermined concentration deviation, it is determined that the exhaust gas purification means has deteriorated.

また、請求項3の触媒劣化判定装置では、請求項1において、前記劣化判定手段は、前記酸素濃度検出手段にて検出される複数の前記劣化判定供給のそれぞれに対応して変化する排気中の酸素濃度のうち、任意の2回の該劣化判定供給に対応する酸素濃度の変化に基づきそれぞれの酸素濃度の変化率である酸素濃度変化率を算出し、それぞれの該劣化判定供給における該酸素濃度変化率の最大値と最小値の差である変化率の差を算出し、更に任意の2回の該劣化判定供給の該変化率の差の偏差である変化率偏差を算出して、該変化率偏差が所定変化率偏差以上であれば、前記排気浄化手段が劣化していると判定することを特徴とする。   According to a third aspect of the present invention, there is provided the catalyst deterioration determination device according to the first aspect, wherein the deterioration determination means is a portion of the exhaust gas that changes corresponding to each of the plurality of deterioration determination supplies detected by the oxygen concentration detection means. Of the oxygen concentrations, an oxygen concentration change rate that is a change rate of each oxygen concentration is calculated based on a change in oxygen concentration corresponding to any two times of the deterioration determination supply, and the oxygen concentration in each deterioration determination supply The difference between the change rate, which is the difference between the maximum value and the minimum value of the change rate, is calculated, and further, the change rate deviation, which is the deviation of the change rate difference between any two of the deterioration determination supplies, is calculated. If the rate deviation is greater than or equal to a predetermined change rate deviation, it is determined that the exhaust gas purification means has deteriorated.

また、請求項4の触媒劣化判定装置では、請求項1乃至3のいずれかにおいて、前記供給制御手段は、前記劣化判定手段での前記排気浄化手段の劣化判定開始時に、前記リッチ状態生成供給に加え、前記リッチ状態生成供給の前記燃料の供給量より多い該燃料を供給する脱離雰囲気生成供給を行うように燃料供給手段を制御することを特徴とする。
また、請求項5の触媒劣化判定装置では、請求項1乃至4のいずれかにおいて、前記排気浄化手段は、酸化雰囲気下で排気中の窒素酸化物を吸蔵する一方、還元雰囲気下で該吸蔵した窒素酸化物を脱離及び還元する窒素酸化物吸蔵機能を有し、該排気浄化手段が硫黄被毒状態にあるときに排気を高温でリッチ状態として吸蔵した硫黄を還元除去する硫黄還元処理を行う硫黄除去手段を更に備え、前記劣化判定手段は、前記硫黄除去手段での硫黄還元処理時に併せて前記排気浄化手段の劣化を判定することを特徴とする。
According to a fourth aspect of the present invention, there is provided the catalyst deterioration determination device according to any one of the first to third aspects, wherein the supply control means performs the rich state generation supply at the start of the deterioration determination of the exhaust gas purification means by the deterioration determination means. In addition, the fuel supply means is controlled to perform desorption atmosphere generation supply for supplying the fuel in a larger amount than the supply amount of the fuel in the rich state generation supply.
Further, in the catalyst deterioration determination device according to claim 5, in any one of claims 1 to 4, the exhaust purification means occludes nitrogen oxide in exhaust under an oxidizing atmosphere, and occludes under a reducing atmosphere. It has a nitrogen oxide occlusion function for desorbing and reducing nitrogen oxides, and when the exhaust gas purification means is in a sulfur poisoning state, it performs a sulfur reduction treatment that reduces and removes the sulfur that has been occluded by making the exhaust gas rich at a high temperature. The apparatus further includes a sulfur removing unit, and the deterioration determining unit determines deterioration of the exhaust gas purifying unit at the time of the sulfur reduction process in the sulfur removing unit.

また、請求項6の触媒劣化判定装置では、請求項1乃至4のいずれかにおいて、前記排気浄化手段は、酸化触媒と、該酸化触媒の下流側に設けられ酸化雰囲気下で排気中の窒素酸化物を吸蔵する一方、還元雰囲気下で該吸蔵した窒素酸化物を脱離及び還元する窒素酸化物吸蔵触媒から構成される、前記窒素酸化物吸蔵触媒が硫黄被毒状態にあるとき排気を高温でリッチ状態として吸蔵した硫黄を還元除去する硫黄還元処理を行う硫黄除去手段を更に備え、前記劣化判定手段は、前記硫黄除去手段での硫黄還元処理時に併せて前記酸化触媒の劣化を判定することを特徴とする。   Further, in the catalyst deterioration determination device according to claim 6, in any one of claims 1 to 4, the exhaust purification unit includes an oxidation catalyst and nitrogen oxidation in exhaust gas in an oxidizing atmosphere provided downstream of the oxidation catalyst. The exhaust gas is composed of a nitrogen oxide storage catalyst that desorbs and reduces the stored nitrogen oxides in a reducing atmosphere while the nitrogen oxide storage catalyst is in a sulfur poisoning state. It further comprises sulfur removal means for performing sulfur reduction treatment for reducing and removing sulfur stored in a rich state, and the deterioration determination means determines deterioration of the oxidation catalyst at the time of sulfur reduction treatment in the sulfur removal means. Features.

また、請求項7の触媒劣化判定装置では、請求項5または6において、更に前記硫黄還元処理の処理回数を検出する硫黄除去回数検出手段を備え、前記劣化判定手段は、前記硫黄除去回数検出手段にて検出される前記硫黄還元処理の処理回数が所定処理回数以上である時に劣化判定を実行することを特徴とする。
また、請求項8の触媒劣化判定装置では、請求項1乃至7のいずれかにおいて、更に前記内燃機関の搭載される車両の走行距離を検出し、走行距離を積算する走行距離検出積算手段と、前記内燃機関の排気温度を検出し、排気温度を積算する排気温度検出積算手段とのどちらか一方或いは双方を備え、前記劣化判定手段は、前記走行距離検出手段にて検出される走行距離の積算値が所定積算走行距離以上である時に、或いは前記排気温度積算値検出手段にて検出される前記排気温度の積算値が所定積算温度以上である時に劣化判定を実行することを特徴とする。
The catalyst deterioration determination apparatus according to a seventh aspect of the present invention is the apparatus according to the fifth or sixth aspect, further comprising a sulfur removal number detection means for detecting the number of times of the sulfur reduction treatment, wherein the deterioration determination means is the sulfur removal number detection means. The deterioration determination is performed when the number of times of the sulfur reduction treatment detected in step S is equal to or greater than a predetermined number of times.
Further, in the catalyst deterioration determination device according to claim 8, in any one of claims 1 to 7, a travel distance detection integration unit that further detects a travel distance of a vehicle on which the internal combustion engine is mounted, and integrates the travel distance; One or both of exhaust temperature detection integration means for detecting the exhaust temperature of the internal combustion engine and integrating the exhaust temperature are provided, and the deterioration determination means is an integration of the travel distance detected by the travel distance detection means The deterioration determination is performed when the value is equal to or greater than a predetermined integrated travel distance, or when the integrated value of the exhaust temperature detected by the exhaust temperature integrated value detecting means is equal to or greater than a predetermined integrated temperature.

請求項1の発明によれば、燃料供給手段を制御してリッチ状態生成供給を連続的に行い、排気をリッチ化することにより排気浄化手段に吸蔵されている酸素を放出し、更にリッチ化された排気中に所定間隔で複数回の劣化判定供給を行い、酸素濃度検出手段にて検出されるそれぞれの劣化判定供給に対応する排気中の酸素濃度変化に基づいて、排気浄化手段の劣化を判定するようにしている。   According to the first aspect of the present invention, the fuel supply means is controlled to continuously perform the rich state generation supply, and by enriching the exhaust gas, the oxygen stored in the exhaust gas purification means is released and further enriched. The exhaust gas purifying means is judged to be deteriorated based on the oxygen concentration change in the exhaust gas corresponding to the respective deterioration judgment supplies detected by the oxygen concentration detecting means. Like to do.

このように、劣化判定時に排気を常にリッチ状態として内燃機関の通常運転時に排気浄化手段に吸蔵された酸素を放出し、吸蔵された酸素が放出された後に劣化判定用の燃料を排気浄化手段に供給しているので、劣化判定時に行う劣化判定供給での排気浄化手段の酸化や燃料分解反応を安定的に行うことができる。また、複数の劣化判定供給による酸素濃度の変化に基づいて排気浄化手段の劣化を判定しているので、燃料供給手段や酸素濃度検出手段の絶対的な検出精度によらず、排気浄化手段の下流に設けられた酸素濃度検出手段の検出値より劣化判定を行うことができる。   In this way, the exhaust gas is always in a rich state at the time of deterioration determination, and the oxygen stored in the exhaust gas purification means is released during normal operation of the internal combustion engine. After the stored oxygen is released, the fuel for deterioration determination is used as the exhaust gas purification means. Since the gas is supplied, the oxidation of the exhaust gas purification means and the fuel decomposition reaction can be stably performed in the deterioration determination supply performed at the time of deterioration determination. Further, since the deterioration of the exhaust purification unit is determined based on the change in the oxygen concentration due to the plurality of deterioration determination supplies, the downstream of the exhaust purification unit regardless of the absolute detection accuracy of the fuel supply unit and the oxygen concentration detection unit. The deterioration determination can be performed based on the detection value of the oxygen concentration detection means provided in the above.

従って、劣化判定時に安定的に酸化や燃料分解反応を行うことができ、更に排気浄化手段の上流に酸素濃度検出手段を設けることなく排気浄化手段の劣化を判定することができるので、コストを低減しつつ精度良く触媒の劣化を判定することができる。
また、請求項2の発明によれば、酸素濃度検出手段にて検出されるそれぞれの劣化判定供給に対応して変化する排気中の酸素濃度のうち、任意の2回の劣化判定供給に対応する酸素濃度の最小値であるそれぞれの最小酸素濃度より、それらの最小酸素濃度の差である濃度偏差を算出し、濃度偏差が所定濃度偏差以上であれば、排気浄化手段が劣化していると判定するようにしている。
Therefore, oxidation and fuel decomposition reaction can be performed stably at the time of deterioration judgment, and furthermore, deterioration of the exhaust purification means can be judged without providing an oxygen concentration detection means upstream of the exhaust purification means, thereby reducing costs. In addition, the deterioration of the catalyst can be accurately determined.
According to the invention of claim 2, the oxygen concentration in the exhaust gas that changes corresponding to each deterioration determination supply detected by the oxygen concentration detecting means corresponds to any two deterioration determination supplies. From each minimum oxygen concentration that is the minimum value of oxygen concentration, a concentration deviation that is the difference between these minimum oxygen concentrations is calculated, and if the concentration deviation is equal to or greater than a predetermined concentration deviation, it is determined that the exhaust purification means has deteriorated Like to do.

このように、排気浄化手段の下流に設けられた酸素濃度検出手段にて検出された任意の2回の劣化判定供給に対応する酸素濃度の変化より、それぞれの劣化判定供給に対応した酸素濃度の最小値である最小酸素濃度を検出し、それらの濃度偏差より排気浄化手段の劣化を判定しているので、燃料供給手段や酸素濃度検出手段の絶対的な検出精度によらず、排気浄化手段の下流に設けられた酸素濃度検出手段の検出値より劣化判定を正確に行うことができる。   In this way, the oxygen concentration corresponding to each deterioration determination supply is determined from the change in the oxygen concentration corresponding to any two deterioration determination supplies detected by the oxygen concentration detection means provided downstream of the exhaust purification means. Since the minimum oxygen concentration, which is the minimum value, is detected and the deterioration of the exhaust gas purification means is determined from the deviation in the concentration, the exhaust purification means of the exhaust gas purification means does not depend on the absolute detection accuracy of the fuel supply means or the oxygen concentration detection means. Degradation can be accurately determined from the detection value of the oxygen concentration detection means provided downstream.

また、請求項3の発明によれば、酸素濃度検出手段にて検出される任意の2回の劣化判定供給に対応する排気中の酸素濃度の変化より、それぞれの劣化判定供給に対応した酸素濃度変化の変化率の最大値と最小値の差分である変化率の差を算出し、更にそれぞれの劣化判定供給の変化率の差の偏差である変化率偏差を算出し、変化率偏差が所定変化率偏差以上であれば、排気浄化手段が劣化していると判定するようにしている。   According to the invention of claim 3, the oxygen concentration corresponding to each deterioration determination supply from the change in the oxygen concentration in the exhaust gas corresponding to any two times deterioration determination supply detected by the oxygen concentration detection means. The difference in change rate, which is the difference between the maximum value and the minimum value of the change rate of change, is calculated, and further, the change rate deviation, which is the deviation of the difference in change rate of each deterioration judgment supply, is calculated, and the change rate deviation is a predetermined change If it is more than the rate deviation, it is determined that the exhaust purification means has deteriorated.

このように、排気浄化手段の下流に設けられた酸素濃度検出手段にて検出された任意の2回の劣化判定供給による酸素濃度の変化より、それぞれの劣化判定供給に対応した変化率よりそれぞれの変化率の差を算出し、それらの変化率の差より変化率偏差を算出し、変化率偏差より排気浄化手段の劣化を判定しているので、燃料供給手段や酸素濃度検出手段の絶対的な検出精度によらず、排気浄化手段の下流に設けられた酸素濃度検出手段の検出値より劣化判定を正確に行うことができる。   In this way, from the change in oxygen concentration due to any two times of deterioration determination supply detected by the oxygen concentration detection means provided downstream of the exhaust purification means, each change rate corresponding to each deterioration determination supply is different from each other. Since the difference in the change rate is calculated, the change rate deviation is calculated from the difference between the change rates, and the deterioration of the exhaust purification means is determined from the change rate deviation, the absolute value of the fuel supply means and the oxygen concentration detection means is determined. Regardless of the detection accuracy, the deterioration determination can be accurately performed based on the detection value of the oxygen concentration detection means provided downstream of the exhaust purification means.

また、請求項4の発明によれば、排気浄化手段の劣化判定開始時に、リッチ状態生成供給に加え、リッチ状態生成供給の燃料の供給量より多い脱離雰囲気生成供給を行うようにしている。
このように、排気浄化手段の劣化判定開始時に脱離雰囲気生成供給を行っているので、排気浄化手段で吸蔵する酸素を短期間に確実に放出することができる。
According to the invention of claim 4, when starting the deterioration determination of the exhaust gas purification means, in addition to the rich state generation supply, the desorption atmosphere generation supply larger than the fuel supply amount of the rich state generation supply is performed.
As described above, since the desorption atmosphere generation and supply are performed at the start of the deterioration determination of the exhaust purification unit, the oxygen stored in the exhaust purification unit can be reliably released in a short time.

従って、排気浄化手段に吸蔵した酸素を短期間に確実に放出することができ、劣化判定時に行う劣化判定供給での排気浄化手段での酸化や燃料分解反応を安定して行うことができるので精度良く触媒の劣化を判定することができる。
また、請求項5の発明によれば、排気浄化手段に吸蔵した硫黄分を還元除去する硫黄還元処理時に併せて排気浄化手段の劣化を判定するようにしているので、硫黄還元処理時において排気浄化手段が暖機された状態を利用して排気浄化手段の劣化判定が行われ、排気浄化手段を暖機するための燃料の消費を抑えることができ、燃費の悪化を防止することができる。
Accordingly, the oxygen stored in the exhaust purification means can be reliably released in a short period of time, and the oxidation and fuel decomposition reaction in the exhaust purification means can be stably performed in the deterioration judgment supply performed at the time of deterioration judgment. The deterioration of the catalyst can be judged well.
According to the invention of claim 5, since the deterioration of the exhaust purification means is determined together with the sulfur reduction process for reducing and removing the sulfur content stored in the exhaust purification means, the exhaust purification process is performed during the sulfur reduction process. Deterioration determination of the exhaust gas purification means is performed using the state where the means is warmed up, so that consumption of fuel for warming up the exhaust gas purification means can be suppressed, and deterioration of fuel consumption can be prevented.

また、請求項6の発明によれば、排気浄化手段を酸化触媒と窒素酸化物吸蔵触媒とに分けて構成するようにしているので、燃料の酸化に機能を特化した高効率な触媒を設けることにより排気浄化効率が向上するとともに、酸化に伴う発熱を複数の触媒に分散することができ、排気浄化手段の耐久性を向上させることのできるシステムの劣化判定を行うことができる。   Further, according to the invention of claim 6, since the exhaust purification means is configured to be divided into the oxidation catalyst and the nitrogen oxide storage catalyst, a highly efficient catalyst specialized in the function of fuel oxidation is provided. As a result, the exhaust purification efficiency can be improved, and the heat generated due to oxidation can be dispersed to the plurality of catalysts, so that the deterioration of the system that can improve the durability of the exhaust purification means can be determined.

また、請求項7の発明によれば、硫黄還元処理の処理回数が所定処理回数以上である時に排気浄化手段の劣化を判定するようにしているので、触媒が劣化していない初期の排気浄化手段の劣化判定の実施回数を減らし、不要な劣化判定を抑制することができるので、更に燃費の悪化を防止することができる。
また、請求項8の発明によれば、走行距離検出積算手段にて検出及び積算される走行距離の積算値が所定積算走行距離以上である時に、或いは排気温度検出積算手段にて検出及び積算される排気温度の積算値が所定積算温度以上である時に排気浄化手段の劣化を判定するようにしているので、車両の走行状況に応じて排気浄化手段の劣化判定を行うことができ、触媒が劣化していない初期の不要な劣化判定を抑制することができるので更に燃費の悪化を防止することができる。
According to the invention of claim 7, since the deterioration of the exhaust purification means is determined when the number of times of the sulfur reduction treatment is equal to or greater than the predetermined number of times, the initial exhaust purification means in which the catalyst has not deteriorated. The number of executions of deterioration determination can be reduced and unnecessary deterioration determination can be suppressed, so that further deterioration of fuel consumption can be prevented.
According to the invention of claim 8, when the integrated value of the travel distance detected and integrated by the travel distance detection integration means is equal to or greater than the predetermined integration travel distance, or detected and integrated by the exhaust temperature detection integration means. When the integrated value of the exhaust gas temperature is equal to or higher than the predetermined integrated temperature, the deterioration of the exhaust gas purification means is determined. Therefore, the deterioration determination of the exhaust gas purification means can be performed according to the traveling state of the vehicle, and the catalyst is deteriorated. Since it is possible to suppress the initial unnecessary deterioration determination, the fuel consumption can be further prevented from deteriorating.

本発明に係る触媒劣化判定装置の概略構成図である。It is a schematic block diagram of the catalyst deterioration determination apparatus which concerns on this invention. 本発明に係る触媒劣化判定装置におけるECUの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of ECU in the catalyst degradation determination apparatus which concerns on this invention. 本発明の第1実施例に係る触媒劣化判定制御の制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine of the catalyst degradation determination control which concerns on 1st Example of this invention. 本発明の第1実施例に係るSパージ中における触媒劣化判定時の燃料添加量を示す特性図である。It is a characteristic view which shows the fuel addition amount at the time of catalyst degradation determination in S purge which concerns on 1st Example of this invention. 本発明の第1実施例に係る触媒正常時の燃料添加量とA/Fセンサの出力値の変化を示すグラフである。It is a graph which shows the change of the fuel addition amount at the time of the normal catalyst based on 1st Example of this invention, and the output value of an A / F sensor. 本発明の第1実施例に係る触媒劣化時の燃料添加量とA/Fセンサの出力値の変化を示すグラフである。It is a graph which shows the change of the fuel addition amount at the time of catalyst deterioration which concerns on 1st Example of this invention, and the output value of an A / F sensor. 本発明の第2実施例に係る触媒劣化判定制御の制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine of the catalyst deterioration determination control which concerns on 2nd Example of this invention. 本発明の第2実施例に係るSパージ中における触媒劣化判定時の燃料添加量を示す特性図である。It is a characteristic view which shows the fuel addition amount at the time of catalyst deterioration determination in S purge which concerns on 2nd Example of this invention. 本発明の第2実施例に係る触媒正常時の燃料添加量とA/Fの変化率の変化を示すグラフである。It is a graph which shows the change of the fuel addition amount at the time of the normal catalyst based on 2nd Example of this invention, and the change rate of A / F. 本発明の第2実施例に係る触媒劣化時の燃料添加量とA/Fの変化率の変化を示すグラフである。It is a graph which shows the change of the fuel addition amount at the time of catalyst deterioration which concerns on 2nd Example of this invention, and the change rate of A / F.

以下、本発明の実施の形態を図面に基づき説明する。
図1は、本発明に係る触媒劣化判定装置の概略構成図を示し、図2は、本発明に係る触媒劣化判定装置におけるECUの内部構成を示すブロック図を示している。
以下、本発明の触媒劣化判定装置の構成を説明する。
図1に示すように、エンジン(内燃機関)1は多気筒の筒内直接噴射式内燃機関(例えばコモンレール式ディーゼルエンジン)であり、詳しくは、コモンレールに蓄圧された高圧燃料を各気筒の燃料噴射ノズル20に供給し、任意の噴射時期及び噴射量で当該燃料噴射ノズル20から各気筒の燃焼室11内に噴射可能な構成を成している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration diagram of a catalyst deterioration determination apparatus according to the present invention, and FIG. 2 shows a block diagram showing an internal configuration of an ECU in the catalyst deterioration determination apparatus according to the present invention.
Hereinafter, the configuration of the catalyst deterioration determination device of the present invention will be described.
As shown in FIG. 1, an engine (internal combustion engine) 1 is a multi-cylinder in-cylinder direct injection internal combustion engine (for example, a common rail diesel engine). Specifically, high pressure fuel accumulated in the common rail is injected into each cylinder as fuel injection. The fuel is supplied to the nozzle 20 and can be injected from the fuel injection nozzle 20 into the combustion chamber 11 of each cylinder at an arbitrary injection timing and injection amount.

また、エンジン1の各気筒には上下摺動可能なピストン2が設けられており、当該ピストン2はコンロッド3を介して図示しないクランクシャフトに連結されている。また、クランクシャフトの一端部には図示しないフライホイールが設けられており、当該フライホイールにはクランクシャフトの回転速度を検出するクランク角センサ22が設けられている。   Each cylinder of the engine 1 is provided with a piston 2 that can slide up and down. The piston 2 is connected to a crankshaft (not shown) via a connecting rod 3. Further, a flywheel (not shown) is provided at one end of the crankshaft, and a crank angle sensor 22 for detecting the rotational speed of the crankshaft is provided on the flywheel.

また、燃焼室11にはインテークポート9とエキゾーストポート13が連通されている。
インテークポート9には、燃焼室11と当該インテークポート9の連通と遮断を行うインテークバルブ10が設けられており、エキゾーストポート13には、燃焼室11と当該エキゾーストポート13との連通と遮断を行うエキゾーストバルブ12が設けられている。
An intake port 9 and an exhaust port 13 are communicated with the combustion chamber 11.
The intake port 9 is provided with an intake valve 10 for communicating and blocking the combustion chamber 11 and the intake port 9. The exhaust port 13 performs communication and blocking between the combustion chamber 11 and the exhaust port 13. An exhaust valve 12 is provided.

また、インテークポート9の上流には、新気を吸入する吸気ダクト4、吸入された新気中のゴミを取り除くエアークリーナ5、排気のエネルギを利用し吸入された新気を圧縮するターボチャージャ6の図示しないコンプレッサハウジング、圧縮され高温となった新気を冷却するインタークーラ7、吸入した空気を各気筒に分配するインテークマニフォールド8がそれぞれ連通するように設けられている。   Further, upstream of the intake port 9, an intake duct 4 for sucking in fresh air, an air cleaner 5 for removing dust in the sucked fresh air, and a turbocharger 6 for compressing the sucked fresh air using exhaust energy. , A compressor housing (not shown), an intercooler 7 that cools the compressed and heated fresh air, and an intake manifold 8 that distributes the intake air to each cylinder are provided in communication with each other.

また、エアークリーナ5の下流でありターボチャージャ6のコンプレッサハウジングの上流には燃焼室11に吸入される新気の量を検出するエアーフローセンサ23が通路内に突出するように設けられており、燃焼室11に吸入される吸入空気の圧力を検出するブーストセンサ24、該吸入空気の温度を検出する吸気温度センサ25がインテークマニフォールド8内に突出するように設けられている。   An air flow sensor 23 for detecting the amount of fresh air sucked into the combustion chamber 11 is provided downstream of the air cleaner 5 and upstream of the compressor housing of the turbocharger 6 so as to protrude into the passage. A boost sensor 24 for detecting the pressure of intake air sucked into the combustion chamber 11 and an intake air temperature sensor 25 for detecting the temperature of the intake air are provided so as to protrude into the intake manifold 8.

また、エキゾーストポート13の下流には、各気筒から排出される排気をまとめるエキゾーストマニフォールド14、ターボチャージャ6に排気を導入する図示しないタービンハウジングと排気管18が連通するように設けられている。
また、排気管18には、上流から順番に排気中の被酸化成分を酸化する酸化触媒(排気浄化手段)15、排気中のNOxを吸蔵還元するNOx吸蔵還元触媒(排気浄化手段)16と排気中の黒鉛を主成分とする微粒子状物資を捕集し燃焼させるディーゼルパティキュレートフィルタ(DPF)17が連通するように設けられている。
Further, downstream of the exhaust port 13, an exhaust manifold 14 that collects exhaust discharged from each cylinder, and a turbine housing (not shown) that introduces exhaust into the turbocharger 6 and an exhaust pipe 18 are provided so as to communicate with each other.
The exhaust pipe 18 includes an oxidation catalyst (exhaust purification means) 15 that oxidizes components to be oxidized in order from upstream, an NOx storage reduction catalyst (exhaust purification means) 16 that occludes and reduces NOx in the exhaust, and exhaust. A diesel particulate filter (DPF) 17 that collects and burns particulate matter mainly composed of graphite is communicably provided.

また、排気管18のターボチャージャ6の下流であり酸化触媒15の上流には排気中に還元剤(燃料)を添加する燃料添加弁(燃料供給手段)26及び排気の温度を検出する排気温度センサ(排気温度検出積算手段)27が通路内に突出するように設けられている。
また、排気管18のNOx吸蔵還元触媒16の下流でありDPF17の上流には、排気中の酸素比率であるA/F値(酸素濃度)を検出するA/Fセンサ(酸素濃度検出手段)28が通路内に突出するように設けられている。
Further, a fuel addition valve (fuel supply means) 26 for adding a reducing agent (fuel) to the exhaust gas is provided downstream of the turbocharger 6 of the exhaust pipe 18 and upstream of the oxidation catalyst 15, and an exhaust gas temperature sensor for detecting the temperature of the exhaust gas. (Exhaust temperature detection integrating means) 27 is provided so as to protrude into the passage.
Further, an A / F sensor (oxygen concentration detection means) 28 for detecting an A / F value (oxygen concentration) that is an oxygen ratio in the exhaust gas is located downstream of the NOx storage reduction catalyst 16 in the exhaust pipe 18 and upstream of the DPF 17. Is provided so as to protrude into the passage.

インテークマニフォールド8とエキゾーストマニフォールド14には、それぞれが連通するように排気の一部を吸気へ戻すEGR通路21が設けられており、EGR通路21には、EGR量(排気の流量)を調整するEGRバルブ19が設けられている。
そして、上記EGRバルブ19、燃料噴射ノズル20、クランク角センサ22、エアーフローセンサ23、ブーストセンサ24、吸気温度センサ25、燃料添加弁26、排気温度センサ27、A/Fセンサ28、及びエンジン1が搭載される図示しない車両の車速を検出する車速センサ(走行距離検出積算手段)29等の各種装置や各種センサ類は、エンジン1の総合的な制御を行うための制御装置であって入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、タイマ及び中央演算処理装置(CPU)等を含んで構成される電子コントロールユニット(ECU)30と電気的に接続されており、当該ECU30は各種センサ類からの各情報に基づき各種装置を作動制御する。
The intake manifold 8 and the exhaust manifold 14 are provided with an EGR passage 21 for returning a part of the exhaust gas to the intake air so as to communicate with each other. The EGR passage 21 adjusts an EGR amount (exhaust gas flow rate). A valve 19 is provided.
The EGR valve 19, fuel injection nozzle 20, crank angle sensor 22, air flow sensor 23, boost sensor 24, intake air temperature sensor 25, fuel addition valve 26, exhaust gas temperature sensor 27, A / F sensor 28, and engine 1 Various devices and various sensors such as a vehicle speed sensor (traveling distance detection integrating means) 29 for detecting the vehicle speed of a vehicle (not shown) on which the vehicle is mounted are control devices for performing overall control of the engine 1 and are input / output. It is electrically connected to an electronic control unit (ECU) 30 including a device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a timer, a central processing unit (CPU), etc. Various devices are operated and controlled based on information from various sensors.

詳しくは、図2を参照すると、本発明に係る触媒劣化判定装置におけるECU30の内部構成を示すブロック図で示されており、以下同図に基づきECU30の入出力関係について説明する。
ECU30の入力側には、クランク角センサ22、エアーフローセンサ23、ブーストセンサ24、吸気温度センサ25、排気温度センサ27、A/Fセンサ28及び車速センサ29等のセンサ類が電気的に接続されており、これら各種装置及び各種センサ類からの検出情報が入力される。
Specifically, referring to FIG. 2, a block diagram showing the internal configuration of the ECU 30 in the catalyst deterioration determination device according to the present invention is shown, and the input / output relationship of the ECU 30 will be described below with reference to FIG.
Sensors such as a crank angle sensor 22, an air flow sensor 23, a boost sensor 24, an intake air temperature sensor 25, an exhaust gas temperature sensor 27, an A / F sensor 28, and a vehicle speed sensor 29 are electrically connected to the input side of the ECU 30. Detection information from these various devices and various sensors is input.

一方、ECU30の出力側には、EGRバルブ19、燃料噴射ノズル20と燃料添加弁26が電気的に接続されている。
これより、ECU30は、ドライバのアクセル操作を検出する図示しないアクセルポジションセンサ等の検出値を基に、燃料噴射量制御部31にて最適な燃料量を燃焼室11に噴射できるように制御信号を燃料噴射ノズル20に供給し制御する。
On the other hand, the EGR valve 19, the fuel injection nozzle 20, and the fuel addition valve 26 are electrically connected to the output side of the ECU 30.
Thus, the ECU 30 generates a control signal so that the fuel injection amount control unit 31 can inject an optimal fuel amount into the combustion chamber 11 based on a detection value of an accelerator position sensor (not shown) that detects the driver's accelerator operation. The fuel injection nozzle 20 is supplied and controlled.

また、燃料噴射制御部31の燃料噴射ノズル20への制御信号を基に、燃料噴射量積算部32にて、燃料噴射ノズル20より噴射される燃料の噴射量を積算する。
また、ECU30に内蔵されるタイマ33にて計時される時間を基に、運転時間積算部34にてエンジン1の運転時間を積算する。
また、燃料噴射量積算部32での燃料噴射量の積算値及び運転時間積算部34でのエンジン1の運転時間の積算値を基に、Sパージ制御部(硫黄除去手段)35にてNOx吸蔵還元触媒16に吸蔵した硫黄の量を算出し、算出された硫黄の量に基づきNOx吸蔵還元触媒16が硫黄被毒されたと判断されれば、硫黄を還元除去するSパージ処理(硫黄還元処理)を行うように燃料添加制御部(供給制御手段)41に制御信号を供給する。
Further, based on a control signal to the fuel injection nozzle 20 of the fuel injection control unit 31, the fuel injection amount integration unit 32 integrates the injection amount of fuel injected from the fuel injection nozzle 20.
Further, based on the time measured by the timer 33 built in the ECU 30, the operation time of the engine 1 is integrated by the operation time integration unit 34.
Further, based on the integrated value of the fuel injection amount in the fuel injection amount integrating unit 32 and the integrated value of the operating time of the engine 1 in the operating time integrating unit 34, the S purge control unit (sulfur removal means) 35 stores NOx. The amount of sulfur stored in the reduction catalyst 16 is calculated, and if it is determined that the NOx storage reduction catalyst 16 has been poisoned with sulfur based on the calculated amount of sulfur, S purge processing (sulfur reduction processing) for reducing and removing sulfur. A control signal is supplied to the fuel addition control unit (supply control means) 41 so as to perform the above.

また、Sパージ制御部35の燃料添加制御部41への制御信号を基に、Sパージ回数検出部(硫黄除去回数検出手段)36にてSパージ処理回数を検出する。
また、車速センサ29にて検出される車速及びタイマ33で計時される時間を基に、走行距離算出部(走行距離検出積算手段)37にて車両の走行距離を算出する。
また、走行距離算出部37にて算出された車両の走行距離を走行距離積算部(走行距離検出積算手段)38にて積算する。
Further, based on a control signal from the S purge control unit 35 to the fuel addition control unit 41, the S purge number detection unit (sulfur removal number detection means) 36 detects the number of S purge processes.
Further, based on the vehicle speed detected by the vehicle speed sensor 29 and the time measured by the timer 33, the travel distance of the vehicle is calculated by a travel distance calculation unit (travel distance detection integration means) 37.
Further, the travel distance of the vehicle calculated by the travel distance calculation section 37 is integrated by a travel distance integration section (travel distance detection integration means) 38.

また、排気温度センサ27にて検出される排気温度を排気温度積算部(排気温度検出積算手段)39にて積算する。
また、Sパージ回数検出部36にて検出されたSパージの回数、走行距離積算部38にて積算された車両の走行距離の積算値及び排気温度積算部39にて積算された排気温度の積算値を基に、排気触媒劣化判定部(劣化判定手段)40にて酸化触媒15の触媒劣化判定を行うか、否かを判定し、触媒劣化判定を行う場合には劣化判定用燃料(還元剤)の添加を行うように燃料添加制御部41に制御信号を供給する。更に排気触媒劣化判定部40では、触媒劣化判定用の燃料添加中のA/Fセンサ28の検出値を基に、酸化触媒15の触媒劣化を判定する。
The exhaust temperature detected by the exhaust temperature sensor 27 is integrated by an exhaust temperature integration unit (exhaust temperature detection integration means) 39.
Also, the number of S purges detected by the S purge number detection unit 36, the integrated value of the vehicle travel distance integrated by the travel distance integration unit 38, and the integration of the exhaust temperature integrated by the exhaust temperature integration unit 39. Based on the value, the exhaust catalyst deterioration determination unit (deterioration determination means) 40 determines whether or not the catalyst deterioration of the oxidation catalyst 15 is to be determined. ) Is supplied to the fuel addition control unit 41 so as to perform the addition of Further, the exhaust catalyst deterioration determination unit 40 determines the catalyst deterioration of the oxidation catalyst 15 based on the detection value of the A / F sensor 28 during addition of the fuel for catalyst deterioration determination.

また、Sパージ制御部35の制御信号及び排気触媒劣化判定部40の制御信号を基に、燃料添加制御部41にてSパージ処理及び触媒劣化判定を行うための還元剤(燃料)の添加を燃料添加弁26から行うように燃料添加弁26を制御する。
[第1実施例]
次に、第1実施例における触媒劣化判定の判定要領について説明する。
Further, based on the control signal of the S purge control unit 35 and the control signal of the exhaust catalyst deterioration determination unit 40, the fuel addition control unit 41 adds the reducing agent (fuel) for performing the S purge process and the catalyst deterioration determination. The fuel addition valve 26 is controlled to be performed from the fuel addition valve 26.
[First embodiment]
Next, a determination procedure for determining catalyst deterioration in the first embodiment will be described.

図3は、本発明の第1実施例に係る触媒劣化判定制御の制御ルーチンを示すフローチャートであり、図4は、Sパージ中における触媒劣化判定時の燃料添加量を示す特性図であり、図5は、触媒正常時の燃料添加量とA/Fセンサの出力値の変化を示すグラフであり、図6は、触媒劣化時の燃料添加量とA/Fセンサの出力値の変化を示すグラフである。
図3に示すように、始めにステップS10では、Sパージ処理(硫黄還元処理)を実施中か、否かを判別する。判別結果が真(Yes)でSパージ処理を実施中であれば、ステップS12に進み、判別結果が偽(No)でSパージ処理を実施中でなければ、再度ステップS10の処理を行う。
FIG. 3 is a flowchart showing a control routine of catalyst deterioration determination control according to the first embodiment of the present invention, and FIG. 4 is a characteristic diagram showing a fuel addition amount at the time of catalyst deterioration determination during S purge. 5 is a graph showing changes in the fuel addition amount and the output value of the A / F sensor when the catalyst is normal, and FIG. 6 is a graph showing changes in the fuel addition amount and the output value of the A / F sensor when the catalyst is deteriorated. It is.
As shown in FIG. 3, first, in step S10, it is determined whether or not an S purge process (sulfur reduction process) is being performed. If the determination result is true (Yes) and the S purge process is being performed, the process proceeds to step S12. If the determination result is false (No) and the S purge process is not being performed, the process of step S10 is performed again.

ステップS12では、Sパージ回数検出部36にて検出されるSパージ処理回数が所定処理回数以上、或いは走行距離積算部37にて積算される車両の積算走行距離が所定積算走行距離以上、或いは、排気温度積算部39にて積算される排気温度の積算値が所定積算温度以上の劣化判定許可条件のいずれかが成立したか、否かを判別する。判別結果が真(Yes)で劣化判定許可条件のいずれかが成立していれば、ステップS14に進み、判別結果が偽(No)で劣化判定許可条件のいずれも成立していなければ、ステップS10へ戻る。なお、所定処理回数、所定積算走行距離及び所定積算温度は、実験等にて予め決定された酸化触媒15の熱被害度より決定される。   In step S12, the number of S purge processes detected by the S purge number detection unit 36 is greater than or equal to a predetermined number of processes, or the accumulated travel distance of the vehicle accumulated by the travel distance accumulation unit 37 is greater than or equal to a predetermined accumulated travel distance, or It is determined whether or not any of the deterioration determination permission conditions in which the integrated value of the exhaust temperature integrated by the exhaust temperature integrating unit 39 is equal to or higher than a predetermined integrated temperature is satisfied. If the determination result is true (Yes) and any of the deterioration determination permission conditions is satisfied, the process proceeds to step S14. If the determination result is false (No) and neither of the deterioration determination permission conditions is satisfied, step S10 is performed. Return to. The predetermined number of treatments, the predetermined integrated travel distance, and the predetermined integrated temperature are determined based on the degree of thermal damage of the oxidation catalyst 15 that has been determined in advance through experiments or the like.

ステップS14では、図4に示すように、所定時間毎に行なわれるSパージ処理用燃料添加の間に、触媒劣化判定用燃料添加が行なわれるように燃料添加弁26を制御する。触媒劣化判定用燃料添加は、まず初めに酸化触媒15及びNOx吸蔵還元触媒16に吸蔵された酸素を短期間に脱離するために、リッチ状態生成燃料添加(リッチ状態生成供給)に加えて脱離雰囲気生成燃料添加(脱離雰囲気生成供給)を行い、その後酸化触媒15及びNOx吸蔵還元触媒16に吸蔵された酸素を確実に脱離し、且つ排気をリッチ状態で保持するリッチ状態生成燃料添加のみを行うとともに、当該リッチ状態生成燃料添加開始から所定時間経過後に、酸化触媒15の劣化を判定するための2度の判定用燃料添加(劣化判定供給)である判定用燃料添加aと判定用燃料添加bとを所定間隔をあけて添加することにより行なわれる。そして、ステップS16に進む。   In step S14, as shown in FIG. 4, the fuel addition valve 26 is controlled so that the catalyst deterioration determination fuel addition is performed during the S purge processing fuel addition performed every predetermined time. The catalyst deterioration determination fuel addition is performed in addition to the rich state generation fuel addition (rich state generation supply) in order to desorb the oxygen stored in the oxidation catalyst 15 and the NOx storage reduction catalyst 16 in a short time. Only the rich state generated fuel addition that performs the desorption atmosphere generation fuel addition (desorption atmosphere generation supply) and then reliably desorbs the oxygen stored in the oxidation catalyst 15 and the NOx occlusion reduction catalyst 16 and keeps the exhaust in a rich state only. And a determination fuel addition a and a determination fuel which are two determination fuel additions (determination determination supply) for determining deterioration of the oxidation catalyst 15 after a predetermined time has elapsed since the start of the addition of the rich state generation fuel. It is performed by adding the addition b at a predetermined interval. Then, the process proceeds to step S16.

ステップS16では、図5及び図6に示すように、A/Fセンサ28にて検出される判定燃料添加a及びbに対応するそれぞれのA/F値(酸素濃度)の変化における最小値であるA/F最小値(最小酸素濃度)MinAFa及びMinAFbよりA/F偏差(濃度偏差)を算出する。そして、ステップS18に進む。
ステップS18では、ステップS16にて算出されたA/F偏差が所定濃度偏差以上であるか、否かを判別する。判別結果が真(Yes)でA/F偏差が所定濃度偏差以上であれば、ステップS20に進み、判別結果が偽(No)でA/F偏差が所定濃度偏差以上でなければ、ステップS22に進む。
In step S16, as shown in FIGS. 5 and 6, it is the minimum value in the change of the respective A / F values (oxygen concentrations) corresponding to the determination fuel additions a and b detected by the A / F sensor 28. The A / F deviation (concentration deviation) is calculated from the A / F minimum value (minimum oxygen concentration) MinAFa and MinAFb. Then, the process proceeds to step S18.
In step S18, it is determined whether or not the A / F deviation calculated in step S16 is greater than or equal to a predetermined density deviation. If the determination result is true (Yes) and the A / F deviation is equal to or greater than the predetermined concentration deviation, the process proceeds to step S20. If the determination result is false (No) and the A / F deviation is not equal to or greater than the predetermined concentration deviation, the process proceeds to step S22. move on.

ステップS20では、酸化触媒15が劣化していると判定する。そして、本ルーチンを抜ける。
ステップS22では、酸化触媒15が劣化していないと判定し、ステップS10へ戻る。
このように、本発明に係る触媒劣化判定装置によれば、Sパージ処理を実施中であって、劣化判定許可条件が成立したとき、即ちSパージ処理回数が所定処理回数以上、或いは車両の積算走行距離が所定積算走行距離以上、或いは、排気温度の積算値が所定積算温度以上の劣化判定許可条件のいずれかが成立したときに、劣化判定が行なわれる。
In step S20, it is determined that the oxidation catalyst 15 has deteriorated. Then, this routine is exited.
In step S22, it is determined that the oxidation catalyst 15 has not deteriorated, and the process returns to step S10.
Thus, according to the catalyst deterioration determination device of the present invention, when the S purge process is being performed and the deterioration determination permission condition is satisfied, that is, the number of S purge processes is equal to or greater than the predetermined number of processes, or the vehicle integration Deterioration determination is performed when either the travel distance is equal to or greater than the predetermined cumulative travel distance or the deterioration determination permission condition that the exhaust gas temperature integrated value is equal to or greater than the predetermined cumulative temperature is satisfied.

劣化判定時には、脱離雰囲気生成燃料添加とリッチ状態生成燃料添加とが行なわれる。脱離雰囲気生成燃料添加によりNOx吸蔵還元触媒16に吸蔵されている酸素の脱離が行なわれ、その後のリッチ状態生成燃料添加により常に排気をリッチ状態とすることで酸化触媒15及びNOx吸蔵還元触媒16へ酸素が吸着しないようにしている。そして、このような状態で酸化触媒15の劣化判定のために2度の判定用燃料添加を行い、酸化触媒15にてそれぞれの判定用燃料を燃焼させて、燃焼後の排気のA/Fの変化に基づいて酸化触媒15の劣化を判定する。詳しくは、2度の判定用燃料添加においてそれぞれ燃焼後の排気のA/Fの最小値MinAFa及びMinAFbを検出し、A/F最小値MinAFa及びMinAFbの偏差よりA/F偏差を算出して、A/F偏差が所定濃度偏差以上であると酸化触媒15が劣化していると判定するようにしている。   At the time of deterioration determination, desorption atmosphere generation fuel addition and rich state generation fuel addition are performed. Oxygen stored in the NOx occlusion reduction catalyst 16 is desorbed by the addition of the desorption atmosphere generation fuel, and the exhaust gas is always made rich by the subsequent addition of the rich state generation fuel, so that the oxidation catalyst 15 and the NOx occlusion reduction catalyst. 16 is prevented from adsorbing oxygen. In this state, the determination fuel is added twice to determine the deterioration of the oxidation catalyst 15, and each determination fuel is burned by the oxidation catalyst 15, and the A / F of the exhaust gas after combustion is burned. The deterioration of the oxidation catalyst 15 is determined based on the change. Specifically, in the determination fuel addition twice, the minimum A / F values MinAFa and MinAFb of the exhaust after combustion are detected, and the A / F deviation is calculated from the deviation of the A / F minimum values MinAFa and MinAFb. If the A / F deviation is equal to or greater than the predetermined concentration deviation, it is determined that the oxidation catalyst 15 has deteriorated.

ここで、酸化触媒15は、劣化していると酸化触媒15での判定用燃料の処理(燃焼や燃料の分解)能力が低下する。従って、判定用燃料添加aに対して所定間隔をあけて連続で添加される判定用燃料添加bの処理能力が足らず、判定用燃料添加bの一部が未燃燃料として排出され、排気中の酸素も消費されないため判定用燃料添加aでのA/F値に対して判定用燃料添加bのA/F値はリーンとなる。従って、判定用燃料添加aのときのA/Fの最小値MinAFaと2回目の判定用燃料添加bのときのA/Fの最小値MinAFbとを比較して、その偏差が大きいほど酸化触媒15が劣化しているものと判定できる。このように、連続して添加される複数の判定用燃料添加でのNOx吸蔵還元触媒16後のA/Fの差に基づいて酸化触媒15の劣化を判定することで、酸化触媒15前のA/Fを必要とせずに酸化触媒15の劣化を判定することが可能となり、NOx吸蔵還元触媒16の上流にA/Fセンサが不要となってコストを抑えることができる。   Here, if the oxidation catalyst 15 is deteriorated, the ability of the oxidation catalyst 15 to process the fuel for determination (combustion or decomposition of the fuel) decreases. Accordingly, the processing capacity of the determination fuel addition b that is continuously added at a predetermined interval with respect to the determination fuel addition a is insufficient, and a part of the determination fuel addition b is discharged as unburned fuel. Since oxygen is not consumed, the A / F value of the determination fuel addition b is lean with respect to the A / F value of the determination fuel addition a. Therefore, the minimum value A / F MinAFa for the determination fuel addition a is compared with the minimum A / F value MinAFb for the second determination fuel addition b, and the oxidation catalyst 15 increases as the deviation increases. Can be determined to have deteriorated. As described above, the deterioration of the oxidation catalyst 15 is determined based on the difference in A / F after the NOx storage reduction catalyst 16 when the plurality of determination fuel additions are continuously added. It is possible to determine the deterioration of the oxidation catalyst 15 without requiring / F, and an A / F sensor is not required upstream of the NOx occlusion reduction catalyst 16, and the cost can be suppressed.

また、酸化触媒15及びNOx吸蔵還元触媒16は酸素ストレージ機能を有するため、劣化判定時に酸素が酸化触媒15及びNOx吸蔵還元触媒16から放出あるいは吸収されると、NOx吸蔵還元触媒16後のA/Fが変動して、正確な劣化判定が困難となる虞がある。これに対し、本実施形態では上記のように、脱離雰囲気生成燃料添加及びリッチ状態生成燃料添加により常に排気をリッチ状態とすることで、酸化触媒15及びNOx吸蔵還元触媒16の酸素ストレージ機能を作用させることなく、正確な劣化判定を可能としている。特に、燃料添加量の多い脱離雰囲気生成燃料添加を始めに行なうことで、短期間で酸化触媒15及びNOx吸蔵還元触媒16に吸蔵されている酸素を放出することができ、劣化判定を迅速に行なうことが可能となる。また、Sパージ時に劣化判定を合わせて行なうことで、リッチ状態の間欠的な繰り返しで触媒温度を高温に保持していることを利用して劣化判定が行なわれ、劣化判定時における燃料消費を抑制することができる。   In addition, since the oxidation catalyst 15 and the NOx storage reduction catalyst 16 have an oxygen storage function, if oxygen is released or absorbed from the oxidation catalyst 15 and the NOx storage reduction catalyst 16 at the time of deterioration determination, the A / F may fluctuate and it may be difficult to accurately determine deterioration. In contrast, in the present embodiment, as described above, the exhaust gas is always made rich by the addition of the desorption atmosphere generation fuel and the rich state generation fuel, so that the oxygen storage function of the oxidation catalyst 15 and the NOx occlusion reduction catalyst 16 is increased. It is possible to accurately determine deterioration without acting. In particular, by first adding the desorption atmosphere generating fuel with a large amount of fuel added, the oxygen stored in the oxidation catalyst 15 and the NOx storage reduction catalyst 16 can be released in a short period of time, and the deterioration determination can be performed quickly. Can be performed. In addition, by performing the deterioration determination together with the S purge, the deterioration determination is performed by utilizing the fact that the catalyst temperature is maintained at a high temperature by intermittently repeating the rich state, thereby suppressing fuel consumption during the deterioration determination. can do.

また、本実施例では、劣化判定許可条件が成立したときにのみ劣化判定が行なわれるので、酸化触媒15が劣化していない初期の劣化判定を無くすことができる。これにより、劣化判定の回数を抑え、燃料消費を抑制することができる。
従って、本発明の第1実施例に係る触媒劣化判定装置によれば、
(1)劣化判定時に脱離雰囲気生成燃料添加とリッチ状態生成燃料添加を行い、短期間に酸化触媒15及びNOx吸蔵還元触媒16に吸蔵されている酸素を放出した後に劣化判定用の2度の判定用燃料添加を行っているので、酸化触媒15にて判定用燃料添加の触媒反応を安定的に行うことができ、精度良く触媒の劣化を判定することができる。
(2)NOx吸蔵還元触媒16の下流に設けたA/Fセンサ28にて判定用燃料添加に対応した排気中のA/F値を検出し、検出したA/F値に基づいてA/F偏差を算出し、酸化触媒15の劣化を判定しているので、検出用センサを少なくしコストを低減することができる。
(3)Sパージ処理中であって、劣化判定許可条件が成立した時に酸化触媒15の劣化判定を行うようにしているので、酸化触媒15が劣化していない初期の劣化判定を無くすことができ、更には、Sパージ処理中に劣化を判定するようにしているので、排気浄化手段の劣化判定を独立して行う必要がなく不要な燃料の消費を抑えることができ、燃費の悪化を防止することができる。
[第2実施例]
次に、第2実施例における触媒劣化判定の判定要領について説明する。
In this embodiment, since the deterioration determination is performed only when the deterioration determination permission condition is satisfied, the initial deterioration determination in which the oxidation catalyst 15 has not deteriorated can be eliminated. Thereby, the frequency | count of deterioration determination can be suppressed and fuel consumption can be suppressed.
Therefore, according to the catalyst deterioration determination apparatus according to the first embodiment of the present invention,
(1) Desorption atmosphere generation fuel addition and rich state generation fuel addition are performed at the time of deterioration determination, and oxygen stored in the oxidation catalyst 15 and the NOx storage reduction catalyst 16 is released in a short period of time, and then two times for deterioration determination Since the determination fuel addition is performed, the catalytic reaction of the determination fuel addition can be stably performed by the oxidation catalyst 15, and the deterioration of the catalyst can be accurately determined.
(2) The A / F sensor 28 provided downstream of the NOx occlusion reduction catalyst 16 detects the A / F value in the exhaust gas corresponding to the determination fuel addition, and the A / F is based on the detected A / F value. Since the deviation is calculated and the deterioration of the oxidation catalyst 15 is determined, the number of detection sensors can be reduced and the cost can be reduced.
(3) Since the deterioration determination of the oxidation catalyst 15 is performed when the deterioration determination permission condition is satisfied during the S purge process, the initial deterioration determination in which the oxidation catalyst 15 has not deteriorated can be eliminated. Furthermore, since the deterioration is determined during the S purge process, it is not necessary to perform the deterioration determination of the exhaust gas purification means independently, so that unnecessary fuel consumption can be suppressed and deterioration of fuel consumption can be prevented. be able to.
[Second Embodiment]
Next, a determination procedure for determining catalyst deterioration in the second embodiment will be described.

図7は、本発明の第2実施例に係る触媒劣化判定制御の制御ルーチンを示すフローチャートであり、図8は、Sパージ中における触媒劣化判定時の燃料添加量を示す特性図であり、図9は、触媒正常時の燃料添加量とA/Fの変化率の変化を示すグラフであり、図10は、触媒劣化時の燃料添加量とA/Fの変化率の変化を示すグラフである。
図7に示すように第2実施例では、上記第1実施例に対して、触媒の劣化判定をA/F変化率に基づいて行っており、以下に上記第1実施例と異なる点に付いて説明する。
FIG. 7 is a flowchart showing a control routine of catalyst deterioration determination control according to the second embodiment of the present invention, and FIG. 8 is a characteristic diagram showing a fuel addition amount at the time of catalyst deterioration determination during S purge. 9 is a graph showing a change in fuel addition amount and A / F change rate when the catalyst is normal, and FIG. 10 is a graph showing a change in fuel addition amount and A / F change rate when the catalyst is deteriorated. .
As shown in FIG. 7, in the second embodiment, the deterioration of the catalyst is determined based on the A / F change rate with respect to the first embodiment, and the following points are different from the first embodiment. I will explain.

図7に示すように、ステップS10〜ステップS14では、第1実施例と同様にSパージ処理を実施中か、及び劣化判定許可条件が成立したかを判別し、それぞれが成立していれば、図8に示す劣化判定用燃料添加を行い、ステップS15’に進む。
ステップS15’では、図9及び図10に示すようにA/Fセンサ28にて検出される判定燃料添加a及びbに対応するA/F値の変化より、それぞれのA/F変化率(酸素濃度変化率)を算出し、判定燃料添加a及びbに対応するそれぞれのA/F変化率の最大値と最小値の差であるA/F変化率の差(変化率の差)ΔAFa及びΔAFbを算出する。そして、ステップS16’に進む。
As shown in FIG. 7, in step S10 to step S14, it is determined whether the S purge process is being performed as in the first embodiment, and whether the deterioration determination permission condition is satisfied, and if each is satisfied, The fuel for deterioration determination shown in FIG. 8 is added, and the process proceeds to step S15 ′.
In step S15 ′, the A / F change rate (oxygen) is determined based on the change in the A / F value corresponding to the determination fuel additions a and b detected by the A / F sensor 28 as shown in FIGS. (Concentration change rate) is calculated, and the difference in A / F change rate (difference in change rate) ΔAFa and ΔAFb, which is the difference between the maximum and minimum values of the respective A / F change rates corresponding to the determination fuel additions a and b Is calculated. Then, the process proceeds to step S16 ′.

ステップS16’では、ステップS15’にて算出された判定燃料添加a及びbに対応するそれぞれのA/F変化率の差ΔAFa及びΔAFbより、判定燃料添加aのA/F変化率の差ΔAFaと判定燃料添加bのA/F変化率の差ΔAFbの偏差である変化率偏差を算出する。そして、ステップS18’に進む。
ステップS18’では、ステップS16’にて算出された変化率偏差が所定変化率偏差以上であるか、否かを判別する。判別結果が真(Yes)で変化率偏差が所定変化率偏差以上であれば、ステップS20に進み、判別結果が偽(No)で変化率偏差が所定変化率偏差以上でなければ、ステップS22に進む。
In step S16 ′, the difference ΔAFa in the A / F change rate of the determination fuel addition a is calculated from the differences ΔAFa and ΔAFb in the respective A / F change rates corresponding to the determination fuel additions a and b calculated in step S15 ′. A change rate deviation, which is a deviation of the difference ΔAFb in the A / F change rate of the determination fuel addition b, is calculated. Then, the process proceeds to step S18 ′.
In step S18 ′, it is determined whether or not the change rate deviation calculated in step S16 ′ is greater than or equal to a predetermined change rate deviation. If the determination result is true (Yes) and the change rate deviation is equal to or greater than the predetermined change rate deviation, the process proceeds to step S20. If the determination result is false (No) and the change rate deviation is not equal to or greater than the predetermined change rate deviation, the process proceeds to step S22. move on.

このように、本発明に係る触媒劣化判定装置によれば、第1実施例と同様に、劣化判定許可条件が成立したときに劣化判定が行なわれ、脱離雰囲気生成燃料添加とリッチ状態生成燃料添加とを行なうとともに、2度の判定用燃料添加が行なわれる。そして、A/Fセンサ28で燃焼後の排気中のそれぞれのA/F値を検出しA/F変化率を算出し、それぞれのA/F変化率の最大値と最小値の差より判定用燃料添加に対応するA/F変化率の差ΔAFa及びΔAFbを算出し、更にA/F変化率の差ΔAFa及びΔAFbの偏差より変化率偏差を算出して、変化率偏差が所定変化率偏差以上であると酸化触媒15が劣化していると判定するようにしている。   As described above, according to the catalyst deterioration determination device according to the present invention, as in the first embodiment, the deterioration determination is performed when the deterioration determination permission condition is satisfied, and the desorption atmosphere generation fuel addition and the rich state generation fuel are performed. In addition to the addition, the fuel for determination is added twice. Then, each A / F value in the exhaust gas after combustion is detected by the A / F sensor 28 to calculate the A / F change rate, and the determination is made based on the difference between the maximum value and the minimum value of each A / F change rate. The difference ΔAFa and ΔAFb of the A / F change rate corresponding to the fuel addition is calculated, and further the change rate deviation is calculated from the deviation of the A / F change rate difference ΔAFa and ΔAFb. If so, it is determined that the oxidation catalyst 15 has deteriorated.

本実施例は、劣化判定を判定用燃料添加に対応したA/F値の変化率の偏差に基づいて行う点が第1実施例と異なっている。酸化触媒15が劣化していると、燃焼能力が低下するので、判定用燃料添加aに対して所定間隔をあけて連続で添加される判定用燃料添加bのA/F値はリーンとなり、A/F値の変化率も低下する。したがって、判定用燃料添加aのときのA/Fの変化率の最大値と最小値の差であるA/F変化率の差ΔAFaと、2回目の判定用燃料添加bのときのA/F変化率の差ΔAFbとを比較して、その偏差が大きいほど酸化触媒15が劣化しているものと判定できる。   The present embodiment is different from the first embodiment in that the deterioration determination is performed based on the deviation of the change rate of the A / F value corresponding to the determination fuel addition. If the oxidation catalyst 15 is deteriorated, the combustion capacity is lowered. Therefore, the A / F value of the determination fuel addition b continuously added at a predetermined interval with respect to the determination fuel addition a becomes lean, and A The rate of change of / F value also decreases. Therefore, the difference ΔAFa of the A / F change rate that is the difference between the maximum value and the minimum value of the change rate of A / F at the time of determination fuel addition a, and the A / F at the time of the second determination fuel addition b. The change rate difference ΔAFb is compared, and it can be determined that the oxidation catalyst 15 is deteriorated as the deviation is larger.

従って、本発明に係る触媒劣化判定装置によれば、
(1)第1実施例と同様に、劣化判定時に脱離雰囲気生成燃料添加とリッチ状態生成燃料添加を行い、短期間に酸化触媒15及びNOx吸蔵還元触媒16に吸蔵されている酸素を放出した後に劣化判定用の2度の判定用燃料添加を行っているので、NOx吸蔵還元触媒16にて判定用燃料添加の触媒反応を安定的に行うことができ、精度良く触媒の劣化を判定することができる。
(2)NOx吸蔵還元触媒16の下流に設けたA/Fセンサ28にて判定用燃料添加に対応した排気中のA/F値を検出し、検出したA/F値に基づき変化率偏差を算出し、酸化触媒15の劣化を判定しているので、検出用センサを少なくしコストを低減することができる。
(3)第1実施例と同様に、Sパージ処理中であって、劣化判定許可条件が成立した時に酸化触媒15の劣化判定を行うようにしているので、酸化触媒15が劣化していない初期の劣化判定を無くすことができ、更には、Sパージ処理中に劣化を判定するようにしているので、排気浄化手段の劣化判定を独立して行う必要がなく不要な燃料の消費を抑えることができ、燃費の悪化を防止することができる。
Therefore, according to the catalyst deterioration determination device according to the present invention,
(1) As in the first embodiment, desorption atmosphere generation fuel addition and rich state generation fuel addition were performed at the time of deterioration judgment, and oxygen stored in the oxidation catalyst 15 and the NOx occlusion reduction catalyst 16 was released in a short period of time. Since the determination fuel addition is performed twice for deterioration determination later, the NOx occlusion reduction catalyst 16 can stably perform the catalytic reaction of the determination fuel addition and accurately determine the deterioration of the catalyst. Can do.
(2) The A / F sensor 28 provided downstream of the NOx storage reduction catalyst 16 detects the A / F value in the exhaust gas corresponding to the determination fuel addition, and the change rate deviation is calculated based on the detected A / F value. Since the calculation and the deterioration of the oxidation catalyst 15 are determined, the number of sensors for detection can be reduced and the cost can be reduced.
(3) As in the first embodiment, since the deterioration determination of the oxidation catalyst 15 is performed when the S purge process is being performed and the deterioration determination permission condition is satisfied, the oxidation catalyst 15 is not deteriorated in the initial stage. In addition, since the deterioration is determined during the S purge process, it is not necessary to perform the deterioration determination of the exhaust gas purification means independently, so that unnecessary fuel consumption can be suppressed. It is possible to prevent deterioration of fuel consumption.

以上で発明の実施形態の説明を終えるが、本発明の形態は上記実施形態に限定されるものではない。
例えば、上記実施形態では、酸化触媒15上流に燃料添加弁26を設けて、脱離雰囲気生成燃料添加とリッチ状態生成燃料添加と判定用燃料添加を行っているが、これに限定されるものではなく、シリンダ内への燃料噴射ノズル20を用いて、筒内燃焼ガスの空燃比のリッチ化や、酸化触媒15に未燃燃料が排出されるようなタイミングで燃料を噴射する所謂ポスト噴射で燃料を添加しても良く、この場合であっても上記同様の効果を得ることができる。更に燃料添加弁26を削減することができるので、コストを低減することができる。
Although the description of the embodiment of the invention is finished as above, the embodiment of the present invention is not limited to the above embodiment.
For example, in the above embodiment, the fuel addition valve 26 is provided upstream of the oxidation catalyst 15 to perform the desorption atmosphere generation fuel addition, the rich state generation fuel addition, and the determination fuel addition. However, the present invention is not limited to this. Instead, the fuel injection nozzle 20 into the cylinder is used to enrich the air-fuel ratio of the in-cylinder combustion gas, or so-called post-injection in which fuel is injected at a timing such that unburned fuel is discharged to the oxidation catalyst 15. Even in this case, the same effect as described above can be obtained. Furthermore, since the fuel addition valve 26 can be reduced, the cost can be reduced.

また、上記実施形態では、触媒劣化判定用燃料添加をSパージ処理中の所定時間毎に(断続的に)行われるSパージ処理用燃料添加の間に実施し劣化判定を行うようにしているが、Sパージ処理用燃料添加と同時に判定用燃料添加を実施し劣化判定を行っても良い。この場合、判定用燃料添加分の燃料が増量され排気温度が上昇するため酸化触媒15が過昇温となる虞があるが、Sパージ処理用燃料添加と同時に判定用燃料添加を実施しても、Sパージ中では酸化触媒15から酸素が放出されている状態が維持されているので、A/F値の検出精度は確保することができる。   Further, in the above embodiment, the catalyst deterioration determination fuel addition is performed during the S purge process fuel addition performed every predetermined time (intermittently) during the S purge process, but the deterioration determination is performed. The deterioration determination may be performed by adding the determination fuel simultaneously with the addition of the fuel for the S purge process. In this case, the amount of fuel added for determination fuel is increased and the exhaust temperature rises, so that the oxidation catalyst 15 may be overheated. However, even if the determination fuel addition is performed simultaneously with the addition of the fuel for the S purge process. Since the state in which oxygen is released from the oxidation catalyst 15 is maintained during the S purge, the detection accuracy of the A / F value can be ensured.

また、上記実施形態では、Sパージ処理実施中に劣化判定するようにしているが、これに限定されるものではなく、Sパージ処理実施中に劣化判定を行わなくても良い。
また、上記実施形態では、脱離雰囲気生成燃料添加とリッチ状態生成燃料添加と判定用燃料添加を行っているが、これに限定されるものではなく、酸化触媒15及びNOx吸蔵還元触媒16にて吸蔵されている酸素が放出されればよく、リッチ状態生成燃料添加と判定用燃料添加のみであっても良い。
In the above embodiment, the deterioration determination is performed during the execution of the S purge process. However, the present invention is not limited to this, and the deterioration determination may not be performed during the execution of the S purge process.
In the above embodiment, the desorption atmosphere generation fuel addition, the rich state generation fuel addition, and the determination fuel addition are performed. However, the present invention is not limited to this, and the oxidation catalyst 15 and the NOx occlusion reduction catalyst 16 It is sufficient that the stored oxygen is released, and only the rich state generation fuel addition and the determination fuel addition may be performed.

また、上記実施形態では、判定用燃料添加を2度行っているが、これに限定されるものではなく、3度以上の複数回であってもよく、リッチ状態生成燃料添加と判定用燃料添加のみであっても良い。
また、上記実施形態では、コモンレール式ディーゼルエンジンとしているが、これに限定されるものではなく、ガソリンエンジンであっても良く、この場合であっても上記同様の効果を得ることができる。
In the above embodiment, the determination fuel addition is performed twice. However, the present invention is not limited to this, and it may be performed three or more times, and the rich state generation fuel addition and the determination fuel addition may be performed. It may be only.
Moreover, in the said embodiment, although it is set as the common rail type diesel engine, it is not limited to this, A gasoline engine may be sufficient and the same effect as the above can be acquired even in this case.

また、上記実施形態では、排気浄化手段を排気中の被酸化成分を酸化する酸化触媒15と排気中のNOxを吸蔵還元するNOx吸蔵還元触媒16から構成しているが、これに限定されるものではなく、3個以上の触媒、または酸化機能及び酸素ストレージ機能の両機能を有するNOx吸蔵還元触媒のみで構成してもよい。なお、Sパージ処理実施中の劣化判定実施による燃料消費の抑制効果を期待しない場合は、排気浄化手段にNOx吸蔵還元触媒を含む必要はなく、酸化機能及び酸素ストレージ機能の両機能を有する三元触媒のみで構成してもよい。   Further, in the above embodiment, the exhaust purification means is composed of the oxidation catalyst 15 that oxidizes the components to be oxidized in the exhaust and the NOx storage reduction catalyst 16 that occludes and reduces NOx in the exhaust. However, the present invention is not limited to this. Instead, it may be composed of only three or more catalysts, or a NOx occlusion reduction catalyst having both an oxidation function and an oxygen storage function. In the case where the effect of suppressing fuel consumption due to the deterioration determination during the S purge process is not expected, the exhaust purification means does not need to include a NOx storage reduction catalyst, and the ternary having both an oxidation function and an oxygen storage function. You may comprise only a catalyst.

1 エンジン(内燃機関)
15 酸化触媒(排気浄化手段)
16 NOx吸蔵還元触媒(排気浄化手段)
26 燃料添加弁(燃料供給手段)
27 排気温度センサ(排気温度検出積算手段)
28 A/Fセンサ(酸素濃度検出手段)
29 車速センサ(走行距離検出積算手段)
30 ECU
35 Sパージ制御部(硫黄除去手段)
36 Sパージ回数検出部(硫黄除去回数検出手段)
37 走行距離算出部(走行距離検出積算手段)
38 走行距離積算部(走行距離検出積算手段)
39 排気温度積算部(排気温度検出積算手段)
40 排気触媒劣化判定部(劣化判定手段)
41 燃料添加制御部(供給制御手段)
1 engine (internal combustion engine)
15 Oxidation catalyst (exhaust purification means)
16 NOx storage reduction catalyst (exhaust gas purification means)
26 Fuel addition valve (fuel supply means)
27 Exhaust temperature sensor (exhaust temperature detection integration means)
28 A / F sensor (oxygen concentration detection means)
29 Vehicle speed sensor (travel distance detection integration means)
30 ECU
35 S purge control unit (sulfur removal means)
36 S purge number detection part (sulfur removal number detection means)
37 Travel distance calculation unit (travel distance detection integration means)
38 Travel distance integration unit (travel distance detection integration means)
39 Exhaust temperature integration unit (exhaust temperature detection integration means)
40 Exhaust catalyst deterioration determination unit (deterioration determination means)
41 Fuel addition control unit (supply control means)

Claims (8)

内燃機関の排気通路に設けられ、排気中の被酸化成分を酸化する酸化機能と、酸化雰囲気下で排気中の酸素を吸蔵する一方、還元雰囲気下で該吸蔵した酸素を脱離する酸素ストレージ機能とを有する排気浄化手段と、
前記排気浄化手段の上流を流れる排気中に燃料を供給する燃料供給手段と、
排気をリッチ状態とするリッチ状態生成供給と、前記排気浄化手段の劣化を判定するための劣化判定供給とを行うように前記燃料供給手段を制御する供給制御手段と、
前記排気浄化手段の下流に設けられ排気中の酸素濃度を検出する酸素濃度検出手段と、
前記排気浄化手段の酸化機能の劣化を判定する劣化判定手段とを備え、
前記供給制御手段は、前記劣化判定手段での前記排気浄化手段の劣化判定時に、排気をリッチ状態とする前記リッチ状態生成供給を連続的に行い、該リッチ状態生成供給の開始から所定時間経過後に所定間隔で該リッチ状態生成供給に加えて複数の前記劣化判定供給を行うように燃料供給手段を制御し、
前記劣化判定手段は、前記酸素濃度検出手段にて検出される複数の前記劣化判定供給のそれぞれに対応する排気中の酸素濃度の変化に基づいて、前記排気浄化手段の劣化を判定することを特徴とする触媒劣化判定装置。
An oxidation function that is provided in the exhaust passage of an internal combustion engine and that oxidizes oxidizable components in the exhaust, and an oxygen storage function that stores oxygen in the exhaust under an oxidizing atmosphere while desorbing the stored oxygen in a reducing atmosphere An exhaust purification means having
Fuel supply means for supplying fuel into the exhaust flowing upstream of the exhaust purification means;
Supply control means for controlling the fuel supply means so as to perform rich state generation supply for making exhaust rich, and deterioration determination supply for determining deterioration of the exhaust purification means;
An oxygen concentration detection means provided downstream of the exhaust purification means for detecting the oxygen concentration in the exhaust;
Deterioration determining means for determining deterioration of the oxidation function of the exhaust purification means,
The supply control means continuously performs the rich state generation supply for making the exhaust gas rich when the deterioration determination means determines the deterioration of the exhaust purification means, and after a lapse of a predetermined time from the start of the rich state generation supply. Controlling the fuel supply means to perform a plurality of the deterioration determination supply in addition to the rich state generation supply at a predetermined interval;
The deterioration determining means determines deterioration of the exhaust purification means based on a change in oxygen concentration in the exhaust gas corresponding to each of the plurality of deterioration determination supplies detected by the oxygen concentration detecting means. Catalyst deterioration determination device.
前記劣化判定手段は、前記酸素濃度検出手段にて検出される複数の前記劣化判定供給のそれぞれに対応して変化する排気中の酸素濃度のうち、任意の2回の該劣化判定供給に対応する酸素濃度の最小値であるそれぞれの最小酸素濃度より、任意の2回の該劣化判定供給に対応する該最小酸素濃度の差である濃度偏差を算出し、該濃度偏差が所定濃度偏差以上であれば、前記排気浄化手段が劣化していると判定することを特徴とする、請求項1に記載の触媒劣化判定装置。   The deterioration determination means corresponds to any two of the deterioration determination supplies among the oxygen concentration in the exhaust gas that changes corresponding to each of the plurality of deterioration determination supplies detected by the oxygen concentration detection means. From each minimum oxygen concentration that is the minimum value of oxygen concentration, a concentration deviation that is the difference between the minimum oxygen concentrations corresponding to any two times of the deterioration determination supply is calculated, and if the concentration deviation is not less than a predetermined concentration deviation 2. The catalyst deterioration determination device according to claim 1, wherein the exhaust gas purification unit is determined to be deteriorated. 前記劣化判定手段は、前記酸素濃度検出手段にて検出される複数の前記劣化判定供給のそれぞれに対応して変化する排気中の酸素濃度のうち、任意の2回の該劣化判定供給に対応する酸素濃度の変化に基づきそれぞれの酸素濃度の変化率である酸素濃度変化率を算出し、それぞれの該劣化判定供給における該酸素濃度変化率の最大値と最小値の差である変化率の差を算出し、更に任意の2回の該劣化判定供給の該変化率の差の偏差である変化率偏差を算出して、該変化率偏差が所定変化率偏差以上であれば、前記排気浄化手段が劣化していると判定することを特徴とする、請求項1に記載の触媒劣化判定装置。   The deterioration determination means corresponds to any two of the deterioration determination supplies among the oxygen concentration in the exhaust gas that changes corresponding to each of the plurality of deterioration determination supplies detected by the oxygen concentration detection means. Based on the change in oxygen concentration, the oxygen concentration change rate that is the change rate of each oxygen concentration is calculated, and the difference between the change rate that is the difference between the maximum value and the minimum value of the oxygen concentration change rate in each deterioration determination supply is calculated. And further calculating a change rate deviation that is a difference between the change rates of the two times the deterioration judgment supply, and if the change rate deviation is equal to or greater than a predetermined change rate deviation, the exhaust purification means The catalyst deterioration determination device according to claim 1, wherein it is determined that the catalyst has deteriorated. 前記供給制御手段は、前記劣化判定手段での前記排気浄化手段の劣化判定開始時に、前記リッチ状態生成供給に加え、前記リッチ状態生成供給の前記燃料の供給量より多い該燃料を供給する脱離雰囲気生成供給を行うように燃料供給手段を制御することを特徴とする、請求項1乃至3のいずれかに記載の触媒劣化判定装置。   The supply control means, at the start of the deterioration determination of the exhaust gas purification means by the deterioration determination means, in addition to the rich state generation supply, desorption that supplies more fuel than the supply amount of the fuel of the rich state generation supply 4. The catalyst deterioration determination device according to claim 1, wherein the fuel supply means is controlled to perform atmosphere generation and supply. 前記排気浄化手段は、酸化雰囲気下で排気中の窒素酸化物を吸蔵する一方、還元雰囲気下で該吸蔵した窒素酸化物を脱離及び還元する窒素酸化物吸蔵機能を有し、該排気浄化手段が硫黄被毒状態にあるときに排気を高温でリッチ状態として吸蔵した硫黄を還元除去する硫黄還元処理を行う硫黄除去手段を更に備え、
前記劣化判定手段は、前記硫黄除去手段での硫黄還元処理時に併せて前記排気浄化手段の劣化を判定することを特徴とする、請求項1乃至4のいずれかに記載の触媒劣化判定装置。
The exhaust purification means has a nitrogen oxide storage function for storing nitrogen oxides in exhaust under an oxidizing atmosphere and desorbing and reducing the stored nitrogen oxides under a reducing atmosphere. Further comprising sulfur removal means for performing sulfur reduction treatment for reducing and removing sulfur stored in a rich state at a high temperature when the exhaust gas is in a sulfur poisoning state,
The catalyst deterioration determination device according to any one of claims 1 to 4, wherein the deterioration determination means determines deterioration of the exhaust purification means in conjunction with sulfur reduction processing in the sulfur removal means.
前記排気浄化手段は、酸化触媒と、該酸化触媒の下流側に設けられ酸化雰囲気下で排気中の窒素酸化物を吸蔵する一方、還元雰囲気下で該吸蔵した窒素酸化物を脱離及び還元する窒素酸化物吸蔵触媒から構成され、
前記窒素酸化物吸蔵触媒が硫黄被毒状態にあるとき排気を高温でリッチ状態として吸蔵した硫黄を還元除去する硫黄還元処理を行う硫黄除去手段を更に備え、
前記劣化判定手段は、前記硫黄除去手段での硫黄還元処理時に併せて前記酸化触媒の劣化を判定することを特徴とする、請求項1乃至4のいずれかに記載の触媒劣化判定装置。
The exhaust purification unit is provided on the downstream side of the oxidation catalyst and stores nitrogen oxides in the exhaust under an oxidizing atmosphere, and desorbs and reduces the stored nitrogen oxides under a reducing atmosphere. Consists of nitrogen oxide storage catalyst,
When the nitrogen oxide storage catalyst is in a sulfur poisoning state, the exhaust gas further comprises sulfur removal means for performing sulfur reduction treatment for reducing and removing the stored sulfur in a rich state at a high temperature,
5. The catalyst deterioration determination device according to claim 1, wherein the deterioration determination unit determines deterioration of the oxidation catalyst at the time of sulfur reduction treatment by the sulfur removal unit.
更に前記硫黄還元処理の処理回数を検出する硫黄除去回数検出手段を備え、
前記劣化判定手段は、前記硫黄除去回数検出手段にて検出される前記硫黄還元処理の処理回数が所定処理回数以上である時に劣化判定を実行することを特徴とする、請求項5または6に記載の触媒劣化判定装置。
Furthermore, a sulfur removal number detection means for detecting the number of times of the sulfur reduction treatment is provided,
7. The deterioration determination unit according to claim 5, wherein the deterioration determination unit performs the deterioration determination when the number of times of the sulfur reduction treatment detected by the sulfur removal number detection unit is equal to or greater than a predetermined number of times. Catalyst deterioration judgment device.
更に前記内燃機関の搭載される車両の走行距離を検出し、走行距離を積算する走行距離検出積算手段と、
前記内燃機関の排気温度を検出し、排気温度を積算する排気温度検出積算手段とのどちらか一方或いは双方を備え、
前記劣化判定手段は、前記走行距離検出手段にて検出される走行距離の積算値が所定積算走行距離以上である時に、或いは前記排気温度積算値検出手段にて検出される前記排気温度の積算値が所定積算温度以上である時に劣化判定を実行することを特徴とする、請求項1乃至7のいずれかに記載の触媒劣化判定装置。
Further, a travel distance detection integration means for detecting the travel distance of the vehicle on which the internal combustion engine is mounted and integrating the travel distance;
Either or both of exhaust temperature detection integration means for detecting the exhaust temperature of the internal combustion engine and integrating the exhaust temperature,
The deterioration determining means is the integrated value of the exhaust temperature detected by the exhaust temperature integrated value detecting means when the integrated value of the travel distance detected by the travel distance detecting means is equal to or greater than a predetermined integrated travel distance. The catalyst deterioration determination device according to any one of claims 1 to 7, wherein the deterioration determination is executed when the temperature is equal to or higher than a predetermined integrated temperature.
JP2010175398A 2010-08-04 2010-08-04 Catalyst deterioration judgment device Expired - Fee Related JP5354214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010175398A JP5354214B2 (en) 2010-08-04 2010-08-04 Catalyst deterioration judgment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175398A JP5354214B2 (en) 2010-08-04 2010-08-04 Catalyst deterioration judgment device

Publications (2)

Publication Number Publication Date
JP2012036762A JP2012036762A (en) 2012-02-23
JP5354214B2 true JP5354214B2 (en) 2013-11-27

Family

ID=45849020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175398A Expired - Fee Related JP5354214B2 (en) 2010-08-04 2010-08-04 Catalyst deterioration judgment device

Country Status (1)

Country Link
JP (1) JP5354214B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5790545B2 (en) * 2012-03-05 2015-10-07 三菱自動車工業株式会社 Catalyst diagnostic apparatus and catalyst diagnostic method
JP5821717B2 (en) * 2012-03-12 2015-11-24 トヨタ自動車株式会社 Catalyst abnormality judgment system
JP6417908B2 (en) * 2014-12-09 2018-11-07 いすゞ自動車株式会社 Oxidation catalyst deterioration diagnosis device and oxidation catalyst deterioration diagnosis method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256856A (en) * 2001-03-06 2002-09-11 Mitsubishi Motors Corp Device for detecting deterioration of exhaust emission control catalyst
JP4415620B2 (en) * 2003-09-12 2010-02-17 トヨタ自動車株式会社 Catalyst deterioration determination device for internal combustion engine
JP4530081B2 (en) * 2008-07-25 2010-08-25 トヨタ自動車株式会社 Catalyst deterioration diagnosis apparatus and catalyst deterioration diagnosis method for internal combustion engine
JP2010127186A (en) * 2008-11-27 2010-06-10 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Also Published As

Publication number Publication date
JP2012036762A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
US8104271B2 (en) Exhaust purification device and exhaust purification method of internal combustion engine
JP4270155B2 (en) Exhaust purification catalyst thermal degradation state detection device
JP2010112345A (en) Exhaust emission control device
EP2559876B1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
EP2738363B1 (en) Exhaust purification device of internal combustion engine
JP6661921B2 (en) Exhaust gas purification system for internal combustion engine
JP2003201886A (en) Exhaust emission control device of internal combustion engine
JP2008082315A (en) Exhaust emission control device
JP5354214B2 (en) Catalyst deterioration judgment device
JP4935929B2 (en) Exhaust gas purification device for internal combustion engine
JP4375311B2 (en) Exhaust gas purification system for internal combustion engine
JP2010249076A (en) Exhaust emission control device of internal combustion engine
JP2009121330A (en) Catalyst poisoning determining method and device, and exhaust emission control method and device
JP4291650B2 (en) Exhaust purification equipment
JP5983937B2 (en) Exhaust gas purification device for internal combustion engine
JP3552603B2 (en) Exhaust gas purification device for internal combustion engine
JP2019167919A (en) Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine
JP4357241B2 (en) Exhaust purification equipment
JP4069043B2 (en) Exhaust gas purification device for internal combustion engine
JP2010031676A (en) Exhaust emission control system
JP2009036153A (en) Exhaust-emission purifying apparatus of internal combustion engine
JP2019167918A (en) Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine
JP2007255310A (en) Exhaust emission control device
JP7106922B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP7147214B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120802

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130813

R151 Written notification of patent or utility model registration

Ref document number: 5354214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees