JP5353198B2 - Hydrate production method and apparatus using heat storage tank - Google Patents

Hydrate production method and apparatus using heat storage tank Download PDF

Info

Publication number
JP5353198B2
JP5353198B2 JP2008293660A JP2008293660A JP5353198B2 JP 5353198 B2 JP5353198 B2 JP 5353198B2 JP 2008293660 A JP2008293660 A JP 2008293660A JP 2008293660 A JP2008293660 A JP 2008293660A JP 5353198 B2 JP5353198 B2 JP 5353198B2
Authority
JP
Japan
Prior art keywords
hydrate
heat storage
water
storage tank
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008293660A
Other languages
Japanese (ja)
Other versions
JP2010121800A (en
Inventor
雅祐 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008293660A priority Critical patent/JP5353198B2/en
Publication of JP2010121800A publication Critical patent/JP2010121800A/en
Application granted granted Critical
Publication of JP5353198B2 publication Critical patent/JP5353198B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

本発明は、蓄熱槽内で、液体のゲスト物質とホスト物質としての水で包接水和物を生成する蓄熱槽を用いた水和物生成方法及び装置に関するものである。   TECHNICAL FIELD The present invention relates to a hydrate generation method and apparatus using a heat storage tank that generates clathrate hydrate with a liquid guest substance and water as a host substance in the heat storage tank.

一般的な水和物はメタンハイドレートなどが知られているが、ゲスト物質がメタンガスであり、メタンの貯蔵用としてはよいが、水和物を繰り返し、生成・分解して使用する蓄熱、冷熱媒体としては、その水和物生成の圧力、温度条件が蓄熱用途に合致しない。   Methane hydrate is known as a general hydrate, but the guest substance is methane gas, which may be used for methane storage. However, it can be used for storage of methane. As a medium, the pressure and temperature conditions for producing the hydrate do not match the heat storage application.

蓄冷材として、冷水や氷の代わりにスラリ状の水和物を用いる例としては、特許文献1、2で、テトラn−ブチルアンモニウム塩(TBAB)水溶液を用い、これを冷却することで、5〜8℃で液体からスラリ状の水和物とすることで、蓄冷材とすることが提案されている。   As an example of using a slurry-like hydrate instead of cold water or ice as a cold storage material, in Patent Documents 1 and 2, an aqueous solution of tetra n-butylammonium salt (TBAB) is used, and this is cooled to 5 It has been proposed that a regenerator material is obtained by converting a liquid to a slurry hydrate at -8 ° C.

しかし、TBABは、水に可溶の白色結晶粉末であり、濃度20%以上のTBAB水溶液として使用するが、水和物としては分解熱が小さいという問題がある。   However, TBAB is a white crystalline powder that is soluble in water, and is used as a TBAB aqueous solution having a concentration of 20% or more. However, as a hydrate, there is a problem that heat of decomposition is small.

本発明者は、ゲスト物質に環状炭化水素を用い、このゲスト物質と水とで水和物を製造すること、より具体的には、シクロペンタンからなる液状のゲスト物質とホスト物質である水との界面を直接冷却して水和物を生成する方法(特願2007−129563号)、またシクロペンタンからなる液状のゲスト物質と水とを界面活性剤で乳化させて分散液とし、これを冷却することで水和物を生成する方法(特願2007−129553号)を提案した。   The present inventor uses a cyclic hydrocarbon as a guest material, and produces a hydrate with the guest material and water, more specifically, a liquid guest material composed of cyclopentane and water as a host material. A method of directly cooling the interface of the solution to form a hydrate (Japanese Patent Application No. 2007-129563), and emulsifying a liquid guest substance composed of cyclopentane and water with a surfactant to form a dispersion, which is cooled Thus, a method for producing a hydrate (Japanese Patent Application No. 2007-129553) was proposed.

この水和物は、ホストである水とゲスト物質である液体とを接触させて冷却することで、水分子によって構成された包接格子内にゲストが包み込まれて結晶化し水和物を生成するもので、ゲスト物質である炭化水素の液体を適宜選択することで、生成温度が0℃以上からマイナス数10℃まで、幅広い生成温度が得られ、また分解後は、ホストもゲストも液体のため圧損もなく、使用目的に合わせた蓄熱、冷熱源とすることが可能とすることができるものである。   The hydrate is cooled by contacting water as a host and a liquid as a guest material, and the guest is encapsulated in an inclusion lattice constituted by water molecules to crystallize to form a hydrate. However, by appropriately selecting the hydrocarbon liquid of the guest material, a wide range of generation temperatures can be obtained from 0 ° C or higher to minus several tens of ° C. After decomposition, both the host and guest are liquid. There is no pressure loss, and it is possible to make it possible to provide a heat storage and cold heat source suitable for the purpose of use.

特開2004−3718号公報Japanese Patent Laid-Open No. 2004-3718 特開2005−291516号公報JP 2005-291516 A

一般に水和物は過冷却特性を持ち、水と同じように過冷却を解除するか、種晶と接触させないと水和物が生成しない。   In general, hydrates have supercooling properties, and hydrates do not form unless supercooling is released or contacted with seed crystals in the same manner as water.

シクロペンタンとをゲスト物質とする場合には、図5に示すように水の過冷却を解除して氷を生成し、これを種晶として水和物が成長するか、図6に示すように水和物の種晶を添加することで水和物が成長する。   When cyclopentane is used as a guest substance, as shown in FIG. 5, the supercooling of water is canceled to generate ice, and hydrates grow using this as seed crystals, or as shown in FIG. Hydrate grows by adding seed crystals of hydrate.

しかしながら、水の過冷却を解除するためには−6℃程度の低温が必要であり、水和物生成に必要な温度より遙かに低い温度を造る冷熱源動力が無駄になる。また種晶を添加する場合には、蓄熱槽内で蓄熱材を充填する容器がカプセルのように無数にある場合には実質不可能になる。   However, in order to cancel the supercooling of water, a low temperature of about −6 ° C. is necessary, and the power of the cooling heat source that makes a temperature much lower than the temperature necessary for hydrate formation is wasted. Further, when seed crystals are added, it becomes virtually impossible when there are an infinite number of containers filled with the heat storage material in the heat storage tank, such as capsules.

そこで、本発明の目的は、上記課題を解決し、液体のゲスト物質とホスト物質としての水とで水和物を生成する際に、メインの冷熱源温度を調節したり、種晶を物理的に投入したりすることなく低動力で安定的に水和物を生成できる蓄熱槽を用いた水和物生成方法及び装置を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems and to adjust the main cold source temperature or to physically convert the seed crystal when producing a hydrate with a liquid guest substance and water as a host substance. It is an object to provide a hydrate generation method and apparatus using a heat storage tank that can stably generate hydrates with low power without being charged into the tank.

上記目的を達成するために請求項1の発明は、液体のゲスト物質とホスト物質である水とを蓄熱体内に収容し、その蓄熱体を、蓄熱槽内に収容し、その蓄熱槽に冷媒を充填すると共にその冷媒をメイン冷却機で冷却して、蓄熱体内のゲスト物質と水にて包接水和物を生成する際に、前記蓄熱体を、上部ヘッダー管と下部ヘッダー管間に伝熱管を接続した多管集合管で構成し、その蓄熱体の上部ヘッダー管に過冷却部を設け、前記蓄熱体を、前記冷媒にて包接水和物の生成温度に対して、−2℃程度低い温度に過冷却し、前記過冷却部で、液体のゲスト物質と水を、前記冷媒の温度より低い温度に過冷却にして包接水和物の種を形成し、その種を基に、上部ヘッダー管から下部ヘッダー管へ水和物生成を伝播させて包接水和物を生成することを特徴とする蓄熱槽を用いた水和物生成方法である。 In order to achieve the above-mentioned object, the invention of claim 1 contains a liquid guest substance and water as a host substance in a heat accumulator, accommodates the heat accumulator in a heat accumulator, and supplies a refrigerant to the heat accumulator. When the refrigerant is filled and cooled by the main cooler to produce clathrate hydrate with the guest substance and water in the heat storage body, the heat storage body is placed between the upper header pipe and the lower header pipe. The superheater is provided in the upper header pipe of the heat storage body, and the heat storage body is about −2 ° C. with respect to the temperature of clathrate hydrate formation with the refrigerant. Supercooling to a low temperature, and in the supercooling section, the liquid guest substance and water are supercooled to a temperature lower than the temperature of the refrigerant to form a clathrate hydrate species, based on the species, Propagating hydrate formation from the upper header tube to the lower header tube to produce clathrate hydrate A hydrate formation method using the thermal storage tank to symptoms.

請求項2の発明は、液体のゲスト物質と水に界面活性剤を混入して分散液とし、この分散液を蓄熱体内に収容する請求項1記載の蓄熱槽を用いた水和物生成方法である。   The invention of claim 2 is a method for producing a hydrate using a heat storage tank according to claim 1, wherein a surfactant is mixed into a liquid guest substance and water to form a dispersion, and the dispersion is accommodated in the heat storage body. is there.

請求項3の発明は、前記蓄熱体の上部ヘッダー管内のゲスト物質と水を、前記過冷却部に循環させるようにした請求項1又は2記載の蓄熱槽を用いた水和物生成方法である。 Invention of Claim 3 is the hydrate production | generation method using the thermal storage tank of Claim 1 or 2 which was made to circulate the guest substance and water in the upper header pipe | tube of the said thermal storage body to the said supercooling part. .

請求項4の発明は、過冷却部が、冷媒の流れる冷却コイル或いは熱電素子からなる請求項1〜3のいずれかに記載の蓄熱槽を用いた水和物生成方法である。   Invention of Claim 4 is a hydrate production | generation method using the thermal storage tank in any one of Claims 1-3 in which a supercooling part consists of a cooling coil or a thermoelectric element with which a refrigerant | coolant flows.

請求項の発明は、液体のゲスト物質とホスト物質である水とを蓄熱体内に収容し、その蓄熱体を、蓄熱槽内に収容し、その蓄熱槽に冷媒を充填すると共にその冷媒をメイン冷却機で冷却して、蓄熱体内のゲスト物質と水にて包接水和物を生成する蓄熱槽を用いた水和物生成装置において、前記蓄熱体を、上部ヘッダー管と下部ヘッダー管間に伝熱管を接続した多管集合管で構成し、前記蓄熱槽に、前記冷媒にて、前記包接水和物の生成温度に対して、−2℃程度低い温度に前記蓄熱体を、過冷却するメイン冷凍機を設け、その蓄熱体の上部ヘッダー管に、前記冷媒の温度より低い温度に過冷却して包接水和物の種を形成する過冷却部を設けたことを特徴とする蓄熱槽を用いた水和物生成装置である。 According to the fifth aspect of the present invention, a liquid guest substance and water as a host substance are accommodated in a heat accumulator, the heat accumulator is accommodated in a heat accumulator, the refrigerant is filled in the heat accumulator, and the refrigerant is mainly used. In a hydrate generating apparatus using a heat storage tank that cools with a cooler and generates a clathrate hydrate with a guest substance and water in the heat storage body, the heat storage body is placed between the upper header pipe and the lower header pipe. It is composed of a multi-tube collecting pipe connected with a heat transfer pipe, and the refrigerant is supercooled in the heat storage tank at a temperature lower by about −2 ° C. than the generation temperature of the clathrate hydrate by the refrigerant. A main refrigerating machine, and a supercooling section that forms a seed of clathrate hydrate by supercooling to a temperature lower than the temperature of the refrigerant in an upper header pipe of the heat storage body It is a hydrate production | generation apparatus using a tank .

請求項の発明は、前記上部ヘッダー管に、その上部ヘッダー管内の液体のゲスト物質と水を、前記過冷却部に循環させる循環ラインを接続した請求項記載の蓄熱槽を用いた水和物生成装置である。 Hydration invention of claim 6, in which the upper header pipe, a guest material and the liquid water of the upper header pipe, with a heat storage tank according to claim 5, wherein connecting a circulation line for circulating the supercooling part It is a product generation device.

請求項の発明は、過冷却部が、冷媒の流れる冷却コイル或いは熱電素子からなる請求項5又は6記載の蓄熱槽を用いた水和物生成装置である。 The invention according to claim 7 is the hydrate generating device using the heat storage tank according to claim 5 or 6 , wherein the supercooling section is formed of a cooling coil or a thermoelectric element through which a refrigerant flows.

本発明によれば、液体のゲスト物質とホスト物質である水とを蓄熱体内に収容し、蓄熱体に設けた過冷却部で、液体のゲスト物質と水を過冷却にして包接水和物の種を形成することで、静止型で、しかも包接水和物生成温度近くで包接水和物を生成することができるという優れた効果を発揮するものである。   According to the present invention, the liquid guest material and the host material water are accommodated in the heat storage body, and the clathrate hydrate is obtained by supercooling the liquid guest material and water in the supercooling section provided in the heat storage body. By forming the seeds, the clathrate hydrate can be produced at a static type and near the clathrate hydrate production temperature.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明の蓄熱槽を用いた水和物生成装置を示したものである。   FIG. 1 shows a hydrate generator using the heat storage tank of the present invention.

図1において、蓄熱槽10内には、液体のゲスト物質とホスト物質である水とが収容される蓄熱体11が設けられる。   In FIG. 1, a heat storage tank 10 in which a liquid guest substance and water as a host substance are accommodated is provided in a heat storage tank 10.

蓄熱槽10内には、蓄熱体11を冷却或いは冷熱を回収するための冷媒12が充填され、その冷媒12がメイン冷凍機13にて冷却されるようになっている。また蓄熱体11から冷媒12に回収された冷熱は、図示していないが槽内に設置した伝熱コイルまたは槽外に設置した熱交換器を介して冷熱利用系に供給されるようになっている。   The heat storage tank 10 is filled with a refrigerant 12 for cooling the heat storage body 11 or recovering cold heat, and the refrigerant 12 is cooled by the main refrigerator 13. In addition, although not shown, the cold energy recovered from the heat storage body 11 into the refrigerant 12 is supplied to the cold energy utilization system via a heat transfer coil installed in the tank or a heat exchanger installed outside the tank. Yes.

蓄熱体11は、図示のように上部ヘッダー管15と下部ヘッダー管16間に伝熱管17が接続された多管集合管で構成される。   The heat accumulator 11 is constituted by a multi-tube collecting pipe in which a heat transfer pipe 17 is connected between an upper header pipe 15 and a lower header pipe 16 as shown in the figure.

図2は、多管集合管からなる蓄熱体11の斜視図を示したもので、蓄熱槽10の大きさに合わせて上下のヘッダー管15,16が複数設けられると共に伝熱管17が接続され、さらに各ヘッダー15,16が連結管19で連結されて多管集合管からなる蓄熱体11が構成される。   FIG. 2 is a perspective view of the heat storage body 11 composed of a multi-tube collecting tube, and a plurality of upper and lower header tubes 15 and 16 are provided in accordance with the size of the heat storage tank 10 and a heat transfer tube 17 is connected. Furthermore, the headers 15 and 16 are connected by a connecting pipe 19 to constitute a heat storage body 11 composed of a multi-tube collecting pipe.

この蓄熱体11には、例えば多管集合管の上部ヘッダー管15には、過冷却部18が設けられ、その過冷却部18がサブ冷凍機20で制御されるようになっている。   In the heat storage body 11, for example, a supercooling section 18 is provided in the upper header pipe 15 of the multi-tube collecting pipe, and the supercooling section 18 is controlled by the sub refrigerator 20.

この過冷却部18は、図4(a)に示すように冷媒が流れる冷却コイル18aや、図4(b)に示すようにペルチェ素子などの熱電素子18bで構成される。熱電素子18bで構成した場合は、サブ冷凍機20は不要で、その代わりに電源に接続される。   The supercooling section 18 includes a cooling coil 18a through which a refrigerant flows as shown in FIG. 4A and a thermoelectric element 18b such as a Peltier element as shown in FIG. 4B. When the thermoelectric element 18b is used, the sub refrigerator 20 is not necessary and is connected to a power source instead.

過冷却部18は、液体のゲスト物質とホスト物質である水とを、確実に包接水和物を生成する温度にまで冷却するものである。   The supercooling unit 18 cools the liquid guest material and the water, which is the host material, to a temperature at which clathrate hydrate is reliably generated.

本発明に用いるゲスト物質としては、シクロペンタンなどの環状炭化水素、ペンタンなどの直鎖炭化水素がある。シクロペンタン(C510)の場合には大気圧下、約7℃の生成温度で水和物を生成するが、実際に水和物を生成するには、生成温度に対して−2℃以上冷却することで水和物が生成される。 Examples of guest substances used in the present invention include cyclic hydrocarbons such as cyclopentane and linear hydrocarbons such as pentane. In the case of cyclopentane (C 5 H 10 ), a hydrate is produced at a production temperature of about 7 ° C. under atmospheric pressure, but in order to actually produce a hydrate, −2 ° C. with respect to the production temperature. Hydrate is produced | generated by cooling above.

ゲスト物質と水との組成比は、水和物構造によって決定されるが、シクロペンタンの場合には、シクロペンタン:水がモル比で1:17(体積比で1:3.3、重量比で1:4.4)が完全な包接水和物生成比率なので、これよりもシクロペンタンが少ない比率であれば、包接水和物生成が完了した際に余分なゲスト物質が存在しない。少なすぎると包接水和物含有率が小さいことから蓄熱密度の性能が悪くなるので、1:17からこれの3倍希釈程度を組成範囲とする。   The composition ratio of the guest substance and water is determined by the hydrate structure. In the case of cyclopentane, cyclopentane: water has a molar ratio of 1:17 (volume ratio of 1: 3.3, weight ratio). 1: 4.4) is a complete clathrate hydrate formation ratio, so if the ratio of cyclopentane is less than this, there is no extra guest substance when clathrate hydrate formation is completed. If the amount is too small, the clathrate hydrate content is small and the performance of the heat storage density deteriorates. Therefore, the composition range is from 1:17 to about 3-fold dilution thereof.

また、このゲスト物質と水に界面活性剤を5wt%程度混入し、これを撹拌して乳化させた分散液とするようにしてもよい。   Further, about 5 wt% of a surfactant may be mixed in the guest substance and water, and this may be stirred to obtain a dispersion.

次に、この集合管式蓄熱槽を用いた水和物生成方法を説明する。   Next, the hydrate production | generation method using this collecting pipe type thermal storage tank is demonstrated.

蓄熱体11内の液体のゲスト物質とホスト物質である水との包接水和物を生成する際には、メイン冷凍機13に、蓄熱槽10内の冷媒12を導入して冷却し、これを蓄熱槽10に循環する。   When the clathrate hydrate of the liquid guest material in the heat storage body 11 and the water as the host material is generated, the refrigerant 12 in the heat storage tank 10 is introduced into the main refrigerator 13 and cooled, Is circulated in the heat storage tank 10.

これにより、蓄熱体11内の液体のゲスト物質とホスト物質である水は、その包接水和物生成温度に対して若干低い温度まで冷却され、過冷却状態にされる。   As a result, the liquid guest material and water as the host material in the heat storage body 11 are cooled to a temperature slightly lower than the clathrate hydrate formation temperature, and are brought into a supercooled state.

この過冷却状態まで蓄熱体11内の液体のゲスト物質とホスト物質である水を冷却した後、過冷却部18にて、液体のゲスト物質とホスト物質である水を更に冷却することで、過冷却部18の周囲に包接水和物の種が形成される。このように種が形成されることで、過冷却状態に冷却された液体のゲスト物質と水とは種を基に水和物生成が伝播して全体に水和物とすることが可能となる。   After cooling the liquid guest material and the water that is the host material in the heat storage body 11 to this supercooled state, the supercooling unit 18 further cools the liquid guest material and the water that is the host material, A clathrate hydrate seed is formed around the cooling section 18. By forming the seed in this manner, the liquid guest substance and water cooled to the supercooled state can be hydrated as a whole by propagation of hydrate formation based on the seed. .

上述したように、ゲスト物質として、シクロペンタンを用いて包接水和物を生成する場合には、その水和物の生成温度が約7℃であり、蓄熱体11を7℃よりやや低い5〜3℃の温度に冷却しておく、この状態で、シクロペンタンと水とは生成温度(約7℃)に対して過冷却の液状態に保たれている。   As described above, when a clathrate hydrate is produced using cyclopentane as a guest substance, the production temperature of the hydrate is about 7 ° C., and the heat storage body 11 is slightly lower than 7 ° C. 5 In this state of cooling to ˜3 ° C., cyclopentane and water are kept in a supercooled liquid state with respect to the production temperature (about 7 ° C.).

この状態で、サブ冷凍機20をONとし、過冷却部18で、その周辺の過冷却の液を、−6℃近くまで冷却することで、過冷却水が氷になり、この氷を種として包接水和物の種が形成され、その種を基に水和物生成が伝播して蓄熱体11内の液体のゲスト物質とホスト物質である水との包接水和物が生成される。   In this state, the sub refrigerator 20 is turned on, and the supercooling unit 18 cools the surrounding supercooled liquid to near −6 ° C., so that the supercooled water becomes ice, and this ice is used as a seed. A seed of clathrate hydrate is formed, and hydrate formation is propagated based on the seed, and clathrate hydrate is generated between the liquid guest material in the heat storage body 11 and water as the host material. .

包接水和物の生成により、過冷却が解除されて包接水和物の生成温度まで上昇するため、サブ冷凍機20をOFFとし、その後、メイン冷凍機13で包接水和物の生成を継続することができる。サブ冷凍機20をONするタイミングは、蓄熱体11内の全ての物質を包接水和物生成温度に過冷却させる動作が完了する前からでもよい。   Due to the generation of the clathrate hydrate, the supercooling is released and the clathrate hydrate is raised to the production temperature, so the sub refrigerator 20 is turned off, and then the clathrate hydrate is generated in the main refrigerator 13. Can continue. The sub refrigerator 20 may be turned on before the completion of the operation of supercooling all substances in the heat storage body 11 to the clathrate hydrate generation temperature.

このように、本発明は、液体をゲスト物質とする包接水和物の製造において、蓄熱槽10内の蓄熱体11に液体のゲスト物質とホスト物質としての水を収容し、蓄熱槽10内の冷媒12を冷却するだけで、静止型で包接水和物を生成することが可能となる。   As described above, in the production of clathrate hydrate using a liquid as a guest material, the present invention accommodates the liquid guest material and water as a host material in the heat storage body 11 in the heat storage tank 10, It is possible to produce a clathrate hydrate in a static type by simply cooling the refrigerant 12.

また、包接水和物を生成した後は、蓄熱槽10内の冷媒12を冷熱利用系に移送して使用するようにしても、或いは蓄熱体11内の包接水和物を直接利用系に移送するようにしてもよい。   In addition, after the clathrate hydrate is generated, the refrigerant 12 in the heat storage tank 10 may be used after being transferred to the cold heat utilization system, or the clathrate hydrate in the heat storage body 11 is directly utilized. You may make it transfer to.

図3は、本発明の他の実施の形態を示したものである。   FIG. 3 shows another embodiment of the present invention.

この実施の形態においては、過冷却部18を設けた蓄熱体11を構成する多管集合管の上部ヘッダー管15に循環ライン22を接続すると共に循環ポンプ23を接続し、上部ヘッダー管15内の過冷却部18に、液体のゲスト物質と水とを繰り返し循環して包接水和物の生成を効率よく行えるようにしたものである。   In this embodiment, the circulation line 22 and the circulation pump 23 are connected to the upper header pipe 15 of the multi-pipe collecting pipe constituting the heat storage body 11 provided with the supercooling section 18, and the inside of the upper header pipe 15 is connected. A liquid guest substance and water are repeatedly circulated in the supercooling section 18 so that the clathrate hydrate can be efficiently generated.

また、2点鎖線示すように上部ヘッダー管15と下部ヘッダー管16とを循環ライン24で接続し、全体に液体のゲスト物質と水とを循環して包接水和物を生成できるようにしたものである。   Further, as indicated by the two-dot chain line, the upper header pipe 15 and the lower header pipe 16 are connected by a circulation line 24 so that a clathrate hydrate can be generated by circulating a liquid guest substance and water throughout. Is.

この実施の形態において、液体のゲスト物質と水とが界面活性剤で分散された状態でなくても、液体のゲスト物質と水とが二層に分離している場合でも循環させることで、包接水和物の生成を効率よく行うことができる。   In this embodiment, even if the liquid guest substance and water are not dispersed with the surfactant, the liquid guest substance and water are circulated even when they are separated into two layers, thereby enabling the packaging. It is possible to efficiently produce the wet hydrate.

本発明の一実施の形態を示す図である。It is a figure which shows one embodiment of this invention. 図1における多管集合管からなる蓄熱体の斜視図である。It is a perspective view of the thermal storage body which consists of a multitubular collecting pipe in FIG. 本発明の他の実施の形態を示す図である。It is a figure which shows other embodiment of this invention. 本発明において過冷却部の詳細を示す図である。It is a figure which shows the detail of a supercooling part in this invention. 水が過冷却解除して氷が生成し、これが種となって包接水和物生成が進捗する際の冷媒と蓄熱材の温度変化を示す図である。It is a figure which shows the temperature change of a refrigerant | coolant and a thermal storage material when water is cancelled | released and ice produces | generates and this becomes seed | species and clathrate hydrate production | generation progresses. 蓄熱材に水和物を添加して包接水和物生成が進捗する際の冷媒と蓄熱材の温度変化を示す図である。It is a figure which shows the temperature change of a refrigerant | coolant and heat storage material at the time of clathrate hydrate production | generation progressing by adding a hydrate to a heat storage material.

符号の説明Explanation of symbols

10 蓄熱槽
11 蓄熱体
12 冷媒
13 メイン冷凍機
18 過冷却部
DESCRIPTION OF SYMBOLS 10 Thermal storage tank 11 Thermal storage body 12 Refrigerant 13 Main refrigerator 18 Supercooling part

Claims (7)

液体のゲスト物質とホスト物質である水とを蓄熱体内に収容し、その蓄熱体を、蓄熱槽内に収容し、その蓄熱槽に冷媒を充填すると共にその冷媒をメイン冷却機で冷却して、蓄熱体内のゲスト物質と水にて包接水和物を生成する際に、前記蓄熱体を、上部ヘッダー管と下部ヘッダー管間に伝熱管を接続した多管集合管で構成し、その蓄熱体の上部ヘッダー管に過冷却部を設け、前記蓄熱体を、前記冷媒にて包接水和物の生成温度に対して、−2℃程度低い温度に過冷却し、前記過冷却部で、液体のゲスト物質と水を、前記冷媒の温度より低い温度に過冷却にして包接水和物の種を形成し、その種を基に、上部ヘッダー管から下部ヘッダー管へ水和物生成を伝播させて包接水和物を生成することを特徴とする蓄熱槽を用いた水和物生成方法。 The liquid guest material and the host material water are accommodated in the heat accumulator , the heat accumulator is accommodated in the heat accumulator, the refrigerant is filled in the heat accumulator and the refrigerant is cooled by the main cooler, When generating clathrate hydrate with the guest substance and water in the heat storage body, the heat storage body is composed of a multi-tube collecting pipe in which a heat transfer pipe is connected between the upper header pipe and the lower header pipe, and the heat storage body An upper cooling pipe is provided with a supercooling section, and the heat storage body is supercooled to a temperature lower by about −2 ° C. than the production temperature of clathrate hydrate with the refrigerant. The guest material and water are supercooled to a temperature lower than the temperature of the refrigerant to form a clathrate hydrate seed, and the hydrate formation is propagated from the upper header pipe to the lower header pipe based on the seed. A clathrate hydrate is produced to produce a hydrate using a heat storage tank. 液体のゲスト物質と水に界面活性剤を混入して分散液とし、この分散液を蓄熱体内に収容する請求項1記載の蓄熱槽を用いた水和物生成方法。   A method for producing a hydrate using a heat storage tank according to claim 1, wherein a surfactant is mixed into a liquid guest substance and water to form a dispersion, and the dispersion is accommodated in a heat storage body. 前記蓄熱体の上部ヘッダー管内のゲスト物質と水を、前記過冷却部に循環させるようにした請求項1又は2記載の蓄熱槽を用いた水和物生成方法。 The hydrate production | generation method using the thermal storage tank of Claim 1 or 2 which was made to circulate the guest substance and water in the upper header pipe | tube of the said thermal storage body to the said supercooling part. 過冷却部が、冷媒の流れる冷却コイル或いは熱電素子からなる請求項1〜3のいずれかに記載の蓄熱槽を用いた水和物生成方法。   The method for producing a hydrate using a heat storage tank according to any one of claims 1 to 3, wherein the supercooling section comprises a cooling coil or a thermoelectric element through which a refrigerant flows. 液体のゲスト物質とホスト物質である水とを蓄熱体内に収容し、その蓄熱体を、蓄熱槽内に収容し、その蓄熱槽に冷媒を充填すると共にその冷媒をメイン冷却機で冷却して、蓄熱体内のゲスト物質と水にて包接水和物を生成する蓄熱槽を用いた水和物生成装置において、前記蓄熱体を、上部ヘッダー管と下部ヘッダー管間に伝熱管を接続した多管集合管で構成し、前記蓄熱槽に、前記冷媒にて、前記包接水和物の生成温度に対して、−2℃程度低い温度に前記蓄熱体を、過冷却するメイン冷凍機を設け、その蓄熱体の上部ヘッダー管に、前記冷媒の温度より低い温度に過冷却して包接水和物の種を形成する過冷却部を設けたことを特徴とする蓄熱槽を用いた水和物生成装置。The liquid guest material and the host material water are accommodated in the heat accumulator, the heat accumulator is accommodated in the heat accumulator, the refrigerant is filled in the heat accumulator and the refrigerant is cooled by the main cooler, In a hydrate generating device using a heat storage tank that generates clathrate hydrate with a guest substance and water in a heat storage body, the heat storage body is a multi-tube in which a heat transfer tube is connected between an upper header tube and a lower header tube A main refrigerator that supercools the heat storage body at a temperature lower by about −2 ° C. than the production temperature of the clathrate hydrate is provided in the heat storage tank. Hydrate using a heat storage tank, characterized in that a supercooling section is provided in the upper header tube of the heat storage body to form a clathrate hydrate seed by supercooling to a temperature lower than the temperature of the refrigerant. Generator. 前記上部ヘッダー管に、その上部ヘッダー管内の液体のゲスト物質と水を、前記過冷却部に循環させる循環ラインを接続した請求項記載の蓄熱槽を用いた水和物生成装置。 The hydrate production | generation apparatus using the thermal storage tank of Claim 5 which connected the circulation line which circulates the guest substance and water of the liquid in the upper header pipe | tube to the said supercooling part to the said upper header pipe | tube . 過冷却部が、冷媒の流れる冷却コイル或いは熱電素子からなる請求項5又は6記載の蓄熱槽を用いた水和物生成装置。 The hydrate production | generation apparatus using the thermal storage tank of Claim 5 or 6 which a supercooling part consists of a cooling coil or a thermoelectric element with which a refrigerant | coolant flows.
JP2008293660A 2008-11-17 2008-11-17 Hydrate production method and apparatus using heat storage tank Expired - Fee Related JP5353198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008293660A JP5353198B2 (en) 2008-11-17 2008-11-17 Hydrate production method and apparatus using heat storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008293660A JP5353198B2 (en) 2008-11-17 2008-11-17 Hydrate production method and apparatus using heat storage tank

Publications (2)

Publication Number Publication Date
JP2010121800A JP2010121800A (en) 2010-06-03
JP5353198B2 true JP5353198B2 (en) 2013-11-27

Family

ID=42323294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008293660A Expired - Fee Related JP5353198B2 (en) 2008-11-17 2008-11-17 Hydrate production method and apparatus using heat storage tank

Country Status (1)

Country Link
JP (1) JP5353198B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166352A (en) * 1988-12-20 1990-06-27 Hitachi Cable Ltd Latent heat accumulator unit
JPH02122982U (en) * 1989-03-10 1990-10-09
JPH07104041B2 (en) * 1989-08-30 1995-11-13 株式会社フジクラ Heat pipe type water heater with high temperature heat storage
CA2151137A1 (en) * 1992-12-22 1994-07-07 Raymond H. P. Thomas Novel clathrate forming medium and its use in thermal energy storage systems and processes for thermal energy storage and transfer
JPH10168000A (en) * 1996-11-26 1998-06-23 Matsushita Electric Ind Co Ltd Medium for producing clathrate and heat energy storage device containing the same
JP2981890B1 (en) * 1998-10-07 1999-11-22 工業技術院長 Thermal storage device and thermal management method in the device
JP3994829B2 (en) * 2002-09-02 2007-10-24 Jfeエンジニアリング株式会社 Hydrate slurry production equipment
JP4853299B2 (en) * 2006-02-07 2012-01-11 Jfeエンジニアリング株式会社 Mass of clathrate hydrate, formation method thereof, heat storage method, heat storage device
WO2008078590A1 (en) * 2006-12-25 2008-07-03 Jfe Engineering Corporation Process and apparatus for producing clathrate hydrate slurry and method of operating the production apparatus
JP2007132658A (en) * 2007-01-12 2007-05-31 Jfe Engineering Kk Generation suppression method of liquid passage of hydrate slurry
JP2008215655A (en) * 2007-02-28 2008-09-18 Jfe Engineering Kk Heat storage device and its operation method

Also Published As

Publication number Publication date
JP2010121800A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
Purohit et al. Inorganic salt hydrate for thermal energy storage application: A review
JP3641362B2 (en) Cold storage method using cold clathrate, cold storage system, and cold storage agent
JP2006219557A (en) Heat storage material composition, heat storage body using the same and heat storage apparatus
JP4134982B2 (en) Cold storage method, cold storage system, cold storage agent, and method of extracting cold
JP5353198B2 (en) Hydrate production method and apparatus using heat storage tank
US4287076A (en) Product suitable for the storage and conveyance of thermal energy
JP2013515764A (en) Rapid gas hydrate production method
Uchida et al. Nucleation behavior of single-gas hydrates in the batch-type stirred reactor and their promotion effect with ultrafine bubbles: A mini review and perspectives
JP5461331B2 (en) Thermal storage material and thermal storage device
JP2002060739A5 (en) Cold heat transport method, cold heat transport system, operation method of cold heat transport system, storage device, and hydrate production device
JP2019019151A (en) Heat storage material composition
JP5489150B2 (en) Production method of clathrate hydrate
JP4853299B2 (en) Mass of clathrate hydrate, formation method thereof, heat storage method, heat storage device
KR20100012491A (en) Method for the fast formation of gas hydrate
JP2008285526A (en) Method for forming hydrate
JP2010127505A (en) Method of forming hydrate, heat storage material and heat storage device
JP2000111282A (en) Heat storage device and heat control in heat storage device
Li et al. The efficient and developing phase transition freezing materials generated from amino acids
JP2012233022A (en) Apparatus for manufacturing reaction water for forming gas hydrate
JP7450586B2 (en) Cold energy recovery system and cold energy utilization method
US9625096B2 (en) Method for filling a gas storage tank
JP2005082686A (en) Method for producing gas hydrate
JP3956556B2 (en) Method and apparatus for producing tetra n-butylammonium bromide hydrate heat storage material slurry
JP2004113926A (en) Hydrate manufacturing method utilizing solubility characteristic of guest molecule
US11143441B2 (en) Closed loop refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

LAPS Cancellation because of no payment of annual fees