JP5351682B2 - Vertical rotating shaft type wind turbine and wind power generator using the same - Google Patents

Vertical rotating shaft type wind turbine and wind power generator using the same Download PDF

Info

Publication number
JP5351682B2
JP5351682B2 JP2009217092A JP2009217092A JP5351682B2 JP 5351682 B2 JP5351682 B2 JP 5351682B2 JP 2009217092 A JP2009217092 A JP 2009217092A JP 2009217092 A JP2009217092 A JP 2009217092A JP 5351682 B2 JP5351682 B2 JP 5351682B2
Authority
JP
Japan
Prior art keywords
wind
blade
blades
rotating shaft
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009217092A
Other languages
Japanese (ja)
Other versions
JP2011064169A (en
Inventor
清一 二星
Original Assignee
清一 二星
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清一 二星 filed Critical 清一 二星
Priority to JP2009217092A priority Critical patent/JP5351682B2/en
Publication of JP2011064169A publication Critical patent/JP2011064169A/en
Application granted granted Critical
Publication of JP5351682B2 publication Critical patent/JP5351682B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind power generation device including a vertical-rotation-axis wind turbine in which a plurality of blades efficiently and smoothly rotate regardless of a wind direction and also the blades on the side where the wind conventionally acts to disturb the rotation of the blades are not disturbed easily to rotate about a rotation center position of the blades arranged to be spaced from each other in a circumferential direction. <P>SOLUTION: A plurality of plate-shaped blades 4 curved to be an arc shape in a cross section perpendicular to a vertical direction are arranged around a rotation center part o of the blades in the vertical direction to be spaced so that concave side arc surfaces 41 of the blades 4 receive the wind. A hollow space 8 for being passed through by the wind received by the blades 4 is formed on the side of the rotation center part o of the blades 4 so as to communicate with spaces 10 between the adjacent blades. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、垂直回転軸型風車と同垂直回転軸型風車を用いた風力発電装置に関するもので、詳しくは、どのような方向から風を受けても効率よく回転する風車とその風車を用いた風力発電装置に関するものである。   The present invention relates to a wind turbine generator using a vertical rotating shaft type wind turbine and the vertical rotating shaft type wind turbine, and more specifically, a wind turbine that efficiently rotates regardless of the wind from which direction and the wind turbine are used. The present invention relates to a wind power generator.

近年、環境保護および省エネルギーの面から太陽光発電と風力発電とが注目されている。風力発電には風車が用いられており、この風車には垂直回転軸型と水平回転軸型とがある。水平回転軸型の風車は、対向する風を受けなければプロペラが効率よく回転しない。このため、常にプロペラが前方から向かい風を受けるように、プロペラを先端に支持する支持体の先端部を風が吹いてくる方向に向くようにしなければならない。一方、垂直回転軸型の風車は、風の向きに左右されずに回転するが、ブレードの回転中心を境にして片方のブレードは効率よく回転しようとするが、他方のブレードには回転を妨げるように風が当たるという問題点を有している。   In recent years, solar power generation and wind power generation have attracted attention in terms of environmental protection and energy saving. A windmill is used for wind power generation, and there are a vertical rotation axis type and a horizontal rotation axis type. In a horizontal rotating shaft type windmill, the propeller does not rotate efficiently unless it receives the opposing wind. For this reason, the tip of the support that supports the propeller at the tip must be directed in the direction in which the wind blows so that the propeller always receives the wind from the front. On the other hand, the wind turbine of the vertical rotation axis type rotates without being influenced by the direction of the wind, but one blade tries to rotate efficiently with the rotation center of the blade as a boundary, but the other blade prevents the rotation. As such, it has the problem of being hit by the wind.

垂直回転軸型風車を用いた風力発電装置に関する先行技術として、縦軸形の第1風車、縦軸形の第2風車および発電装置を備え、風力による第1風車の羽根の回転方向と第2風車の羽根の回転方向は互いに反対方向であり、前記発電装置は前記第1風車と第2風車との間に配置され、前記発電装置の界磁用磁石と電機子コイルは同じ回転中心の周りを回転し、かつ、前記界磁用磁石は前記第1風車および第2風車の一方の回転方向に回転し、前記電機子コイルは前記界磁用磁石による磁界中において前記第1風車および第2風車の他方の回転方向に回転する風力発電機が提案されている(たとえば、特許文献1参照)。   As a prior art related to a wind turbine generator using a vertical rotating shaft type wind turbine, a first wind turbine having a vertical axis, a second wind turbine having a vertical axis, and a power generator are provided. The wind turbine blades rotate in opposite directions, the power generator is disposed between the first wind turbine and the second wind turbine, and the field magnet and the armature coil of the power generator are around the same center of rotation. And the field magnet rotates in one rotational direction of the first windmill and the second windmill, and the armature coil rotates in the magnetic field generated by the field magnet. A wind power generator that rotates in the other rotation direction of the windmill has been proposed (see, for example, Patent Document 1).

特開2004−211707号公報Japanese Patent Laid-Open No. 2004-211707

上記の特許文献1に記載の風力発電機によれば、第1風車と第2風車が風力により互いに反対方向に回転し、両者の間に配置された発電装置の界磁用磁石と電機子コイルが前記第1風車および第2風車の回転により互いに反対方向に回転するので、前記界磁用磁石による磁界を横切る電機子コイルにより発電量が倍の発電をすることができるという利点がある。   According to the wind power generator described in Patent Document 1, the first windmill and the second windmill are rotated in opposite directions by the wind force, and the field magnet and the armature coil of the power generation apparatus disposed between the two windmills. However, since the first windmill and the second windmill rotate in opposite directions, there is an advantage that the power generation amount can be doubled by the armature coil crossing the magnetic field by the field magnet.

しかしながら、回転方向が反対の第1風車と第2風車とを発電装置を介在させて設ける必要があるため、構造が複雑である。また、ブレードの回転中心を境にして片側のブレードには同ブレードを回転させる方向に風が当たるが、反対側のブレードには回転を妨げるように風が作用するという上記問題点は解決されていない。さらに、特許文献1に記載の風車用ブレードは、鉛直方向からみて、回転方向の進行方向前側に向かって凸状に湾曲された前側面と、前側面の背面側に配置され、前記進行方向の後側に向かって凹状に湾曲された後側面とを備えており、前記前側面は、前記進行方向の前方に配置されると共に平均曲率の最も大きい前縁面と、前記回転中心に近い側に配置され前記前縁面から前記進行方向の後方に向かって連続形成された気流低速通過面と、前記回転中心から遠い側に配置され前記前縁面から前記進行方向の後方に向かって前記気流低速通過面よりも大きく膨らむ曲面で連続形成され前記鉛直方向からみた長さが前記気流低速通過面よりも長い気流高速通過面とを含んでいるために、ブレードの構造が複雑で製造が難しく、風車の重量が重くなる。   However, since it is necessary to provide the first windmill and the second windmill whose rotation directions are opposite to each other with the power generation device interposed, the structure is complicated. In addition, the above problem that the wind acts on the blade on one side with the rotation center of the blade in the direction of rotating the blade but the wind acts on the opposite blade to prevent the rotation has been solved. Absent. Further, the windmill blade described in Patent Document 1 is disposed on the front side curved in a convex shape toward the front side in the rotational direction when viewed from the vertical direction, and on the rear side of the front side, A rear side surface curved in a concave shape toward the rear side, and the front side surface is disposed in front of the traveling direction and has a largest average curvature and a side closer to the rotation center. An airflow low-speed passage surface that is disposed and continuously formed from the front edge surface toward the rear in the traveling direction, and an airflow low-speed surface that is disposed on the side far from the center of rotation and is rearward from the front edge surface in the traveling direction. The blade structure is complicated and difficult to manufacture because it includes a high-speed airflow passage surface that is continuously formed with a curved surface that swells larger than the passage surface and has a length as viewed in the vertical direction that is longer than the low-speed airflow passage surface. Is heavy That.

本発明は上述の点に鑑みなされたもので、風の向きに左右されずにブレードが効率よくスムーズに回転するとともに、円周方向に間隔をあけて配置される複数のブレードの回転中心位置を境にし、従来はブレードの回転を妨げるように風が作用する側のブレードについても回転が妨げられにくい、垂直回転軸型風車と同風車を備えた風力発電装置とを提供することを目的としている。   The present invention has been made in view of the above points, and the rotation center position of a plurality of blades arranged at intervals in the circumferential direction while the blade rotates efficiently and smoothly regardless of the direction of the wind. Conventionally, the purpose of the present invention is to provide a vertical rotating shaft type wind turbine and a wind turbine generator equipped with the same wind turbine, in which rotation of the blade on the side on which wind acts so as to prevent rotation of the blade is difficult to be prevented. .

上記の目的を達成するために本発明にかかる垂直回転軸型風車は、 鉛直方向に直交する断面が円弧状になるように湾曲させた板状の複数枚のブレードを、同ブレードの凹状側円弧面が風を受けるように鉛直方向の前記ブレードの回転中心部の周りに円周方向に間隔をあけて配置するとともに、前記各ブレードが受ける風が通過可能な空洞部を、前記各ブレードの前記回転中心部側において隣接する前記各ブレード間の空間部に連通させて設け、前記各ブレードの円弧面の外縁より、前記回転中心部から半径方向外方へ延びる延長板を張り出して設けたことを特徴とする。 In order to achieve the above object, a vertical rotating shaft type wind turbine according to the present invention comprises a plurality of plate-like blades curved so that a cross section perpendicular to the vertical direction is an arc shape, and a concave side arc of the blade. The surface of the blade is arranged around the center of rotation of the blade in a vertical direction so as to receive wind, and spaced apart in the circumferential direction. Provided in communication with the space between the adjacent blades on the rotation center side, and provided by extending an extension plate extending radially outward from the rotation center from the outer edge of the arc surface of each blade. Features.

上記の構成を有する垂直回転軸型風車によれば、図4に示すように凹状側円弧面41で風を受けるブレード4と反対側(風下側)の、凸状側円弧面42で風を受けて回転の抗力になる側のブレード4に対し、風車本体2の回転を助長するように風が流れ込むので、風車本体2の回転に風が有効に利用され風車本体2が効率よく回転する。
また、起動時に各ブレードの外縁から半径方向に張り出す延長板(フラットバー)がブレードの凹状の円弧面とともに風を受け、しかも前記延長板に当たる風は大部分が風車本体を一方向に回転させる回転力を生じさせるように作用するために、風車本体がスムーズに回転を開始する。なお、前記延長板の幅(張り出し寸法)は限定するものではないが、たとえば前記風車本体の外径の1/10前後位あればよい。
According to the vertical rotating shaft type windmill having the above-described configuration, the wind is received by the convex-side arc surface 42 on the opposite side (leeward side) from the blade 4 receiving the wind by the concave-side arc surface 41 as shown in FIG. Thus, the wind flows into the blade 4 on the side that acts as a drag of the rotation so as to facilitate the rotation of the windmill body 2, so that the wind is effectively used for the rotation of the windmill body 2 and the windmill body 2 rotates efficiently.
In addition, an extension plate (flat bar) projecting radially from the outer edge of each blade at the time of startup receives wind along with the concave arc surface of the blade, and most of the wind hitting the extension plate rotates the windmill body in one direction. In order to act to generate a rotational force, the windmill body starts to rotate smoothly. In addition, although the width | variety (overhang dimension) of the said extension board is not limited, For example, what is necessary is just about 1/10 about the outer diameter of the said windmill main body.

請求項2に記載のように、前記風車本体の外径の1/3の直径で同心の内径円を描き、その内径円を円周方向に6等分した各点から前記外径の1/2の直径で同心の中間径円を描き、その中間径円上の点を中心に前記外径の1/4〜1/3の半径で前記内径円の等分点と前記外径の円上とを結ぶ円弧状の6枚のブレードを備えることができる。   As described in claim 2, a concentric inner diameter circle is drawn with a diameter of 1/3 of the outer diameter of the wind turbine body, and the inner diameter circle is divided into six equal parts in the circumferential direction. Draw a concentric intermediate diameter circle with a diameter of 2 and center the point on the intermediate diameter circle with a radius of 1/4 to 1/3 of the outer diameter on the inner diameter circle and the outer diameter circle 6 arcuate blades can be provided.

このようにすれば、円周方向に等間隔に6枚の円弧状ブレードを規則正しく、かつ容易に製作することができる。   In this way, six arcuate blades can be manufactured regularly and easily at equal intervals in the circumferential direction.

請求項3に記載のように、前記各ブレードは対向する円形の上板と円形の下板との間に跨って上下の板と一体回転可能に支持され、前記上板と前記下板の各中心部にそれぞれ支持された回転軸により軸受を介して回転することができる。   According to a third aspect of the present invention, the blades are supported so as to be integrally rotatable with the upper and lower plates between the opposing circular upper plate and the circular lower plate, and each of the upper plate and the lower plate is supported. It can rotate via a bearing by the rotating shaft each supported by the center part.

このようにすれば、複数枚の円弧状ブレードを相互に隣接するブレード間に風が流通する空間部を設け、円形の上下板間に一体に支持することができ、構造が簡単で小型軽量化が可能になる。また、円弧状ブレードと円形の板と回転軸との3種類の、少ない点数の部品で製造できる。さらに、ブレードを共通にすることで、ブレードの枚数を簡単に増減できるとともに、ブレードの長さを変えるだけで、風車本体が受ける風量を任意に調整することができる。   In this way, a plurality of arc-shaped blades can be provided with a space for air to flow between adjacent blades, and can be supported integrally between the circular upper and lower plates, making the structure simple, small and lightweight Is possible. Further, it can be manufactured with a small number of parts such as an arcuate blade, a circular plate, and a rotating shaft. Furthermore, by using a common blade, the number of blades can be easily increased or decreased, and the amount of air received by the windmill body can be arbitrarily adjusted by simply changing the length of the blade.

請求項に記載のように、前記各ブレードの円弧面の曲率を、前方のブレードが受けた風が前記空洞部を挟んで反対側(風下側)のブレードの凹状側円弧面に流れ込み同ブレードに同一方向に回転させる回転力を生じさせるように設定することが望ましい。 5. The curvature of the arc surface of each blade according to claim 4 , wherein the wind received by the front blade flows into the concave arc surface of the blade on the opposite side (leeward side) across the cavity. It is desirable to set so that a rotational force for rotating in the same direction is generated.

このようにすれば、凹状の円弧面で風を受けるブレードと反対側(風下側)の、凸状側円弧面で風を受けて風車本体の回転の抗力になる側のブレードに対し、図4に示すように風車本体の回転を助長するように風が流れ込むので、風車本体の回転に風が有効に利用され風車本体が効率よく回転する。   In this way, with respect to the blade on the side opposite to the blade receiving the wind on the concave arc surface (leeward side) on the side receiving the wind on the convex arc surface and acting as a drag force for the rotation of the windmill body, FIG. Since the wind flows so as to facilitate the rotation of the windmill body, the wind is effectively used for the rotation of the windmill body, and the windmill body rotates efficiently.

請求項に記載のように、前記風車本体の側周面における円周方向の1/4(90度)前後を覆う風よけカバーを、上下の前記回転軸に回転可能に取り付けるとともに、風の吹く方向を指す風向翼を前記回転軸に回転可能に取り付け、前記風よけカバーを風に対向して前記風車本体の1/4前後の側周面を覆うように前記風向翼に対し一体的に回転するように連結することが望ましい。 As described in claim 5 , windshield covers covering about 1/4 (90 degrees) in the circumferential direction on the side peripheral surface of the windmill body are rotatably attached to the upper and lower rotating shafts, A wind vane pointing in the direction of the wind is rotatably attached to the rotating shaft, and the windshield cover is integrated with the wind vane so as to face the wind and cover a side circumferential surface of about 1/4 of the wind turbine body. It is desirable to connect so that it may rotate.

このようにすれば、風を正面より受けて回転の抗力となる側を風よけカバーで覆ってブレードに風が当たらなくできるので、風よけカバーに隣接する位置から風車本体内のブレードに吹き込んで当たる風を、風車本体の回転に無駄なく利用でき、弱風でも風車本体が円滑に回転する。したがって、本請求項にかかる風車を用いた風力発電装置によれば、弱風から強風に至るまで風の強弱に拘わらず、風力を無駄なくかつ効率よく発電に利用することができる。   In this way, the wind can be received from the front and the side that acts as a drag of rotation is covered with the windshield cover so that the blade does not hit the blade. The wind that is blown in can be used for the rotation of the windmill body without waste, and the windmill body rotates smoothly even in low winds. Therefore, according to the wind power generator using the windmill according to the present claims, wind power can be efficiently and efficiently used for power generation regardless of the strength of the wind from weak wind to strong wind.

請求項に記載の風力発電装置は、請求項1〜のいずれか記載の垂直回転軸型風車を備えたことを特徴とする。 A wind turbine generator according to a sixth aspect includes the vertical rotating shaft type windmill according to any one of the first to fifth aspects.

このようにすれば、上記の請求項1〜のいずれか1項に記載の風車を用いて風力発電装置を製造することにより、弱風から強風に至るまで風の強弱に拘わらず、風力を無駄なくかつ効率よく発電に利用することができる。 In this way, by producing a wind power generator using the windmill according to any one of claims 1 to 5 , wind power can be generated regardless of the strength of the wind from weak wind to strong wind. It can be used efficiently for power generation without waste.

請求項に記載のように、前記回転軸に対し回転子コアを一体回転可能に取り付けるとともに、前記回転子コアの周囲に固定子コアを配設することができる。 According to a seventh aspect of the present invention, a rotor core can be attached to the rotating shaft so as to be integrally rotatable, and a stator core can be disposed around the rotor core.

このようにすれば、風車本体の回転に伴って回転子コアが固定子コア間の磁力に抗して同磁力線を切ることで発電する。   If it does in this way, with a rotation of a windmill main body, a rotor core resists the magnetic force between stator cores, and generates electricity by cutting the same line of magnetic force.

本発明にかかる垂直回転軸型風車および風力発電装置には、つぎのような優れた効果がある。
・本発明の風車は、風向きによる影響が少なく、弱風でも効率よく回転することができる。
・本発明の風力発電装置は、風向きによる影響が少なく、効率よく回転する風車を用いているので、風向きおよび風力の強弱にかかわらず、効率よく発電することができる。
The vertical rotating shaft type wind turbine and the wind power generator according to the present invention have the following excellent effects.
-The windmill of this invention has little influence by a wind direction, and can rotate efficiently also with a weak wind.
-Since the wind power generator of this invention has little influence by a wind direction and uses the windmill which rotates efficiently, it can generate | occur | produce efficiently regardless of a wind direction and the strength of a wind force.

図2の風力発電装置のA−A方向から見た平面図で、一部を省略して表している。It is the top view seen from the AA direction of the wind power generator of FIG. 本発明の垂直回転軸型風車を備えた風力発電装置の実施の形態を示す正面図である。It is a front view which shows embodiment of the wind power generator provided with the vertical rotating shaft type windmill of this invention. 本発明の垂直回転軸型風車におけるブレードの作成方法の一例を示す説明図である。It is explanatory drawing which shows an example of the production method of the blade in the vertical rotating shaft type windmill of this invention. 本発明の垂直回転軸型風車におけるブレードの作成方法の別の例を示す説明図と同作成方法に基づいて作成したブレードを備えた垂直回転軸型風車における風の流れを表すものである。It is explanatory drawing which shows another example of the preparation method of the blade in the vertical rotating shaft type windmill of this invention, and represents the flow of the wind in the vertical rotating shaft type windmill provided with the blade created based on the preparation method. 本発明の垂直回転軸型風車におけるブレードの変形例を示すもので、ブレードの作成方法の一例を表した説明図である。It is explanatory drawing which showed the modification of the braid | blade in the vertical rotating shaft type windmill of this invention, and represented an example of the preparation method of a braid | blade. 図5の垂直回転軸型風車における2枚のブレードを示す斜視図である。FIG. 6 is a perspective view showing two blades in the vertical rotating shaft type wind turbine of FIG. 5. 本発明の変形例にかかるブレード4’を備えた風車本体2を示す平面図である。It is a top view which shows the windmill main body 2 provided with braid | blade 4 'concerning the modification of this invention. 本発明の風力発電装置の別の実施形態を示す平面図である。It is a top view which shows another embodiment of the wind power generator of this invention. 図8の風力発電装置を示す正面図である。It is a front view which shows the wind power generator of FIG.

以下、本発明の垂直回転軸型風車および風力発電装置の実施の形態について図面に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a vertical rotating shaft type wind turbine and a wind power generator according to the present invention will be described with reference to the drawings.

図1および図2に示すように、風力発電装置1は、垂直回転軸型の風車本体2を支持枠3内の中心部に回転可能に備えている。風車本体2は円筒体状で、本例では6枚のブレード4を上下の円板5・5間に跨って一体回転可能に備えている。上下の各円板5・5の中心位置に上部回転軸6の上端と下部回転軸7の下端とが、上方または下方へ突出して一体回転可能に固定されている。   As shown in FIG. 1 and FIG. 2, the wind turbine generator 1 includes a vertical rotating shaft type windmill body 2 that is rotatable at a central portion in a support frame 3. The windmill body 2 has a cylindrical shape, and in this example, six blades 4 are provided so as to be integrally rotatable across the upper and lower disks 5. The upper end of the upper rotating shaft 6 and the lower end of the lower rotating shaft 7 protrude upward or downward at the center position of the upper and lower discs 5 and 5 and are fixed so as to be integrally rotatable.

支持枠3は略正方形状の底板31を備え、この底板31上に4本の支柱32が左右に2本ずつ鉛直方向に立設されている。4本の各支柱32は左右方向および前後方向に一対の上部フレーム(図示せず)および下部フレーム35・36により連結され、枠体が構成されしている。また、上部フレーム(図示せず)間および下部フレーム36・36間が平板状フレーム37または38で連結されている。上下の平板状フレーム37・38の長さ方向の中央部に開口37a・38aが設けられ、各開口37a・38a内に配置された軸受16・17により上下の回転軸6・7がそれぞれ回転可能に支持されている。上下の平板状フレーム37・38の上面または下面には、補強フレーム37b・38bが一体に垂直(縦向き)に固着されている。   The support frame 3 includes a substantially square bottom plate 31, and four support columns 32 are erected in the vertical direction on the bottom plate 31. Each of the four support columns 32 is connected in the left-right direction and the front-rear direction by a pair of upper frames (not shown) and lower frames 35 and 36 to form a frame. Further, the upper frame (not shown) and the lower frames 36 are connected by a flat frame 37 or 38. Openings 37a and 38a are provided at the center in the length direction of the upper and lower flat frames 37 and 38, and the upper and lower rotary shafts 6 and 7 can be rotated by bearings 16 and 17 disposed in the openings 37a and 38a, respectively. It is supported by. Reinforcing frames 37b and 38b are integrally and vertically fixed (vertically) on the upper and lower surfaces of the upper and lower flat frames 37 and 38, respectively.

図2に示すように、底板31の中央部上に円筒状支持台11が設置されている。この支持台11内には、図示を省略した発電装置としての固定子コア12が配設され、この固定子コア12内に回転子コア13が配置されている。回転子コア13の中心部には回転軸14が一部を上方へ突出させて一体回転可能に設けられ、回転軸14は下部回転軸7に軸継手15を介して連結されている。発電装置には、たとえば図示しないスリップリングとこのスリップリングに摺動するブラシが複数組設けられ、それらのブラシは回転子コア13から交流電力を取り出せるように接続されている。固定子コア12には永久磁石を使用しているが、発電した交流電力の一部を図示しない整流回路により直流に変換した界磁用電力によって励磁するようにしてもよい。また、ブラシを用いず無接点方式にしてもよく、できるだけ小トルクで回転して発電されるものであれば、発電装置は特に限定されない。   As shown in FIG. 2, the cylindrical support base 11 is installed on the center portion of the bottom plate 31. A stator core 12 as a power generator (not shown) is disposed in the support base 11, and a rotor core 13 is disposed in the stator core 12. A rotating shaft 14 is provided at the center of the rotor core 13 so that a part of the rotating shaft 14 protrudes upward and can rotate integrally. The rotating shaft 14 is connected to the lower rotating shaft 7 via a shaft coupling 15. For example, a plurality of sets of slip rings (not shown) and brushes that slide on the slip rings are provided in the power generation device, and these brushes are connected so that AC power can be extracted from the rotor core 13. Although a permanent magnet is used for the stator core 12, a part of the generated AC power may be excited by field power converted into DC by a rectifier circuit (not shown). Further, the non-contact method may be used without using a brush, and the power generation device is not particularly limited as long as the power is generated by rotating with as little torque as possible.

風車本体2は、本例では図3に示すように、外径Dが1200mmの場合に外径Dの1/3の直径d1=400mmで同心の内径円201を描き、その内径円201を円周方向に60°間隔で6等分した各点から前記外径Rの1/2の直径d2=600mmで同心の中間径円202を描き、その中間径円202上の点を中心に前記外径Dの7/30の半径r=380mmで前記内径円201の6等分点と外径円200上とを結ぶことにより、扇形状角度α=90°の円弧状の6枚のブレード4を作成する。このようにして作成したブレード4が内径円201から外径円200に向けて時計方向へ円弧状に湾曲するように、かつ円周方向に等間隔に配置される。   In this example, as shown in FIG. 3, the wind turbine main body 2 draws a concentric inner diameter circle 201 with a diameter d1 = 400 mm which is 1/3 of the outer diameter D when the outer diameter D is 1200 mm. A concentric intermediate diameter circle 202 having a diameter d2 = 600 mm which is ½ of the outer diameter R is drawn from each point equally divided into six at 60 ° intervals in the circumferential direction, and the outer diameter is centered on a point on the intermediate diameter circle 202. By connecting the six-divided point of the inner diameter circle 201 and the outer diameter circle 200 with a radius r = 380 mm of 7/30 of the diameter D, six arc-shaped blades 4 with a fan-shaped angle α = 90 ° are obtained. create. The blades 4 thus created are arranged at equal intervals in the circumferential direction so as to curve in a circular arc shape clockwise from the inner diameter circle 201 toward the outer diameter circle 200.

図4は風車本体2の、ブレード4の半径rと扇形角αが異なる別の実施例で、本例の場合、上記実施例と共通の外径、中間径および内径において、ブレード4の半径rを外径Rの1/4の300mm、扇形角α=120°にし、上記実施例と同様に内径円201内が空洞部8を構成し、図4に示すように矢印方向に吹く風を風に対向する複数枚のブレード4の凹状側円弧面41で受ける。この風はブレード4に対し時計方向への回転力を与えるとともに、ブレード4の凹状側円弧面41に案内されて空洞部8を通り、反対側(風下側)に位置するブレード4の凹状側円弧面41に案内され、同様に時計方向への回転力を与えてブレード4・4間の空間部10を通って風車本体2の外部へ排出される。このため、ブレード4の凸状側円弧面42で風を受けて時計方向への回転に抗する力をある程度打ち消すことができる。図4は風車本体2の右側面に対向する風を 受ける状態を示しているが、風車本体2に対してどのような方向から風が吹いても、図4の右側面から風を受けるのと同じ態様により風車本体2が時計方向に回転する。   FIG. 4 shows another embodiment of the wind turbine main body 2 in which the radius r of the blade 4 is different from the sector angle α. In this example, the radius r of the blade 4 has the same outer diameter, intermediate diameter and inner diameter as the above-described embodiments. Is set to 300 mm, which is 1/4 of the outer diameter R, and the sector angle α = 120 °, and the inner diameter circle 201 forms the cavity 8 in the same manner as in the above embodiment, and the wind blown in the direction of the arrow as shown in FIG. Are received by the concave arcuate surfaces 41 of the plurality of blades 4 facing each other. The wind gives a rotational force in the clockwise direction to the blade 4, and is guided by the concave side arc surface 41 of the blade 4, passes through the cavity portion 8, and the concave side arc of the blade 4 located on the opposite side (leeward side). It is guided by the surface 41 and similarly given a clockwise rotational force, passes through the space 10 between the blades 4 and 4 and is discharged to the outside of the windmill body 2. For this reason, it is possible to cancel the force against the clockwise rotation by receiving the wind on the convex arcuate surface 42 of the blade 4 to some extent. FIG. 4 shows a state where the wind facing the right side surface of the windmill body 2 is received. However, the wind is blown from the right side surface of FIG. In the same manner, the windmill body 2 rotates clockwise.

なお、本実施形態では、ブレード4を内径円201から外径円200に向けて反時計方向に円弧状に湾曲するように配置しているが、ブレード4を内径円201から外径円200に向けて時計方向に円弧状に湾曲するように配置してよい。そして、時計方向に円弧状に湾曲するようにブレード4を配置した場合には、風車本体2は時計方向に回転する。また、ブレード4の上下方向の長さ(高さ)は、本実施形態では風車本体2の外径Dの1.5倍、つまりL=1800mmに設定しているが、これについても限定するものではなく、たとえば風車本体2の外径Dと同一の1200mmにすることもでき、発電装置の必要トルクに応じて設定できる。   In the present embodiment, the blade 4 is arranged so as to be curved in an arc shape counterclockwise from the inner diameter circle 201 toward the outer diameter circle 200, but the blade 4 is changed from the inner diameter circle 201 to the outer diameter circle 200. You may arrange | position so that it may curve in a circular arc shape toward clockwise. When the blade 4 is arranged so as to be curved in an arc shape in the clockwise direction, the windmill body 2 rotates in the clockwise direction. The vertical length (height) of the blade 4 is set to 1.5 times the outer diameter D of the windmill body 2 in this embodiment, that is, L = 1800 mm, but this is also limited. Instead, for example, it can be set to 1200 mm, which is the same as the outer diameter D of the windmill body 2, and can be set according to the required torque of the power generator.

図1および図2に示すように、風車本体2の側周面2aを円周方向に概ね1/4(略90°)覆う風よけカバー9を設けている。この風よけカバー9は、上方より見て扇形状の上板9aと同扇形状の下板9bおよび上下板9a・9bの周面に跨る側周壁9cを備え、略1/4の円筒体からなる。風よけカバー9は風車本体2の側周面2aの一部(円周方向の1/4)を覆うように、上部回転軸6と下部回転軸7に対し軸受16または17を介して回転可能に取り付けられている。この状態で風よけカバー9内には、風車本体2の上下および半径方向にわずかな隙間が生じている。   As shown in FIGS. 1 and 2, a windbreak cover 9 is provided to cover the side peripheral surface 2 a of the windmill body 2 in the circumferential direction approximately ¼ (approximately 90 °). The windshield cover 9 includes a fan-shaped upper plate 9a, a fan-shaped lower plate 9b, and side peripheral walls 9c straddling the peripheral surfaces of the upper and lower plates 9a and 9b as viewed from above, and a substantially 1/4 cylindrical body. Consists of. The windshield cover 9 rotates via a bearing 16 or 17 with respect to the upper rotary shaft 6 and the lower rotary shaft 7 so as to cover a part (1/4 of the circumferential direction) of the side peripheral surface 2a of the windmill body 2. It is attached as possible. In this state, a slight gap is generated in the windshield cover 9 in the vertical and radial directions of the windmill body 2.

また、風よけカバー9には風向翼18が一体回転可能に連結されている。すなわち、風向翼18は五角形状の縦向きの翼からなり、軸受19の外輪側に固定されている。この状態で、図1に示すように風向翼18は風よけカバー9の上板9aの半径の延長線上において、風よけカバー9の風下側の側辺9dに対しほぼ直角に交差する。この構成により、風向翼18は風が吹く方向に平行にかつ風の方向と反対側に回転し、この風向翼18の回転に伴って風よけカバー9は側周壁9cが、風に対向する風車本体2の側周面2aの一部(1/4)を常に覆う。したがって、回転を阻害する方向の風は風車本体2には当たらない。なお、ブレード4・上下の円板5などの風車本体2を構成する部材や風よけカバー9および風向翼18の材質については、アルミニウム、アルミニウム合金、ジュラルミン、チタンなどの軽合金、強化プラスチックなどが用いられるが、限定されるものではないことはいうまでもない。   Further, a wind vane 18 is connected to the windshield cover 9 so as to be integrally rotatable. That is, the wind direction blade 18 is a pentagonal vertical blade and is fixed to the outer ring side of the bearing 19. In this state, as shown in FIG. 1, the wind vane 18 intersects the leeward side 9 d of the windshield cover 9 at a substantially right angle on the extended line of the radius of the upper plate 9 a of the windshield cover 9. With this configuration, the wind vane 18 rotates in parallel to the wind blowing direction and on the opposite side of the wind direction. As the wind vane 18 rotates, the windshield cover 9 has the side peripheral wall 9c facing the wind. A part (1/4) of the side peripheral surface 2a of the windmill body 2 is always covered. Therefore, the wind in the direction that inhibits the rotation does not hit the windmill body 2. In addition, about the material which comprises the windmill main body 2, such as the blade 4 and the upper and lower circular plates 5, and the windshield cover 9 and the wind vane 18, light alloys such as aluminum, aluminum alloy, duralumin, titanium, reinforced plastic, etc. Needless to say, is not limited.

以上のようにして、本実施形態の風力発電装置1が構成されるので、続いて風車本体2および風力発電装置1の動作について説明する。   Since the wind power generator 1 of this embodiment is comprised as mentioned above, operation | movement of the windmill main body 2 and the wind power generator 1 is demonstrated continuously.

図1および図2において風車本体2が正面方向からの風を受けたと仮定すると、風向翼18は図1において時計方向に90°回転するとともに、風よけカバー9も時計方向に90°回転する。この状態は図1と同様の状態であり、風よけカバー9に隣接する右側方90°の範囲に風が吹き込む。風は風車本体2内のブレード4の凹状側円弧面41に当たり、風車本体2は反時計方向に回転する。一方、風車本体2内のブレード4の凸状側円弧面42に当たろうとする風は、風よけカバー9によって阻止される。このため、風によって風車本体2の反時計方向への回転が阻害されることがない。また、風車本体2内のブレード4の凹状側円弧面41に当たった風は、図4に示すように空洞部8を通って反対側に位置するブレード4の凹状側円弧面41に案内され、同ブレード4に対し反時計方向への回転力を与えて風車本体2の外部へ排出される。したがって、本実施形態の風車本体2を備えた風力発電装置1によれば、風車本体2がどのような方向からの風を受けても、複数の異なる方向から風を受けても、あるいは風の吹く方向が変わっても、風車本体2は効率よく特定方向(反時計方向)に回転する。そして、風車本体2が特定方向に回転するのに伴って、下方の回転子コア13が固定子コア12間の磁力に抗して回転し磁力線を切ることによって発電し、交流電力が生じる。   Assuming that the windmill body 2 receives wind from the front direction in FIGS. 1 and 2, the wind vane 18 rotates 90 ° clockwise in FIG. 1, and the windshield cover 9 also rotates 90 ° clockwise. . This state is the same as that in FIG. 1, and the wind blows into a 90 ° right side range adjacent to the windshield cover 9. The wind hits the concave arcuate surface 41 of the blade 4 in the windmill body 2, and the windmill body 2 rotates counterclockwise. On the other hand, the wind which tries to hit the convex side arc surface 42 of the blade 4 in the windmill body 2 is blocked by the windshield cover 9. For this reason, rotation of the windmill body 2 in the counterclockwise direction is not hindered by the wind. Further, the wind hitting the concave arcuate surface 41 of the blade 4 in the windmill body 2 is guided to the concave arcuate surface 41 of the blade 4 located on the opposite side through the cavity 8 as shown in FIG. A counterclockwise rotational force is applied to the blade 4 and discharged to the outside of the wind turbine body 2. Therefore, according to the wind turbine generator 1 including the windmill body 2 of the present embodiment, the windmill body 2 receives wind from any direction, receives wind from a plurality of different directions, or wind Even if the blowing direction changes, the windmill body 2 efficiently rotates in a specific direction (counterclockwise). Then, as the windmill body 2 rotates in a specific direction, the lower rotor core 13 rotates against the magnetic force between the stator cores 12 and generates power by cutting the lines of magnetic force, thereby generating AC power.

つぎに、図5および図6は風車本体の変形例を示すもので、本例では、全てのブレード4の外縁から風車本体2’の中心位置より半径方向外方へ向け、延長板4aをブレード4の全長にわたり一定幅で張り出させている。延長板4aは板状のブレード4を湾曲させて一体に製造できる。各延長板4aは、風車本体2’の側周面2aから半径方向へ張り出しているので、0°から反時計方向に90°の位置では延長板4aの全面に風を垂直に受けるので、風車本体2’の回転開始時、つまり起動時に有効に働き、比較的弱い風でも風車本体2’が確実に回転を開始する。風車本体2’がいったん回転を開始すると、後は極めて弱い風でも風車本体2’は回転を継続する。したがって、本変形例は、風が止まってから風車本体2’の回転が停止した後、再び風が吹きだしたときに風車本体2を起動する際に有効である。なお、図5には風よけカバー9を示していないが、本変形例でも、風よけカバー9を設けることができ、その場合には、延長板4aと干渉しないように、風よけカバー9の側周壁9cの位置を半径方向外方へ移動させる。なお、延長板4aは通常、ブレード4と一体に形成するが、延長板4aの幅は本例では10〜20mm程度にしている。この数値は一例であって限定するものではない。   Next, FIG. 5 and FIG. 6 show modifications of the windmill body. In this example, the extension plate 4a is directed from the outer edge of all the blades 4 toward the radially outer side from the center position of the windmill body 2 ′. 4 overhangs with a constant width over the entire length. The extension plate 4a can be manufactured integrally by curving the plate-like blade 4. Since each extension plate 4a projects radially from the side peripheral surface 2a of the windmill body 2 ', wind is applied vertically to the entire surface of the extension plate 4a at a position 90 ° counterclockwise from 0 °. It works effectively at the start of rotation of the main body 2 ′, that is, at the time of start-up, and the windmill main body 2 ′ starts to rotate reliably even in a relatively weak wind. Once the windmill body 2 ′ starts rotating, the windmill body 2 ′ continues to rotate even with a very weak wind. Therefore, this modification is effective when the windmill body 2 is started when the wind blows again after the windmill body 2 'stops rotating after the wind stops. Although the windshield cover 9 is not shown in FIG. 5, the windshield cover 9 can also be provided in this modified example, and in that case, the windshield cover 9 is not interfered with the extension plate 4a. The position of the side peripheral wall 9c of the cover 9 is moved outward in the radial direction. The extension plate 4a is usually formed integrally with the blade 4, but the width of the extension plate 4a is about 10 to 20 mm in this example. This numerical value is an example and is not limited.

上記に本発明にかかる垂直回転軸型風車および同風車を備えた風力発電装置について実施の形態を説明したが、以下のように実施することができる。   Although the embodiments of the vertical rotating shaft type windmill and the wind turbine generator provided with the windmill according to the present invention have been described above, the embodiments can be implemented as follows.

・上記実施の形態では変形例を含めてブレード4の枚数を6枚にしているが、枚数は風車本体2の外径・内径円の大きさなどに基づいて適宜決定することができ、たとえば3枚、4枚、5枚、8枚でもよい。   In the embodiment described above, the number of blades 4 is six, including modifications, but the number can be appropriately determined based on the size of the outer diameter / inner diameter circle of the windmill body 2, for example 3 4 sheets, 5 sheets, 8 sheets may be used.

・ブレード4の枚数によって円周方向の間隔(基本的には等間隔)、隣接するブレード4間の空間部10の大きさが決まってくるが、ブレード4の円弧面の曲率(湾曲の度合い)を変更することができる。   The circumferential interval (basically equal intervals) and the size of the space 10 between adjacent blades 4 are determined by the number of blades 4, but the curvature (degree of curvature) of the arc surface of the blade 4 Can be changed.

・ブレード4の円弧面の曲率を変更する場合は、風が吹き込むブレードから反対側の風下に位置するブレード4への風の流れをスムーズにするため、空洞部8の大きさ(内径円201の直径d1)を変更することが望ましい。基本的には、ブレード4の曲率を大きくするとときには、空洞部8の大きさを小さくするとよい。   When changing the curvature of the arc surface of the blade 4, the size of the cavity 8 (the inner diameter circle 201 of the inner diameter circle 201 is set to smooth the flow of the wind from the blade into which the wind blows to the blade 4 located on the opposite leeward side. It is desirable to change the diameter d1). Basically, when the curvature of the blade 4 is increased, the size of the cavity 8 is preferably decreased.

・本発明の垂直回転軸型風車を横向きにして自動車のフロントバンバーなどの下方に取り付け、自動車用の風力発電装置として使用することができる。   -The vertical rotating shaft type windmill of the present invention can be used as a wind power generator for automobiles by attaching it to a lower side such as a front bumper of an automobile in a landscape orientation.

・図5に示したブレード4の延長板4aは、ブレード4の1つおき、あるいは2つおきに設けてもよい。   The extension plate 4 a of the blade 4 shown in FIG. 5 may be provided every other one or every two of the blades 4.

・図7は変形例にかかるブレード4’を備えた風車本体2’を示す平面図である。本例のブレード4’は凹状側円弧面41の曲率(半径r)に比べて凸状側円弧面42の曲率を小さく(半径r’:r>r’)し、凹状側円弧面41で風を十分に受ける一方、凸状側円弧面42に当たる風は逃げやすくして回転の抗力になりにくくしている。また、ブレード4’の内外両側に比べて中央部の厚みがやや厚くなるようにして、ブレード4’の強度を増大させて耐久性に富むようにしている。本例の場合、アルミニウム合金などの軽合金や合成樹脂を押し出し成形あるいは射出成形してブレード4’を製造できる。   FIG. 7 is a plan view showing a windmill body 2 ′ provided with a blade 4 ′ according to a modification. The blade 4 ′ of this example has a smaller curvature (radius r ′: r> r ′) of the convex arc surface 42 than the curvature (radius r) of the concave arc surface 41. However, the wind hitting the convex-side arcuate surface 42 is easy to escape, making it difficult to resist rotation. Further, the thickness of the central portion is made slightly thicker than both the inner and outer sides of the blade 4 ', so that the strength of the blade 4' is increased and the durability is enhanced. In the case of this example, the blade 4 'can be manufactured by extrusion molding or injection molding of a light alloy such as an aluminum alloy or a synthetic resin.

・図8および図9は風力発電装置の別の実施形態を示すもので、図8は平面図、図9は正面図である。本実施形態の風力発電装置1’は実質的に図1および図2に示す風力発電装置1に共通するものである。コンクリート基礎30上に4本の支柱32をそれぞれ底板31を介して立設し、支持枠3’を構成している。本風力発電装置1’は風車本体2の位置を上記実施形態の風力発電装置1に比べて高くし、発電装置12・13をコンクリート基礎30の上方に配置している。また本風力発電装置1’では、風よけカバー9および風向翼18を省いて構造を簡略にしている。なお、図8中の符号33・34は上部フレーム、図9中の符号39・40は平板状フレームである。そのほか、上記実施形態にかかる風力発電装置1と共通する部材は同一の符号を用いて示し、説明を省略する。   FIG. 8 and FIG. 9 show another embodiment of the wind power generator, FIG. 8 is a plan view, and FIG. 9 is a front view. The wind power generator 1 ′ of the present embodiment is substantially common to the wind power generator 1 shown in FIGS. 1 and 2. Four support columns 32 are erected on the concrete foundation 30 via the bottom plate 31 to constitute a support frame 3 ′. In the wind power generator 1 ′, the position of the wind turbine body 2 is made higher than that of the wind power generator 1 of the above embodiment, and the power generators 12 and 13 are arranged above the concrete foundation 30. In the wind power generator 1 ′, the structure is simplified by omitting the windshield cover 9 and the wind vane 18. In addition, the code | symbol 33 * 34 in FIG. 8 is an upper frame, and the code | symbol 39 * 40 in FIG. 9 is a flat frame. In addition, members common to the wind turbine generator 1 according to the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.

本発明にかかる風力発電装置は、発電の分野において利用可能であり、家庭用および中小型の装置として好適であるが、大規模な装置にも適用できる。   The wind power generator according to the present invention can be used in the field of power generation, and is suitable as a home-use and medium-sized device, but can also be applied to a large-scale device.

1・1’風力発電装置
2・2’垂直回転軸型風車本体
2a風車本体2の側周面
3・3’支持枠
4・4’ブレード
4a延長板
5 円板
6 上部回転軸
7 下部回転軸
8 空洞部
9 風よけカバー
9a扇形状上板
9b扇形状下板
9c側周壁
9d側辺
10 空間部(隙間)
11 円筒状支持台
12 固定子コア
13 回転子コア
14 回転軸
15 軸継手
16・17・19・20 軸受
18 風向翼
30 コンクリート基礎
31 底板
32 支柱
33・34 上部フレーム
35・36 下部フレーム
37・38 平板状フレーム
37a・38a開口
37b・38b補強フレーム
39・40 平板状フレーム
41 ブレード4の凹状側円弧面
42 ブレード4の凸状側円弧面
1, 1 'wind turbine generator 2, 2' vertical rotating shaft type windmill body 2a side peripheral surface of windmill body 2 3, 3 'support frame 4, 4' blade 4a extension plate 5 disc 6 upper rotating shaft 7 lower rotating shaft 8 Cavity 9 Windbreak cover 9a Fan-shaped upper plate 9b Fan-shaped lower plate 9c Side peripheral wall 9d Side 10 Space (Gap)
DESCRIPTION OF SYMBOLS 11 Cylindrical support stand 12 Stator core 13 Rotor core 14 Rotating shaft 15 Shaft coupling 16,17,19,20 Bearing 18 Wind direction blade 30 Concrete base 31 Bottom plate 32 Support | pillar 33 * 34 Upper frame 35 * 36 Lower frame 37 * 38 Flat frame 37a, 38a opening 37b, 38b Reinforcement frame 39, 40 Flat frame 41 Concave side arc surface 42 of blade 4 Convex side arc surface of blade 4

Claims (7)

鉛直方向に直交する断面が円弧状になるように湾曲させた板状の複数枚のブレードを、同ブレードの凹状側円弧面が風を受けるように鉛直方向の前記ブレードの回転中心部の周りに円周方向に間隔をあけて配置するとともに、
前記各ブレードが受ける風が通過可能な空洞部を、前記各ブレードの前記回転中心部側において隣接する前記各ブレード間の空間部に連通させて設け、
前記各ブレードの円弧面の外縁より、前記回転中心部から半径方向外方へ延びる延長板を張り出して設けたことを特徴とする垂直回転軸型風車。
A plurality of plate-like blades curved so that the cross section perpendicular to the vertical direction is arcuate, around the rotation center of the blade in the vertical direction so that the concave arcuate surface of the blade receives wind. In the circumferential direction with an interval,
A cavity through which the wind received by each blade can pass is provided in communication with the space between the blades adjacent to each other on the rotation center side of each blade;
A vertical rotating shaft type wind turbine characterized in that an extension plate extending radially outward from the rotation center portion is provided so as to protrude from the outer edge of the arc surface of each blade .
前記風車本体の外径の1/3の直径で同心の内径円を描き、その内径円を円周方向に6等分した各点から前記外径の1/2の直径で同心の中間径円を描き、その中間径円上の点を中心に前記外径の1/4〜1/3の半径で前記内径円の等分点と前記外径の円上とを結ぶ円弧状の6枚のブレードを備えたことを特徴とする請求項1記載の垂直回転軸型風車。   A concentric inner circle with a diameter of one third of the outer diameter of the windmill body is drawn, and the inner diameter circle is divided into six equal parts in the circumferential direction. 6 arc-shaped pieces connecting the equally divided point of the inner diameter circle and the outer diameter circle with a radius of 1/4 to 1/3 of the outer diameter centered on a point on the intermediate diameter circle The vertical rotating shaft type wind turbine according to claim 1, further comprising a blade. 前記各ブレードは対向する円形の上板と円形の下板との間に跨って一体回転可能に支持され、前記上板と前記下板の各中心部にそれぞれ支持された回転軸により軸受を介して回転することを特徴とする請求項1または2記載の垂直回転軸型風車。   The blades are supported so as to be able to rotate integrally between an opposing circular upper plate and a circular lower plate, and are supported by bearings by rotating shafts respectively supported at respective central portions of the upper plate and the lower plate. The vertical rotating shaft type wind turbine according to claim 1 or 2, wherein the wind turbine rotates. 前記各ブレードの円弧面の曲率を、前方のブレードが受けた風が前記空洞部を挟んで反対側のブレードの凹状側円弧面に流れ込み同ブレードに同一方向に回転させる回転力を生じさせるように設定したことを特徴とする請求項1〜3のいずれか1つに記載の垂直回転軸型風車。 The curvature of the arc surface of each blade is set such that the wind received by the front blade flows into the concave arc surface of the opposite blade across the cavity and generates a rotational force that causes the blade to rotate in the same direction. The vertical rotating shaft type windmill according to any one of claims 1 to 3, wherein the wind turbine is set. 前記風車本体の側周面における円周方向の1/4前後を覆う風よけカバーを、上下の前記回転軸に回転可能に取り付けるとともに、
風の吹く方向を指す風向翼を前記回転軸に回転可能に取り付け、前記風よけカバーを風に対向して前記風車本体の1/4の側周面を覆うように前記風向翼に対し一体的に回転するように連結したことを特徴とする請求項3または4に記載の垂直回転軸型風車。
A windshield cover that covers about ¼ of the circumferential direction on the side peripheral surface of the windmill body is rotatably attached to the upper and lower rotating shafts, and
Wind direction blades pointing to the direction of wind are rotatably attached to the rotating shaft, and the windshield cover is integrated with the wind direction blades so as to face the wind and cover a quarter side surface of the windmill body. The vertical rotating shaft type wind turbine according to claim 3 or 4, wherein the wind turbine is connected so as to rotate in a rotating manner.
請求項1〜5のいずれか1つに記載の垂直回転軸型風車を備えたことを特徴とする風力発電装置。 A wind turbine generator comprising the vertical rotating shaft type windmill according to any one of claims 1 to 5 . 前記回転軸に対し回転子コアを一体回転可能に取り付けるとともに、前記回転子コアの周囲に固定子コアを配設したことを特徴とする請求項記載の風力発電装置。 The wind turbine generator according to claim 6 , wherein a rotor core is attached to the rotation shaft so as to be integrally rotatable, and a stator core is disposed around the rotor core.
JP2009217092A 2009-09-18 2009-09-18 Vertical rotating shaft type wind turbine and wind power generator using the same Expired - Fee Related JP5351682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009217092A JP5351682B2 (en) 2009-09-18 2009-09-18 Vertical rotating shaft type wind turbine and wind power generator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009217092A JP5351682B2 (en) 2009-09-18 2009-09-18 Vertical rotating shaft type wind turbine and wind power generator using the same

Publications (2)

Publication Number Publication Date
JP2011064169A JP2011064169A (en) 2011-03-31
JP5351682B2 true JP5351682B2 (en) 2013-11-27

Family

ID=43950660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009217092A Expired - Fee Related JP5351682B2 (en) 2009-09-18 2009-09-18 Vertical rotating shaft type wind turbine and wind power generator using the same

Country Status (1)

Country Link
JP (1) JP5351682B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148306B1 (en) 2011-09-22 2012-05-21 김관호 Wind power generator having accelerating means
JP5565592B2 (en) 2011-12-30 2014-08-06 柴田電機工業株式会社 Manufacturing method of rotating body by fluid and the rotating body
JP6418477B2 (en) * 2013-10-01 2018-11-07 Thk株式会社 Impeller support device and vertical axis fluid power generation device
JP2015108364A (en) * 2013-12-03 2015-06-11 通孝 月岡 Savonius wind mill
JP6235044B2 (en) * 2013-12-19 2017-11-22 株式会社発明デザイン研究所 Rotor, rotor
JP2017078336A (en) * 2015-10-19 2017-04-27 真一郎 小林 Wind power generation automobile
JP2020023956A (en) * 2018-08-06 2020-02-13 酒見 裕幸 Natural fluid power generator
US20230258152A1 (en) * 2018-11-15 2023-08-17 Mark Daniel Farb Savonius wind turbine ratios
JP7048925B2 (en) * 2019-10-15 2022-04-06 裕幸 酒見 Hydroelectric power generation device using natural fluid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3882162B2 (en) * 2000-10-30 2007-02-14 村井 和三郎 Vertical wind turbine generator
JP2004211707A (en) * 2003-01-06 2004-07-29 Masaharu Kato Wind power generator
JP2008069691A (en) * 2006-09-13 2008-03-27 Ohatsu Co Ltd Windmill device for power generation and wind power generating device

Also Published As

Publication number Publication date
JP2011064169A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5351682B2 (en) Vertical rotating shaft type wind turbine and wind power generator using the same
US7344353B2 (en) Helical wind turbine
CN103732912A (en) Wind sail turbine
US20080101932A1 (en) Wind driven power generator
JP2013526671A (en) Windmill, rotor blade and method
JP2013519022A (en) High efficiency, high power vertical axis wind power generator
TW201716687A (en) Multi-layered blade type wind power generation device capable of enhancing operation smoothness and being not easily damaged and deformed
CN201433854Y (en) Helical flexible blade turbine
KR101360277B1 (en) Vertical wind power generator
JP4184847B2 (en) Windmill device and wind power generator using the same
JP2010101276A (en) Blade structure of wind turbine generator
KR101488220B1 (en) Wind, hydro and tidal power turbine to improve the efficiency of the device
US8556572B2 (en) Wind power turbine
JP5941899B2 (en) Vertical axis windmill
US20220403817A1 (en) Bifurcating wind diverter for vertical-axis turbine generator
JP2007247516A (en) Wind power generating device
JP4892716B1 (en) Wind power generator
KR101503358B1 (en) Horizontal wind power generator
KR100979177B1 (en) Wind-turbine apparatus
KR101943845B1 (en) Horizontal wind power generator
KR101697228B1 (en) A Blade Variable Turbine
JP3098761U (en) Vertical axis wind turbine
KR101386010B1 (en) Wind power generator
JP2019052595A (en) Horizontal shaft windmill
JP2006152937A (en) Savonius wind power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5351682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees