JP2015108364A - Savonius wind mill - Google Patents

Savonius wind mill Download PDF

Info

Publication number
JP2015108364A
JP2015108364A JP2013263036A JP2013263036A JP2015108364A JP 2015108364 A JP2015108364 A JP 2015108364A JP 2013263036 A JP2013263036 A JP 2013263036A JP 2013263036 A JP2013263036 A JP 2013263036A JP 2015108364 A JP2015108364 A JP 2015108364A
Authority
JP
Japan
Prior art keywords
curved blades
central axis
curved
savonius
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013263036A
Other languages
Japanese (ja)
Inventor
通孝 月岡
Michitaka Tsukioka
通孝 月岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013263036A priority Critical patent/JP2015108364A/en
Publication of JP2015108364A publication Critical patent/JP2015108364A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Savonius wind mill which can improve power conversion efficiency and startability without changing the diameter of the wind mill and the length in the axial direction, and without performing installment of an addition device, special shaping work of a curved blade, or the like.SOLUTION: Optimization of inner edge positions of curved blades 12-1 to 12-3 of a Savonius wind mill of at least three-blades type is performed. An inner edge position z of curved blades vertically disposed in a rotation plate with regular pitch in the circumferential direction of the rotation plate between two sheets of disc-like rotation plates of radius R supported freely rotatably around a center shaft 2 is set as an intersection point between a circular arc of a radius r (therein, R>r>R/2) which has a center point on a straight line a formed by connecting an outer edge on the circle of the rotation plate and a center shaft 2 and a straight line b passing through the circumference of the rotation plate at an angle α of (360°/number of curved blades-0°<30°) when the straight line a is a standard line and the center line is a base point of the angle formed by two straight lines. Other curved blades assume the same shape as the curved blade and are located on potions rotated every angle of (360°/number of curved blades) when the center shaft is set as the standard point.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は各種動力装置に利用されるサボニウス型風車の受風エネルギーの動力変換効率と起動性の向上に関する。  The present invention relates to improvement of power conversion efficiency and startability of wind-receiving energy of a Savonius type wind turbine used for various power devices.

平均風速が低く風向の変化が著しい地域では、それに即した風車として垂直軸型風車が採用される。とりわけ低風速域での稼働率が高く構造が単純なサボニウス型風車が注目されているが、受風エネルギーに対し、動力変換効率と起動性が悪い欠点がある。従来、風車の受風面積つまり、風車の直径や軸方向の長さが決まっている場合には、効果的対策がなく、風車の更なる起動性と動力変換効率の向上が要求されている。本発明は、上記の事情に鑑みて、動力変換効率と起動性が向上するサボニウス型風車を安価で提供することを目的としている。  In areas where the average wind speed is low and the wind direction changes significantly, vertical wind turbines are adopted as wind turbines. In particular, Savonius type wind turbines with a high operating rate in a low wind speed region and a simple structure are attracting attention. However, there are drawbacks in that power conversion efficiency and startability are poor with respect to wind energy. Conventionally, when the wind receiving area of the windmill, that is, the diameter of the windmill and the length in the axial direction is determined, there is no effective measure, and further improvement in the startability and power conversion efficiency of the windmill is required. In view of the above circumstances, an object of the present invention is to provide a Savonius type windmill with improved power conversion efficiency and startability at low cost.

発明が解決しようとする課題Problems to be solved by the invention

従来、風車の受風面積つまり、風車の直径や軸方向の長さが決まっている場合には効果的対策がないという概念がある。
受風エネルギーの動力変換効率と起動性の向上の対策例として、
風車本体外周に集風板を設置する。
参考文献[特許公開2006−152938]
湾曲羽根にひねりを加える。
参考文献[特許公開2008−19762]
などがある。本発明はサボニウス型風車の湾曲羽根の内端位置の最適化で風車の直径や軸方向の長さを変えず、付加装置の設置や湾曲羽根の特別な形状加工などを施さず、動力変換効率と起動性の向上を安価で提供することを可能とするものである。
Conventionally, there is a concept that there is no effective measure when the wind receiving area of the windmill, that is, the diameter of the windmill or the length in the axial direction is determined.
As an example of measures to improve the power conversion efficiency and startability of wind energy,
A wind collecting plate is installed on the outer periphery of the wind turbine body.
Reference [Patent Publication 2006-152938]
Add a twist to the curved blade.
Reference [Patent Publication 2008-19762]
and so on. The present invention optimizes the inner end position of the curved blades of the Savonius-type windmill, does not change the diameter and axial length of the windmill, installs additional devices, does not perform special shape processing of the curved blades, etc. It is possible to provide an improvement in startability at a low cost.

課題を解決する為の手段Means to solve the problem

中心軸(2)周りに回転自在に支持された円盤状の半径Rの回転板(11‐1)(11‐2)の2枚との間で、この回転板の周方向に等ピッチで回転板内に立設された3枚以上の湾曲羽根たとえば(12‐1)(12‐2)(12‐3)を有し、湾曲羽根の円弧は回転板の円周上の任意端点を外端、中心軸に近い端点を内端とする。
内端位置は、外端と中心軸を結ぶ直線(a)上に中心点がある半径rの円弧が、直線(a)を基準線とし、中心軸を2直線がなす角度の基点とする(360度÷湾曲羽根数+0度<30度)の回転板円周に向かう直線(b)との交点とする。
ただしR>r>R/2
他の湾曲羽根は、上記湾曲羽根と同形状を成し中心軸を基準点とし(360度÷湾曲羽根数)の角度ずつ回転した位置とする。
以上の形状を特長とする 風車本体(1)を提供する。
その理由は以下のとおりである。すなわち、従来のサボニウス型風車3翼型以上の風車は構造上風車内部に入るほど風の導入面積が絞られ、風の乱流が起こる。結果サボニウス型風車の特長である風上から抗力を受ける湾曲羽根と対向する湾曲羽根に充分な風速と風量を到達させることができずに受風エネルギーの動力変換効率が低く起動性も低い。
以上の欠点を補うために、[請求項0001]の形状とした。
風車は羽根の受風面積の2乗、風速の3乗に比例し出力が増すことから、従来、風車の受風面積つまり、風車の直径や軸方向の長さが決まっている場合には、効率向上の効果的対策がない、という概念を根本から見直した。よって本発明は1枚ずつの湾曲羽根の受風面積は減るものの、風上から見てどの回転角度でも風を積極的に風車本体内に導入することにより、エネルギーの高い風を、風上から抗力を受ける湾曲羽根と対向する湾曲羽根にも大量に導くことにより、総合効力が向上する。
本発明は、以上のような構成よりなる風車本体である。
Rotates at a constant pitch in the circumferential direction of the rotating plate between two disk-shaped rotating plates (11-1) and (11-2) with a radius R supported so as to be rotatable around the central axis (2). It has three or more curved blades standing up in the plate, for example (12-1) (12-2) (12-3), and the circular arc of the curved blade is located at an arbitrary end point on the circumference of the rotating plate. The end point close to the central axis is the inner end.
The inner end position is an arc having a radius r having a center point on the straight line (a) connecting the outer end and the central axis, with the straight line (a) as a reference line and the central axis as a base point of an angle formed by two straight lines ( It is set as the intersection with the straight line (b) that goes to the circumference of the rotating plate of 360 degrees ÷ the number of curved blades + 0 degrees <30 degrees.
However, R>r> R / 2
The other curved blades have the same shape as the curved blades and are rotated by an angle of (360 degrees ÷ number of curved blades) with the central axis as a reference point.
A windmill body (1) characterized by the above shape is provided.
The reason is as follows. That is, in the conventional wind turbine of the Savonius type wind turbine having three blades or more, the introduction area of the wind is narrowed so that the wind turbine enters the inside of the wind turbine due to the structure, and wind turbulence occurs. As a result, sufficient wind speed and air volume cannot reach the curved blades facing the curved blades that receive drag from the windward, which is a feature of the Savonius type windmill, and the power conversion efficiency of received wind energy is low and the startability is also low.
In order to compensate for the above drawbacks, the shape of [Claim 0001] is adopted.
Since the output of a windmill is proportional to the square of the wind receiving area of the blades and the cube of the wind speed, the wind receiving area of the windmill, that is, when the diameter of the windmill and the length in the axial direction are determined, The concept that there is no effective measure to improve efficiency was fundamentally reviewed. Therefore, the present invention reduces the wind receiving area of each curved blade, but by introducing wind actively into the wind turbine body at any rotation angle as viewed from the windward, high energy wind is The total efficacy is improved by guiding a large amount to the curved blades opposed to the curved blades subjected to the drag.
This invention is a windmill main body which consists of the above structures.

特許の実施形態Patent embodiments

図1は従来のサボニウス型風車3翼型と本発明のサボニウス型風車3翼型を例に概観の特長および名称を説明した図である。
(注.以後は従来のサボニウス型風車と区別した比較説明の為に便宜的に本発明の風車をサボニウス改型風車と称する。)
図2はサボニウス型風車3翼型とサボニウス改型風車3翼型を横断面図を上側から見てに湾曲羽根内端位置を説明した図である。
サボニウス型風車3翼型は、中心軸(2’)周りに回転自在に支持された円盤状の半径R’の回転板(11‐1’)(11‐2’)の2枚との間で、この回転板の周方向に等ピッチで回転板内に立設された3枚の湾曲羽根(12‐1’)(12‐2’)(12‐3’)を有し、湾曲羽根の円弧は回転板の円周上の任意端点を外端、中心軸に近い端点を内端とする。
内端位置は、外端と中心軸を通る直線(a’)上にある。
ただしR’>r’>R’/2
他の湾曲羽根は、上記湾曲羽根と同形状を成し中心軸を基準点とし120度ずつ回転した位置とする。
以上の形状を特長とする風車本体。
サボニウス改型風車3翼型は、中心軸(2)周りに回転自在に支持された円盤状の半径Rの回転板(11‐1)(11‐2)の2枚との間で、この回転板の周方向に等ピッチで回転板内に立設された3枚以上の湾曲羽根たとえば(12‐1)(12‐2)(12‐3)を有し、湾曲羽根の円弧は回転板の円周上の任意端点を外端、中心軸に近い端点を内端とする。
内端位置は外端と中心軸を結ぶ直線(a)上に中心点がある半径rの円弧が、直線(a)を基準線とし、中心軸を2直線がなす角度の基点とする(360度÷湾曲羽根数+0度<30度)の角度で回転板円周に向かう直線(b)との交点とする。
ただしR>r>R/2
他の湾曲羽根は、上記湾曲羽根と同形状を成し中心軸を基準点とし(360度÷湾曲羽根数)の角度ずつに回転した位置とする。
以上の形状を特長とする 風車本体。
図3はサボニウス型風車3翼型とサボニウス改型風車3翼型の風車本体内部を通過する風の流れを観測したものである。サボニウス改型風車3翼型はサボニウス型風車3翼型と比較し、1枚ずつの湾曲羽根の受風面積は減るものの、正面からの風を積極的に風車本体内に導入することによりエネルギーの高い風を、風上から抗力を受ける湾曲羽根と対向する湾曲羽根にも大量に導き、総合効力と起動性が向上する。
FIG. 1 is a diagram for explaining the features and names of an overview of a conventional Savonius type windmill three-blade type and a Savonius type windmill three-wing type of the present invention.
(Note. For the sake of convenience, the wind turbine of the present invention will be referred to as a Savonius modified wind turbine for the sake of convenience in comparison with the conventional Savonius type wind turbine.)
FIG. 2 is a view for explaining the inner end position of the curved blades when the cross-sectional view of the Savonius-type wind turbine 3 blade type and the Savonius modified wind turbine 3 blade type is viewed from the upper side.
The Savonius type windmill three-blade type is between the two disk-shaped rotating plates (11-1 ′) and (11-2 ′) having a radius R ′ supported so as to be rotatable around the central axis (2 ′). The curved plate has three curved blades (12-1 ′), (12-2 ′) and (12-3 ′) which are erected in the rotational plate at an equal pitch in the circumferential direction of the curved plate. The arbitrary end point on the circumference of the rotating plate is the outer end, and the end point close to the central axis is the inner end.
The inner end position is on a straight line (a ′) passing through the outer end and the central axis.
However, R ′> r ′> R ′ / 2
The other curved blades have the same shape as the curved blades and are rotated by 120 degrees with the central axis as a reference point.
A windmill body featuring the above shape.
The Savonius modified windmill three-blade type rotates between the two disk-shaped rotating plates (11-1) and (11-2) with a radius R supported rotatably around the central axis (2). It has three or more curved blades, for example, (12-1), (12-2), and (12-3), standing in the rotating plate at equal pitches in the circumferential direction of the plate, An arbitrary end point on the circumference is an outer end, and an end point close to the central axis is an inner end.
The inner end position is an arc having a radius r having a center point on the straight line (a) connecting the outer end and the central axis, with the straight line (a) as the reference line and the central axis as the base point of the angle formed by the two straight lines (360). Let it be the intersection with the straight line (b) toward the circumference of the rotating plate at an angle of degrees / number of curved blades + 0 degrees <30 degrees.
However, R>r> R / 2
The other curved blades have the same shape as the curved blades and are rotated at an angle of (360 degrees ÷ number of curved blades) with the central axis as a reference point.
The windmill body features the above shape.
FIG. 3 shows the observation of the flow of wind passing through the inside of the wind turbine body of the Savonius-type wind turbine 3 blade type and the Savonius modified wind turbine 3 blade type. Compared to the Savonius-type wind turbine 3-wing type, the Savonius-modified wind turbine 3-wing type reduces the wind receiving area of the curved blades one by one. High winds are also led in large quantities to the curved blades facing the curved blades that receive drag from the windward, improving overall effectiveness and startability.

サボニウス改型風車3翼型とサボニウス型風車3翼型の模型を作成し、性能比較試験を行なった。
サボニウス改型風車3翼型
中心軸周りに回転自在に支持された直径100mmの円盤状の回転板(11‐1)(11‐2)2枚との間で、この回転板の周方向に等ピッチで回転板内に立設された3枚の高さ110mm幅70mmの湾曲羽根(12‐1)(12‐2)(12‐3)を有し、湾曲羽根の円弧は回転板の円周上の任意端点を外端、中心軸に近い端点を内端とする。
内端位置は外端と中心軸を結ぶ直線(a)上に中心点がある半径rの円弧が、直線(a)を基準線とし、中心軸を2直線がなす角度の基点とする(360度÷湾曲羽根数+0度<30度)の角度で回転板円周に向かう直線(b)との交点とする。
ただしR>r>R/2
他の湾曲羽根は、上記湾曲羽根と同形状を成し中心軸を基準点とし(360度÷湾曲羽根数)の角度ずつ回転した位置とする形状を特長とする風車本体。
性能比較対象
サボニウス型風車3翼型
直径100mmの中心軸周りに回転自在に支持された円盤状の回転板(11‐1’)(11‐2’)の2枚との間で、この回転板の周方向に等ピッチで回転板内に立設された3枚の高さ110mm幅100mmの湾曲羽根(12‐1’)(12‐2’)(12‐3’)を有し、湾曲羽根の円弧は回転板の円周上の任意端点を外端、中心軸に近い端点を内端とする。
内端の位置は、外端と中心軸を通る直線(a’)上にある。
ただしR’>r’>R’/2
他の湾曲羽根は、上記湾曲羽根と同形状を成し中心軸を基準点とし120度ずつ回転した位置とする。湾曲羽根の円弧の半径r’はサボニウス改型風車rと同じ。
測定方法
扇風機を用いた測定。計測位置は扇風機正面中央、羽根中心部より羽根下端の間に統一。風車本体との距離は防護網から1cm、11cmに設定。
一定の風速、風量下で各々風車本体回転軸に小型発電モーター軸を接続し、モーターの両リード線間に∞Ω、100Ω、10Ωの抵抗を接続し、電圧を測定。

Figure 2015108364
Figure 2015108364
上記表1、2から、サボニウス改型風車3翼型は、サボニウス型風車3翼型と比べ多岐の風境下で動力変換効率と起動性の向上を確認。A model of the Savonius modified wind turbine 3 blade type and the Savonius type wind turbine 3 blade type were created and a performance comparison test was performed.
Savonius modified wind turbine 3-wing type Between two disk-shaped rotating plates (11-1) (11-2) with a diameter of 100 mm supported so as to be rotatable around the central axis, etc. in the circumferential direction of the rotating plate, etc. It has three curved blades (12-1), (12-2), and (12-3) that are erected in the rotating plate at a pitch of 110 mm in height and 70 mm in width, and the arc of the curved blades is the circumference of the rotating plate The upper arbitrary end point is the outer end, and the end point close to the central axis is the inner end.
The inner end position is an arc having a radius r having a center point on the straight line (a) connecting the outer end and the central axis, with the straight line (a) as the reference line and the central axis as the base point of the angle formed by the two straight lines (360). Let it be the intersection with the straight line (b) toward the circumference of the rotating plate at an angle of degrees / number of curved blades + 0 degrees <30 degrees.
However, R>r> R / 2
The other curved blades have the same shape as the curved blades described above, and the wind turbine body is characterized by a shape that is rotated by an angle of (360 degrees ÷ number of curved blades) with the central axis as a reference point.
Performance comparison object Savonius type wind turbine 3 blade type This rotating plate is between two disc-shaped rotating plates (11-1 ′) and (11-2 ′) supported rotatably around a central axis of 100 mm in diameter. Have three curved blades (12-1 ′), (12-2 ′), and (12-3 ′) having a height of 110 mm and a width of 100 mm that are erected in the rotating plate at an equal pitch in the circumferential direction of the curved blades. In the arc, an arbitrary end point on the circumference of the rotating plate is an outer end, and an end point close to the central axis is an inner end.
The position of the inner end is on a straight line (a ′) passing through the outer end and the central axis.
However, R ′> r ′> R ′ / 2
The other curved blades have the same shape as the curved blades and are rotated by 120 degrees with the central axis as a reference point. The radius r ′ of the curved blade arc is the same as that of the Savonius modified windmill r.
Measurement method Measurement using a fan. The measurement position is unified between the front center of the fan and between the center of the blade and the lower end of the blade. The distance from the windmill body is set to 1cm and 11cm from the protective net.
A small generator motor shaft is connected to the rotating shaft of the wind turbine body at a constant wind speed and volume, and ∞Ω, 100Ω, and 10Ω resistors are connected between the motor lead wires, and the voltage is measured.
Figure 2015108364
Figure 2015108364
From Tables 1 and 2 above, it was confirmed that the Savonius modified wind turbine 3-wing type improved power conversion efficiency and startability in various wind conditions compared to the Savonius type wind turbine 3-wing type.

発明の効果Effect of the invention

本発明にかかる[請求項1]のとおり設計されたサボニウス改型風車は、風の入り口から出口に至る過程で風車全体で動力変換効率と起動性が向上する構造を有し風向きに影響されず安定した出力を得られる。湾曲羽根内端位置の最適化で風車の直径や軸方向の長さを変えず、付加装置の設置や湾曲羽根の特別な形状加工などを施さず、構造の単純化がはかれ、生産が容易で低コスト化を実現する。プロペラ型風力発電機が稼動する風速と一定の風向が得られる地域は限られている。サボニウス改型風車はプロペラ型発電風車と比較し動力変換効率は劣るものの稼働率は大変高く、プロペラ型発電風車が起動しない風速の比較的低く風向も変化する大半の地域での稼動が可能である。また、サボニウス型風車が起動しない風速での稼動も可能となり、安価で生産が容易な構造から、自然エネルギー創出のため幅広い需要が見込まれる。  The Savonius modified wind turbine designed as in claim 1 according to the present invention has a structure that improves power conversion efficiency and startability in the entire wind turbine in the process from the wind entrance to the exit and is not affected by the wind direction. Stable output can be obtained. Optimization of the curved blade inner end position does not change the windmill diameter or axial length, and does not require additional equipment installation or special shape processing of the curved blade, simplifying the structure and facilitating production To achieve low cost. There are limited areas where propeller-type wind power generators operate and where wind speed and constant wind direction can be obtained. Although the power conversion efficiency of the Savonius modified wind turbine is inferior to that of the propeller-type generator wind turbine, the operation rate is very high. . In addition, the Savonius wind turbine can be operated at wind speeds that do not start, and a wide range of demand is expected to create natural energy because it is inexpensive and easy to produce.

本発明のサボニウス改型風車は、特に限定されないが、例えば小型風力発電装置の動力部、揚水装置の動力部と流水型小型水力発電装置の動力部として使用することができる。  The Savonius modified windmill of the present invention is not particularly limited, and can be used as, for example, a power unit of a small wind power generator, a power unit of a pumping device, and a power unit of a flowing water type small hydroelectric generator.

サボニウス型風車と本発明にかかるサボニウス改型風車の概観の特長と名称を示した斜視図である。It is the perspective view which showed the feature and the name of the outline of a Savonius type | mold windmill and the Savonius type | mold modified windmill concerning this invention. サボニウス型風車と本発明にかかるサボニウス改型風車の湾曲羽根内端位置を示した横断面図である。It is the cross-sectional view which showed the curved blade inner end position of the Savonius type | mold windmill and the Savonius modified type windmill concerning this invention. サボニウス型風車と本発明にかかるサボニウス改型風車内部の風の流れを示した図横断面図である。It is the figure cross-sectional view which showed the flow of the wind inside a Savonius type | mold windmill and the Savonius modified type windmill concerning this invention.

1および1’ 風車本体
2および2’ 中心軸
11‐1 〜 11‐2および11‐1’ 〜11‐2’ 回転板
12‐1 〜 12‐3および12‐1’ 〜12‐3’ 湾曲羽根
a 外端と中心軸2を結ぶ直線
a’ 外端と中心軸2’を通る直線
b 中心軸2から回転板円周を通る直線
rおよびr’ 湾曲羽根円弧の半径
1 and 1 'windmill body 2 and 2' central shafts 11-1 to 11-2 and 11-1 'to 11-2' rotating plates 12-1 to 12-3 and 12-1 'to 12-3' curved blades a Straight line connecting the outer end and the central axis 2 a 'Straight line passing the outer end and the central axis 2' b Straight line passing from the central axis 2 to the circumference of the rotating plate r and r 'Radius of the curved blade arc

中心軸(2)周りに回転自在に支持された円盤状の半径Rの回転板(11‐1)(11‐2)の2枚との間で、この回転板の周方向に等ピッチで回転板内に立設された3枚以上の湾曲羽根たとえば(12‐1)(12‐2)(12‐3)を有し、湾曲羽根の円弧は回転板の円周上の任意端点を外端、中心軸に近い端点を内端とする。
内端位置は、外端と中心軸を結ぶ直線(a)上に中心点がある半径rの円弧が、直線(a)を基準線とし、中心軸を2直線がなす角度の基点とする(360度÷湾曲羽根数−0度<30度)の角度(α)で回転板円周を通る直線(b)との交点(z)とする。
ただしR>r>R/2
他の湾曲羽根は、上記湾曲羽根と同形状を成し中心軸を基準点とし(360度÷湾曲羽根数)の角度ずつ回転した位置とする。
以上の形状を特長とする 風車本体(1)を提供する。
その理由は以下のとおりである。すなわち、従来のサボニウス型風車3翼型以上の風車は構造上風車内部に入るほど風の導入面積が絞られ、風の乱流が起こる。結果サボニウス型風車の特長である風上から抗力を受ける湾曲羽根と対向する湾曲羽根に充分な風速と風量を到達させることができずに受風エネルギーの動力変換効率が低く起動性も低い。
以上の欠点を補うために、[請求項0001]の形状とした。
風車は羽根の受風面積の2乗、風速の3乗に比例し出力が増すことから、従来、風車の受風面積つまり、風車の直径や軸方向の長さが決まっている場合には効率向上の効果的対策がない、という概念を根本から見直した。
よって本発明は1枚ずつの湾曲羽根の受風面積は減るものの、風上から見てどの回転角度でも風を積極的に風車本体内に導入することにより、エネルギーの高い風を、風上から抗力を受ける湾曲羽根と対向する湾曲羽根にも大量に導くことにより、総合効力が向上する。
本発明は、以上のような構成よりなる風車本体である。
Rotates at a constant pitch in the circumferential direction of the rotating plate between two disk-shaped rotating plates (11-1) and (11-2) with a radius R supported so as to be rotatable around the central axis (2). It has three or more curved blades standing up in the plate, for example (12-1) (12-2) (12-3), and the circular arc of the curved blade is located at an arbitrary end point on the circumference of the rotating plate. The end point close to the central axis is the inner end.
The inner end position is an arc having a radius r having a center point on the straight line (a) connecting the outer end and the central axis, with the straight line (a) as a reference line and the central axis as a base point of an angle formed by two straight lines ( Let it be the intersection (z) with the straight line (b) passing through the rotating plate circumference at an angle (α) of 360 degrees ÷ number of curved blades−0 degrees <30 degrees.
However, R>r> R / 2
The other curved blades have the same shape as the curved blades and are rotated by an angle of (360 degrees ÷ number of curved blades) with the central axis as a reference point.
A windmill body (1) characterized by the above shape is provided.
The reason is as follows. That is, in the conventional wind turbine of the Savonius type wind turbine having three blades or more, the introduction area of the wind is narrowed so that the wind turbine enters the inside of the wind turbine due to the structure, and wind turbulence occurs. As a result, sufficient wind speed and air volume cannot reach the curved blades facing the curved blades that receive drag from the windward, which is a feature of the Savonius type windmill, and the power conversion efficiency of received wind energy is low and the startability is also low.
In order to compensate for the above drawbacks, the shape of [Claim 0001] is adopted.
Since the output of a windmill increases in proportion to the square of the wind receiving area of the blades and the cube of the wind speed, the efficiency is conventionally improved when the wind receiving area of the windmill, that is, the diameter of the windmill and the length in the axial direction are determined. The concept that there is no effective measure for improvement was fundamentally reviewed.
Therefore, the present invention reduces the wind receiving area of each curved blade, but by introducing wind actively into the wind turbine body at any rotation angle as viewed from the windward, high energy wind is The total efficacy is improved by guiding a large amount to the curved blades opposed to the curved blades subjected to the drag.
This invention is a windmill main body which consists of the above structures.

図1は従来のサボニウス型風車3翼型と本発明のサボニウス型風車3翼型を例に概観の特長および名称を説明した図である。
(注.以後は従来のサボニウス型風車と区別した比較説明の為に便宜的に本発明の風車をサボニウス改型風車と称する。)
図2はサボニウス型風車3翼型とサボニウス改型風車3翼型横断面図を上側から見湾曲羽根内端位置を説明した図である。
サボニウス型風車3翼型は、中心軸(2’)周りに回転自在に支持された円盤状の半径R’の回転板(11‐1’)(11‐2’)の2枚との間で、この回転板の周方向に等ピッチで回転板内に立設された3枚の湾曲羽根(12‐1’)(12‐2’)(12‐3’)を有し、湾曲羽根の円弧は回転板の円周上の任意端点を外端、中心軸に近い端点を内端とする。
内端位置は、外端と中心軸を通る直線(a′)上にある。
ただしR’>r’>R′/2
他の湾曲羽根は、上記湾曲羽根と同形状を成し中心軸を基準点とし(360度÷湾曲羽根数)の角度ずつ回転した位置とする。
以上の形状を特長とする風車本体。
サボニウス改型風車3翼型は、中心軸(2)周りに回転自在に支持された円盤状の半径Rの回転板(11‐1)(11‐2)の2枚との間で、この回転板の周方向に等ピッチで回転板内に立設された3枚以上の湾曲羽根たとえば(12‐1)(12‐2)(12‐3)を有し、湾曲羽根の円弧は回転板の円周上の任意端点を外端、中心軸に近い端点を内端とする。
内端位置は外端と中心軸を結ぶ直線(a)上に中心点がある半径rの円弧が、直線(a)を基準線とし、中心軸を2直線がなす角度の基点とする(360度÷湾曲羽根数−0度<30度)の角度(α)で回転板円周を通る直線(b)との交点(z)とする。
ただしR>r>R/2
他の湾曲羽根は、上記湾曲羽根と同形状を成し中心軸を基準点とし(360度÷湾曲羽根数)の角度ずつ回転した位置とする。
以上の形状を特長とする 風車本体。
図3はサボニウス型風車3翼型とサボニウス改型風車3翼型の風車本体内部を通過する風の流れを観測したものである。サボニウス改型風車3翼型はサボニウス型風車3翼型と比較し、1枚ずつの湾曲羽根の受風面積は減るものの、正面からの風を積極的に風車本体内に導入することによりエネルギーの高い風を、風上から抗力を受ける湾曲羽根と対向する湾曲羽根にも大量に導き、総合効力と起動性が向上する。
FIG. 1 is a diagram for explaining the features and names of an overview of a conventional Savonius type windmill three-blade type and a Savonius type windmill three-wing type of the present invention.
(Note. For the sake of convenience, the wind turbine of the present invention will be referred to as a Savonius modified wind turbine for the sake of convenience in comparison with the conventional Savonius type wind turbine.)
Figure 2 is a diagram for explaining a curved vane inner end position as viewed a cross-sectional view of Savonius windmill 3 aerofoil and Savonius reforming windmill 3 aerofoil from above.
The Savonius type windmill three-blade type is between the two disk-shaped rotating plates (11-1 ′) and (11-2 ′) having a radius R ′ supported so as to be rotatable around the central axis (2 ′). The curved plate has three curved blades (12-1 ′), (12-2 ′) and (12-3 ′) which are erected in the rotational plate at an equal pitch in the circumferential direction of the curved plate. The arbitrary end point on the circumference of the rotating plate is the outer end, and the end point close to the central axis is the inner end.
The inner end position is on a straight line (a ′) passing through the outer end and the central axis.
However, R ′> r ′> R ′ / 2
The other curved blades have the same shape as the curved blades and are rotated by an angle of (360 degrees ÷ number of curved blades) with the central axis as a reference point.
A windmill body featuring the above shape.
The Savonius modified windmill three-blade type rotates between the two disk-shaped rotating plates (11-1) and (11-2) with a radius R supported rotatably around the central axis (2). It has three or more curved blades, for example, (12-1), (12-2), and (12-3), standing in the rotating plate at equal pitches in the circumferential direction of the plate, An arbitrary end point on the circumference is an outer end, and an end point close to the central axis is an inner end.
The inner end position is an arc having a radius r having a center point on the straight line (a) connecting the outer end and the central axis, with the straight line (a) as the reference line and the central axis as the base point of the angle formed by the two straight lines (360). An intersection (z) with a straight line (b) passing through the rotation plate circumference at an angle (α) of degrees ÷ number of curved blades−0 degree <30 degrees.
However, R>r> R / 2
The other curved blades have the same shape as the curved blades and are rotated by an angle of (360 degrees ÷ number of curved blades) with the central axis as a reference point.
The windmill body features the above shape.
FIG. 3 shows the observation of the flow of wind passing through the inside of the wind turbine body of the Savonius-type wind turbine 3 blade type and the Savonius modified wind turbine 3 blade type. Compared to the Savonius-type wind turbine 3-wing type, the Savonius-modified wind turbine 3-wing type reduces the wind receiving area of the curved blades one by one. High winds are also led in large quantities to the curved blades facing the curved blades that receive drag from the windward, improving overall effectiveness and startability.

サボニウス改型風車3翼型とサボニウス型風車3翼型の模型を作成し性能比較試験を行なった。
サボニウス改型風車3翼型
中心軸周りに回転自在に支持された直径100mmの円盤状の回転板(11‐1)(12‐2)の2枚との間で、この回転板の周方向に等ピッチで回転板内に立設された3枚の高さ110mm幅70mmの湾曲羽根(12‐1)(12‐2)(12‐3)を有し、湾曲羽根の円弧は回転板の円周上の任意端点を外端、中心軸に近い端点を内端とする。
内端位置は外端と中心軸を結ぶ直線(a)上に中心点がある半径rの円弧が、直線(a)を基準線とし、中心軸を2直線がなす角度の基点とする(360度÷湾曲羽根数−0度<30度)の角度(α)で回転板円周を通る直線(b)との交点(z)とする。
ただしR>r>R/2
他の湾曲羽根は、上記湾曲羽根と同形状を成し中心軸を基準点とし(360度÷湾曲羽根数)の角度ずつ回転した位置とする形状を特徴とする風車本体。
性能比較対象
サボニウス型風車3翼型
直径100mmの中心軸周りに回転自在に支持された円盤状の回転板(11‐1’)(12‐2’)の2枚との間で、この回転板の周方向に等ピッチで回転板内に立設された3枚の高さ110mm幅100mmの湾曲羽根(12‐1’)(12‐2’)(12‐3’)を有し、湾曲羽根の円弧は回転板の円周上の任意端点を外端、中心軸に近い端点を内端とする。
内端の位置は、外端と中心軸を通る直線(a’)上にある。
ただしR’>r’>R′/2
他の湾曲羽根は、上記湾曲羽根と同形状を成し中心軸を基準点とし(360度÷湾曲羽根数)の角度ずつ回転した位置とする。湾曲羽根の円弧の半径r’はサボニウス改型風車rと同じ。
測定方法
扇風機を用いた測定。計測位置は扇風機正面中央、羽根中心部より羽根下端の間に統一。風車本体との距離は防護網から1cm、11cmに設定。一定の風速、風量下で各々風車本体回転軸に小型発電モーター軸を接続し、モーターの両リード線間に∞Ω、100Ω、10Ωの抵抗を接続し、電圧を測定。

Figure 2015108364
Figure 2015108364
上記表1、2から、サボニウス改型風車3翼型は、サボニウス型風車3翼型と比べ多岐の風況下で動力変換効率と起動性の向上を確認。A model of the Savonius modified wind turbine 3-wing type and a model of Savonius-type wind turbine 3-wing type were created and a performance comparison test was performed.
Savonius modified wind turbine 3-wing type Between the two disk-shaped rotating plates (11-1) and (12-2) with a diameter of 100 mm supported so as to be rotatable around the central axis, in the circumferential direction of this rotating plate It has three curved blades (12-1), (12-2), and (12-3) that are erected in the rotating plate at an equal pitch and have a height of 110 mm and a width of 70 mm. An arbitrary end point on the circumference is an outer end, and an end point close to the central axis is an inner end.
The inner end position is an arc having a radius r having a center point on the straight line (a) connecting the outer end and the central axis, with the straight line (a) as the reference line and the central axis as the base point of the angle formed by the two straight lines (360). An intersection (z) with a straight line (b) passing through the rotation plate circumference at an angle (α) of degrees ÷ number of curved blades−0 degree <30 degrees.
However, R>r> R / 2
The other curved blade has the same shape as the curved blade, and has a shape in which the central axis is rotated at an angle of (360 degrees ÷ number of curved blades) with the central axis as a reference point.
Performance comparison object Savonius type windmill 3 blade type This rotating plate between two disc-shaped rotating plates (11-1 ') (12-2') supported rotatably around the central axis of diameter 100mm Have three curved blades (12-1 ′), (12-2 ′), and (12-3 ′) having a height of 110 mm and a width of 100 mm that are erected in the rotating plate at an equal pitch in the circumferential direction of the curved blades. In the arc, an arbitrary end point on the circumference of the rotating plate is an outer end, and an end point close to the central axis is an inner end.
The position of the inner end is on a straight line (a ′) passing through the outer end and the central axis.
However, R ′> r ′> R ′ / 2
The other curved blades have the same shape as the curved blades and are rotated by an angle of (360 degrees ÷ number of curved blades) with the central axis as a reference point. The radius r ′ of the curved blade arc is the same as that of the Savonius modified windmill r.
Measurement method Measurement using a fan. The measurement position is unified between the front center of the fan and between the center of the blade and the bottom of the blade. The distance from the windmill body is set to 1cm and 11cm from the protective net. A small generator motor shaft is connected to the rotating shaft of the wind turbine body at a constant wind speed and volume, and ∞Ω, 100Ω, and 10Ω resistors are connected between the motor lead wires, and the voltage is measured.
Figure 2015108364
Figure 2015108364
From Table 1, Savonius modified windmill 3 airfoil, verify improved power conversion efficiency and starting performance in the wind under the range compared with Savonius windmill 3 airfoil.

1および1’ 風車本体
2および2’ 中心軸
11‐1 〜 11‐2および11‐1’ 〜 11‐2′ 回転板
12‐1 〜 12‐3および12‐1’ 〜 12‐3′ 湾曲羽根
a 外端と中心軸2を結ぶ直線
a′ 外端と中心軸2’を通る直線
b 中心軸2から回転板円周を通る直線
RおよびR′ 回転板の半径
rおよびr’ 湾曲羽根円弧の半径
α 直線aとbがなす角度
z 湾曲羽根内端位置
1 and 1 'windmill main body 2 and 2' central axis 11-1 to 11-2 and 11-1 'to 11-2' rotating plate 12-1 to 12-3 and 12-1 'to 12-3' curved blade a a straight line connecting the outer end and the central axis 2 a 'a straight line passing the outer end and the central axis 2' b a straight line passing from the central axis 2 to the circumference of the rotating plate
R and R 'radius of rotating plate r and r' radius of curved blade arc
α Angle formed by straight lines a and b
z Curved blade inner edge position

Claims (1)

中心軸(2)周りに回転自在に支持された円盤状の半径Rの回転板(11‐1)(11‐2)の2枚との間で、この回転板の周方向に等ピッチで回転板内に立設された3枚以上の湾曲羽根たとえば(12‐1)(12‐2)(12‐3)を有し、湾曲羽根の円弧は回転板の円周上の任意端点を外端、中心軸に近い端点を内端とする。
内端の位置は、外端と中心軸を結ぶ直線(a)上に中心点がある半径rの円弧が、直線(a)を基準線とし、中心軸を2直線がなす角度の基点とする(360度÷湾曲羽根数+0度<30度)の回転板円周に向かう直線(b)との交点とする。
ただしR>r>R/2
他の湾曲羽根は、上記湾曲羽根と同形状を成し中心軸を基準点とし(360度÷湾曲羽根数)の角度ずつ回転した位置とする。
以上の形状を特長とする 風車本体(1)。
Rotates at a constant pitch in the circumferential direction of the rotating plate between two disk-shaped rotating plates (11-1) and (11-2) with a radius R supported so as to be rotatable around the central axis (2). It has three or more curved blades standing up in the plate, for example (12-1) (12-2) (12-3), and the circular arc of the curved blade is located at an arbitrary end point on the circumference of the rotating plate. The end point close to the central axis is the inner end.
The position of the inner end is such that an arc having a radius r having a center point on the straight line (a) connecting the outer end and the central axis is defined by using the straight line (a) as a reference line and the central axis as a base point of an angle formed by two straight lines. The intersection point with the straight line (b) (360 degrees ÷ the number of curved blades + 0 degrees <30 degrees) toward the circumference of the rotating plate.
However, R>r> R / 2
The other curved blades have the same shape as the curved blades and are rotated by an angle of (360 degrees ÷ number of curved blades) with the central axis as a reference point.
Wind turbine body (1) featuring the above shape.
JP2013263036A 2013-12-03 2013-12-03 Savonius wind mill Pending JP2015108364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013263036A JP2015108364A (en) 2013-12-03 2013-12-03 Savonius wind mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013263036A JP2015108364A (en) 2013-12-03 2013-12-03 Savonius wind mill

Publications (1)

Publication Number Publication Date
JP2015108364A true JP2015108364A (en) 2015-06-11

Family

ID=53438862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013263036A Pending JP2015108364A (en) 2013-12-03 2013-12-03 Savonius wind mill

Country Status (1)

Country Link
JP (1) JP2015108364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006657A (en) * 2015-07-29 2015-10-28 厦门大学 Fractal recursion control boomerang single-sided left-handed material
JP2017078336A (en) * 2015-10-19 2017-04-27 真一郎 小林 Wind power generation automobile
CN108138744A (en) * 2016-05-04 2018-06-08 图博萨姆公司 Savonius rotor, rotor module, its device and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323237A (en) * 1993-05-12 1994-11-22 Oval Corp Savonius windmill
JP2002310057A (en) * 2000-09-22 2002-10-23 Omoto Masako Blade of wind mill for wind power generation and unit and apparatus using it
JP2007239631A (en) * 2006-03-09 2007-09-20 Matsushita Electric Ind Co Ltd Windmill
JP2011064169A (en) * 2009-09-18 2011-03-31 Seiichi Futaboshi Vertical-rotation-axis wind turbine and wind power generation device using the same
WO2012177111A2 (en) * 2011-06-24 2012-12-27 Université Hassan Ii - Casablanca Convertible, self-adjusting, vertical-axis wind turbine combining savonius and darrieus configurations, and having a composite blade system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323237A (en) * 1993-05-12 1994-11-22 Oval Corp Savonius windmill
JP2002310057A (en) * 2000-09-22 2002-10-23 Omoto Masako Blade of wind mill for wind power generation and unit and apparatus using it
JP2007239631A (en) * 2006-03-09 2007-09-20 Matsushita Electric Ind Co Ltd Windmill
JP2011064169A (en) * 2009-09-18 2011-03-31 Seiichi Futaboshi Vertical-rotation-axis wind turbine and wind power generation device using the same
WO2012177111A2 (en) * 2011-06-24 2012-12-27 Université Hassan Ii - Casablanca Convertible, self-adjusting, vertical-axis wind turbine combining savonius and darrieus configurations, and having a composite blade system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006657A (en) * 2015-07-29 2015-10-28 厦门大学 Fractal recursion control boomerang single-sided left-handed material
CN105006657B (en) * 2015-07-29 2017-11-10 厦门大学 A kind of band divides the Cyclic dart type one side LHM structure of shape recursion control
JP2017078336A (en) * 2015-10-19 2017-04-27 真一郎 小林 Wind power generation automobile
CN108138744A (en) * 2016-05-04 2018-06-08 图博萨姆公司 Savonius rotor, rotor module, its device and application
CN108138744B (en) * 2016-05-04 2021-10-22 图博萨姆公司 Savonius rotor, rotor module, device and application thereof

Similar Documents

Publication Publication Date Title
US10024302B2 (en) Vertical axis wind turbine
US9989033B2 (en) Horizontal axis wind or water turbine with forked or multi-blade upper segments
US9683547B2 (en) Wind turbine having nacelle fence
Liang et al. Blade pitch control of straight-bladed vertical axis wind turbine
US10233901B2 (en) Turbine for capturing energy from a fluid flow
US20110171025A1 (en) Wind Turbine Blade and Turbine Rotor
CN201297237Y (en) Vertical shaft type vortex turbine helical blade wind power electric generating unit
CN203098139U (en) Counter-rotating double-impeller wind turbine structure suitable for minitype wind generator
US20160138568A1 (en) Hybrid Vertical Axis Wind Turbine
JP2015108364A (en) Savonius wind mill
KR20120061264A (en) Vertical axis wind turbine having cascaded mutiblade
CN101668944B (en) Wind wheel
KR20120139154A (en) Vertical axis type wind power generator fused lift and drag
Nishizawa An experimental study of the shapes of rotor for horizontal-axis small wind turbines
WO2015131789A1 (en) Cone wind-wheel wind-driven generator
Siddiqui et al. Performance evaluation of H-type Darrieus VAWT with J-shaped blade geometry at variable pitch angles
CN205677762U (en) A kind of windmill of vertical axis aerogenerator
CN213270122U (en) Energy-gathering horizontal shaft wind turbine
KR100979177B1 (en) Wind-turbine apparatus
EP3214303B1 (en) Rotor vertical axis wind turbine
CN210460947U (en) Swinging vane type flow guide type vertical axis wind turbine
CN202402209U (en) Wind power generation blade
CN201963471U (en) Blade of magnetic levitation savonius rotor wind driven generator
CN104047805A (en) Horizontal axis and vertical axis universal wind turbine device
CN102062050A (en) Maglev Savonius rotor wind power generator blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306