JP5350906B2 - Optical directivity measurement device - Google Patents

Optical directivity measurement device Download PDF

Info

Publication number
JP5350906B2
JP5350906B2 JP2009147526A JP2009147526A JP5350906B2 JP 5350906 B2 JP5350906 B2 JP 5350906B2 JP 2009147526 A JP2009147526 A JP 2009147526A JP 2009147526 A JP2009147526 A JP 2009147526A JP 5350906 B2 JP5350906 B2 JP 5350906B2
Authority
JP
Japan
Prior art keywords
light
emitting device
light emitting
measuring apparatus
optical directivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009147526A
Other languages
Japanese (ja)
Other versions
JP2011002412A (en
Inventor
雅一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Electronics Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2009147526A priority Critical patent/JP5350906B2/en
Publication of JP2011002412A publication Critical patent/JP2011002412A/en
Application granted granted Critical
Publication of JP5350906B2 publication Critical patent/JP5350906B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Led Devices (AREA)

Description

本発明はLED等の発光装置の光学指向特性を測定する装置に関するものである。   The present invention relates to an apparatus for measuring optical directivity characteristics of a light emitting device such as an LED.

近年LEDなどの半導体素子を用いた発光装置は、従来のフィラメント電球や蛍光灯に代わって環境負荷の少ない次世代照明器具として脚光を浴びる様になり、多くの製品が上市され始めてきた。これに伴い製品としての特性を検査するための測定技術も多々提案されている。   In recent years, light-emitting devices using semiconductor elements such as LEDs have come into the limelight as next-generation lighting fixtures with less environmental impact in place of conventional filament bulbs and fluorescent lamps, and many products have begun to be marketed. Along with this, many measurement techniques for inspecting the characteristics of products have been proposed.

たとえばLEDなどの半導体素子を用いた発光装置(以下、「発光装置」と称する)を、検出測定手段の位置決め手段で把持し、発光装置からの正面光を検出測定手段の検出部で受光し検出測定手段の測定部で発光特性を得る技術が開示された。(例えば特許文献1参照)   For example, a light emitting device using a semiconductor element such as an LED (hereinafter referred to as a “light emitting device”) is gripped by the positioning means of the detection / measuring means, and the front light from the light emitting device is received and detected by the detecting unit of the detecting / measuring means. A technique for obtaining light emission characteristics in a measuring section of a measuring means has been disclosed. (For example, see Patent Document 1)

この技術開示では発光装置の側面からの光が検出されず正確な測定が出来ない欠点があるので、発光装置を把持する位置決め手段に反射面を設け、発光装置の側面からの光を検出部に反射させて測定の正確性を高める技術が開示された。(例えば特許文献2参照)   In this technical disclosure, there is a drawback that light from the side surface of the light emitting device is not detected and accurate measurement cannot be performed. Therefore, a reflecting surface is provided on the positioning means for gripping the light emitting device, and light from the side surface of the light emitting device is used as a detection unit. Techniques have been disclosed that reflect to improve measurement accuracy. (For example, see Patent Document 2)

また別の技術開示では、発光装置と受光装置の相対位置を様々に変化させ発光装置からの光を広い範囲にわたって測定し、得られた多くのデータを演算処理して発光装置の光学特性を得る測定システムの技術も開示されている。(例えば非特許文献1参照)   In another technical disclosure, the relative position between the light emitting device and the light receiving device is changed in various ways, the light from the light emitting device is measured over a wide range, and a large amount of the obtained data is processed to obtain the optical characteristics of the light emitting device. Measurement system technology is also disclosed. (For example, see Non-Patent Document 1)

特開2000−180122号公報(特許請求の範囲、第2図)JP 2000-180122 A (Claims, Fig. 2) 特開2006−30135号公報(特許請求の範囲、第1図)Japanese Patent Laying-Open No. 2006-30135 (Claims, Fig. 1)

岩永敏秀、外2名,「照明用LEDモジュールの光学特性測定システムの開発」,東京都立産業技術研究センター研究報告,第2号,2007年,p.34−p.37Toshihide Iwanaga, 2 others, “Development of optical characteristic measurement system for LED module for lighting”, Tokyo Metropolitan Industrial Technology Research Center Research Report, No. 2, 2007, p. 34-p. 37

半導体素子を用いた発光装置は従来の照明素子と発光のメカニズムが異なるため、照度や全光束或いは指向性等の発光特性測定には、半導体発光の原理に適合した方式が必要である。   Since a light emitting device using a semiconductor element has a light emission mechanism different from that of a conventional illumination element, a method suitable for the principle of semiconductor light emission is required for measuring light emission characteristics such as illuminance, total luminous flux, and directivity.

すなわち半導体技術を用いた発光装置においては、発光強度が半導体特有の温度特性を有していること、すなわち周囲温度や発光装置自身の温度上昇によって発光特性が変化するという特徴は測定に当たっては十分に考慮されなくてはならない。
例えば照明器具の最も重要な要素である指向性の測定においては、温度上昇によって特性が変化し測定が不確実になることを防ぐため、短時間で広範囲の測定をすませる必要がある。
In other words, in a light emitting device using semiconductor technology, the light emission intensity has a temperature characteristic peculiar to a semiconductor, that is, the characteristic that the light emitting characteristic changes due to the ambient temperature or the temperature rise of the light emitting device itself is sufficient for measurement. Must be considered.
For example, in directivity measurement, which is the most important element of a luminaire, it is necessary to allow a wide range of measurements in a short time in order to prevent uncertain measurements due to temperature changes.

特許文献1の開示技術は発光装置の前面からの光しか検出しないので完全な光学指向特性を得る事が出来ない。また、特許文献2の開示技術は、発光装置の側面からの光も反射面によって検出部に入るが、反射面の角度によって受光部に至る光は限定されるため、完全な指向特性を得るためには検出部の角度を変化させる必要があり、測定に時間が掛かってしまう。   Since the disclosed technique of Patent Document 1 detects only light from the front surface of the light emitting device, perfect optical directivity characteristics cannot be obtained. Further, in the disclosed technique of Patent Document 2, light from the side surface of the light emitting device also enters the detection unit by the reflection surface, but the light reaching the light reception unit is limited by the angle of the reflection surface, so that complete directivity characteristics are obtained. Therefore, it is necessary to change the angle of the detection unit, which takes time for measurement.

また、非特許文献1の開示技術は発光装置からの全方位の光を測定できるが、測定時間については特許文献2の開示技術よりは短くなり改善されているものの、原理的に一次元の測定を繰り返して二次元の情報を得る方法なのでどうしても一定の時間を要し、温度上昇による測定誤差は避けることが出来ない。また装置の複雑化やモータなどの可動部に対するメンテナンスなど、コスト上昇も普及化の上で大きな障害となる。   Although the disclosed technique of Non-Patent Document 1 can measure light in all directions from the light emitting device, the measurement time is shorter and improved than the disclosed technique of Patent Document 2, but in principle one-dimensional measurement. Since it is a method of obtaining two-dimensional information by repeating the above, it takes a certain amount of time, and measurement errors due to temperature rise cannot be avoided. In addition, cost increases such as complicated devices and maintenance of movable parts such as motors become a major obstacle to widespread use.

このように、公知の技術で発光装置の光学指向特性を測定すると、測定のために多大の時間を要し、その結果発光装置の温度上昇によって測定が不正確になってしまい、また測定装置自体のコストも高いという課題があった。   As described above, when the optical directivity characteristic of the light emitting device is measured by a known technique, it takes a long time for the measurement. As a result, the measurement becomes inaccurate due to the temperature rise of the light emitting device, and the measuring device itself. There was a problem that the cost of

本発明の目的は上記課題を解決し、発光装置からの全方位の光を極めて短時間で測定して発光装置自身の温度上昇を抑えることによって高精度を確保し、しかも可動部を有しないシンプルな構造でメンテナンスも僅かなローコストの光学指向特性測定装置を提供することである。   The object of the present invention is to solve the above-mentioned problems, ensure high accuracy by measuring light in all directions from the light-emitting device in a very short time and suppressing the temperature rise of the light-emitting device itself, and having no moving parts. It is to provide a low-cost optical directivity characteristic measuring apparatus with a simple structure and little maintenance.

上記課題を解決するため本発明の光学指向特性測定装置は下記記載の構成を採用する。   In order to solve the above problems, the optical directivity characteristic measuring apparatus of the present invention employs the following configuration.

本発明の光学指向特性測定装置は、
測定物である発光装置3と、発光装置3からの光を反射する反射手段2と、反射手段2から反射される発光装置3からの光を検出する受光装置5nと、受光装置5nの受光信号出力Snに基づき発光装置3の発光特性を算出するデータ処理手段10と、を有する発光特性測定装置1において、
反射手段2は曲面または凹部状の反射面2aを有するスクリーン2であり、発光装置3はスクリーン2の反射面2a側の略中心位置に配置されるとともに、発光装置3の近傍に複数の受光装置5nを配置し、
データ処理手段10は、複数の受光装置5nの受光信号出力Snに基づき発光装置3の発光特性である発光特性データD3を算出する発光特性算出部70を有することを特徴とする。
The optical directivity characteristic measuring apparatus of the present invention is
The light-emitting device 3 that is the object to be measured, the reflecting means 2 that reflects the light from the light-emitting device 3, the light-receiving device 5n that detects the light from the light-emitting device 3 that is reflected from the reflecting means 2, and the light-receiving device 5n In the light emission characteristic measuring apparatus 1 having the data processing means 10 for calculating the light emission characteristic of the light emitting device 3 based on the signal output Sn,
The reflecting means 2 is a screen 2 having a curved or concave reflecting surface 2 a, and the light emitting device 3 is disposed at a substantially central position on the reflecting surface 2 a side of the screen 2, and a plurality of light receiving devices are provided in the vicinity of the light emitting device 3. 5n,
The data processing means 10 includes a light emission characteristic calculation unit 70 that calculates light emission characteristic data D3 that is a light emission characteristic of the light emitting device 3 based on light reception signal outputs Sn of the plurality of light receiving devices 5n.

これにより発光装置3の全方位の光を一括して測定し、得られた複数の受光信号出力Snから総合の発光特性が算出されるので、測定時間が短くなり温度上昇も最低限に抑えられ、光学指向特性の高精度の測定が可能となる。また構造も可動部のない簡素なものとなる。   As a result, light in all directions of the light emitting device 3 is collectively measured, and the total light emission characteristic is calculated from the obtained light reception signal outputs Sn. Therefore, the measurement time is shortened and the temperature rise is minimized. In addition, it is possible to measure the optical directional characteristics with high accuracy. Also, the structure is simple with no moving parts.

また複数の受光装置5nは発光装置3の周囲に等間隔で配置してもよい。   The plurality of light receiving devices 5n may be arranged around the light emitting device 3 at equal intervals.

これにより、発光装置3の全方位の光は、発光装置3の周囲に等間隔で配置された複数の受光装置5nで均等に受光されるので、特定の受光装置5nへの光の集中が無くなり光学指向特性の高精度の測定が可能となる。   As a result, light in all directions of the light emitting device 3 is evenly received by the plurality of light receiving devices 5n arranged at equal intervals around the light emitting device 3, so that the concentration of light on the specific light receiving device 5n is eliminated. High-precision measurement of optical directivity characteristics is possible.

また複数の受光装置5nの各受光面5naは発光装置3の発光面3aに対し所定角度θ傾けてもよい。   The light receiving surfaces 5na of the plurality of light receiving devices 5n may be inclined with respect to the light emitting surface 3a of the light emitting device 3 by a predetermined angle θ.

これにより、発光装置3の全方位の光はスクリーン2の反射面2aで反射し、受光装置5nに効率よく集中するので光学指向特性の高精度の測定が可能となる。   As a result, the light in all directions of the light emitting device 3 is reflected by the reflecting surface 2a of the screen 2 and efficiently concentrated on the light receiving device 5n, so that the optical directivity characteristics can be measured with high accuracy.

また複数の受光装置5nの各受光面5naに魚眼レンズ4nを備えてもよい。   Further, a fisheye lens 4n may be provided on each light receiving surface 5na of the plurality of light receiving devices 5n.

これにより、発光装置3の全方位の光はスクリーン2の反射面2aで反射し、魚眼レンズ4によって受光装置5nに効率よく集中するので光学指向特性の高精度の測定が可能となる。   Thereby, the light in all directions of the light emitting device 3 is reflected by the reflecting surface 2a of the screen 2, and is efficiently concentrated on the light receiving device 5n by the fisheye lens 4, so that the optical directivity characteristic can be measured with high accuracy.

さらに受光装置5nはイメージセンサ装置であってもよい。   Further, the light receiving device 5n may be an image sensor device.

これにより、受光装置5nは各方位の光を一括して受光し各々の方位の光に応じた受光信号を一括して出力することが出来るので測定の短時間化が可能となる。   As a result, the light receiving device 5n can collectively receive the light in each direction and collectively output a light reception signal corresponding to the light in each direction, thereby shortening the measurement time.

本発明によれば、発光装置の光学指向特性は短時間で測定されるので温度上昇による精度の低下もなく、さらに測定装置には何ら可動部分がないためメンテナンスも僅かなローコストかつ高精度の光学指向特性測定装置を提供することが可能となる。   According to the present invention, since the optical directivity characteristics of the light emitting device are measured in a short time, there is no decrease in accuracy due to temperature rise, and there is no moving part in the measuring device, so maintenance is also low cost and high accuracy optical. A directivity measurement apparatus can be provided.

本発明による光学指向特性測定装置の第1の実施形態の断面図である。It is sectional drawing of 1st Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第1の実施形態の模式的な側面図である。It is a typical side view of 1st Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第1の実施形態の模式的な平面図である。It is a typical top view of a 1st embodiment of an optical directivity characteristic measuring device by the present invention. 本発明による光学指向特性測定装置の第1の実施形態における光線図である。It is a light ray figure in a 1st embodiment of an optical directivity characteristic measuring device by the present invention. 本発明による光学指向特性測定装置の第1の実施形態のブロック図である。1 is a block diagram of a first embodiment of an optical directivity characteristic measuring apparatus according to the present invention. 本発明による光学指向特性測定装置の第1の実施形態のフローチャートである。It is a flowchart of 1st Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第1の実施形態の動作を説明するための図表である。It is a chart for demonstrating operation | movement of 1st Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第1の実施形態の動作を説明するための図表である。It is a chart for demonstrating operation | movement of 1st Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第1の実施形態の動作を説明するための図表である。It is a chart for demonstrating operation | movement of 1st Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第1の実施形態の動作を説明するための図表である。It is a chart for demonstrating operation | movement of 1st Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第1の実施形態の動作を説明するための図表である。It is a chart for demonstrating operation | movement of 1st Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第2の実施形態の断面図である。It is sectional drawing of 2nd Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第2の実施形態のブロック図である。It is a block diagram of 2nd Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第2の実施形態のフローチャートである。It is a flowchart of 2nd Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第2の実施形態の動作を説明するための図表である。It is a chart for demonstrating operation | movement of 2nd Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第2の実施形態の動作を説明するための図表である。It is a chart for demonstrating operation | movement of 2nd Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第3の実施形態の模式的な平面図である。It is a typical top view of 3rd Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第4の実施形態の模式的な平面図である。It is a typical top view of 4th Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第5の実施形態の断面図である。It is sectional drawing of 5th Embodiment of the optical directivity characteristic measuring apparatus by this invention. 本発明による光学指向特性測定装置の第5の実施形態における光線図である。It is a light ray figure in a 5th embodiment of an optical directivity characteristic measuring device by the present invention. 光学指向特性測定装置の従来例の断面図である。It is sectional drawing of the prior art example of an optical directivity characteristic measuring apparatus.

本発明の光学指向特性測定装置の大まかな動作は、発光装置を測定ステージに固定し駆動電源を供給して発光装置を発光させ、発光装置の上部に設けたスクリーンの反射面によってこの光を反射させるとともに発光装置の近傍に設けた複数の受光装置に反射光を集結し、複数の受光装置の信号出力をデータ処理手段で演算処理し、発光装置の全方位の光の強度分布すなわち光学指向特性を測定するものである。   The general operation of the optical directivity measuring apparatus of the present invention is to fix the light emitting device to the measurement stage, supply drive power to emit light, and reflect this light by the reflective surface of the screen provided above the light emitting device. In addition, the reflected light is concentrated on a plurality of light receiving devices provided in the vicinity of the light emitting device, and the signal output of the plurality of light receiving devices is calculated and processed by the data processing means. Is to measure.

また指向性が均一な基準光源の基準光源データをあらかじめ記憶させておき、発光装置の発光特性データを基準光源データで補正することによってスクリーンの反射面の反射特性のばらつきや、複数の受光装置の感度のばらつきや、発光装置とスクリーンの距離あるいはスクリーンと受光装置の距離の変動など、誤差を生じる要因を最低限に抑える手法を採用している。   In addition, reference light source data of a reference light source with uniform directivity is stored in advance, and the light emission characteristic data of the light emitting device is corrected with the reference light source data, thereby causing variations in reflection characteristics of the reflective surface of the screen, and of a plurality of light receiving devices. A technique is adopted that minimizes factors that cause errors, such as sensitivity variations, fluctuations in the distance between the light emitting device and the screen, or the distance between the screen and the light receiving device.

[本発明の原理的説明:図4、図21]
ここでどの様な仕組みで、発光装置の全方位の光の強度分布すなわち光学指向特性データを一括して測定することが可能なのか、図4と図21を用いて本発明の考案の骨子について詳述する。
[Principle description of the present invention: FIGS. 4 and 21]
Here, how the light intensity distribution in all directions of the light-emitting device, that is, the optical directional characteristic data can be measured at once by the mechanism, will be described with reference to FIG. 4 and FIG. Detailed description.

図21は非特許文献1に示した「発光特性測定システム」の模式的な断面図であり、発光装置3は測定ステージ6の上にセットされ、さらに測定ステージ6はXYスライド部15と傾斜用モータ16と回転用モータ18によってXY方向15aと傾斜方向16aと回転方向18aとに移動が可能になっており、これら可動部を動かして測定ステージ6にセットした発光装置3の姿勢を様々に変化させて受光器19に入る発光装置3の光の方位角度を様々に変化させ、順次全方位の光を受光器19および分光器14で測定して発光装置3の発光特性を得るものである。   FIG. 21 is a schematic cross-sectional view of the “light emission characteristic measurement system” shown in Non-Patent Document 1. The light emitting device 3 is set on the measurement stage 6, and the measurement stage 6 is for tilting with the XY slide unit 15. The motor 16 and the rotation motor 18 can move in the XY direction 15a, the tilt direction 16a, and the rotation direction 18a, and the posture of the light emitting device 3 set on the measurement stage 6 is changed by moving these movable parts. Thus, the azimuth angle of the light of the light emitting device 3 entering the light receiver 19 is changed variously, and light in all directions is sequentially measured by the light receiver 19 and the spectroscope 14 to obtain the light emission characteristics of the light emitting device 3.

すなわち図21に示す従来例においては、発光装置3の光を受光するための受光器19は1個の光センサによって構成されており、ある方位の光の強度しか測定が出来ないので、発光装置3の角度を、例えば−90度から+90度まで0.5度ないし数度きざみで設定し、その都度光の強度の測定をするという作業が必要になるのである。すなわち全方位の測定には多くの時間を要する。   That is, in the conventional example shown in FIG. 21, the light receiver 19 for receiving the light of the light emitting device 3 is constituted by one optical sensor, and can measure only the intensity of light in a certain direction. For example, it is necessary to set the angle of 3 from −90 degrees to +90 degrees in steps of 0.5 degrees to several degrees and measure the light intensity each time. That is, it takes a lot of time to measure all directions.

図4は本発明による光学指向特性測定装置の第1の実施形態における光線図であり、発光装置3の各方位の光がスクリーン2の反射面2aで反射し発光装置3の近傍に設けられた2個の受光装置5nに集結するまでの、代表的な経路を示したものである。   FIG. 4 is a ray diagram of the first embodiment of the optical directivity measuring apparatus according to the present invention. Light in each direction of the light emitting device 3 is reflected by the reflecting surface 2 a of the screen 2 and is provided in the vicinity of the light emitting device 3. A typical route until the two light receiving devices 5n are gathered is shown.

図4において、発光装置3の光を受光するための2個の受光装置5nには、数十万ないし数百万の画素(図示せず)を有する固体撮像素子やCMOS素子などのイメージセンサ装置が使用されている。例えば百万画素であれば一辺が1000分割で他の一辺が1000分割の、1000×1000=1000,000万の網の目状の区画の各々に、光センサが存在しているのである。   In FIG. 4, the two light receiving devices 5n for receiving the light of the light emitting device 3 include image sensor devices such as solid-state imaging devices and CMOS devices having hundreds of thousands to millions of pixels (not shown). Is used. For example, in the case of one million pixels, a photosensor exists in each of the mesh-like sections of 1000 × 1000 = 10 million, which is divided into 1000 on one side and 1000 on the other side.

すなわち図4に示す様に、発光装置3からの各方位の光はスクリーン2の反射面2aで反射し、イメージセンサ装置の百万の画素一つ一つに入る。   That is, as shown in FIG. 4, the light in each direction from the light emitting device 3 is reflected by the reflecting surface 2a of the screen 2, and enters one million pixels of the image sensor device.

さらにイメージセンサ装置の百万画素の信号は、電子回路的手法によって10のマイナス5乗ないしマイナス4乗程度の極めて短い時間で取り出すことが可能である。そして予め標準電球などを用いた予備実験等によって、各画素の信号がどの方位からの光に対応しているかをテーブル化しておけば各方位の光の強度の分布を知ることが出来る。
以上の様な理由で、発光装置3の各方位の光の強度は事実上一括して測定することが可能となるのである。
Further, the signal of 1 million pixels of the image sensor device can be taken out in an extremely short time of about 10 5 to the 4th power by an electronic circuit method. Then, by preliminarily conducting a preliminary experiment or the like using a standard light bulb or the like, it is possible to know the light intensity distribution in each direction by making a table showing from which direction the signal of each pixel corresponds.
For the reasons as described above, the light intensity in each direction of the light emitting device 3 can be measured in a lump.

以下、図面により本発明の光学指向特性測定装置の実施の形態を詳述する。   Hereinafter, embodiments of the optical directivity measuring apparatus of the present invention will be described in detail with reference to the drawings.

[第1の実施形態の全図面説明:図1〜図11]
以下、図1から図11を用いて本発明の光学指向特性測定装置の第1の実施形態を詳述する。
図1は光学指向特性測定装置1の断面図であり、図2はスクリーン2と発光装置3と受光装置5nについて側面からの位置関係を模式的に示した側面図であり、図3はスクリーン2と発光装置3と受光装置5nについてスクリーン2の上面からの位置関係を模式的に示した平面図であり、図4は発光装置3から受光装置5nに至る光の経路を表す光線図である。また図5はデータ処理手段10のブロック図であり、図6は光学指向特性測定装置1の測定の流れを示すフローチャートであり、図7〜図10はデータ処理の途中過程で算出される中間段階のデータ図であり、図11は最終的な測定結果である光学指向特性データD4の一例である。
[Description of All Drawings of First Embodiment: FIGS. 1 to 11]
Hereinafter, the first embodiment of the optical directivity measuring apparatus of the present invention will be described in detail with reference to FIGS.
FIG. 1 is a cross-sectional view of the optical directivity measuring apparatus 1, FIG. 2 is a side view schematically showing the positional relationship from the side of the screen 2, the light emitting device 3, and the light receiving device 5n. 4 is a plan view schematically showing a positional relationship from the upper surface of the screen 2 with respect to the light emitting device 3 and the light receiving device 5n, and FIG. 4 is a light ray diagram showing a light path from the light emitting device 3 to the light receiving device 5n. 5 is a block diagram of the data processing means 10, FIG. 6 is a flowchart showing a measurement flow of the optical directivity characteristic measuring apparatus 1, and FIGS. 7 to 10 are intermediate stages calculated in the course of data processing. FIG. 11 is an example of optical directivity characteristic data D4 that is a final measurement result.

[第1の実施形態の構成説明:図1〜図5]
まず、図1〜図5を用いて本発明の光学指向特性測定装置1の構成を説明する。
図1において発光装置3は測定ステージ6の上に発光面3aを真上に向けセットされ、電源端子8とスプリング電極8aおよび電源供給ケーブル10aによってデータ処理手段10と電気的に接続されている。
[Configuration of First Embodiment: FIGS. 1 to 5]
First, the configuration of the optical directivity characteristic measuring apparatus 1 according to the present invention will be described with reference to FIGS.
In FIG. 1, the light emitting device 3 is set on the measurement stage 6 with the light emitting surface 3a facing right above, and is electrically connected to the data processing means 10 by a power terminal 8, a spring electrode 8a, and a power supply cable 10a.

スクリーン2は球状又は放物線状の曲面を有し、図1に示す様に内側すなわち発光装置3側に反射面2aを有しており、支持台9に固定されている。
反射面2aは例えばアルミ蒸着などの表面処理が施され、光の波長に依らず反射率が高くかつ光の反射角が入射角に精密に依存するいわゆる鏡面の構造になっている。
The screen 2 has a spherical or parabolic curved surface, and has a reflecting surface 2a on the inner side, that is, on the light emitting device 3 side, as shown in FIG.
The reflection surface 2a is subjected to a surface treatment such as aluminum vapor deposition, and has a so-called mirror surface structure in which the reflectivity is high regardless of the wavelength of light and the reflection angle of light accurately depends on the incident angle.

受光装置5nは、発光装置3からの広範囲の光を受光するための数十万ないし数百万の画素を備えた固体撮像素子やCMOS素子などのイメージセンサ装置であり、図1に示す様に、発光装置3を挟んだ対称な位置に、鉛直線から所定角度傾いて、2個設置されている。
支持台9は、測定ステージ6など各構造物を固定し保持する筐体である。
The light receiving device 5n is an image sensor device such as a solid-state imaging device or a CMOS device having hundreds of thousands to millions of pixels for receiving a wide range of light from the light emitting device 3, as shown in FIG. Two are installed at symmetrical positions with respect to the light emitting device 3 and are inclined at a predetermined angle from the vertical line.
The support base 9 is a housing that fixes and holds each structure such as the measurement stage 6.

データ処理手段10は、例えばパソコンとパソコンで制御される電源のセットであり、電源供給ケーブル10aを用いて発光装置3への電源供給を制御すると共に、信号ケーブル10bによって2個の受光装置5nからの受光信号出力Snを取込み、これら受光信号出力Snに基づいて発光装置3の光学指向特性データD4を算出するためのデータ処理を行う。   The data processing means 10 is, for example, a personal computer and a set of power sources controlled by the personal computer, and controls the power supply to the light emitting device 3 using the power supply cable 10a, and from the two light receiving devices 5n by the signal cable 10b. Is received, and data processing for calculating the optical directivity characteristic data D4 of the light emitting device 3 is performed based on these received light signal outputs Sn.

次に図2〜図3を用いてスクリーン2と発光装置3と受光装置5nの位置関係を説明する。
図2はスクリーン2と発光装置3と受光装置5nについて側面からの配置を模式的に示したもので、P点は発光装置の中心位置である。
Next, the positional relationship among the screen 2, the light emitting device 3, and the light receiving device 5n will be described with reference to FIGS.
FIG. 2 schematically shows the arrangement of the screen 2, the light emitting device 3, and the light receiving device 5n from the side, and the point P is the center position of the light emitting device.

図2において、線分Lは発光装置3の発光面3aの中心を通り、発光面に垂直な線分すなわち光軸であり、線分K1およびK2は、2個の受光装置5nの各受光面5naの中心を通り、受光面5nに垂直な線分すなわち光軸である。なお「光軸」とは「発光面もしくは受光面の中心を通り発光面もしくは受光面に垂直な線」と定義する。
また図2に示す様に、スクリーン2の直径は2rであり、O点はスクリーン2の中心である。
In FIG. 2, a line segment L is a line segment that passes through the center of the light emitting surface 3a of the light emitting device 3 and is perpendicular to the light emitting surface, that is, the optical axis, and the line segments K1 and K2 are the light receiving surfaces of the two light receiving devices 5n. A line segment passing through the center of 5na and perpendicular to the light receiving surface 5n, that is, the optical axis. The “optical axis” is defined as “a line passing through the center of the light emitting surface or the light receiving surface and perpendicular to the light emitting surface or the light receiving surface”.
As shown in FIG. 2, the diameter of the screen 2 is 2r, and the point O is the center of the screen 2.

図2において、発光装置3はスクリーン2の反射面2a側の中心近傍に発光面3aを真上に向け設置されている。また2個の受光装置5nは各受光面5naが発光装置3の発光面3aに対し所定角度θ傾けられて設置されている。
なお2個の受光装置5nが発光装置3の発光面3aに対し所定角度θ傾けられて設置されている理由については[本発明の光学指向特性測定装置1の動作の説明]において詳述する。
In FIG. 2, the light emitting device 3 is installed in the vicinity of the center of the screen 2 on the reflecting surface 2 a side with the light emitting surface 3 a directly above. The two light receiving devices 5n are installed such that each light receiving surface 5na is inclined at a predetermined angle θ with respect to the light emitting surface 3a of the light emitting device 3.
The reason why the two light receiving devices 5n are installed at a predetermined angle θ with respect to the light emitting surface 3a of the light emitting device 3 will be described in detail in [Description of the operation of the optical directivity measuring device 1 of the present invention].

図3はスクリーン2と発光装置3と2個の受光装置5nについて、上面からみた配置を模式的に示したもので、2個の受光装置5nは、スクリーン2の反射面2a側(図面の裏側に相当する)に、発光装置3の両側に対称に配置されている。   FIG. 3 schematically shows the arrangement of the screen 2, the light emitting device 3, and the two light receiving devices 5 n as viewed from above. The two light receiving devices 5 n are arranged on the reflecting surface 2 a side (the back side of the drawing) of the screen 2. Are arranged symmetrically on both sides of the light emitting device 3.

図4は光線図であり、発光装置3から発光された光がスクリーン2の反射面2aで反射され2個の受光装置5nに収束する際の、光の経路すなわち光線の代表的な経路を示している。詳細については後述する。   FIG. 4 is a ray diagram, and shows a light path, that is, a typical path of a light beam when the light emitted from the light emitting device 3 is reflected by the reflecting surface 2a of the screen 2 and converges on the two light receiving devices 5n. ing. Details will be described later.

次に図5を用いてデータ処理装置10の構成を説明する。
図5においてデータ処理装置10は、2個の光分布データ算出部6nと、発光特性算出部70と発光特性データ記憶部71と補正データ記憶部71bと光学指向特性算出部72と光学指向特性表示部73と電源制御部74とから構成される。
Next, the configuration of the data processing apparatus 10 will be described with reference to FIG.
5, the data processing apparatus 10 includes two light distribution data calculation units 6n, a light emission characteristic calculation unit 70, a light emission characteristic data storage unit 71, a correction data storage unit 71b, an optical directivity characteristic calculation unit 72, and an optical directivity characteristic display. The unit 73 and the power control unit 74 are configured.

2個の光分布データ算出部6nは、受光装置5nによって出力される受光信号出力Snの各画素の情報から各方位の光の強度を算出し、2個の光分布データDnを算出する。なお、「光分布データ」とは「方位別の光の強度分布図」と定義する。   The two light distribution data calculation units 6n calculate the light intensity in each direction from the information of each pixel of the light reception signal output Sn output by the light receiving device 5n, and calculate the two light distribution data Dn. The “light distribution data” is defined as “light intensity distribution map by direction”.

発光特性算出部70は、2個の光分布データ算出部6nによって算出された2つの光分布データDnから受光装置3の総合の発光特性である発光特性データD3を算出する。
言い換えると2つの光分布データDnはそれぞれ2個の受光信号出力Snに基づく部分的な方位の光分布データなので、発光特性算出部70によって2個の光分布データDnを合成して、発光装置3の全方位の発光特性である発光特性データD3を算出する。
The light emission characteristic calculation unit 70 calculates light emission characteristic data D3 that is a total light emission characteristic of the light receiving device 3 from the two light distribution data Dn calculated by the two light distribution data calculation units 6n.
In other words, since the two light distribution data Dn are partial light distribution data based on the two light reception signal outputs Sn, the light emission characteristic calculation unit 70 combines the two light distribution data Dn to obtain the light emitting device 3. The light emission characteristic data D3, which is the light emission characteristic in all directions, is calculated.

発光特性データ記憶部71は、発光特性算出部70が算出した発光特性データD3を、のちの演算のために一時的に記憶しておくバッファである。   The light emission characteristic data storage unit 71 is a buffer that temporarily stores the light emission characteristic data D3 calculated by the light emission characteristic calculation unit 70 for later calculation.

また補正データ記憶部71bは、過去の実験データや知見などに基づき作成された補正データD3bを記憶しており、これは発光特性データD3を補正する際に用いられる。   The correction data storage unit 71b stores correction data D3b created based on past experimental data and knowledge, and is used when correcting the light emission characteristic data D3.

光学指向特性算出部72は、発光特性データ記憶部71によって記憶された発光装置3の発光特性データD3と補正データ記憶部71bに記憶された補正データD3bから、最終目的である発光装置3の光学指向特性データD4を算出する。より詳細には、発光装置3の発光特性データD3を、実験データや知見などに基づき補正を行って発光装置3の光学指向特性データD4を算出する。   The optical directivity characteristic calculation unit 72 uses the light emission characteristic data D3 of the light emitting device 3 stored in the light emission characteristic data storage unit 71 and the correction data D3b stored in the correction data storage unit 71b to determine the optical characteristics of the light emitting device 3 that is the final objective. Directivity characteristic data D4 is calculated. More specifically, the light emitting characteristic data D3 of the light emitting device 3 is corrected based on experimental data, knowledge, etc. to calculate the optical directivity characteristic data D4 of the light emitting device 3.

光学指向特性表示部73は、光学指向特性算出部72から出力される発光装置3の光学指向特性データD4を視覚的に表示するとともに印刷物を出力する。   The optical directivity characteristic display unit 73 visually displays the optical directivity characteristic data D4 of the light emitting device 3 output from the optical directivity characteristic calculation unit 72 and outputs a printed matter.

電源制御部74は発光装置3を点灯あるいは消灯させるなどの制御機能を有する駆動電源である。   The power supply controller 74 is a drive power supply having a control function such as turning on or off the light emitting device 3.

[第1の実施形態の動作説明:図1〜図11]
次に図1〜図11を用いて本発明の光学指向特性測定装置1の動作を説明する。
図1において発光装置3を測定ステージ6の載置台6aに設置し、電源端子8とスプリング電極8a及び電源供給ケーブル10aによってデータ処理手段10から駆動電源を供給すると発光装置3は発光する。
[Description of Operation of First Embodiment: FIGS. 1 to 11]
Next, operation | movement of the optical directivity characteristic measuring apparatus 1 of this invention is demonstrated using FIGS.
In FIG. 1, when the light emitting device 3 is installed on the mounting table 6a of the measurement stage 6, and the driving power is supplied from the data processing means 10 by the power terminal 8, the spring electrode 8a and the power supply cable 10a, the light emitting device 3 emits light.

すると、図4に示す様に発光装置3からの各方位の光はスクリーン2の反射面2aで反射し、2個の受光装置5nに集結する。さらに詳細には図2に示す様に、スクリーン2の曲面は直径2rの球状であり、発光装置3の中心位置P点はスクリーン2の中心O点よりやや反射面2a側に偏った配置になっているので、発光装置3から出た光は、発光装置3の光軸Lを中心にほぼ左右均等に分散し、スクリーン2の反射面2aで反射ののち再び2個の受光装置5nの近傍に収束する経路をたどるのである。なお図4の光線図には光の代表的な光線が示されており、勿論これら以外のも無数の光線が存在する。   Then, as shown in FIG. 4, the light of each direction from the light-emitting device 3 is reflected by the reflective surface 2a of the screen 2, and is collected by the two light-receiving devices 5n. More specifically, as shown in FIG. 2, the curved surface of the screen 2 is spherical with a diameter of 2r, and the center position P point of the light emitting device 3 is slightly offset from the center O point of the screen 2 toward the reflecting surface 2 a. Therefore, the light emitted from the light emitting device 3 is dispersed almost equally about the optical axis L of the light emitting device 3, and after being reflected by the reflecting surface 2a of the screen 2, it is again in the vicinity of the two light receiving devices 5n. It follows the path of convergence. Note that the ray diagram of FIG. 4 shows typical rays of light, and of course there are countless rays other than these.

また図4に示す様に、受光装置5nの近傍に収束する光線の代表的な角度は鉛直線に対しある角度傾いている。一方、図2に示す様に受光装置5nの各受光面5naは発光装置3の発光面3aに対し所定角度θ傾けてあるので、発光装置3の各方位の光はより広範囲かつ効率よく受光装置5nの各受光面5naに集結するのである。   As shown in FIG. 4, the typical angle of the light beam that converges in the vicinity of the light receiving device 5n is inclined by a certain angle with respect to the vertical line. On the other hand, as shown in FIG. 2, each light-receiving surface 5na of the light-receiving device 5n is inclined at a predetermined angle θ with respect to the light-emitting surface 3a of the light-emitting device 3, so that light in each direction of the light-emitting device 3 is more widely and efficiently received. It collects on each 5n light-receiving surface 5na.

このようにして発光装置3からの各方位の光は、2個の受光装置5nへ入光し、図5に示す様に2個の受光装置5nはそれぞれ受光信号出力Snを生じる。そして2個の受光信号出力Snは2個の光分布データ算出部6nにそれぞれ入力され、光分布データ算出部6nは、2つの光分布データDnをそれぞれ出力する。   In this way, light in each direction from the light emitting device 3 enters the two light receiving devices 5n, and the two light receiving devices 5n each generate a light reception signal output Sn as shown in FIG. The two received light signal outputs Sn are respectively input to the two light distribution data calculating units 6n, and the light distribution data calculating unit 6n outputs two light distribution data Dn.

次に図7〜図11を用いて、図5に示すデータ処理手段10の発光特性算出部70が発光特性データD3を算出する過程を詳述する。なお図4および図5も一部引用するので参照されたい。   Next, a process in which the light emission characteristic calculation unit 70 of the data processing unit 10 shown in FIG. 5 calculates the light emission characteristic data D3 will be described in detail with reference to FIGS. Please refer to FIG. 4 and FIG.

図7〜図10は発光装置3の各方位の光の強度分布を表すデータ図である。
まず図7〜図10の図の内容を説明する。図7〜図10において、横軸は−90度から+90度までの光の方位すなわち角度であり、−90度は図2に示す発光装置3の発光面3aの延長の水平方向を示し、+90度はそれと反対の水平方向を示し、さらに0度は発光装置3の発光面3aの光軸方向すなわち鉛直方向を示している。また、縦軸は発光装置3の各方位の光の強度を相対値で示したものである。
7 to 10 are data diagrams showing the intensity distribution of light in each direction of the light emitting device 3.
First, the contents of FIGS. 7 to 10 will be described. 7 to 10, the horizontal axis represents the azimuth or angle of light from -90 degrees to +90 degrees, -90 degrees represents the horizontal direction of the extension of the light emitting surface 3a of the light emitting device 3 shown in FIG. The degree indicates the opposite horizontal direction, and 0 degree indicates the optical axis direction of the light emitting surface 3a of the light emitting device 3, that is, the vertical direction. The vertical axis indicates the intensity of light in each direction of the light emitting device 3 as a relative value.

まず図7の実線d1xは、図4に示す発光装置3の光軸Lに向かって左側の光の強度分布データDn(以下、“(左)光分布データDn”と呼称する)であり、図4に示す2個の受光装置5nのうちの左側の受光装置5nから出力される受光信号出力Snを、図5に示す様に一方の光分布データ算出部6nに入力して、一方の光分布データ算出部6nによって算出されたものである。   First, the solid line d1x in FIG. 7 is the intensity distribution data Dn of light on the left side toward the optical axis L of the light emitting device 3 shown in FIG. 4 (hereinafter referred to as “(left) light distribution data Dn”). The light receiving signal output Sn output from the left light receiving device 5n of the two light receiving devices 5n shown in FIG. 4 is input to one light distribution data calculating unit 6n as shown in FIG. It is calculated by the data calculation unit 6n.

この様に(左)光分布データDnは、発光装置3の光軸Lに向かって左側の光線が支配的な状態での光の強度分布を示すものであるので、図7の実線d1xによって示す様に、方位角度が−90度から0度までの光の相対強度が強く、方位角度が0度から+90度までの光の相対強度が弱い結果になっている。   As described above, the (left) light distribution data Dn indicates the light intensity distribution in a state where the left-side light beam is dominant toward the optical axis L of the light emitting device 3, and is indicated by a solid line d1x in FIG. In the same manner, the relative intensity of light with an azimuth angle of −90 degrees to 0 degrees is strong, and the relative intensity of light with an azimuth angle of 0 degrees to +90 degrees is weak.

また、図7の点線d1yは、(左)光分布データDnの測定面と直角な測定面での光の相対強度を示している。この関係を図8により詳述する。   In addition, a dotted line d1y in FIG. 7 indicates the relative intensity of light on the measurement surface perpendicular to the measurement surface of (left) light distribution data Dn. This relationship will be described in detail with reference to FIG.

すなわち図8は発光装置3の(左)光分布データDnについて、1つの測定面に沿って測定した場合と、この測定面と直角すなわち図4の紙面に垂直な測定面に沿って、受光装置5nも垂直な測定面に90度移動して設置し、測定した場合の2通りの結果を示しており、実線dxは図4に示す面に沿って測定された(左)光分布データであり、点線dyはそれと直角な面に沿って測定された光分布データを示している。発光装置3が対称に製造されていれば両者は一致するが、実際には僅かに存在する構造の不均一性によって、光分布データDnに若干の特性上のずれを生じていることが分かる。この特性上のずれは測定精度から勘案し小さければ無視される。   That is, FIG. 8 shows the case where the (left) light distribution data Dn of the light emitting device 3 is measured along one measurement surface, and the light receiving device along a measurement surface perpendicular to the measurement surface, that is, perpendicular to the paper surface of FIG. 5n also shows two results when measured by moving 90 degrees on a vertical measurement surface, and the solid line dx is light distribution data measured along the surface shown in FIG. 4 (left). The dotted line dy indicates the light distribution data measured along a plane perpendicular to the dotted line dy. If the light emitting device 3 is manufactured symmetrically, the two coincide with each other, but it can be seen that there is a slight characteristic deviation in the light distribution data Dn due to the slightly non-uniformity of the structure that actually exists. This deviation in characteristics is ignored if it is small considering the measurement accuracy.

次に図9の実線d2xは、図4に示す発光装置3の光軸Lに向かって右側の光の強度分布データDn(以下、“(右)光分布データDn”と呼称する)を示しており、図4に示す2個の受光装置5nのうちの右側の受光装置5nから出力される受光信号出力Snを、図5に示す様に他方の光分布データ算出部6nに入力して、他方の光分布データ算出部6nによって算出されたものである。   Next, a solid line d2x in FIG. 9 shows intensity distribution data Dn of light on the right side toward the optical axis L of the light emitting device 3 shown in FIG. 4 (hereinafter referred to as “(right) light distribution data Dn”). The light receiving signal output Sn output from the right light receiving device 5n of the two light receiving devices 5n shown in FIG. 4 is input to the other light distribution data calculating unit 6n as shown in FIG. Calculated by the light distribution data calculation unit 6n.

図9の様に(右)光分布データDnは、発光装置3の光軸Lに向かって右側の光線が支配的な状態での光の強度分布を示すものであるので、図9の実線d2xによって示す様に、方位角度が−90度から0度までの光の相対強度が弱く、方位角度が0度から+90度までの光の相対強度が強い結果になっている。   As shown in FIG. 9 (right), the light distribution data Dn indicates the light intensity distribution in a state where the right-side light beam dominates toward the optical axis L of the light emitting device 3, and therefore, the solid line d2x in FIG. As shown by, the relative intensity of light with an azimuth angle of −90 degrees to 0 degrees is weak, and the relative intensity of light with an azimuth angle of 0 degrees to +90 degrees is strong.

図9の点線d2yは図7の場合と同様なので説明は省略する。   The dotted line d2y in FIG. 9 is the same as in FIG.

さらに図10は、図5に示す発光特性算出部70が算出する発光特性データD3の一例である。すなわち発光特性算出部70は(左)光分布データDnおよび(右)光分布データDnから、これらの2個の信号を合成して発光装置3の全方位の光の強度分布である発光特性データD3を算出する。   Further, FIG. 10 is an example of the light emission characteristic data D3 calculated by the light emission characteristic calculation unit 70 shown in FIG. That is, the light emission characteristic calculation unit 70 combines these two signals from the (left) light distribution data Dn and the (right) light distribution data Dn to emit light characteristic data that is the intensity distribution of light in all directions of the light emitting device 3. D3 is calculated.

図10の点線d3yは、発光特性データD3の測定面と直交する測定面でのデータであり、発光装置3に僅かに存在する構造の非対称性によって発光特性の若干のずれを生じているが、測定精度から勘案し小さければ無視される。   A dotted line d3y in FIG. 10 is data on a measurement surface orthogonal to the measurement surface of the light emission characteristic data D3, and the light emission characteristic is slightly shifted due to the asymmetry of the structure slightly present in the light emitting device 3. If the measurement accuracy is small, it will be ignored.

次の図11には最終目的である発光装置3の光学指向特性データD4が示されている。
すなわち図11において点線は、図5に示す発光特性算出部70で算出され発光特性データ記憶部71に記憶された補正前の発光特性データD3であり、実線は補正データ記憶部71bに記憶された補正データD3bによって補正されたのちの光学指向特性データD4である。
Next, FIG. 11 shows optical directivity characteristic data D4 of the light emitting device 3 which is the final object.
That is, in FIG. 11, the dotted line is the light emission characteristic data D3 before correction calculated by the light emission characteristic calculation unit 70 shown in FIG. 5 and stored in the light emission characteristic data storage unit 71, and the solid line is stored in the correction data storage unit 71b. This is optical directivity characteristic data D4 after being corrected by the correction data D3b.

なお補正データD3bには、発光装置3の温度依存性やスクリーン2の反射面2aの反射特性のばらつき、さらには受光装置5nの受光面5naへの光の入射角による感度のばらつきなど測定誤差に繋がる様々な変動要因の他に、測定面と直交する他の測定面での光の相対強度(図7〜図10の点線に示すd1y、d2y、d3y)を評価し、これが小さければ無視し大きければ平均を取る、などの補正項目も含まれている。   The correction data D3b includes measurement errors such as temperature dependency of the light emitting device 3, variation in reflection characteristics of the reflection surface 2a of the screen 2, and variation in sensitivity due to the incident angle of light on the light reception surface 5na of the light reception device 5n. In addition to various connected fluctuation factors, the relative intensity of light (d1y, d2y, d3y shown by the dotted lines in FIGS. 7 to 10) on other measurement surfaces orthogonal to the measurement surface is evaluated. Correction items such as taking an average are also included.

[第1の実施形態の測定フロー説明:図6、図1〜図5]
図6は、以上述べた本発明の光学指向特性測定装置のフローチャートを示したものである。以下、図5に示すデータ処理手段10の構成要素の動作と対比させ、測定のフローを詳述する。
[Description of Measurement Flow of First Embodiment: FIGS. 6 and 1 to 5]
FIG. 6 shows a flowchart of the optical directivity characteristic measuring apparatus of the present invention described above. Hereinafter, the flow of measurement will be described in detail in comparison with the operation of the components of the data processing means 10 shown in FIG.

[発光装置発光ステップ]
図1に示す測定ステージ6の載置台6aに発光装置3をセットし、データ処理手段10から駆動電源Vを供給して発光装置3を発光させる。(ST10)
[Light emitting device light emission step]
The light emitting device 3 is set on the mounting table 6a of the measurement stage 6 shown in FIG. 1, and the driving power source V is supplied from the data processing means 10 to cause the light emitting device 3 to emit light. (ST10)

[発光特性データ算出ステップ]
図5に示す2個の受光装置5nの受光信号出力Snに基づき、2個の光分布データ算出部6nはそれぞれ(左)光分布データDnおよび(右)光分布データDnを算出し、発光特性算出部70は(左)光分布データDnおよび(右)光分布データDnに基づき発光特性データD3を算出する。(ST20)
[Light emission characteristic data calculation step]
Based on the light reception signal outputs Sn of the two light receiving devices 5n shown in FIG. 5, the two light distribution data calculating sections 6n calculate (left) light distribution data Dn and (right) light distribution data Dn, respectively, and emit light characteristics. The calculation unit 70 calculates light emission characteristic data D3 based on (left) light distribution data Dn and (right) light distribution data Dn. (ST20)

[発光特性データ記憶ステップ]
図5に示す発光特性データ記憶部71は、発光特性データD3をのちの演算のために一時的に記憶しておく。(ST30)
[Light emission characteristic data storage step]
The light emission characteristic data storage unit 71 shown in FIG. 5 temporarily stores the light emission characteristic data D3 for later calculation. (ST30)

[光学指向特性算出ステップ]
図5に示す光学指向特性算出部72は、発光特性データ記憶部71に記憶された発光特性データD3を補正データ記憶部71bに記憶された補正データD3bによって補正し
光学指向特性データD4を算出する。(ST40)
[Optical directivity calculation step]
The optical directivity characteristic calculation unit 72 shown in FIG. 5 corrects the light emission characteristic data D3 stored in the light emission characteristic data storage unit 71 with the correction data D3b stored in the correction data storage unit 71b to calculate the optical directivity characteristic data D4. . (ST40)

[第1の実施形態の効果]
以上の様に光学指向特性データD4の測定は極めて迅速に、かつ何ら動く部分もなく行われるので、半導体など温度上昇による特性変化が大きい素子の測定においては著しく優位であるといえる。さらに装置全体は可動部がないため簡素な構造とすることも可能で、コストなど経済的側面でも極めて優れているといえる。
[Effect of the first embodiment]
As described above, since the measurement of the optical directivity characteristic data D4 is performed very quickly and without any moving part, it can be said that it is remarkably superior in the measurement of an element such as a semiconductor that has a large characteristic change due to a temperature rise. Furthermore, since the entire apparatus has no moving parts, it can be a simple structure, and it can be said that it is extremely excellent in terms of economics such as cost.

[第2の実施形態の全図面説明:図12〜図16]
次に、図12〜図16を用いて、本発明の光学指向特性測定装置の第2の実施形態について説明する。第2の実施形態は、第1の実施形態に対して測定のステップが異なるものである。なお以下の説明において、同一要素には同一番号を付して重複する説明は省略する。
[Description of All Drawings of Second Embodiment: FIGS. 12 to 16]
Next, a second embodiment of the optical directivity characteristic measuring apparatus of the present invention will be described with reference to FIGS. The second embodiment is different from the first embodiment in measurement steps. In the following description, the same elements are denoted by the same reference numerals and redundant description is omitted.

第2の実施形態は、測定対象である発光装置3の測定に先だって指向性が均一な基準光源11の発光特性を測定し、次に測定対象である発光装置3の発光特性を測定し、次に発光装置3の発光特性を基準光源11の発光特性で補正する、というステップを有している。   In the second embodiment, the light emission characteristics of the reference light source 11 with uniform directivity are measured prior to the measurement of the light emitting device 3 that is the measurement target, and then the light emission characteristics of the light emission device 3 that is the measurement target are measured. And a step of correcting the light emission characteristic of the light emitting device 3 with the light emission characteristic of the reference light source 11.

[第2の実施形態の構成説明:図12、図13]
まず図12と図13を用いて本発明の光学指向特性測定装置200の構成を説明する。なお第1の実施形態と同一の要素は同一の番号を付し、重複する説明は省略する。
[Description of Configuration of Second Embodiment: FIGS. 12 and 13]
First, the configuration of the optical directivity measuring apparatus 200 according to the present invention will be described with reference to FIGS. In addition, the same element as 1st Embodiment attaches | subjects the same number, and the overlapping description is abbreviate | omitted.

図12は本発明の光学指向特性測定装置200の断面図である。
図12において、基準光源11は指向特性が均一な基準光源であり、測定ステージ6の載置台6aに、発光装置3をセットする位置と同一の位置にセットする。
なお図12には、後続する測定ステップにおいて基準光源11に変えて発光装置3を測定ステージ6の載置台6にセットする様子が模式的に示されている。
FIG. 12 is a cross-sectional view of the optical directivity measuring apparatus 200 of the present invention.
In FIG. 12, the reference light source 11 is a reference light source having uniform directivity, and is set on the mounting table 6 a of the measurement stage 6 at the same position as the position where the light emitting device 3 is set.
FIG. 12 schematically shows how the light emitting device 3 is set on the mounting table 6 of the measurement stage 6 instead of the reference light source 11 in the subsequent measurement step.

図13は本発明の光学指向特性測定装置200のデータ処理手段100のブロック図である。
図13において基準光源データ記憶部71aは、受光装置5nと光分布データ算出部6nと発光特性算出部70とによって算出された基準光源の発光特性を、基準光源データD3kとして記憶する。
なお図13には、後続する測定ステップにおいて基準光源11に変えて発光装置3をデータ処理手段10の電源制御部74に接続する様子が模式的に示されている。
FIG. 13 is a block diagram of the data processing means 100 of the optical directivity measuring apparatus 200 of the present invention.
In FIG. 13, the reference light source data storage unit 71a stores the light emission characteristics of the reference light source calculated by the light receiving device 5n, the light distribution data calculation unit 6n, and the light emission characteristic calculation unit 70 as reference light source data D3k.
FIG. 13 schematically shows a state in which the light emitting device 3 is connected to the power control unit 74 of the data processing means 10 instead of the reference light source 11 in the subsequent measurement step.

光学指向特性算出部72は、発光装置3の発光特性データD3を基準光源データ記憶部74に記憶された基準光源データD3kで補正し、光学指向特性データD4を算出する。   The optical directivity characteristic calculation unit 72 corrects the light emission characteristic data D3 of the light emitting device 3 with the reference light source data D3k stored in the reference light source data storage unit 74, and calculates the optical directivity characteristic data D4.

[第2の実施形態の動作説明:図12〜図16]
次に図14を中心に、図12〜図16も併用して本発明の光学指向特性測定装置の動作を説明する。
図14は本発明の光学指向特性測定装置のフローチャートである。図13に示すデータ処理手段10の構成要素の動作と対比させ、測定のフローを詳述する。
[Description of Operation of Second Embodiment: FIGS. 12 to 16]
Next, the operation of the optical directivity measuring apparatus of the present invention will be described with reference to FIG.
FIG. 14 is a flowchart of the optical directivity measuring apparatus of the present invention. The flow of measurement will be described in detail in comparison with the operation of the components of the data processing means 10 shown in FIG.

[基準光源発光ステップ]
図12に示す様に測定ステージ6の載置台6aに基準光源11をセットしデータ処理手段10から駆動電源Vを供給して基準光源11を発光させる。(ST1)
[Reference light source emission step]
As shown in FIG. 12, the reference light source 11 is set on the mounting table 6 a of the measurement stage 6, and the drive power supply V is supplied from the data processing means 10 to cause the reference light source 11 to emit light. (ST1)

[基準光源データ算出ステップ]
図13に示す様に、光分布データ算出部6nは受光装置5nの受光信号出力Snに基づき光分布データDnを算出し、発光特性算出部70は光分布データDnに基づき基準光源11の発光特性を基準光源データD3kとして算出する。(ST2)
[Reference light source data calculation step]
As shown in FIG. 13, the light distribution data calculation unit 6n calculates light distribution data Dn based on the light reception signal output Sn of the light receiving device 5n, and the light emission characteristic calculation unit 70 calculates the light emission characteristics of the reference light source 11 based on the light distribution data Dn. Is calculated as reference light source data D3k. (ST2)

[基準光源データ記憶ステップ]
図13に示す様に基準光源データ記憶部71aは発光特性算出部70が算出した基準光源11の発光特性を基準光源データD3kとして記憶する。(ST3)
[Reference light source data storage step]
As shown in FIG. 13, the reference light source data storage unit 71a stores the light emission characteristics of the reference light source 11 calculated by the light emission characteristic calculation unit 70 as reference light source data D3k. (ST3)

[発光装置発光ステップ]
図12に示す様に測定ステージ6の載置台6aに基準光源11に換えて発光装置3をセットし、データ処理手段10から駆動電源Vを供給して発光装置3を発光させる。(ST10)
[Light emitting device light emission step]
As shown in FIG. 12, the light emitting device 3 is set on the mounting table 6 a of the measurement stage 6 instead of the reference light source 11, and the driving power supply V is supplied from the data processing means 10 to cause the light emitting device 3 to emit light. (ST10)

[発光特性データ算出ステップ]
図13に示す様に、光分布データ算出部6nは受光装置5nの受光信号出力Snに基づき光分布データDnを算出し、発光特性算出部70は光分布データDnに基づき発光装置3の発光特性を発光特性データD3として算出する。(ST20)
[Light emission characteristic data calculation step]
As shown in FIG. 13, the light distribution data calculation unit 6n calculates light distribution data Dn based on the light reception signal output Sn of the light receiving device 5n, and the light emission characteristic calculation unit 70 emits light emission characteristics of the light emitting device 3 based on the light distribution data Dn. Is calculated as light emission characteristic data D3. (ST20)

[発光特性データ記憶ステップ]
図13に示す様に発光特性データ記憶部71は、発光特性算出部70が算出した発光特性データD3を記憶する。(ST30)
[Light emission characteristic data storage step]
As shown in FIG. 13, the light emission characteristic data storage unit 71 stores the light emission characteristic data D <b> 3 calculated by the light emission characteristic calculation unit 70. (ST30)

[光学指向特性算出ステップ]
図13に示す様に、光学指向特性算出部72は、発光特性データ記憶部71に記憶された発光特性データD3を基準光源データ記憶部71aに記憶された基準光源データD3kによって補正し、光学指向特性データD4として算出する。(ST40)
[Optical directivity calculation step]
As shown in FIG. 13, the optical directivity characteristic calculation unit 72 corrects the light emission characteristic data D3 stored in the light emission characteristic data storage unit 71 with the reference light source data D3k stored in the reference light source data storage unit 71a, and the optical directivity. Calculated as characteristic data D4. (ST40)

[発明の効果詳細説明]
以上述べた様に、本発明の第2の実施形態と第1の実施形態との大きな差は、測定対象である発光装置3の発光特性データD3を最終的な光学指向特性データD4に補正するための補正内容にある、といえる。
[Detailed description of the effects of the invention]
As described above, the great difference between the second embodiment and the first embodiment of the present invention is that the light emission characteristic data D3 of the light emitting device 3 as the measurement target is corrected to the final optical directivity characteristic data D4. It can be said that it is in the correction contents for.

すなわち第1の実施形態では、補正内容は過去の実験データや知見に基づく補正データD3bに基づくが、第2の実施形態では、補正内容は基準光源を実際に測定して得た基準光源データD3kに基づくものであるから周囲条件の変動や装置の機械的形状変化などの誤差要因を、理論上基準光源11の安定度のレベルまで低減させることが可能で、光学指向特性測定装置200の全体の精度をさらに高めることが可能である。   That is, in the first embodiment, the correction content is based on correction data D3b based on past experimental data and knowledge, but in the second embodiment, the correction content is reference light source data D3k obtained by actually measuring the reference light source. Therefore, it is possible to theoretically reduce error factors such as changes in ambient conditions and changes in the mechanical shape of the apparatus to the level of stability of the reference light source 11, and the entire optical directivity characteristic measuring apparatus 200 can be reduced. The accuracy can be further increased.

[第3の実施形態の全図面説明:図17]
次に、図17を用いて、本発明の光学指向特性測定装置の第3の実施形態について説明する。なお、第3の実施形態は、第2の実施形態に対して受光装置5nの数と配置が異なるものである。なお以下の説明において、同一要素には同一番号を付して重複する説明は省略する。
[Description of All Drawings of Third Embodiment: FIG. 17]
Next, a third embodiment of the optical directivity measuring apparatus of the present invention will be described with reference to FIG. The third embodiment differs from the second embodiment in the number and arrangement of the light receiving devices 5n. In the following description, the same elements are denoted by the same reference numerals and redundant description is omitted.

図17を用いて本発明の光学指向特性測定装置300(図示せず)の構成を説明する。
図17は本発明の光学指向特性測定装置300の模式的な平面図であり、発光装置3の周囲には3個の受光装置5n(図17には“51”、“52”、“53”と表示されている)が、発光装置3の周囲に120度の等しい角をなす様に均等に配置されている。
なお3個の受光装置5nの各受光面5naは発光装置3の発光面3aに対し所定角度θ傾いている。
The configuration of the optical directivity measuring apparatus 300 (not shown) of the present invention will be described with reference to FIG.
FIG. 17 is a schematic plan view of the optical directivity measuring apparatus 300 according to the present invention. In the periphery of the light emitting device 3, there are three light receiving devices 5n (“51”, “52”, “53” in FIG. 17). Are equally arranged around the light emitting device 3 so as to form an equal angle of 120 degrees.
The light receiving surfaces 5na of the three light receiving devices 5n are inclined with respect to the light emitting surface 3a of the light emitting device 3 by a predetermined angle θ.

[発明の効果詳細説明]
本発明の光学指向特性測定装置300の効果は、受光装置5nを発光装置3の周囲に3個設けたことによって光分布データDnの測定が更に綿密になり、最終的な光学来指向特性データD4の高精度化を図ることが出来る、ということである。
[Detailed description of the effects of the invention]
The effect of the optical directivity characteristic measuring apparatus 300 according to the present invention is that the three light receiving devices 5n are provided around the light emitting device 3, whereby the measurement of the light distribution data Dn is further elaborated, and the final optical directivity characteristic data D4 is obtained. That is, it is possible to achieve higher accuracy.

[第4の実施形態の全図面説明:図18]
次に、図18を用いて、本発明の光学指向特性測定装置の第4の実施形態について説明する。なお、第4の実施形態は、第2の実施形態に対して受光装置5nの数と配置が が異なるものである。なお以下の説明において、同一要素には同一番号を付して重複する説明は省略する。
[Description of All Drawings of Fourth Embodiment: FIG. 18]
Next, a fourth embodiment of the optical directivity measuring apparatus of the present invention will be described with reference to FIG. The fourth embodiment is different from the second embodiment in the number and arrangement of the light receiving devices 5n. In the following description, the same elements are denoted by the same reference numerals and redundant description is omitted.

図18を用いて本発明の光学指向特性測定装置400(図示せず)の構成を説明する。
図18は本発明の光学指向特性測定装置400の模式的な平面図であり、発光装置3の周囲には4個の受光装置5n(図18には“51”、“52”、“53”、“54”と表示されている)が、発光装置3の周囲に90度の等しい角をなす様に均等に配置されている。
なお4個の受光装置5nの各受光面5naは発光装置3の発光面3aに対し所定角度θ傾いている。
The configuration of the optical directivity measuring apparatus 400 (not shown) of the present invention will be described with reference to FIG.
FIG. 18 is a schematic plan view of the optical directivity characteristic measuring apparatus 400 of the present invention. Around the light emitting device 3, there are four light receiving devices 5n (“51”, “52”, “53” in FIG. 18). , “54”) are equally arranged around the light emitting device 3 so as to form an equal angle of 90 degrees.
The light receiving surfaces 5na of the four light receiving devices 5n are inclined with respect to the light emitting surface 3a of the light emitting device 3 by a predetermined angle θ.

[発明の効果詳細説明]
本発明の光学指向特性測定装置の効果は、受光装置5nを発光装置3の周囲に4個設けたことによって光分布データの測定が更に綿密になり、最終的な光学来指向特性データの高精度化を図ることが出来る。なお、受光装置の数および配置については、更に多くの受光装置を使用することも勿論可能である。
[Detailed description of the effects of the invention]
The effect of the optical directivity characteristic measuring apparatus according to the present invention is that the four light receiving devices 5n are provided around the light emitting device 3, so that the measurement of the light distribution data becomes more precise and the final optical directivity characteristic data is highly accurate. Can be achieved. Of course, a larger number of light receiving devices can be used for the number and arrangement of the light receiving devices.

[第5の実施形態の全図面説明:図19、図20]
次に、図19および図20を用いて、本発明の光学指向特性測定装置の第5の実施形態について説明する。なお、第5の実施形態は、第2の実施形態に対して受光装置の姿勢および構成が異なるものである。なお以下の説明において、同一要素には同一番号を付して重複する説明は省略する。
[Description of All Drawings of Fifth Embodiment: FIGS. 19 and 20]
Next, a fifth embodiment of the optical directivity characteristic measuring apparatus of the present invention will be described with reference to FIGS. 19 and 20. The fifth embodiment is different from the second embodiment in the posture and configuration of the light receiving device. In the following description, the same elements are denoted by the same reference numerals and redundant description is omitted.

まず図19を用いて本発明の光学指向特性測定装置500の構成を説明する。図19は本発明の光学指向特性測定装置500の断面図である。
図19において、受光装置5nは発光装置3の近傍でかつ発光装置3とほぼ同一面上に、受光装置5nの光軸K1およびK2が発光装置3の光軸Lと平行になる様に、測定ステージ6に設置されている。また2個の受光装置5nの各受光面5naには、それぞれ180度広角の魚眼レンズ4nが備えられている。
First, the configuration of the optical directivity characteristic measuring apparatus 500 of the present invention will be described with reference to FIG. FIG. 19 is a cross-sectional view of the optical directivity measuring apparatus 500 of the present invention.
In FIG. 19, the light receiving device 5 n is measured so that the optical axes K 1 and K 2 of the light receiving device 5 n are parallel to the optical axis L of the light emitting device 3 in the vicinity of the light emitting device 3 and substantially on the same plane as the light emitting device 3. It is installed on the stage 6. Each light receiving surface 5na of the two light receiving devices 5n is provided with a fish-eye lens 4n having a wide angle of 180 degrees.

次に図20を用いて本発明の光学指向特性測定装置500の動作を説明する。
図20は本発明の光学指向特性測定装置500の光線図である。図20において、発光装置3からの各方位の光はスクリーン20のスクリーン反射面20aで反射し、魚眼レンズ4nによって収束されて受光装置5nに入る。魚眼レンズ4nは180度広角の魚眼レンズであるから、広範囲の方位の光を捉えることが可能である。
Next, the operation of the optical directivity measuring apparatus 500 of the present invention will be described with reference to FIG.
FIG. 20 is a ray diagram of the optical directivity measuring apparatus 500 of the present invention. In FIG. 20, light in each direction from the light emitting device 3 is reflected by the screen reflecting surface 20a of the screen 20, converged by the fisheye lens 4n, and enters the light receiving device 5n. Since the fish-eye lens 4n is a 180-degree wide-angle fish-eye lens, it can capture light in a wide range of directions.

[発明の効果詳細説明]
本発明の光学指向特性測定装置500の効果は、受光装置5nは発光装置3の近傍でかつ発光装置3とほぼ同一面上に、設置角度に関する制約もなく配置可能であり、魚眼レンズ4nによってより広範囲の方位の光を受光する事が可能であるため、発光装置3の光学指向特性データD4の高精度測定性を維持しつつスクリーン20の小型化さらには光学指向特性測定装置500の小型化が可能となる。
[Detailed description of the effects of the invention]
The effect of the optical directivity characteristic measuring apparatus 500 of the present invention is that the light receiving device 5n can be disposed in the vicinity of the light emitting device 3 and substantially on the same plane as the light emitting device 3 without restriction on the installation angle. Can be received, so that it is possible to reduce the size of the screen 20 and further reduce the size of the optical directivity measuring device 500 while maintaining high-precision measurement of the optical directivity data D4 of the light emitting device 3. It becomes.

[全体説明まとめ]
以上述べたように、本発明の光学指向特性測定装置によれば、発光装置3の光学指向特性データD4は短時間で測定されるので温度上昇による精度の低下もなく、さらに測定装置には何ら可動部分がないためメンテナンスも不要なローコストかつ高精度の光学指向特性測定装置を提供することが可能となる。なお、以上説明した実施形態は、これに限定されるものではなく、本発明の要旨を満たすものであれば任意に変更することができることはいうまでもない。
[Overall summary]
As described above, according to the optical directivity characteristic measuring apparatus of the present invention, since the optical directivity characteristic data D4 of the light emitting device 3 is measured in a short time, there is no decrease in accuracy due to a temperature rise. Since there are no movable parts, it is possible to provide a low-cost and high-precision optical directivity characteristic measuring apparatus that does not require maintenance. It should be noted that the embodiment described above is not limited to this, and can be arbitrarily changed as long as it satisfies the gist of the present invention.

本発明は、従来の方式及び新しい原理に基づく光源など、多くの種類の発光装置について光学指向特性の測定が可能である。また、光学指向特性だけでなく、一般的な光度は勿論、照度や全光束あるいは彩度など多彩な測定にも応用可能である。
また波長が短い電波の挙動は光のそれと同一であることから、極超短波のアンテナなどの特性解析や特性測定においても有用であると考えられる。
The present invention is capable of measuring optical directivity characteristics for many types of light-emitting devices, such as light sources based on conventional methods and new principles. In addition to the optical directional characteristics, it can be applied to various measurements such as illuminance, total luminous flux, and saturation as well as general luminous intensity.
In addition, since the behavior of radio waves with short wavelengths is the same as that of light, it is considered useful for characteristic analysis and measurement of ultra-high frequency antennas.

1、200、300,400、500 光学指向特性測定装置
2 スクリーン
20 スクリーン
2a スクリーン反射面
20a スクリーン反射面
20b スクリーン支持部
3 発光装置
3a 発光装置発光面
4n 魚眼レンズ
5n 受光装置
51〜54 受光装置
5na 受光面
6 測定ステージ
6a 載置台
8 電源端子
8a スプリング電極
9 支持台
10、100 データ処理手段
10a 電源供給ケーブル
10b 信号ケーブル
11 基準光源
13 光ファイバ
14 分光器
15 XYスライド部
15a XYスライド方向
16 傾斜用モータ
16a 傾斜モータ回転方向
17 可動台
18 回転用モータ
18a 回転モータ回転方向
19 受光器
L 発光装置3の光軸
K1、K2 受光装置5nの光軸
6n 光分布データ算出部
70 発光特性算出部
71 発光特性データ記憶部
71a 基準光源データ記憶部
71b 補正データ記憶部
72 光学指向特性算出部
73 光学指向特性表示部
74 電源制御部
Sn 受光信号出力
Dn 光分布データ
d1x (左)光分布データ
d1y (左)光分布データと直交する測定面の光分布データ
d2x (右)光分布データ
d2y (右)光分布データと直交する測定面の光分布データ
D3 発光特性データ
d3x 発光特性データ
d3y 発光特性データd3xと直交する測定面の全体発光特性データ
D3k 基準光源データ
D3b 補正データ
D4 光学指向特性データ
dx ある面に沿った光学指向特性
dy ある面と直角な面に沿った光学指向特性
V 発光装置駆動信号
P点 発光装置3の中心位置
O点 スクリーン2の中心
DESCRIPTION OF SYMBOLS 1,200,300,400,500 Optical directivity measuring device 2 Screen 20 Screen 2a Screen reflective surface 20a Screen reflective surface 20b Screen support part 3 Light-emitting device 3a Light-emitting device light-emitting surface 4n Fisheye lens 5n Light-receiving device 51-54 Light-receiving device 5na Light-receiving Surface 6 Measurement stage 6a Mounting table 8 Power supply terminal 8a Spring electrode 9 Supporting table 10, 100 Data processing means 10a Power supply cable 10b Signal cable 11 Reference light source 13 Optical fiber 14 Spectrometer 15 XY slide part 15a XY slide direction 16 Motor for tilting 16a Tilt motor rotation direction 17 Movable base 18 Rotation motor 18a Rotation motor rotation direction 19 Light receiver L Optical axis of light emitting device 3 K1, K2 Optical axis of light receiving device 5n 6n Light distribution data calculation unit 70 Light emission characteristic calculation unit 71 Light emission characteristic data storage unit 71a Reference light source data storage unit 71b Correction data storage unit 72 Optical directivity characteristic calculation unit 73 Optical directivity characteristic display unit 74 Power supply control unit Sn Light reception signal output Dn Light distribution data d1x (left) Light distribution data d1y (left) ) Light distribution data on measurement surface orthogonal to light distribution data d2x (Right) Light distribution data d2y (Right) Light distribution data on measurement surface orthogonal to light distribution data D3 Emission characteristic data d3x Emission characteristic data d3y Emission characteristic data d3x Whole emission characteristic data of orthogonal measurement surface D3k Reference light source data D3b Correction data D4 Optical directivity characteristic data dx Optical directivity characteristic along a certain plane dy Optical directivity characteristic along a plane perpendicular to the certain plane V Light emitting device drive signal P point Center position of light emitting device 3 Point O Center of screen 2

Claims (5)

測定物である発光装置3と、前記発光装置3からの光を反射する反射手段2と、前記反射手段2から反射される前記発光装置3からの光を検出する受光装置5nと、前記受光装置5nの受光信号出力Snに基づき前記発光装置3の発光特性を算出するデータ処理手段10と、を有する発光特性測定装置1において、前記反射手段2は曲面または凹部状の反射面2aを有するスクリーン2であり、前記発光装置3は前記スクリーン2の反射面2a側の略中心位置に配置されるとともに、前記発光装置3の近傍に複数の前記受光装置5nを配置し、前記データ処理手段10は、前記複数の受光装置5nの受光信号出力Snに基づき前記発光装置3の発光特性である発光特性データD3を算出する発光特性算出部70を有することを特徴とする光学指向特性測定装置。
A light-emitting device 3 which is an object to be measured, a reflecting means 2 for reflecting light from the light-emitting device 3, a light-receiving device 5n for detecting light from the light-emitting device 3 reflected from the reflecting means 2, and the light-receiving device In the light emission characteristic measuring apparatus 1 having the data processing means 10 for calculating the light emission characteristic of the light emitting device 3 based on the light reception signal output Sn of the apparatus 5n, the reflecting means 2 is a screen having a curved or concave reflecting surface 2a. 2, the light emitting device 3 is disposed at a substantially central position on the reflective surface 2 a side of the screen 2, and a plurality of the light receiving devices 5 n are disposed in the vicinity of the light emitting device 3, and the data processing means 10 And a light emission characteristic calculating unit 70 for calculating light emission characteristic data D3 which is a light emission characteristic of the light emitting device 3 based on light reception signal outputs Sn of the plurality of light receiving devices 5n. Directivity characteristic measuring apparatus.
前記複数の受光装置5nは前記発光装置3の周囲に等間隔で配置されていることを特徴とする請求項1に記載の光学指向特性測定装置。   The optical directivity characteristic measuring apparatus according to claim 1, wherein the plurality of light receiving devices (5n) are arranged at equal intervals around the light emitting device (3). 前記複数の受光装置5nの各受光面5naは前記発光装置3の発光面3aに対し所定角度θ傾けられていることを特徴とする請求項2に記載の光学指向特性測定装置。   3. The optical directivity characteristic measuring apparatus according to claim 2, wherein each of the light receiving surfaces 5 na of the plurality of light receiving devices 5 n is inclined by a predetermined angle θ with respect to the light emitting surface 3 a of the light emitting device 3. 前記複数の受光装置5nの各受光面5naに魚眼レンズ4nを備えたことを特徴とする請求項1または2に記載の光学指向特性測定装置。   The optical directivity characteristic measuring apparatus according to claim 1 or 2, wherein a fish-eye lens 4n is provided on each light receiving surface 5na of the plurality of light receiving devices 5n. 前記受光装置5nはイメージセンサ装置であることを特徴とする請求項1から4の何れか1つに記載の光学指向特性測定装置。

5. The optical directivity characteristic measuring apparatus according to claim 1, wherein the light receiving device 5n is an image sensor device.

JP2009147526A 2009-06-22 2009-06-22 Optical directivity measurement device Expired - Fee Related JP5350906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009147526A JP5350906B2 (en) 2009-06-22 2009-06-22 Optical directivity measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147526A JP5350906B2 (en) 2009-06-22 2009-06-22 Optical directivity measurement device

Publications (2)

Publication Number Publication Date
JP2011002412A JP2011002412A (en) 2011-01-06
JP5350906B2 true JP5350906B2 (en) 2013-11-27

Family

ID=43560467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147526A Expired - Fee Related JP5350906B2 (en) 2009-06-22 2009-06-22 Optical directivity measurement device

Country Status (1)

Country Link
JP (1) JP5350906B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120652A1 (en) * 2011-03-08 2012-09-13 パイオニア株式会社 Light-emission status measurement method for semiconductor light-emitting element
JP5665966B2 (en) * 2011-03-08 2015-02-04 パイオニア株式会社 Method for measuring light emission state of semiconductor light emitting device
WO2013113315A2 (en) * 2012-02-03 2013-08-08 Vip 1 Aps Portable light measurement system
JP6277265B2 (en) * 2014-04-07 2018-02-07 パイオニア株式会社 Light measuring device for semiconductor light emitting device
CN108680343B (en) * 2018-05-22 2020-11-20 歌尔股份有限公司 Flexible screen detection method and detection device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117475B2 (en) * 1990-07-25 1995-12-18 松下電器産業株式会社 Lighting characteristic evaluation device for light source unit
JPH07333104A (en) * 1994-06-10 1995-12-22 Jeol Ltd Visual angle measuring apparatus for liquid crystal display element
JP3375752B2 (en) * 1994-09-07 2003-02-10 星和電機株式会社 LED chip optical characteristics measurement sensor
JP2005172665A (en) * 2003-12-12 2005-06-30 Oputeru:Kk Light radiation pattern measuring apparatus
JP4641873B2 (en) * 2005-06-22 2011-03-02 小糸工業株式会社 Luminescent state measuring device
JP2007240254A (en) * 2006-03-07 2007-09-20 Mitsubishi Heavy Ind Ltd Laser device, intensity profile measuring method of laser irradiation device, and laser irradiation device
JP4932622B2 (en) * 2007-07-09 2012-05-16 星和電機株式会社 Optical property measuring device

Also Published As

Publication number Publication date
JP2011002412A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
US20210026000A1 (en) Methods and Systems for LIDAR Optics Alignment
JP5350906B2 (en) Optical directivity measurement device
US8138488B2 (en) System and method for performing optical navigation using scattered light
US8982341B2 (en) Light distribution characteristic measurement apparatus and light distribution characteristic measurement method
US8896823B2 (en) Light distribution characteristic measurement apparatus and light distribution characteristic measurement method
JP2006313116A (en) Distance tilt angle detection device, and projector with detection device
US9329025B2 (en) Measuring device
JP2007010346A (en) Imaging device
US20220277536A1 (en) Integrated electronic module for 3d sensing applications, and 3d scanning device including the integrated electronic module
KR20120012629A (en) Integrating sphere photometer and measuring method of the same
KR20110099380A (en) Integrating sphere photometer and measuring method of the same
JP4132308B2 (en) Shape measuring instrument
JP4897573B2 (en) Shape measuring device and shape measuring method
US11003072B2 (en) Mask substrate inspection system
KR20160010226A (en) Optics Apparatus for Inspecting Surface of Panel and Method for Inspecting Surface
KR20220137615A (en) Film thickness measuring apparatus and film thickness measuring method
US20240110879A1 (en) Substrate test apparatus and method
KR101865338B1 (en) Apparatus for measuring critical dimension of Pattern and method thereof
KR100214888B1 (en) Amnidirectional coaxial image viewing apparatus using conic mirror image
JP2014089257A (en) Lens tilt detection device, lens tilt detection method, and camera module assembly method using lens tilt detection device
US11774239B1 (en) Optical measurement device and calibration method thereof
WO2022097398A1 (en) Optical line sensor
KR20220162575A (en) Semiconductor Wafer Surface Inspector and Chemical Mechanical Polishing Equipment
TW201407259A (en) Image-capturing system and method of capturing images by using the same
JP2003057022A (en) Optical inspection apparatus and optical inspection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5350906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees