JP4897573B2 - Shape measuring device and shape measuring method - Google Patents

Shape measuring device and shape measuring method Download PDF

Info

Publication number
JP4897573B2
JP4897573B2 JP2007144185A JP2007144185A JP4897573B2 JP 4897573 B2 JP4897573 B2 JP 4897573B2 JP 2007144185 A JP2007144185 A JP 2007144185A JP 2007144185 A JP2007144185 A JP 2007144185A JP 4897573 B2 JP4897573 B2 JP 4897573B2
Authority
JP
Japan
Prior art keywords
light
measurement site
thickness
irradiation
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007144185A
Other languages
Japanese (ja)
Other versions
JP2008298546A (en
Inventor
勉 森本
将人 甘中
英二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007144185A priority Critical patent/JP4897573B2/en
Publication of JP2008298546A publication Critical patent/JP2008298546A/en
Application granted granted Critical
Publication of JP4897573B2 publication Critical patent/JP4897573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は,半導体ウェーハ,ハードディスク用のアルミサブトレート,ガラスサブストレートなどの薄片試料の端面の形状を測定する形状測定装置及びその方法に関するものである。   The present invention relates to a shape measuring apparatus and method for measuring the shape of an end face of a thin sample such as a semiconductor wafer, an aluminum substrate for a hard disk, or a glass substrate.

半導体ウェーハ(以下,ウェーハという)の製造時や,ウェーハを用いたデバイス製造時において,ウェーハの端部(縁部)が,他の部品やウェーハ保持部材と接触することによって傷ついたり,欠けたりする場合がある。さらに,その傷や欠けが原因で,ウェーハが割れることもある。このウェーハの端部における傷や欠けの生じやすさは,ウェーハの端面(いわゆるエッジプロファイル部)の形状と関係があると考えられている。このため,ウェーハに代表される薄片試料(板状の試料)のエッジプロファイルを正しく測定することは重要である。なお,ここでいう端面の形状は,ウェーハの厚み方向(一次元方向)のプロファイル,即ち,厚み方向断面の形状であり,以下,エッジプロファイルという。
一方,非特許文献1には,ウェーハの縁部を挟む一方の側から光を照射し,他方の側に配置されたカメラによってウェーハの投影映像を撮像し,これにより得られる像の形状(輪郭)によってウェーハのエッジプロファイルを測定する技術が示されている。
また,特許文献1には,試料の傾きを変化させつつ,試料の表面(鏡面)に向けて光を照射するとともに,その照射方向と同軸方向に反射してくる反射光のみの像をテレセントリックレンズを通じて取得し,得られた像から試料表面の角度分布,即ち,試料表面の形状を測定する表面検査装置が示されている。
特開平10−267636号公報 「ウェハのエッジ・ノッチ形状の測定装置」,電子材料,1997年8月号
When manufacturing a semiconductor wafer (hereinafter referred to as a wafer) or manufacturing a device using a wafer, the edge (edge) of the wafer may be damaged or chipped due to contact with other components or a wafer holding member. There is a case. In addition, the wafer may break due to the scratches and chips. It is considered that the ease of occurrence of scratches and chips at the edge of the wafer is related to the shape of the wafer end face (so-called edge profile portion). For this reason, it is important to correctly measure the edge profile of a thin sample (plate-like sample) represented by a wafer. The shape of the end face here is a profile in the thickness direction (one-dimensional direction) of the wafer, that is, the shape of the cross section in the thickness direction, and is hereinafter referred to as an edge profile.
On the other hand, in Non-Patent Document 1, light is irradiated from one side sandwiching the edge of the wafer, a projected image of the wafer is captured by a camera disposed on the other side, and the shape (contour) of the image obtained thereby. ) Shows a technique for measuring the edge profile of a wafer.
Patent Document 1 discloses a telecentric lens that irradiates light toward the surface (mirror surface) of the sample while changing the tilt of the sample and reflects only the reflected light that is reflected coaxially with the irradiation direction. A surface inspection apparatus for measuring the angular distribution of the sample surface, that is, the shape of the sample surface from the obtained image is shown.
JP-A-10-267636 "Wafer Edge / Notch Shape Measuring Device", Electronic Materials, August 1997

しかしながら,非特許文献1に示されるような投影方式の形状測定では,エッジプロファイルの測定部位が,投影方向(光照射方向)の前後の部分よりも窪んでいる形状(以下,窪み形状という)を有する場合には,エッジプロファイルを測定できないという問題点があった。例えば,ウェーハには,その結晶方向を示すためのノッチと呼ばれる半円形状の切り欠き部(前記窪み形状の一例)が形成されているが,非特許文献1に示される投影方式の形状測定では,そのノッチ部分のエッジプロファイルを測定できない。
また,特許文献1に示されるように,試料の傾きを変化させつつ,光の照射方向と同軸方向に反射する反射光を検出する測定は,試料表面のわずかな凹凸による微小な表面角度の分布の測定に適用されるものである。この特許文献1に示される測定技術を,エッジプロファイルの測定に適用する場合,表面角度を求めたい複数の測定ポイントに光を照射するごとに,試料の傾きを変化させる必要が生じる。このため,特許文献1に示される測定技術を,表面角度がほぼ180°変化する形状を測定するエッジプロファイルの測定に適用することは,試料の支持機構が複雑になる等の阻害要因があることから,事実上困難であるという問題点があった。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,半導体ウェーハなどの薄片試料のエッジプロファイル(端面の厚み方向断面の形状)の測定に適した形状測定装置及びその方法を提供することにある。
However, in the shape measurement of the projection method as shown in Non-Patent Document 1, a shape in which the measurement portion of the edge profile is recessed from the front and back portions in the projection direction (light irradiation direction) (hereinafter referred to as a recessed shape). If it has, there is a problem that the edge profile cannot be measured. For example, a semi-circular cutout called an notch (an example of the depression shape) for indicating the crystal direction of the wafer is formed on the wafer. In the projection type shape measurement disclosed in Non-Patent Document 1, , The edge profile of the notch cannot be measured.
Further, as shown in Patent Document 1, the measurement of detecting reflected light that is reflected in the coaxial direction with the light irradiation direction while changing the tilt of the sample is performed by a distribution of minute surface angles due to slight irregularities on the sample surface. It is applied to the measurement of When the measurement technique disclosed in Patent Document 1 is applied to the measurement of an edge profile, it is necessary to change the inclination of the sample every time light is irradiated to a plurality of measurement points whose surface angles are desired to be obtained. For this reason, applying the measurement technique disclosed in Patent Document 1 to the measurement of an edge profile that measures a shape whose surface angle changes by approximately 180 ° has a hindrance factor such as a complicated support mechanism for the sample. Therefore, there was a problem that it was practically difficult.
Accordingly, the present invention has been made in view of the above circumstances, and its object is to provide a shape measuring apparatus suitable for measuring an edge profile (shape of a cross section in the thickness direction of an end face) of a thin sample such as a semiconductor wafer, and the like. It is to provide such a method.

上記目的を達成するために本発明(後述する第2発明に相当)に係る形状測定装置は,例えば半導体ウェーハ等の薄片試料の端面の形状を測定する装置であり,以下の(1−1)〜(1−6)に示す各構成要素を備えるものである。
(1−1)一の平面内の複数の位置各々で光源を点灯させることにより,前記薄片試料の端面及びその近傍の厚み方向両側の面を含む測定部位に対して順次異なる照射角度で光を照射する第1の光照射手段。
(1−2)前記測定部位に対して各々異なる方向に配置され,前記第1の光照射手段の光照射による前記測定部位からの略正反射方向への反射光の一次元若しくは二次元の輝度分布を検出する複数の光検出手段。
(1−3)前記第1の光照射手段により順次異なる照射角度で光が照射されるごとに前記測定部位からの反射光の輝度分布を前記光検出手段を通じて取得する反射光輝度取得手段。
(1−4)複数の前記反射光輝度取得手段各々により取得された複数の前記反射光の輝度分布ごとに,その反射光の輝度分布及び前記第1の光照射手段により照射された光の照射角度に基づいて,前記測定部位の一部の領域の表面角度の分布を演算する表面角度分布演算手段。
(1−5)前記測定部位における前記厚み方向両側の面の部分について前記薄片試料の厚みを測定する厚み測定手段。
(1−6)前記表面角度分布演算手段による前記一部の領域の表面角度の分布の演算結果に基づく前記一部の領域の表面形状各々を,前記薄片試料の厚み方向におけるそれらの相対位置を前記厚み測定手段の測定結果に基づき調整してつなぎ合わせる処理を実行することにより,前記測定部位全体の表面形状を演算するつなぎ合わせ演算手段。
例えば,複数の前記光検出手段が,前記測定部位を基点として約90°をなす方向に配置された2つの光検出手段であることが考えられる。
In order to achieve the above object, a shape measuring apparatus according to the present invention (corresponding to a second invention to be described later) is an apparatus for measuring the shape of an end face of a thin sample such as a semiconductor wafer, for example. It comprises each component shown in (1-6).
(1-1) By turning on a light source at each of a plurality of positions in one plane, light is sequentially emitted at different irradiation angles with respect to a measurement site including the end surface of the thin sample and the surfaces on both sides in the thickness direction in the vicinity thereof. First light irradiation means for irradiation.
(1-2) One-dimensional or two-dimensional luminance of light reflected in the substantially regular reflection direction from the measurement site, which is arranged in different directions with respect to the measurement site and is irradiated with light from the first light irradiation unit. A plurality of light detecting means for detecting the distribution.
(1-3) Reflected light brightness acquisition means for acquiring the brightness distribution of reflected light from the measurement site through the light detection means each time light is sequentially irradiated at different irradiation angles by the first light irradiation means.
(1-4) For each of the plurality of reflected light luminance distributions acquired by each of the plurality of reflected light luminance acquisition units, the luminance distribution of the reflected light and the irradiation of the light irradiated by the first light irradiation unit Surface angle distribution calculating means for calculating the distribution of the surface angle of a partial region of the measurement site based on the angle.
(1-5) Thickness measuring means for measuring the thickness of the thin sample for the portions on both sides in the thickness direction in the measurement site.
(1-6) The surface shape of each of said partial region based on the operation result of the distribution of the surface angle of the partial region by the surface angle distribution calculating means, the relative position thereof in the thickness direction of the thin sample measured by executing the results based on the adjusted and joining process, joining calculation means for calculating a front surface shape of the entire measurement region of the thickness measuring means.
For example, it is conceivable that the plurality of light detection means are two light detection means arranged in a direction of about 90 ° with the measurement site as a base point.

上記構成を備えた本発明に係る形状測定装置を用いれば,半導体ウェーハなどの薄片試料の表面角度の分布を測定でき,その表面角度の分布に基づいてエッジプロファイル(端面の厚み方向断面の形状)を正しく測定できる。また,半導体ウェーハのノッチ部のような前記窪み形状を有する端面についても,エッジプロファイルを測定できる。
即ち,本発明に係る形状測定装置において,前記反射光輝度取得手段により取得される反射光の輝度分布は,照射光が薄片試料の端面に正反射して前記光検出手段に到達した部分の輝度が最も高くなる。このため,前記表面角度分布演算手段は,光の入射角と反射角とが等しいという正反射の特性に基づいて,測定部位の表面角度の分布を求めることができる。その詳細については後述する。
なお,前記第1の光照射手段における光源の点灯位置と前記光検出手段の配置位置とが,それぞれ略同一の平面内に位置する場合や,或いはそれぞれ異なる平面内に位置する場合が考えられる。
By using the shape measuring apparatus according to the present invention having the above-described configuration, it is possible to measure the surface angle distribution of a thin sample such as a semiconductor wafer, and based on the surface angle distribution, the edge profile (the shape of the cross section in the thickness direction of the end face) Can be measured correctly. Also, the edge profile can be measured for an end surface having the above-described depression shape such as a notch portion of a semiconductor wafer.
That is, in the shape measuring apparatus according to the present invention, the luminance distribution of the reflected light acquired by the reflected light luminance acquisition means is the luminance of the portion where the irradiated light is regularly reflected on the end face of the thin sample and reaches the light detection means. Is the highest. For this reason, the surface angle distribution calculating means can determine the distribution of the surface angle of the measurement site based on the regular reflection characteristic that the incident angle and the reflection angle of light are equal. Details thereof will be described later.
It should be noted that the lighting position of the light source in the first light irradiating means and the arrangement position of the light detecting means may be located in substantially the same plane, or may be located in different planes.

ところで,前記光検出手段としてCCDカメラ等を用いる場合,1つの前記光検出手段による光の検出範囲には制限がある。この制限は,エッジプロファイル測定において測定可能な表面角度の最大範囲の制限につながる。
これに対し,本発明に係る形状測定装置は,複数の前記光検出手段各々を通じて得られた前記反射光の輝度分布ごとに前記測定部位の一部の領域の表面角度の分布を演算し,それら表面角度の分布又はそれに基づく前記一部の領域の表面形状をつなぎ合わせることにより前記測定部位全体の表面角度の分布を演算する。このため,1つの前記光検出手段による光の検出範囲の制限を超えて,エッジプロファイル測定における測定可能な表面角度の最大範囲を広げることができる。しかも,そのつなぎ合わせ処理の際に,表面角度の分布又はそれに基づく前記一部の領域の表面形状を,前記薄片試料の厚み方向におけるそれらの相対位置を厚み測定の結果に基づき調整してつなぎ合わせるので,測定部位全体の表面形状を高精度で測定することができる。
By the way, when a CCD camera or the like is used as the light detection means, the light detection range by one light detection means is limited. This limitation leads to a limitation on the maximum range of surface angles that can be measured in edge profile measurements.
On the other hand, the shape measuring apparatus according to the present invention calculates the distribution of the surface angle of a partial area of the measurement site for each luminance distribution of the reflected light obtained through each of the plurality of light detection means, The distribution of the surface angle of the entire measurement site is calculated by connecting the surface angle distribution or the surface shapes of the partial areas based on the distribution. For this reason, the maximum range of the surface angle that can be measured in the edge profile measurement can be expanded beyond the limit of the light detection range by one light detection means. Moreover, during the joining process, the surface angle distribution or the surface shape of the partial region based thereon is joined by adjusting the relative position in the thickness direction of the thin sample based on the thickness measurement result. Therefore, the surface shape of the entire measurement site can be measured with high accuracy.

光が照射された前記薄片試料の表裏各面を撮像した場合,得られた像における光照射部の位置(高輝度部分の位置)は,撮像手段(カメラ)と薄片試料の表面との距離に応じて変化し,その光照射部の位置に基づく三角測量処理によって簡易に撮像手段と薄片試料表面との距離を算出できる。
そこで,前記光検出手段が,前記測定部位における前記厚み方向両側の面各々の二次元の像を撮像する2つの撮像手段を含む場合に,前記厚み測定手段が,次の(1−7)及び(1−8)に示す構成要素を備えることが考えられる。
(1−7)前記測定部位における前記厚み方向両側の面各々に光を照射する第2の光照射手段。
(1−8)前記第2の光照射手段により光が照射された前記測定部位における前記厚み方向両側の面各々の像を前記2つの撮像手段を通じて取得し,取得した像に基づいて光の照射位置を検出することにより前記薄片試料の厚みを算出する厚み算出手段。
なお,前記測定部位における前記厚み方向両側の面は,前記薄片試料の表裏各面の一部(例えば,半導体ウェーハにおけるエッジプロファイル部の近傍の平坦部分。以下,縁部という)である。
これにより,形状測定用の前記2つの撮像手段(前記光検出手段の一例)を,厚み測定にも兼用することができ,薄片試料の厚みをシンプルな構成によって簡易に測定できる。
When the front and back surfaces of the thin sample irradiated with light are imaged, the position of the light irradiation part (the position of the high brightness portion) in the obtained image is the distance between the imaging means (camera) and the surface of the thin sample. The distance between the imaging means and the thin sample surface can be easily calculated by triangulation processing based on the position of the light irradiation part.
Therefore, when the light detection means includes two image pickup means for picking up two-dimensional images of the surfaces on both sides in the thickness direction of the measurement site, the thickness measurement means includes the following (1-7) and It is conceivable to include the constituent elements shown in (1-8).
(1-7) Second light irradiating means for irradiating light to both surfaces in the thickness direction on the measurement site.
(1-8) Images of each surface on both sides in the thickness direction in the measurement site irradiated with light by the second light irradiation unit are acquired through the two imaging units, and light irradiation is performed based on the acquired images. Thickness calculating means for calculating the thickness of the thin sample by detecting the position.
The surfaces on both sides in the thickness direction of the measurement site are part of the front and back surfaces of the thin sample (for example, flat portions in the vicinity of the edge profile portion of the semiconductor wafer; hereinafter referred to as edges).
Thus, the two imaging means for shape measurement (an example of the light detection means) can be used for thickness measurement, and the thickness of the thin sample can be easily measured with a simple configuration.

ところで,前記光照射手段による光の照射角度の変化幅(変更幅)をごく小さくすれば,光の照射角度を変化させるごとに,反射光の輝度が最も高くなる位置を求めることにより,高い空間分解能で測定部位の表面角度の分布を算出することができる。しかしながら,光の照射角度の変化幅を小さくすることには限界がある。また,光の照射角度の変化幅を小さくするほど,反射光の輝度分布を採取する回数が増え,測定時間が長くなる。さらに,前記反射光輝度取得手段で取得すべきデータの点数が増え,必要メモリ容量の増大にもつながる。
そこで,前記形状測定装置において,前記表面角度分布演算手段が,前記光検出手段の光検出範囲における複数の位置(以下,演算対象位置という)各々について,前記光の照射角度と前記反射光の輝度との対応関係に基づいて前記反射光の輝度がピークとなるときの前記光の照射角度を推定する演算を行うことにより,前記演算対象位置各々の表面角度を算出するものであれば好適である。ここで,前記反射光の輝度がピークとなるときの前記光の照射角度の推定値は,例えば,前記光の照射角度と前記反射光の輝度との対応関係に基づく内挿演算処理などによって求めることができる。
これにより,光の照射角度の変化幅が比較的大きくても,高い空間分解能で測定部位の表面角度の分布を算出することができる。
By the way, if the change width (change width) of the light irradiation angle by the light irradiation means is made extremely small, a high space can be obtained by obtaining the position where the brightness of the reflected light becomes highest every time the light irradiation angle is changed. The distribution of the surface angle of the measurement site can be calculated with resolution. However, there is a limit to reducing the change width of the light irradiation angle. Further, as the change width of the light irradiation angle is reduced, the number of times the brightness distribution of the reflected light is collected increases and the measurement time becomes longer. Furthermore, the number of data points to be acquired by the reflected light luminance acquisition means increases, leading to an increase in required memory capacity.
Therefore, in the shape measuring apparatus, the surface angle distribution calculating means has the light irradiation angle and the brightness of the reflected light for each of a plurality of positions (hereinafter referred to as calculation target positions) in the light detection range of the light detecting means. It is preferable that the surface angle of each of the calculation target positions is calculated by performing an operation of estimating the irradiation angle of the light when the luminance of the reflected light reaches a peak based on the correspondence relationship with . Here, the estimated value of the irradiation angle of the light when the luminance of the reflected light reaches a peak is obtained by, for example, an interpolation calculation process based on a correspondence relationship between the irradiation angle of the light and the luminance of the reflected light. be able to.
Thereby, even if the change width of the light irradiation angle is relatively large, the distribution of the surface angle of the measurement site can be calculated with high spatial resolution.

また,前記第1の光照射手段としては,例えば,一の平面内の複数の位置各々に配置された複数の光源を順次切り替えて点灯させることにより,前記測定部位に対して順次異なる照射角度で光を照射する切替型光照射手段であることが考えられる。この切替型光照射手段を採用する場合,複数の光源が,前記測定部位の配置位置を中心とする円弧上に配置されたものが考えられる。この構成によれば,可動機構のないシンプルかつ位置精度の高い装置を実現できる。
また,前記切替型光照射手段が,複数の光源を順次切り替えて点灯させる過程において,複数の前記光検出手段各々に対応する複数の光源を同時に点灯させるものが考えられる。
これにより,測定時間を短縮できる。
なお,前記第1の光照射手段が,所定の光源を一の平面内の複数の位置各々に順次移動させて点灯させることにより,前記測定部位に対して順次異なる照射角度で光を照射する移動型光照射手段であることも考えられる。この構成によれば,光源の数を少なくできる。
また,後述するように,前記薄片試料が薄板状の半導体ウェーハである場合,前記厚み測定手段が,その半導体ウェーハの表裏両面におけるエッジプロファイル部(面取りされた端面(側面))との境界位置から5mm内側までの範囲,特に,前記境界位置から約1mm内側の位置においてその半導体ウェーハの厚みを測定することが望ましい。
Further, as the first light irradiating means, for example, a plurality of light sources arranged at a plurality of positions in one plane are sequentially switched and turned on so that the measurement sites are sequentially irradiated at different irradiation angles. It can be considered that it is a switchable light irradiation means for irradiating light. When this switchable light irradiating means is employed, a plurality of light sources may be arranged on an arc centering on the arrangement position of the measurement site. According to this configuration, it is possible to realize a simple and high position accuracy device without a movable mechanism.
Further, it is conceivable that the switching type light irradiating means simultaneously turns on a plurality of light sources corresponding to each of the plurality of light detecting means in the process of switching on and turning on a plurality of light sources.
Thereby, the measurement time can be shortened.
The first light irradiating means moves the predetermined light source sequentially to each of a plurality of positions in one plane so as to illuminate, so that the measurement site is irradiated with light at different irradiation angles. It can also be considered to be a mold light irradiation means. According to this configuration, the number of light sources can be reduced.
In addition, as will be described later, when the thin sample is a thin plate-like semiconductor wafer, the thickness measuring means is arranged from a boundary position with an edge profile portion (a chamfered end face (side face)) on both the front and back sides of the semiconductor wafer. It is desirable to measure the thickness of the semiconductor wafer in a range up to 5 mm inside, particularly in a position about 1 mm inside from the boundary position.

また,本発明(後述する第2発明に相当)は,以上に示した形状測定装置を用いた測定方法として捉えることもできる。
即ち,本発明に係る形状測定方法は,薄片試料の端面の形状を測定する方法であって,以下の(2−1)〜(2−6)に示す各工程を実行するものである。
(2−1)一の平面内の複数の位置各々で光源を点灯させる第1の光照射手段により,前記薄片試料の端面及びその近傍の厚み方向両側の面を含む測定部位に対して順次異なる照射角度で光を照射する第1の光照射工程。
(2−2)前記測定部位に対して各々異なる方向に配置された光検出手段により,前記第1の光照射工程の光照射による前記測定部位からのほぼ正反射方向への反射光の一次元若しくは二次元の輝度分布を検出する光検出工程。
(2−3)前記第1の光照射工程により順次異なる照射角度で光が照射されるごとに前記測定部位からの反射光の輝度分布を前記光検出工程の実行により取得する反射光輝度取得工程。
(2−4)前記反射光輝度取得工程により取得された複数の前記反射光の輝度分布ごとに,その反射光の輝度分布及び前記第1の光照射工程により照射された光の照射角度に基づいて,前記測定部位の一部の領域の表面角度の分布を演算する表面角度分布演算工程。
(2−5)所定の厚み測定手段により前記測定部位における前記厚み方向両側の面の部分について前記薄片試料の厚みを測定する厚み測定工程。
(2−6)所定の演算手段により,前記表面角度分布演算工程による前記一部の領域の表面角度の分布の演算結果に基づく前記一部の領域の表面形状各々を,前記薄片試料の厚み方向におけるそれらの相対位置を前記厚み測定工程の測定結果に基づき調整してつなぎ合わせる処理を実行することにより,前記測定部位全体の表面形状を演算するつなぎ合わせ演算工程。
Further, the present invention (corresponding to a second invention described later) can also be regarded as a measuring method using the shape measuring apparatus described above.
That is, the shape measuring method according to the present invention is a method for measuring the shape of the end face of a thin piece sample, and executes the following steps (2-1) to (2-6).
(2-1) The first light irradiating means for turning on the light source at each of a plurality of positions in one plane sequentially changes with respect to the measurement site including the end face of the thin sample and the surfaces on both sides in the thickness direction in the vicinity thereof. A first light irradiation step of irradiating light at an irradiation angle.
(2-2) One-dimensional reflected light in a substantially regular reflection direction from the measurement site by light irradiation in the first light irradiation step by the light detection means arranged in different directions with respect to the measurement site. Alternatively, a light detection process for detecting a two-dimensional luminance distribution.
(2-3) Reflected light luminance acquisition step of acquiring the luminance distribution of the reflected light from the measurement site by executing the light detection step each time light is sequentially irradiated at different irradiation angles in the first light irradiation step. .
(2-4) For each of the plurality of reflected light luminance distributions acquired in the reflected light luminance acquisition step, based on the luminance distribution of the reflected light and the irradiation angle of the light irradiated in the first light irradiation step. A surface angle distribution calculating step of calculating a surface angle distribution of a partial region of the measurement site.
(2-5) A thickness measuring step of measuring the thickness of the thin piece sample with respect to portions on both sides in the thickness direction in the measurement site by a predetermined thickness measuring means.
(2-6) by a predetermined calculation means, the surface shape of each of said partial region based on the operation result of the distribution of the surface angle of the area of the surface angle distribution portion wherein by calculating step, the thickness of the thin sample by executing the process of joining by adjusting on the basis of the measurement result of their relative positions the thickness measuring step in the direction joining calculating step of calculating a front surface shape of the entire measurement site.

また,前記光検出手段が,前記測定部位における前記厚み方向両側の面各々の二次元の像を撮像する2つの撮像手段を含む場合に,前記厚み測定工程において,次の(2−7)及び(2−8)に示す各工程を実行すればなお好適である。
(2−7)所定の第2の光照射手段により前記測定部位における前記厚み方向両側の面各々に光を照射する第2の光照射工程。
(2−8)前記第2の光照射工程により光が照射された前記測定部位における前記厚み方向両側の面各々の像を前記2つの撮像手段を通じて取得し,取得した像に基づいて光の照射位置を検出することにより前記薄片試料の厚みを算出する処理を所定の演算手段により実行する厚み算出工程。
以上に示した各工程を実行する形状測定方法によれば,本発明に係る前記形状測定装置と同様の作用効果が得られる。
In the case where the light detection means includes two image pickup means for picking up two-dimensional images of the surfaces on both sides in the thickness direction in the measurement site, the following (2-7) and It is more preferable to execute each step shown in (2-8).
(2-7) A second light irradiating step of irradiating the surfaces on both sides in the thickness direction of the measurement site with light by a predetermined second light irradiating means.
(2-8) Images of each surface on both sides in the thickness direction in the measurement site irradiated with light in the second light irradiation step are acquired through the two imaging units, and light irradiation is performed based on the acquired images. A thickness calculating step of executing processing for calculating the thickness of the thin sample by detecting a position by a predetermined calculating means.
According to the shape measuring method for executing the steps described above, the same effects as those of the shape measuring apparatus according to the present invention can be obtained.

本発明(後述する第2発明に相当)によれば,半導体ウェーハなどの薄片試料のエッジプロファイルを正しく(高精度で)測定できる。また,半導体ウェーハのノッチ部のような前記窪み形状を有する端面についても,エッジプロファイルを測定できる。また,光切断法により薄片試料の端面の形状測定を行う手段又は工程を併せ持つことにより,光沢面又は粗面のいずれの測定部位(端面)であってもその形状を測定できる。   According to the present invention (corresponding to a second invention described later), the edge profile of a thin sample such as a semiconductor wafer can be measured correctly (with high accuracy). Also, the edge profile can be measured for an end surface having the above-described depression shape such as a notch portion of a semiconductor wafer. Further, by having a means or process for measuring the shape of the end face of the thin piece sample by the light cutting method, the shape can be measured at any measurement site (end face) of the glossy surface or the rough surface.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は第1発明の実施形態に係る形状測定装置Z1の概略構成図,図2は光照射角度及び表面角度の定義を表す図,図3は形状測定装置Z1に採用され得るテレセントリックレンズ方式のカメラの特性を表す図,図4は形状測定装置Z1にテレセントリックレンズ方式のカメラを採用した場合の測定部位の表面角度と光路との関係を模式的に表した図,図5は形状測定装置Z1により算出された測定部位の表面角度分布及びエッジプロファイルを表すグラフ,図6は形状測定装置Z1に採用され得る非テレセントリックレンズ方式のカメラの特性を表す図,図7は形状測定装置Z1に非テレセントリックレンズ方式のカメラを採用した場合の測定部位の表面角度と光路との関係を模式的に表した図,図8は測定部位の形状及び形状測定装置Z1のカメラによる撮影画像の第1例を模式的に表した図,図9は測定部位の形状及び形状測定装置Z1のカメラによる撮影画像の第2例を模式的に表した図,図10は形状測定装置Z1による撮影画像の一例を表す図,図11は所定の演算対象位置における光照射角度と反射光輝度との対応関係の一例を表すグラフ,図12は形状測定装置Z1による測定手順を表すフローチャート,図13は第2発明の実施形態に係る形状測定装置Z2の概略構成を表す図,図14は形状測定装置Z2における厚み測定の原理を表す概念図,図15は形状測定装置Z2により得られる2台のカメラ各々に対応する表面角度分布及びエッジプロファイルのフィッティング処理前後の状態を表す図,図16は形状測定装置Z2の応用例である形状測定装置Z2’の概略構成を表す図,図17は形状測定の対象である半導体ウェーハにおける厚み測定に好適な位置を表す断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
FIG. 1 is a schematic configuration diagram of the shape measuring apparatus Z1 according to the embodiment of the first invention, FIG. 2 is a diagram showing definitions of the light irradiation angle and the surface angle, and FIG. 3 is a telecentric that can be employed in the shape measuring apparatus Z1. FIG. 4 is a diagram showing the characteristics of a lens-type camera. FIG. 4 is a diagram schematically showing the relationship between the surface angle of the measurement site and the optical path when a telecentric lens-type camera is adopted as the shape measuring device Z1, and FIG. 6 is a graph showing the surface angle distribution and edge profile of the measurement site calculated by the measuring device Z1, FIG. 6 is a diagram showing the characteristics of a non-telecentric lens type camera that can be employed in the shape measuring device Z1, and FIG. 7 is the shape measuring device Z1. Fig. 8 is a diagram schematically showing the relationship between the surface angle of the measurement site and the optical path when a non-telecentric lens type camera is used. Fig. 8 shows the shape and shape measurement of the measurement site. FIG. 9 is a diagram schematically illustrating a first example of an image captured by the camera of the apparatus Z1, FIG. 9 is a diagram schematically illustrating a second example of an image captured by the camera of the shape measurement apparatus Z1 and the shape of the measurement site. Is a diagram showing an example of a photographed image by the shape measuring device Z1, FIG. 11 is a graph showing an example of a correspondence relationship between the light irradiation angle and the reflected light luminance at a predetermined calculation target position, and FIG. 12 is a measurement procedure by the shape measuring device Z1. FIG. 13 is a diagram showing a schematic configuration of the shape measuring device Z2 according to the embodiment of the second invention, FIG. 14 is a conceptual diagram showing the principle of thickness measurement in the shape measuring device Z2, and FIG. 15 is a shape measuring device Z2. FIG. 16 is a diagram showing the surface angle distribution and the state before and after the fitting processing of the edge profile corresponding to each of the two cameras obtained by FIG. Diagram illustrating a schematic configuration of Z2 ', FIG. 17 is a sectional view showing a preferred location in the thickness measurements in the semiconductor wafer that is the subject of the shape measurement.

[第1発明]
まず,図1を参照しつつ,第1発明の実施形態に係る形状測定装置Z1の構成について説明する。形状測定装置Z1は,薄片試料の一例である半導体ウェーハ1(以下,ウェーハという)の端面(いわゆるエッジプロファイル部)の形状(エッジプロファイル)を測定する装置である。本実施形態に示すウェーハ1は,ほぼ円形板状であるが,矩形の板状など,他の形状の薄片試料を測定対象とすることもできる。なお,図1(a)は,形状測定装置Z1の平面図(一部ブロック図),図1(b)は,形状測定装置Z1の側面図(一部省略)である。
以下,エッジプロファイルの測定対象となるウェーハ1の端面及びその近傍部分(ウェーハ1の表裏各面の縁部)を含む領域を,測定部位Pと称する。この測定部位Pには,ほぼ平行なウェーハ1の表裏それぞれの面の一部(縁部)が含まれる。
図1に示すように,形状測定装置Z1は,光照射装置10と,カメラ20と,パーソナルコンピュータ等の計算機30とを備えている。
光照射装置10は,電子回路基板として構成され,その電子回路基板には,ウェーハ1に光を照射する光源である複数のLED12と,そのLED12各々の点滅を切り替えるLED駆動回路11とが実装されている。なお,図1(b)には,一部のLED12について記載を省略している。
ここで,光照射装置10(電子回路基板)を平面視したときのほぼ中央部における所定位置を基準位置Qと称する。
[First invention]
First, the configuration of the shape measuring apparatus Z1 according to the embodiment of the first invention will be described with reference to FIG. The shape measuring device Z1 is a device that measures the shape (edge profile) of an end surface (so-called edge profile portion) of a semiconductor wafer 1 (hereinafter referred to as a wafer) which is an example of a thin sample. Although the wafer 1 shown in the present embodiment has a substantially circular plate shape, a thin sample having another shape such as a rectangular plate shape can be used as a measurement target. 1A is a plan view (partially block diagram) of the shape measuring device Z1, and FIG. 1B is a side view (partially omitted) of the shape measuring device Z1.
Hereinafter, the region including the end surface of the wafer 1 to be measured for the edge profile and the vicinity thereof (the edge portions of the front and back surfaces of the wafer 1) is referred to as a measurement site P. The measurement site P includes a part (edge) of each of the front and back surfaces of the wafer 1 that are substantially parallel.
As shown in FIG. 1, the shape measuring device Z1 includes a light irradiation device 10, a camera 20, and a computer 30 such as a personal computer.
The light irradiation device 10 is configured as an electronic circuit board, and a plurality of LEDs 12 that are light sources for irradiating the wafer 1 with light and an LED drive circuit 11 that switches blinking of each of the LEDs 12 are mounted on the electronic circuit board. ing. In FIG. 1B, the description of some of the LEDs 12 is omitted.
Here, a predetermined position in a substantially central portion when the light irradiation device 10 (electronic circuit board) is viewed in plan is referred to as a reference position Q.

光照射装置10を構成する電子回路基板には,ウェーハ1の測定部位Pを基準位置Qに配置可能とするために,ウェーハ1が挿入される切り欠き部13が形成されている。即ち,基準位置Qが,測定部位Pの配置位置となる。図1(b)には,ウェーハ1のノッチ部(半円形状の切り欠き部)が,基準位置Qに測定部位Pとして配置されている例を示しているが,これに限るものではない。また,ウェーハ1を回転させることにより,測定部位Pを容易に変更できる。これにより,ウェーハ1の周囲全体,或いは周囲全体のうちの複数箇所のエッジプロファイルを容易に測定できる。
また,全てのLED12は,その発光部が,基準位置Qを含む1つの平面内に位置するように,かつ,基準位置Qを中心とする円弧上に(円弧に沿って)位置するように,電子回路基板に実装されている。ここで,各LED12は,カメラ20と干渉する位置を除き,例えば基準位置Qから見た方向が約2°ずつ異なるように等間隔(等角度の間隔)で配置されている。また,各LED12の基準位置Q(測定部位P)からの距離は,測定部位Pの奥行き寸法に対して十分に長い距離(例えば150mm程度)とする。
また,ウェーハ1は,その面(おもて面及びうら面)が,LED12の発光部が配置される1つの平面に対してほぼ直交し,その面の中央部(円板の中心)が,LED12の発光部が配置される1つの平面内に位置する状態で切り欠き部13に挿入され,その状態で測定が行われる。
LED駆動回路11は,計算機30からの制御指令に従って,このように1つの平面内の複数の位置各々に配置された複数のLED12を順次切り替えて点滅させる。これにより,光照射装置10は,基準位置Qに配置されたウェーハ1の測定部位Pに対し,順次異なる照射角度で光を照射する(第1の光照射手段,切替型光照射手段の一例)。
ウェーハ1の測定部位Pである端面(側面)は,滑らかに加工されており,鏡面或いはそれに近い光沢のある面となっている。このため,LED12から出力された光は,測定部位Pにおいて概ね正反射し,ほとんど乱反射はしない。
A cutout portion 13 into which the wafer 1 is inserted is formed on the electronic circuit board constituting the light irradiation device 10 so that the measurement site P of the wafer 1 can be arranged at the reference position Q. That is, the reference position Q is the arrangement position of the measurement site P. FIG. 1B shows an example in which the notch portion (semicircular cutout portion) of the wafer 1 is arranged as the measurement site P at the reference position Q, but this is not restrictive. Further, the measurement site P can be easily changed by rotating the wafer 1. Thereby, the edge profile of the whole circumference | surroundings of the wafer 1 or several places in the whole circumference | surroundings can be measured easily.
Further, all the LEDs 12 are arranged so that their light emitting portions are located in one plane including the reference position Q and on an arc centered on the reference position Q (along the arc). It is mounted on an electronic circuit board. Here, the LEDs 12 are arranged at regular intervals (equal angular intervals) so that the directions viewed from the reference position Q are different by about 2 °, for example, except for the position where they interfere with the camera 20. In addition, the distance from the reference position Q (measurement site P) of each LED 12 is a sufficiently long distance (for example, about 150 mm) with respect to the depth dimension of the measurement site P.
Further, the surface of the wafer 1 (the front surface and the back surface) is substantially orthogonal to one plane on which the light emitting portion of the LED 12 is arranged, and the center portion (the center of the disk) of the surface is The LED 12 is inserted into the notch 13 in a state where the light emitting part of the LED 12 is disposed, and measurement is performed in that state.
In accordance with a control command from the computer 30, the LED drive circuit 11 sequentially switches and blinks the plurality of LEDs 12 arranged at each of a plurality of positions in one plane. Thereby, the light irradiation apparatus 10 sequentially irradiates the measurement site P of the wafer 1 arranged at the reference position Q with light at different irradiation angles (an example of the first light irradiation unit and the switching type light irradiation unit). .
The end surface (side surface) which is the measurement site P of the wafer 1 is processed smoothly and has a mirror surface or a glossy surface close to it. For this reason, the light output from the LED 12 is almost regularly reflected at the measurement site P, and hardly diffusely reflected.

カメラ20(後述する2つのカメラ20R,20Lも同様)は,基準位置Qから所定間隔隔てた位置(例えば,50mm〜100mm程度)に固定され,ウェーハ1の測定部位Pからの反射光を受光して光電変換することにより,各LED12から測定部位Pに照射された光の正反射方向への反射光の二次元の輝度分布を検出するもの(撮像手段)である。
図1に示す例では,前記カメラ20は,LED12の発光部が配置される1つの平面(基準位置Qを含む平面)内に配置され,その正面方向が,ウェーハ1の面の中央部に向かうように設置されている。即ち,カメラ20は,その正面方向が,ウェーハ1の厚み方向中央における平断面に沿う方向となるように(ウェーハ1を真横から見るように)設置されている。これにより,カメラ20は,ウェーハ1の端面を,ウェーハ1の厚み方向全体に渡って観測できる。
また,カメラ20の焦点は,基準位置Q(即ち,測定部位P)に設定されている。
計算機30は,光照射装置10におけるLED駆動回路11を制御(LED12の点滅制御)するとともに,カメラ20のシャッター制御とカメラ20による撮影画像の取り込みとを行う。その具体的な動作については後述する。ここで,図1には示していないが,計算機30は,LED駆動回路11やカメラ20との間で,信号の授受や画像データの取得を行うためのインターフェースを備えている。
なお,以下に示す計算機30の処理は,計算機30が備えるMPUが,同じく計算機30が備えるハードディスクドライブなどの記憶手段に予め記憶されたプログラムを実行することにより実現される。
The camera 20 (the same applies to two cameras 20R and 20L described later) is fixed at a position (for example, about 50 mm to 100 mm) spaced from the reference position Q and receives reflected light from the measurement site P of the wafer 1. The two-dimensional luminance distribution of the reflected light in the regular reflection direction of the light emitted from each LED 12 to the measurement site P is detected by performing photoelectric conversion (imaging means).
In the example shown in FIG. 1, the camera 20 is arranged in one plane (a plane including the reference position Q) on which the light emitting unit of the LED 12 is arranged, and the front direction thereof is directed to the center of the surface of the wafer 1. It is installed as follows. That is, the camera 20 is installed such that the front direction thereof is a direction along a plane cross section at the center of the thickness direction of the wafer 1 (so that the wafer 1 is viewed from the side). Thereby, the camera 20 can observe the end face of the wafer 1 over the entire thickness direction of the wafer 1.
The focal point of the camera 20 is set at the reference position Q (that is, the measurement site P).
The computer 30 controls the LED drive circuit 11 in the light irradiating device 10 (flashing control of the LED 12), and controls the shutter of the camera 20 and captures a photographed image by the camera 20. The specific operation will be described later. Here, although not shown in FIG. 1, the computer 30 includes an interface for transmitting and receiving signals and acquiring image data with the LED drive circuit 11 and the camera 20.
The processing of the computer 30 shown below is realized by the MPU included in the computer 30 executing a program stored in advance in storage means such as a hard disk drive included in the computer 30.

次に,形状測定装置Z1によるエッジプロファイル測定の原理について説明する。
測定部位Pに光が照射されると,その光は,光沢のある測定部位Pにおいて正反射する。そして,カメラ20による撮影画像は,その反射光の輝度分布を表す像である。
図8は,測定部位Pの形状の一例(a)及びその測定部位Pのカメラ20による撮影画像の一例(b)を模式的に表した図である。
図8(a)には,表面角度が単純増加(或いは,単純減少)するような測定部位Pの形状を示している。なお,図8(a)における上下方向が,ウェーハ1の厚み方向である。
このような測定部位Pを,ある1つのLED12のみによって光を照射しながらカメラ20により撮像すると,図8(b)に示すような像が得られる。その画像において,輝度のピークが生じる位置Xpeak(X座標方向の位置,以下,ピーク輝度位置という)は,LED12から発せられた光線が測定部位Pにおいて正反射した位置(正反射位置)に相当する。
また,測定部位Pにおける正反射位置の面において,その法線方向を基準とした光の入射角度と出射角度(反射方向の角度)とは等しい(左右対称)。このことから,カメラ20の撮影画像におけるピーク輝度位置Xpeakと,測定部位Pに対する光の照射方向(点灯したLED12から測定部位Pへ向かう方向)とに基づいて,測定部位Pにおいて光が正反射する位置(正反射位置)と,その正反射位置の表面角度とを一意に算出することが可能である。
ここで,形状測定装置Z1の測定原理を説明する前に,図2を参照しつつ,光の照射方向などを表す符号について説明する。なお,図2(a)は,形状測定装置Z1を平面視した状態を模式的に表した図であり,図2(b)は,その基準位置Pの部分を拡大して表した図である。
図2に示すように,測定部位Pとカメラ20とを結ぶ直線の方向(以下,カメラ正面方向という)を基準としたときの光の照射角度をφとする。また,測定部位Pにおける光の正反射Pxにおける,カメラ正面方向に直交する面(以下,撮影画像におけるX−Y平面に相当する面という意味で,X−Y面という)を基準とした表面角度をθとする。
Next, the principle of edge profile measurement by the shape measuring apparatus Z1 will be described.
When the measurement site P is irradiated with light, the light is regularly reflected at the glossy measurement site P. The image captured by the camera 20 is an image representing the luminance distribution of the reflected light.
FIG. 8 is a diagram schematically illustrating an example (a) of the shape of the measurement site P and an example (b) of an image captured by the camera 20 of the measurement site P.
FIG. 8A shows the shape of the measurement site P where the surface angle simply increases (or simply decreases). The vertical direction in FIG. 8A is the thickness direction of the wafer 1.
When such a measurement site P is imaged by the camera 20 while irradiating light with only one LED 12, an image as shown in FIG. 8B is obtained. In the image, the position Xpeak where the luminance peak occurs (the position in the X coordinate direction, hereinafter referred to as the peak luminance position) corresponds to the position where the light beam emitted from the LED 12 is specularly reflected at the measurement site P (regular reflection position). .
In addition, on the surface of the regular reflection position in the measurement site P, the incident angle and the outgoing angle (angle in the reflection direction) of light with respect to the normal direction are the same (symmetrical). Therefore, the light is regularly reflected at the measurement site P based on the peak luminance position Xpeak in the captured image of the camera 20 and the irradiation direction of the light to the measurement site P (the direction from the lit LED 12 toward the measurement site P). It is possible to uniquely calculate the position (regular reflection position) and the surface angle of the regular reflection position.
Here, before describing the measurement principle of the shape measuring apparatus Z1, reference will be made to symbols representing the light irradiation direction and the like with reference to FIG. 2A is a diagram schematically showing a state of the shape measuring device Z1 in plan view, and FIG. 2B is a diagram showing an enlarged portion of the reference position P. FIG. .
As shown in FIG. 2, the light irradiation angle when the direction of a straight line connecting the measurement site P and the camera 20 (hereinafter referred to as the camera front direction) is used as a reference is φ. Further, the surface angle with respect to a plane orthogonal to the camera front direction (hereinafter referred to as a plane corresponding to the XY plane in the captured image) in the regular reflection Px of the light at the measurement site P. Is θ.

続いて,図4を参照しつつ,形状測定装置Z1によるエッジプロファイル測定の原理についてより詳細に説明する。ここでは,カメラ20が,テレセントリックレンズ方式のカメラである場合について説明する。
テレセントリックレンズ方式のカメラは,図3に示すような態様でCCD上に像を結ぶ。
反射光の輝度分布を検出するカメラ20が,図3に示すようなテレセントリックレンズ方式のカメラである場合,図4に示すように,カメラ20のCCD(受光部)に到達する反射光の方向と,カメラ20の正面方向とがほぼ平行となり,撮影画像において高輝のピークが存在するピーク輝度位置Xpeakは,そのまま測定部位Pにおける光の正反射位置Pxを表す。さらに,光の照射方向と反射方向とは,正反射位置Pxの面の法線に対して対称であることから,(90−θ−φ/2)=(90−φ)となり,次の(1)式が成立する。
θ=φ/2 …(1)
従って,撮影画像においてピーク輝度位置Xpeakを画像処理によって特定することにより,正反射位置Pxを特定できる。さらに,点灯したLED12の位置(既知の位置)に応じて定まる光照射角度φ(既知の角度)から,正反射位置Pxにおける表面角度θを特定できる。
Next, the principle of edge profile measurement by the shape measuring apparatus Z1 will be described in more detail with reference to FIG. Here, a case where the camera 20 is a telecentric lens type camera will be described.
A telecentric lens type camera forms an image on a CCD in a manner as shown in FIG.
When the camera 20 that detects the luminance distribution of the reflected light is a telecentric lens type camera as shown in FIG. 3, the direction of the reflected light reaching the CCD (light receiving unit) of the camera 20 as shown in FIG. The peak luminance position Xpeak where the front direction of the camera 20 is substantially parallel and where a bright peak exists in the captured image represents the regular reflection position Px of the light at the measurement site P as it is. Further, since the light irradiation direction and the reflection direction are symmetric with respect to the normal of the surface of the regular reflection position Px, (90−θ−φ / 2) = (90−φ), and the following ( 1) Formula is materialized.
θ = φ / 2 (1)
Therefore, the specular reflection position Px can be specified by specifying the peak luminance position Xpeak in the captured image by image processing. Furthermore, the surface angle θ at the regular reflection position Px can be specified from the light irradiation angle φ (known angle) determined according to the position (known position) of the lit LED 12.

次に,図7を参照しつつ,テレセントリックレンズ方式ではない方式(以下,非テレセントリックレンズ方式という)のカメラ20を採用した形状測定装置Z1によるエッジプロファイル測定について説明する。
非テレセントリックレンズ方式のカメラは,図6に示すような態様でCCD上に像を結ぶ。
非テレセントリックレンズ方式のカメラ20を採用した場合,図7に示すように,測定部位Pにおける正反射位置Pxで反射し,カメラ20のCCDに到達して像を結ぶ反射光の角度(方向)を,カメラ正面方向を基準とする角度ψxとして表すと,2θ+ψx=φとなり,次の(2)式が成立する。但し,ψxは,カメラ20の座標系における位置(X軸方向の位置)ごとに予め求めておく。
θ=(φ−ψx)/2 …(2)
従って,撮影画像においてピーク輝度位置Xpeakを画像処理によって特定することにより,そのピーク輝度位置Xpeakと角度ψxとカメラ20から測定部位P間での距離とに基づいて,測定部位Pにおける正反射位置Pxを特定できる。さらに,点灯したLED12の位置(既知の位置)に応じて定まる光照射角度φ(既知の角度)から,(2)式に基づいて,正反射位置Pxにおける表面角度θを特定できる。
Next, edge profile measurement by the shape measuring device Z1 employing a camera 20 that is not a telecentric lens system (hereinafter referred to as a non-telecentric lens system) will be described with reference to FIG.
A non-telecentric lens type camera forms an image on a CCD in the manner shown in FIG.
When the non-telecentric lens type camera 20 is employed, as shown in FIG. 7, the angle (direction) of the reflected light that reflects at the regular reflection position Px at the measurement site P and reaches the CCD of the camera 20 to form an image is determined. When expressed as an angle ψx with the camera front direction as a reference, 2θ + ψx = φ, and the following equation (2) is established. However, ψx is obtained in advance for each position in the coordinate system of the camera 20 (position in the X-axis direction).
θ = (φ−ψx) / 2 (2)
Therefore, by specifying the peak luminance position Xpeak in the photographed image by image processing, the regular reflection position Px at the measurement site P is determined based on the peak luminance position Xpeak, the angle ψx, and the distance from the camera 20 to the measurement site P. Can be identified. Further, the surface angle θ at the regular reflection position Px can be specified from the light irradiation angle φ (known angle) determined according to the position (known position) of the lit LED 12 based on the equation (2).

また,点灯するLED12を順次切り替えるごとに(即ち,光照射角度φを切り替えるごとに)カメラ20を通じて測定部位Pの画像データを取得し,そのときの光照射角度φ及び表面角度θを求めれば,複数の正反射位置Px各々についての表面角度θ,即ち,測定部位Pにおける表面角度θの分布を求めることができる。
図10は,図8(a)に示したのと同様の形状を有する測定部位Pについて,光照射角度φごとに得られた画像データを表す映像(カメラ20の映像)の一例を表す。図10に向かって右方向が,カメラ20の座標系のX軸方向(即ち,ウェーハ1の厚み方向)である。
図10に示すように,光照射角度φの変化に応じて,測定部位Pにおける正反射Pxに対応する高輝度位置Xpeak(X方向の位置)が変化する。この高輝度位置Xpeakが,測定部位Pにおける正反射位置Pxに対応する。
なお,正反射位置Pxは,その位置に応じてLED12との距離が若干異なるため,以上の方法によって求めた表面角度θには,その距離差に応じた誤差が含まれる。しかしながら,測定部位Pの表面変位に対し,LED12と測定部位Pとの距離を十分に長くすることにより,その誤差は無視できる程度に抑えられる。
また,図10において,帯状の高輝度の部分において存在する輝度の分布は,測定部位Pの表面粗さや,カメラ20の実効Fナンバーに起因する。また,テレセントリックレンズ方式のカメラを採用した場合,カメラ正面方向に平行な反射光以外の反射光の一部がカメラ20のCCDに到達することにも起因する。
Further, whenever the LED 12 to be turned on is sequentially switched (that is, every time the light irradiation angle φ is switched), the image data of the measurement site P is acquired through the camera 20, and the light irradiation angle φ and the surface angle θ at that time are obtained. The surface angle θ for each of the plurality of regular reflection positions Px, that is, the distribution of the surface angle θ at the measurement site P can be obtained.
FIG. 10 illustrates an example of an image (image of the camera 20) representing image data obtained for each light irradiation angle φ with respect to the measurement site P having the same shape as that illustrated in FIG. The right direction toward FIG. 10 is the X-axis direction of the camera 20 coordinate system (that is, the thickness direction of the wafer 1).
As shown in FIG. 10, the high-luminance position Xpeak (position in the X direction) corresponding to the regular reflection Px at the measurement site P changes according to the change in the light irradiation angle φ. This high luminance position Xpeak corresponds to the regular reflection position Px at the measurement site P.
The regular reflection position Px has a slightly different distance from the LED 12 depending on the position. Therefore, the surface angle θ obtained by the above method includes an error corresponding to the distance difference. However, the error can be suppressed to a negligible level by sufficiently increasing the distance between the LED 12 and the measurement site P with respect to the surface displacement of the measurement site P.
In FIG. 10, the luminance distribution existing in the band-like high luminance portion is caused by the surface roughness of the measurement site P and the effective F number of the camera 20. Further, when a telecentric lens type camera is employed, part of the reflected light other than the reflected light parallel to the front direction of the camera also reaches the CCD of the camera 20.

一方,図9は,測定部位Pの形状の他の一例(a)及びその測定部位Pのカメラ20による撮影画像の一例(b)を模式的に表した図である。
図9(a)には,前記窪み形状を有する測定部位Pを示している。なお,図9(a)における上下方向が,ウェーハ1の厚み方向である。
このような測定部位Pを,ある1つのLED12のみによって光を照射しながらカメラ20により撮像すると,図9(b)に示すように,複数のピーク輝度位置Xpeakを有する像が得られる。この現象は,同じ表面角度φを有する正反射位置Pxが複数存在する場合に生じるが,表面角度の求め方は,測定部位Pが,図8(a)に示したような形状おを有する場合と同様である。
形状測定装置Z1を用いれば,このように測定部位Pが窪み形状を有する場合であっても,表面角度の分布を測定できる。
On the other hand, FIG. 9 is a diagram schematically showing another example (a) of the shape of the measurement site P and an example (b) of an image captured by the camera 20 of the measurement site P.
FIG. 9A shows the measurement site P having the above-described depression shape. The vertical direction in FIG. 9A is the thickness direction of the wafer 1.
When such a measurement site P is imaged by the camera 20 while irradiating light with only one LED 12, as shown in FIG. 9B, an image having a plurality of peak luminance positions Xpeak is obtained. This phenomenon occurs when there are a plurality of regular reflection positions Px having the same surface angle φ. The method for obtaining the surface angle is when the measurement site P has a shape as shown in FIG. It is the same.
If the shape measuring device Z1 is used, the distribution of the surface angle can be measured even when the measurement site P has a hollow shape.

次に,図12に示すフローチャートを参照しつつ,形状測定装置Z1によるウェーハ1の測定部位Pの測定手順について説明する。以下,S1,S2,…は,処理手順(ステップ)の識別符号を表す。なお,ウェーハ1の測定部位Pが,基準位置Qに位置するように配置された状態で,図12に示す処理が開始されるものとする。
[ステップS1〜S5]
まず,計算機30は,LED12各々を識別する番号iを初期化(i=1)する(S1)。
そして,計算機30は,LED駆動回路11を制御することによるi番目のLED12の点灯(S2),その点灯状態におけるカメラ20による測定部位Pの撮像(シャッターON)及び撮影画像の記憶(S3)を,番号iを順次カウントアップ(S5)しながら,全てのLED12について点灯及び撮像が終了するまで繰り返す(S4)。カメラ20による撮影画像は,計算機30が備えるハードディスクなどの記憶手段に記憶される。
このステップS1〜S4の処理により,光照射装置10によって測定部位Pに対して順次異なる照射角度φで光が照射される(S2)。さらに,異なる照射角度で光が照射されるごとに,計算機30により,測定部位Pからの反射光の輝度分布を表す画像データ(撮影画像)が,カメラ20を通じて取得される。
Next, a procedure for measuring the measurement site P of the wafer 1 by the shape measuring apparatus Z1 will be described with reference to the flowchart shown in FIG. Hereinafter, S1, S2,... Represent identification codes of processing procedures (steps). It is assumed that the process shown in FIG. 12 is started in a state where the measurement site P of the wafer 1 is arranged at the reference position Q.
[Steps S1 to S5]
First, the computer 30 initializes a number i for identifying each LED 12 (i = 1) (S1).
Then, the computer 30 controls lighting of the i-th LED 12 by controlling the LED driving circuit 11 (S2), imaging of the measurement site P by the camera 20 in the lighting state (shutter ON), and storage of the captured image (S3). The number i is sequentially counted up (S5), and the process is repeated until lighting and imaging of all the LEDs 12 are completed (S4). An image captured by the camera 20 is stored in a storage unit such as a hard disk included in the computer 30.
Through the processing of steps S1 to S4, the light irradiation device 10 sequentially irradiates the measurement site P with light at different irradiation angles φ (S2). Furthermore, image data (photographed image) representing the luminance distribution of reflected light from the measurement site P is acquired by the computer 30 through the camera 20 every time light is irradiated at different irradiation angles.

[ステップS6〜S11]
次に,計算機30は,以下に示すステップS6〜S11の処理を実行することにより,ステップS3の処理により取得された各LED12に対応した画像データ(反射光の輝度分布)と,そのLED12によって測定部位Pに照射された光の照射角度φとに基づいて,測定部位Pの表面角度の分布及びエッジプロファイルを演算する(S11)。
ところで,光照射装置10による光の照射角度φの変化幅(ここでは,LED12の間隔)をごく小さくすれば,光の照射角度φを変化させるごとに,反射光の輝度が最も高くなる位置を求めることにより,高い空間分解能で測定部位Pの表面角度の分布を算出することができる。
しかしながら,光の照射角度φの変化幅を小さくすることには限界がある。また,光の照射角度φの変化幅を小さくするほど,カメラ20による撮像回数(反射光の輝度分布を採取する回数)が増え,測定時間が長くなる。さらに,計算機30でで取得すべき画像データの点数が増え,計算機30における必要メモリ容量の増大にもつながる。
そこで,本実施形態における計算機30は,以下に示す処理により,測定部位Pの表面角度の分布及びエッジプロファイルを求める。
[Steps S6 to S11]
Next, the computer 30 executes the processes of steps S6 to S11 described below, and measures the image data (the brightness distribution of reflected light) corresponding to each LED 12 acquired by the process of step S3 and the LED 12 Based on the irradiation angle φ of the light applied to the part P, the distribution of the surface angle and the edge profile of the measurement part P are calculated (S11).
By the way, if the change width of the light irradiation angle φ by the light irradiation device 10 (here, the interval between the LEDs 12) is made extremely small, the position where the brightness of the reflected light becomes the highest every time the light irradiation angle φ is changed. By calculating, the distribution of the surface angle of the measurement site P can be calculated with high spatial resolution.
However, there is a limit to reducing the change width of the light irradiation angle φ. Further, as the change width of the light irradiation angle φ is reduced, the number of times of imaging by the camera 20 (number of times of collecting the luminance distribution of the reflected light) increases and the measurement time becomes longer. Further, the number of image data to be acquired by the computer 30 increases, leading to an increase in the required memory capacity in the computer 30.
Therefore, the computer 30 in the present embodiment obtains the distribution of the surface angle and the edge profile of the measurement site P by the following processing.

まず,計算機30は,カメラ20の撮像範囲(光検出手段の光検出範囲の一例)において予め定められたX座標方向の複数の位置(以下,演算対象位置Xjという)各々を識別する番号jを初期化(j=1)する(S6)。
そして,演算対象位置Xj各々について,光の照射角度φと反射光の輝度Eとの対応関係(以下,φ−E対応関係という)を導出する(S7)。
図11は,ある演算対象位置Xjにおける,光の照射角度φ(横軸)と反射光の輝度E(縦軸)との対応関係を表すグラフの一例である。
さらに,計算機30は,ステップS7で得られたφ−E対応関係に基づく所定の演算を行うことにより,反射光の輝度Eがピークとなるときの光の照射角度φpeak(以下,推定ピーク時照射角度という)を推定するとともに,その演算対象位置Xjにおける表面角度θjを算出して記憶する(S8)。
First, the computer 30 sets a number j for identifying each of a plurality of predetermined positions in the X coordinate direction (hereinafter referred to as a calculation target position Xj) in the imaging range of the camera 20 (an example of the light detection range of the light detection means). Initialization (j = 1) is performed (S6).
Then, for each calculation target position Xj, a correspondence relationship between the light irradiation angle φ and the luminance E of the reflected light (hereinafter referred to as φ-E correspondence relationship) is derived (S7).
FIG. 11 is an example of a graph showing the correspondence between the light irradiation angle φ (horizontal axis) and the reflected light luminance E (vertical axis) at a certain calculation target position Xj.
Further, the computer 30 performs a predetermined calculation based on the φ-E correspondence obtained in step S7, so that the light irradiation angle φpeak (hereinafter referred to as an estimated peak irradiation) when the luminance E of the reflected light peaks. The surface angle θj at the calculation target position Xj is calculated and stored (S8).

図11に示したように,φ−E対応関係は,離散的なデータに基づくものである。ここで,光照射装置10における各LED12が,極端に広い間隔で配置されているような場合を除けば,図11に示したようなφ−E対応関係に基づく内挿演算処理により,推定ピーク時照射角度φpeakを推定することができる。その内挿演算処理の具体例としては,重心法に基づく内挿演算処理や,2次関数やガウス分布関数に回帰するフィッティング処理に基づく内挿演算処理などが考えられる。なお,内挿演算処理を施さず,単に最大の輝度を示すときの光照射角度φを,推定ピーク時照射角度φpeakとすることも考えられる。但し,この場合,各LED12の間隔によっては,誤差が大きくなる点に留意する必要がある。
また,推定ピーク時照射角度φpeakに基づく表面角度θjの算出方法は,前述した光照射角度φに基づく正反射位置Pxの表面角度θの算出方法と同様である。
そして,計算機30は,ステップS7〜S8の処理を,番号jを順次カウントアップ(S10)しながら,予め定められた全ての演算対象位置Xjについて行われるまで繰り返す(S9)。ステップS8で算出された各演算対象位置Xjの表面角度θjは,計算機30が備えるハードディスクなどの記憶手段に記憶される。
以上のステップS1〜S10の処理により,測定部位Pの表面角度θの分布(演算対象位置Xjと表面角度θjとの対応関係を表す情報)が得られる。
このように,計算機30は,カメラ20の撮像範囲(即ち,光検出範囲)における複数の演算対象位置Xj各々について,光照射角度φと反射光の輝度Eとの対応関係に基づいて,推定ピーク時照射角度φpeak(反射光の輝度がピークとなるときの光の照射角度)を推定する演算を行うことにより,演算対象位置Xj各々の表面角度θjを算出する(S7〜S10)。その結果,光照射装置10における各LED12を,非常に密に配置した場合と同様の高い空間分解能で,表面角度θjの分布を測定できる。理論上は,カメラ20の解像度(画素分解能)のレベルまで,表面角度分布の空間分解能を高めることができる。
なお,後述する計算機30’も,以上に示したステップS7〜S10と同様の処理を実行する(前記表面角度分布演算手段の一例)。
As shown in FIG. 11, the φ-E correspondence is based on discrete data. Here, except for the case where the LEDs 12 in the light irradiation device 10 are arranged at extremely wide intervals, the estimated peak is obtained by the interpolation calculation processing based on the φ-E correspondence relationship as shown in FIG. The hourly irradiation angle φpeak can be estimated. As specific examples of the interpolation calculation process, an interpolation calculation process based on the barycentric method and an interpolation calculation process based on a fitting process that regresses to a quadratic function or a Gaussian distribution function can be considered. It is also conceivable that the light irradiation angle φ when merely showing the maximum luminance without performing the interpolation calculation processing is set to the estimated peak irradiation angle φpeak. However, in this case, it should be noted that the error increases depending on the interval between the LEDs 12.
The method for calculating the surface angle θj based on the estimated peak irradiation angle φpeak is the same as the method for calculating the surface angle θ of the regular reflection position Px based on the light irradiation angle φ described above.
Then, the computer 30 repeats the processing of steps S7 to S8 until it is performed for all predetermined calculation target positions Xj while sequentially incrementing the number j (S10) (S9). The surface angle θj of each calculation target position Xj calculated in step S8 is stored in a storage unit such as a hard disk included in the computer 30.
The distribution of the surface angle θ of the measurement site P (information indicating the correspondence relationship between the calculation target position Xj and the surface angle θj) is obtained by the processes in steps S1 to S10 described above.
As described above, the computer 30 estimates the estimated peak for each of the plurality of calculation target positions Xj in the imaging range (that is, the light detection range) of the camera 20 based on the correspondence relationship between the light irradiation angle φ and the luminance E of the reflected light. The surface angle θj of each calculation target position Xj is calculated by performing an operation for estimating the hour irradiation angle φpeak (light irradiation angle when the reflected light has a peak luminance) (S7 to S10). As a result, the distribution of the surface angle θj can be measured with the same high spatial resolution as when the LEDs 12 in the light irradiation device 10 are arranged very densely. Theoretically, the spatial resolution of the surface angle distribution can be increased to the level of the resolution (pixel resolution) of the camera 20.
Note that a computer 30 ′ to be described later also executes the same processing as steps S7 to S10 described above (an example of the surface angle distribution calculating means).

最後に,計算機30は,ステップS6〜S10の処理によって得られた表面角度θjの分布に基づいて,測定部位Pのエッジプロファイル(表面形状)を算出して記憶し(S11),測定処理を終了させる。このとき,計算機30は,必要に応じて,測定部位Pのエッジプロファイルをその表示部に表示させる。
ここで,測定部位Pにおけるある演算対象位置Xjの表面高さと,その隣りの演算対象位置Xj+1の表面高さとの差Δhjは,次の(3)式により計算できる。
Δhj=d・tanθj …(3)
ただし,dは,測定部位Pにおける隣り合う演算対象位置Xjの距離(X軸方向の距離)である。ここでは,カメラ20のX軸方向の画素間距離を,実空間にに換算した距離である。
この(3)式を,演算対象位置Xjの基点から順次適用することにより,測定部位Pの高さ分布,即ち,エッジプロファイルを算出できる。
図5は,あるウェーハ1の測定部位Pを形状測定装置Z1で測定することによって得られた表面角度φ(x)の分布及びエッジプロファイルの一例を表すグラフである。横軸は,ウェーハ1の厚み方向の位置を表し,左縦軸は測定部位の表面位置(即ち,エッジプロファイル),右縦軸は表面角度θ なお,図5において細い実線グラフで表す表面角度θ(x)は,その各々の演算対象位置Xjを,測定部位Pにおける実空間の位置に置き換えたものである。また,太い実線グラフで表すエッジプロファイルは,(3)式に基づいて算出したものである。
このように,形状測定装置Z1を用いれば,ウェーハ1などの薄片試料のエッジプロファイルを高精度で測定することができる。
Finally, the computer 30 calculates and stores the edge profile (surface shape) of the measurement site P based on the distribution of the surface angle θj obtained by the processes of steps S6 to S10 (S11), and ends the measurement process. Let At this time, the computer 30 displays the edge profile of the measurement site P on the display unit as necessary.
Here, the difference Δhj between the surface height of a certain calculation target position Xj and the surface height of the adjacent calculation target position Xj + 1 in the measurement site P can be calculated by the following equation (3).
Δhj = d · tanθj (3)
However, d is the distance (distance in the X-axis direction) between adjacent calculation target positions Xj in the measurement site P. Here, the distance between the pixels in the X-axis direction of the camera 20 is a distance converted into a real space.
By applying the formula (3) sequentially from the base point of the calculation target position Xj, the height distribution of the measurement site P, that is, the edge profile can be calculated.
FIG. 5 is a graph showing an example of the distribution and edge profile of the surface angle φ (x) obtained by measuring the measurement site P of a certain wafer 1 with the shape measuring device Z1. The horizontal axis represents the position in the thickness direction of the wafer 1, the left vertical axis represents the surface position of the measurement site (ie, edge profile), the right vertical axis represents the surface angle θ, and the surface angle θ represented by a thin solid line graph in FIG. (x) is obtained by replacing each calculation target position Xj with a position in the real space in the measurement site P. An edge profile represented by a thick solid line graph is calculated based on the equation (3).
Thus, if the shape measuring apparatus Z1 is used, the edge profile of the thin sample such as the wafer 1 can be measured with high accuracy.

[第2発明]
次に,図13を参照しつつ,第2発明の実施形態に係る形状測定装置Z2について説明する。以下,形状測定装置Z2について,前述した形状測定装置Z1と異なる点についてのみ説明する。なお,図13において,図1に示した構成要素と同じものについては,同じ符号を記している。なお,図13(a)は,形状測定装置Z2の平面図(一部ブロック図),図13(b)は,形状測定装置Z2の側面図(一部省略)である。
図13に示すように,形状測定装置Z2は,測定部位Pからの反射光の輝度分布を検出するカメラ20として2台のカメラ20R,20Lを備え,それらが,測定部位Pに対して各々異なる方向に配置されている。以下,それぞれ第1カメラ20R,第2カメラ20Lと称する。これら2台のカメラ20R,20Lは,測定部位Pにおける端面の近傍部分の厚み方向両側の面各々(ウェーハ1の表裏各面の縁部)の二次元の像を撮像するカメラである(前記2つの撮像手段の一例)。
図13に示す例では,2台のカメラ20R,20Lが,基準位置Q(即ち,測定部位P)を基点として90°をなす方向(ウェーハ1の面方向に対して±45°の方向)に配置されている。これにより,両カメラ20R,20L各々は,測定部位Pの全領域(全面)のうちの一部の領域(各々の配置位置から見える領域)で反射した反射光の輝度を検出する。
[Second invention]
Next, the shape measuring apparatus Z2 according to the embodiment of the second invention will be described with reference to FIG. Hereinafter, only the difference between the shape measuring device Z2 and the shape measuring device Z1 will be described. In FIG. 13, the same components as those shown in FIG. 1 are denoted by the same reference numerals. FIG. 13A is a plan view (partially block diagram) of the shape measuring device Z2, and FIG. 13B is a side view (partially omitted) of the shape measuring device Z2.
As shown in FIG. 13, the shape measuring device Z2 includes two cameras 20R and 20L as the camera 20 that detects the luminance distribution of the reflected light from the measurement site P, which are different from each other with respect to the measurement site P. Arranged in the direction. Hereinafter, they are referred to as a first camera 20R and a second camera 20L, respectively. These two cameras 20R and 20L are cameras that capture a two-dimensional image of each of the surfaces on both sides in the thickness direction (edges of the front and back surfaces of the wafer 1) in the vicinity of the end surface of the measurement site P (see 2 above). Example of two imaging means).
In the example shown in FIG. 13, the two cameras 20R and 20L are in the direction of 90 ° with respect to the reference position Q (that is, the measurement site P) (direction of ± 45 ° with respect to the surface direction of the wafer 1). Has been placed. Thereby, each of the cameras 20R and 20L detects the brightness of the reflected light reflected in a part of the entire region (entire surface) of the measurement site P (region visible from each arrangement position).

ところで,図1に示したように,前記形状測定装置Z1においては,全てのLED12の発光部が,前記基準位置Qを含み,ウェーハ1(薄片試料)の面に直交する1つの平面内,即ち,基準位置Q(測定部位P)におけるウェーハ1(薄片試料)の厚み方向の断面を含む平面内に位置するように配置されていた。
一方,図13(b)に示すように,形状測定装置Z2においては,基準位置Q(測定部位P)におけるウェーハ1(薄片試料)の厚み方向の断面を含む平面50の両側のうちの一方に各LED12の点灯位置が,他方にカメラ20(前記光検出手段の一例)の配置位置がそれぞれ位置している。なお,平面50は,基準位置Q(測定部位P)を含み,ウェーハ1(薄片試料)の表裏の面にほぼ直交する平面である。
そして,形状測定装置Z2において,各LED12の点灯位置が並ぶ平面に対し直交する方向から見たときの各LED12及びカメラ20の位置関係(図15(a))は,前記形状測定装置Zにおけるそれらの位置関係(図1(a))と同じである。
この形状測定装置Z2においては,測定部位Pの正面方向においてLED12を連続的に並べても,そのLED12がカメラ20と干渉しないように配置できるため,測定部位Pの正面方向の一部の範囲について,表面形状測定の空間分解能をより高めることができる。
By the way, as shown in FIG. 1, in the shape measuring apparatus Z1, the light emitting portions of all the LEDs 12 include the reference position Q and are in one plane orthogonal to the surface of the wafer 1 (thin sample), that is, , The wafer 1 (thin sample) at the reference position Q (measurement site P) is disposed so as to be located in a plane including a cross section in the thickness direction.
On the other hand, as shown in FIG. 13B, in the shape measuring apparatus Z2, on one of both sides of the plane 50 including the cross section in the thickness direction of the wafer 1 (thin sample) at the reference position Q (measurement site P). The lighting position of each LED 12 is located on the other side, and the arrangement position of the camera 20 (an example of the light detection means) is located on the other side. The plane 50 is a plane that includes the reference position Q (measurement site P) and is substantially orthogonal to the front and back surfaces of the wafer 1 (thin sample).
In the shape measuring device Z2, the positional relationship between the LEDs 12 and the camera 20 when viewed from the direction orthogonal to the plane in which the lighting positions of the LEDs 12 are arranged (FIG. 15A) is the same as those in the shape measuring device Z. This is the same as the positional relationship (FIG. 1A).
In the shape measuring device Z2, even if the LEDs 12 are continuously arranged in the front direction of the measurement site P, the LEDs 12 can be arranged so as not to interfere with the camera 20, so The spatial resolution of surface shape measurement can be further increased.

さらに,形状測定装置Z2は,前述の計算機30の代わりに,実行するプログラムの一部が異なる計算機30’を備えている。
そして,計算機30’は,前述したステップS3(図12参照)において,光照射角度φが変更されるごとに,2台のカメラ20R,20L(前記光検出手段及び前記撮像手段の一例)両方により画像データの撮像(二次元の輝度分布の検出)及び記憶を行うよう制御する。
さらに,計算機30’は,前述したステップS7及びS8(図12参照)において,2台のカメラ20R,20L各々を通じて得られた画像データ(反射光の輝度分布を表すデータ)ごとに,その画像データ及び光の照射角度(推定ピーク時照射角度φpeak)に基づいて,測定部位Pの一部の領域の表面角度θjの分布を算出する。図13に示す例では,計算機30’は,第1カメラ20Rを通じて得た画像データに基づいて,図13に示すウェーハ1の右側の面(一方の面)に近い側の領域の表面角度θjの分布を算出する。同様に,計算機30’は,第2カメラ20Lを通じて得た画像データに基づいて,同ウェーハ1の左側の面(他方の面)に近い側の領域の表面角度θjの分布を算出する。ここで,それら両領域の一部は重複している。
従って,形状測定装置Z2において,ステップS1〜S4の処理により,光照射装置10によって測定部位Pに対して順次異なる照射角度φで光が照射され,さらに,異なる照射角度で光が照射されるごとに,計算機30’により,測定部位Pからの反射光の輝度分布を表す画像データ(撮影画像)が,カメラ20を通じて取得される(前記反射光輝度取得手段の一例)。
Furthermore, the shape measuring apparatus Z2 includes a computer 30 ′ that is different from the computer 30 described above and that has a part of the program to be executed.
The computer 30 ′ uses both the two cameras 20R and 20L (an example of the light detection unit and the imaging unit) every time the light irradiation angle φ is changed in the above-described step S3 (see FIG. 12). Control is performed so that image data is captured (detection of a two-dimensional luminance distribution) and stored.
Further, the computer 30 ′ obtains the image data for each of the image data (data representing the luminance distribution of the reflected light) obtained through the two cameras 20R and 20L in steps S7 and S8 (see FIG. 12). The distribution of the surface angle θj of a partial region of the measurement site P is calculated based on the irradiation angle of light (estimated peak irradiation angle φpeak). In the example shown in FIG. 13, the computer 30 ′ calculates the surface angle θj of the region close to the right surface (one surface) of the wafer 1 shown in FIG. 13 based on the image data obtained through the first camera 20R. Calculate the distribution. Similarly, the computer 30 ′ calculates the distribution of the surface angle θj of the region near the left surface (the other surface) of the wafer 1 based on the image data obtained through the second camera 20L. Here, some of these areas overlap.
Therefore, in the shape measuring apparatus Z2, light is irradiated sequentially on the measurement site P at different irradiation angles φ by the processing of steps S1 to S4, and further, light is irradiated at different irradiation angles. Furthermore, image data (captured image) representing the luminance distribution of the reflected light from the measurement site P is acquired by the computer 30 ′ through the camera 20 (an example of the reflected light luminance acquisition means).

さらに,形状測定装置Z2は,測定部位Pにおける端面の近傍部分(ウェーハ1の表裏各面の縁部)についてウェーハ1の厚みを測定する厚み測定システムを備えている。
前記厚み測定システムは,ウェーハ1の表裏両側それぞれに配置された2つの厚み測定用光源40(40Rと40L)と,前記2つのカメラ20(20Rと20L)と,前記計算機30’とにより実現されている。
前記厚み測定用光源40は,測定部位Pにおける端面の近傍部分の厚み方向両側の面各々(ウェーハ1の表裏各面の縁部)に,十分細くコリメートされたスポット光,又はウェーハ1表面において十分細く集光されたスポット光を照射する光源である。図13には示されていないが,必要に応じてコリメータレンズや集光レンズが光源とウェーハとの間に配置される(前記第2の光照射手段の一例)。
また,前記厚み測定システムの構成要素として機能する前記計算機30’は,前記厚み測定用光源40R,40Lにより光が照射された測定部位Pにおける端面の近傍部分の厚み方向両側の面各々(ウェーハ1の表裏各面の縁部)の像の画像データを2つのカメラ20R,20Lを通じて取得し,取得した画像データに基づいて,前記厚み測定用光源40R,40L各々により照射された光の照射位置(座標)を検出し,その検出位置に基づく三角測量計算を実行することにより,ウェーハ1の厚みDを算出し,算出結果をその記憶部に記録する(前記厚み算出手段の一例)。
図13に示す例は,前記厚み測定用光源40R,40Lそれぞれにより,測定部位Pにおける端面の近傍部分の厚み方向両側の面各々にライン光をほぼ垂直に照射し,その散乱反射光を前記2つのカメラ20R,20Lそれぞれによって受光することにより,ウェーハ1表面の光切断線の像(前記ライン光の像)を得る厚み測定システムの例である。
Furthermore, the shape measuring apparatus Z2 includes a thickness measuring system that measures the thickness of the wafer 1 at the vicinity of the end face at the measurement site P (the edges of the front and back surfaces of the wafer 1).
The thickness measurement system is realized by two thickness measurement light sources 40 (40R and 40L) arranged on both front and back sides of the wafer 1, the two cameras 20 (20R and 20L), and the computer 30 ′. ing.
The light source 40 for thickness measurement is sufficient for the spot light collimated sufficiently thinly on each surface on both sides in the thickness direction (edges of the front and back surfaces of the wafer 1) in the vicinity of the end surface of the measurement site P, or on the surface of the wafer 1 It is a light source that irradiates finely condensed spot light. Although not shown in FIG. 13, a collimator lens and a condenser lens are arranged between the light source and the wafer as needed (an example of the second light irradiation means).
Further, the computer 30 ′ functioning as a component of the thickness measuring system has each surface on both sides in the thickness direction (wafer 1) in the vicinity of the end face of the measurement site P irradiated with the light from the thickness measuring light sources 40R and 40L. The image data of the images of the front and back surfaces of each of the two surfaces are acquired through the two cameras 20R and 20L, and based on the acquired image data, the irradiation positions of the light irradiated by the respective thickness measurement light sources 40R and 40L ( (Coordinate) is detected, and triangulation calculation based on the detected position is executed to calculate the thickness D of the wafer 1, and the calculation result is recorded in the storage unit (an example of the thickness calculation means).
In the example shown in FIG. 13, the thickness measurement light sources 40R and 40L respectively irradiate the surfaces on both sides in the thickness direction in the vicinity of the end face of the measurement site P substantially perpendicularly, and the scattered reflected light is emitted to the 2 This is an example of a thickness measurement system that obtains an image of an optical cutting line on the surface of the wafer 1 (the image of the line light) by receiving light with each of two cameras 20R and 20L.

図14は,形状測定装置Z2における厚み測定の原理を表す概念図である。
形状測定装置Z2においては,前記計算機30’が,テレセントリックレンズを備えた前記カメラ20による撮像画像から光切断線の像(ライン光の像)を抽出し,所定の基準位置(基準座標)に対するその光切断線の像の位置(座標)の所定方向(例えば,X軸方向)におけるずれ量hccd(例えば,X軸方向のずれ量)を検出する。なお,前記基準位置は,ウェーハ1の表面高さが所定の基準高さh0であるときのウェーハ1上の光切断線の位置Ps0の撮像位置である。また,図14において,ウェーハ1上の実際の光切断線の位置はPs1と表記されている。
ここで,ウェーハ1表面の実際の高さh1と前記基準高さh0の差をΔh01,光切断線とカメラ20の光軸とのなす角度をθL,測定部位Pからカメラ20の撮像素子へ至る経路の光学系の倍率をMとすると,Δh01は,次の(4)式に基づいて算出することができる。
Δh01=hccd/(M・sinθL) …(4)
前記計算機30’は,この(4)式を用いて,2つのカメラ20R,20Lそれぞれの撮像画像に基づいて,ウェーハ1両面それぞれの高さΔh01R,Δh01Lを算出する。
FIG. 14 is a conceptual diagram showing the principle of thickness measurement in the shape measuring apparatus Z2.
In the shape measuring device Z2, the computer 30 ′ extracts an image of a light section line (line light image) from an image captured by the camera 20 provided with a telecentric lens, and the image with respect to a predetermined reference position (reference coordinates). A shift amount hccd (for example, a shift amount in the X-axis direction) in a predetermined direction (for example, the X-axis direction) of the position (coordinates) of the image of the light section line is detected. The reference position is an imaging position of the position Ps0 of the optical cutting line on the wafer 1 when the surface height of the wafer 1 is a predetermined reference height h0. Further, in FIG. 14, the actual position of the optical cutting line on the wafer 1 is expressed as Ps1.
Here, the difference between the actual height h1 of the surface of the wafer 1 and the reference height h0 is Δh01, the angle between the optical cutting line and the optical axis of the camera 20 is θ L , and the measurement site P to the image sensor of the camera 20 Assuming that the magnification of the optical system along the path is M, Δh01 can be calculated based on the following equation (4).
Δh01 = hccd / (M · sin θ L ) (4)
The computer 30 ′ calculates the heights Δh01R and Δh01L of the both surfaces of the wafer 1 based on the captured images of the two cameras 20R and 20L using the equation (4).

ところで,2つのカメラ20R,20Lそれぞれについて(即ち,ウェーハ1の表裏各面について),前記基準高さh0を高精度で一致させることは難しい。
そこで,前記計算機30’は,ウェーハ1の厚みD(厚みの測定値)を,予め設定された校正値αを用いて,次の(5)式により算出する。
D = Δh01R − Δh01L + α …(5)
前記校正値αは,当該厚み測定システムにより,予め厚みDが既知の校正用試料について厚み測定を行うことによって予め設定する。
即ち,前記計算機30’により,予め厚みDが既知の校正用試料についての撮像画像に基づいてΔh01R及びΔh01Lを算出するとともに,その算出値を(5)式に適用することによって前記校正値αを算出し,その算出値を記憶部に記録する。
By the way, it is difficult to match the reference height h0 with high accuracy for each of the two cameras 20R and 20L (that is, for the front and back surfaces of the wafer 1).
Therefore, the calculator 30 ′ calculates the thickness D (measured value of the thickness) of the wafer 1 by the following equation (5) using a preset calibration value α.
D = Δh01R−Δh01L + α (5)
The calibration value α is set in advance by measuring the thickness of a calibration sample with a known thickness D by the thickness measurement system.
That is, the calculator 30 ′ calculates Δh01R and Δh01L based on a captured image of a calibration sample whose thickness D is known in advance, and applies the calculated values to the equation (5) to obtain the calibration value α. The calculated value is recorded in the storage unit.

さらに,計算機30’は,前述したステップS6〜S11と同様の処理を実行することにより,ステップS3の処理により取得された各LED12に対応した画像データ(反射光の輝度分布)と,そのLED12によって測定部位Pに照射された光の照射角度φとに基づいて,測定部位Pの表面角度の分布及びエッジプロファイルを演算する(S11,前記表面角度分布演算手段の一例)。
また,計算機30’は,前述したステップS11において,両カメラ20R,20Lに対応する前記一部の領域の表面角度θjの分布(ステップS8の処理での演算結果)の各々に基づいて,その一部の領域各々についてのエッジプロファイル(表面形状)を算出するとともに,それらをつなぎ合わせる処理を行うことによって測定部位P全体のエッジプロファイルを算出する(つなぎ合わせ演算手段の一例)。
或いは,計算機30’は,前述したステップS11において,両カメラ20R,20Lに対応する前記一部の領域の表面角度θjの分布(ステップS8の処理での演算結果)の各々をつなぎ合わせる処理(以下,つなぎ合わせ処理という)を行うことによって測定部位P全体の表面角度分布θjを算出し,その算出結果に基づいて測定部位P全体のエッジプロファイルを算出する(つなぎ合わせ演算手段の一例)。
その際,計算機30’は,前記一部の領域の表面角度θjの分布の演算結果又はその演算結果に基づく前記一部の領域各々についてのエッジプロファイル(表面形状)を,ウェーハ1の厚み方向におけるそれらの相対位置を前記厚み測定システムの測定結果(厚みD)に基づき調整しながら前記つなぎ合わせ処理を実行する。
このように,各領域のエッジプロファイルを求めてからその各々をつなぎ合わせる方法,或いは各領域の表面角度θjの分布をつなぎ合わせてから全領域のエッジプロファイルを求める方法の2通りの方法が考えられる。
形状測定装置Z2によれば,例えば,1台のカメラの視野範囲(光の検出範囲)が±60°程度であっても,一般的なエッジプロファイル測定で必要となる±90°(計180°)の範囲での表面角度分布測定を行うことができる。
Furthermore, the computer 30 ′ executes the same processing as in the above-described steps S6 to S11, whereby the image data (luminance distribution of reflected light) corresponding to each LED 12 obtained by the processing in step S3 and the LED 12 are used. Based on the irradiation angle φ of the light irradiated to the measurement site P, the surface angle distribution and the edge profile of the measurement site P are calculated (S11, an example of the surface angle distribution calculation means).
Further, in step S11 described above, the computer 30 ′ determines one of the distributions of the surface angles θj of the partial areas corresponding to the two cameras 20R and 20L (calculation results in the process of step S8). An edge profile (surface shape) is calculated for each region of the part, and the edge profile of the entire measurement site P is calculated by performing a process of connecting them (an example of a connection calculation unit).
Alternatively, the computer 30 ′ connects the distributions of the surface angles θj of the partial areas corresponding to the two cameras 20R and 20L (calculation results in the process of step S8) in the above-described step S11 (hereinafter referred to as “step S11”). The surface angle distribution θj of the entire measurement site P is calculated by performing a joining process), and the edge profile of the entire measurement site P is calculated based on the calculation result (an example of the joining calculation means).
At that time, the computer 30 ′ calculates the calculation result of the distribution of the surface angle θj of the partial area or the edge profile (surface shape) of each partial area based on the calculation result in the thickness direction of the wafer 1. The joining process is executed while adjusting their relative positions based on the measurement result (thickness D) of the thickness measurement system.
In this way, two methods are conceivable: a method in which the edge profiles of each region are obtained and then connected to each other, or a method in which the distribution of the surface angle θj of each region is joined and the edge profile of the entire region is obtained. .
According to the shape measuring apparatus Z2, for example, even if the field of view range (light detection range) of one camera is about ± 60 °, ± 90 ° (total 180 ° required for general edge profile measurement) ) Surface angle distribution measurement in the range of.

以下,計算機30’による前記つなぎ合わせ処理について説明する。
計算機30’は,前記つなぎ合わせ処理において,両カメラ20R,20L各々に対応する前記一部の領域の重複部分について,各カメラ20R,20Lに対応するエッジプロファイル或いは表面角度θjの分布の差が最小となるように周知のフィッティング処理を実行する。
前記フィッティング処理において,各カメラ20R,20Lに対応するエッジプロファイル或いは表面角度θjの分布の相対位置の調整パラメータとして,ウェーハ1の厚み方向(ここでは,カメラ20R,20Lの撮像画像のX軸方向)のオフセット,及び厚み方向に直交する方向(ここでは,カメラ20R,20Lの撮像画像のY軸方向)のオフセットのそれぞれを調整パラメータとすることが考えられる。
形状測定装置Xにおいては,前記厚み測定システムによって予めウェーハ1の厚みDを測定し,前記厚み方向のオフセットについては,厚みD(測定値)に基づいて調整する。
また,前記フィッティング処理における調整パラメータに,前記厚み方向のオフセット(X軸座標)及びそれに直交する方向のオフセット(Y軸座標)の他,各カメラ20R,20Lに対応するエッジプロファイル或いは表面角度θjの分布の相対的な傾き(角度)を加えることも考えられる。
Hereinafter, the joining process by the computer 30 ′ will be described.
In the joining process, the computer 30 ′ minimizes the difference in the distribution of the edge profiles or surface angles θj corresponding to the cameras 20R and 20L with respect to the overlapping portions of the partial areas corresponding to the cameras 20R and 20L. A known fitting process is executed so that
In the fitting process, the thickness profile of the wafer 1 (here, the X-axis direction of the captured images of the cameras 20R and 20L) is used as an adjustment parameter for the relative position of the distribution of the edge profile or surface angle θj corresponding to each camera 20R and 20L. And the offset in the direction orthogonal to the thickness direction (here, the Y-axis direction of the captured images of the cameras 20R and 20L) can be considered as adjustment parameters.
In the shape measuring apparatus X, the thickness D of the wafer 1 is measured in advance by the thickness measuring system, and the offset in the thickness direction is adjusted based on the thickness D (measured value).
Further, in addition to the offset in the thickness direction (X-axis coordinate) and the offset in the direction orthogonal to the adjustment parameter (Y-axis coordinate) in the fitting process, the edge profile or surface angle θj corresponding to each camera 20R, 20L It is also conceivable to add a relative slope (angle) of the distribution.

図15は,形状測定装置Z2により得られる2台のカメラ各々に対応する表面角度分布及びエッジプロファイルのフィッティング処理前後の状態を表す図である。図15(a)はフィッティング処理前,図15(b)はフィッティング処理後を表す。
また,図中,「表面角度分布R」及び「エッジプロファイルR」と表記するものは,第1カメラ20Rに対応する表面角度θjの分布及びエッジプロファイルを表す。同様に,「表面角度分布L」及び「エッジプロファイルL」と表記するものは,第2カメラ20Lに対応する表面角度θjの分布及びエッジプロファイルを表す。
図15(a)に示すように,第1カメラ20Rに対応する領域の表面角度分布R及びこれに基づくエッジプロファイルRと,第2カメラ20Lに対応する領域の表面角度分布L及びこれに基づくエッジプロファイルLとの間にはずれが生じ得る。
これらの結果を,重複する領域の部分についてフィッティング処理を行うことによってつなぎ合わせれば,図15(b)に示すように,測定部位Pの全領域の表面角度分布(全体)或いはエッジプロファイル(全体)が得られる。
FIG. 15 is a diagram illustrating the state before and after the fitting process of the surface angle distribution and the edge profile corresponding to each of the two cameras obtained by the shape measuring apparatus Z2. FIG. 15A shows before the fitting process, and FIG. 15B shows the after the fitting process.
Further, in the figure, the notations “surface angle distribution R” and “edge profile R” represent the distribution and edge profile of the surface angle θj corresponding to the first camera 20R. Similarly, “surface angle distribution L” and “edge profile L” represent the distribution and edge profile of the surface angle θj corresponding to the second camera 20L.
As shown in FIG. 15A, the surface angle distribution R of the region corresponding to the first camera 20R and the edge profile R based thereon, and the surface angle distribution L of the region corresponding to the second camera 20L and the edge based thereon There may be a deviation from the profile L.
If these results are connected by performing a fitting process on the overlapping region, as shown in FIG. 15B, the surface angle distribution (entire) or edge profile (entire) of the entire region of the measurement site P is obtained. Is obtained.

以下,前記厚み方向オフセット及びそれに直交する方向のオフセット,並びに前記相対的な傾き(角度)を調整パラメータとする前記フィッティング処理の具体例について説明する。なお,前記厚み方向オフセットの調整量をΔXc,厚み方向に直交する方向のオフセットの調整量をΔYc,前記相対的な傾き(角度)の調整量をΔψ(以下,相対角度調整量という)とする。また,以下は,前記エッジプロファイルR及び前記エッジプロファイルLのつなぎ合わせについて説明するが,前記表面角度分布R及び前記表面角度分布Lのつなぎ合わせも同様の処理により実現できる。
計算機30’は,前記相対角度調整量ΔYcを,所定範囲において順次異なる値に設定し,一方の前記エッジプロファイルRを固定した状態で,他方の前記エッジプロファイルLの角度を設定した前記相対角度調整量ΔYcの分だけ補正(修正)する。前記相対角度調整量ΔYcは,例えば,−1°〜+1°の範囲において0.01°刻みで順次設定される値である。
さらに,計算機30’は,前記相対角度調整量ΔYcに従った角度補正を行うごとに,前記エッジプロファイルRと角度補正後の前記エッジプロファイルLとに基づく厚みDx(以下,プロファイル上での厚みという)が,前記厚み測定システムにより予め測定した厚みDと一致するように,前記厚み方向オフセットΔXcを調整する。
図15において,前記厚み方向オフセットΔXcの調整前のプロファイル上での厚みがDx1(=D+ΔXc),同調整後のプロファイル上での厚みがDx2(=D)と表記されている。
Hereinafter, a specific example of the fitting process using the thickness direction offset, the offset in the direction orthogonal thereto, and the relative inclination (angle) as adjustment parameters will be described. The adjustment amount of the thickness direction offset is ΔXc, the adjustment amount of the offset in the direction orthogonal to the thickness direction is ΔYc, and the adjustment amount of the relative inclination (angle) is Δψ (hereinafter referred to as a relative angle adjustment amount). . In the following, the joining of the edge profile R and the edge profile L will be described, but the joining of the surface angle distribution R and the surface angle distribution L can also be realized by the same processing.
The computer 30 ′ sets the relative angle adjustment amount ΔYc to sequentially different values within a predetermined range, and fixes the angle of one edge profile R while the angle of the other edge profile L is set. Correction (correction) is made by the amount ΔYc. The relative angle adjustment amount ΔYc is, for example, a value that is sequentially set in increments of 0.01 ° within a range of −1 ° to + 1 °.
Further, every time the computer 30 ′ performs the angle correction according to the relative angle adjustment amount ΔYc, the computer calculates the thickness Dx (hereinafter referred to as the thickness on the profile) based on the edge profile R and the edge profile L after the angle correction. ) Is adjusted so that the thickness direction offset ΔXc matches the thickness D measured in advance by the thickness measurement system.
In FIG. 15, the thickness on the profile before adjustment of the thickness direction offset ΔXc is expressed as Dx1 (= D + ΔXc), and the thickness on the profile after the adjustment is expressed as Dx2 (= D).

そして,計算機30’は,オフセットΔXcの調整を行うごとに,前記エッジプロファイルR及びオフセットΔXcを調整後の前記エッジプロファイルLの差が最小となるように,オフセットΔYcの調整を行い,そのときの両エッジプロファイルの差ΔPfminを記憶部に記録する。
ここで,両エッジプロファイルの差を表す指標値は,例えば,両エッジプロファイルのウェーハ厚み方向(X軸方向)の重複範囲における,一方のエッジプロファイルR上の各座標位置から他方のエッジプロファイルLまでの距離(エッジプロファイルR上の座標位置に最も接近している部分までの距離)の平均値等である。
最後に,計算機30’は,以上のようにして記録された両エッジプロファイルの差ΔPfminが最小となるときの前記相対角度調整量ΔYc及びオフセットΔXc,ΔYcに従って前記エッジプロファイルLを補正し,補正後の前記エッジプロファイルLと前記エッジプロファイルRとを統合したエッジプロファイルを,測定部位P全体のエッジプロファイルとし,これを記憶部に記録する。
以上に示したつなぎ合わせ処理(フィッティング処理)により,高精度で厚み方向のオフセット調整を行うことができ,その結果,測定部位P全体の表面形状を高い精度で測定できる。
なお,前記校正値α及び前記相対角度調整量Δψは,主としてカメラ20R,20Lの設置誤差に起因するものである。従って,カメラ20R,20Lの位置調整が行われた後,最初に一回だけ前記校正値α及び両エッジプロファイルの差ΔPfminが最小となるときの前記相対角度調整量ΔYcを算出して記憶しておけば,以後はそれらの値を用いて前記つなぎ合わせ処理(フィッティング処理)を行うことができる。
Then, every time the offset ΔXc is adjusted, the computer 30 ′ adjusts the offset ΔYc so that the difference between the edge profile R and the edge profile L after adjusting the offset ΔXc is minimized. The difference ΔPfmin between the two edge profiles is recorded in the storage unit.
Here, the index value representing the difference between both edge profiles is, for example, from each coordinate position on one edge profile R to the other edge profile L in the overlapping range of both edge profiles in the wafer thickness direction (X-axis direction). The average value of the distance (the distance to the portion closest to the coordinate position on the edge profile R) or the like.
Finally, the computer 30 ′ corrects the edge profile L according to the relative angle adjustment amount ΔYc and the offsets ΔXc and ΔYc when the difference ΔPfmin between the two edge profiles recorded as described above is the minimum, and after the correction The edge profile obtained by integrating the edge profile L and the edge profile R is used as the edge profile of the entire measurement site P, and is recorded in the storage unit.
By the joining process (fitting process) described above, offset adjustment in the thickness direction can be performed with high accuracy, and as a result, the entire surface shape of the measurement site P can be measured with high accuracy.
The calibration value α and the relative angle adjustment amount Δψ are mainly caused by installation errors of the cameras 20R and 20L. Therefore, after the position adjustment of the cameras 20R and 20L is performed, the relative angle adjustment amount ΔYc when the calibration value α and the difference ΔPfmin between the two edge profiles is minimized is calculated and stored only once. Then, the joining process (fitting process) can be performed using these values thereafter.

ところで,ウェーハ1は,エッジプロファイル部(面取りされた端面)に近いほど厚みの個体差が大きく,中心に近いほど(エッジプロファイル部から内側へ離れるほど)厚みの個体差が小さい。前記厚み測定システムによる1回の(ある1つのウェーハ1の)測定結果(厚みD)を,複数のウェーハ1の形状測定において共用する場合,個体差の小さい位置で厚み測定を行うことが望ましい。
一方,ウェーハ1の中心に近い位置(端面から離れた位置)では,本発明による形状測定(正反射光の像に基づく形状測定)が難しくなる。
図17は,形状測定の対象であるウェーハ1(半導体ウェーハ)における厚み測定に好適な位置を表す断面図である。なお,図17に示されるエッジプロファイル部の突出寸法(0.5mm)及びウェーハ1の厚み(0.7mm)は一例を表すものである。
経験上,図17に示すように,薄板状(例えば,厚みが0.7mm程度)のウェーハ1の表裏両面(図中の「おもて面」及び「うら面」)におけるエッジプロファイル部(表裏各面のベベル部を含む部分)との境界位置から約1mm内側の位置Qdは,厚みの個体差が比較的小さく,かつ,本発明による形状測定も可能な位置である。
そこで,測定対象(薄片試料)が薄板状の半導体ウェーハ1である場合,前記厚み測定システムにより,そのウェーハ1の表裏両面におけるエッジプロファイル部(端面)との境界位置から約1mm内側の位置Qdに前記厚み測定用光源40の光を照射することにより,その位置Qdにおいてそのウェーハ1の厚みを測定することが望ましい。なお,半導体ウェーハ1のサイズによっては,前記境界位置から約3mm〜約5mm内側の位置でウェーハ1の厚みを測定しても,前記オフセット調整に有効な測定値が得られる。
By the way, as the wafer 1 is closer to the edge profile part (the chamfered end face), the individual difference in thickness is larger, and as the wafer 1 is closer to the center (away from the edge profile part), the individual difference in thickness is smaller. When the measurement result (thickness D) of one time (of a certain wafer 1) by the thickness measurement system is shared in the shape measurement of a plurality of wafers 1, it is desirable to measure the thickness at a position where individual differences are small.
On the other hand, at a position close to the center of the wafer 1 (position away from the end face), shape measurement according to the present invention (shape measurement based on an image of regular reflection light) becomes difficult.
FIG. 17 is a cross-sectional view showing a position suitable for thickness measurement in the wafer 1 (semiconductor wafer) that is the object of shape measurement. Note that the protrusion dimension (0.5 mm) of the edge profile portion and the thickness (0.7 mm) of the wafer 1 shown in FIG. 17 represent an example.
From experience, as shown in FIG. 17, edge profile portions (front and back surfaces) on the front and back surfaces (“front surface” and “back surface” in the figure) of the wafer 1 having a thin plate shape (for example, a thickness of about 0.7 mm). A position Qd that is about 1 mm inside from the boundary position with the bevel portion of each surface) is a position where the individual difference in thickness is relatively small and the shape measurement according to the present invention is also possible.
Therefore, when the object to be measured (thin sample) is a thin semiconductor wafer 1, the thickness measurement system moves the wafer 1 to a position Qd about 1 mm inside from the boundary position with the edge profile portions (end faces) on both the front and back surfaces. It is desirable to measure the thickness of the wafer 1 at the position Qd by irradiating the light of the thickness measuring light source 40. Depending on the size of the semiconductor wafer 1, even if the thickness of the wafer 1 is measured at a position about 3 mm to about 5 mm inside from the boundary position, a measurement value effective for the offset adjustment can be obtained.

図16は,以上に示した形状測定装置Z2の応用例である形状測定装置Z2’(第2発明の実施形態に係る形状測定装置の一例)の概略構成を表す図である。
以下,形状測定装置Z2’について,前述した形状測定装置Z2と異なる点についてのみ説明する。なお,図16において,図1及び図13に示した構成要素と同じものについては,同じ符号を記している。なお,図16(a)は,形状測定装置Z2’の平面図(一部ブロック図),図16(b)は,形状測定装置Z2’の側面図(一部省略)である。
形状測定装置Z2’は,前記形状測定装置Z2に対し,前記厚み測定用光源40(40R,40L)の位置が異なる以外は同じ構成を備えている。
図16に示すように,形状測定装置Z2’における前記厚み測定システムは,前記厚み測定用光源40R,40Lそれぞれにより,測定部位Pにおける端面の近傍部分の厚み方向両側の面各々に対してライン光を斜め方向から照射し,その正反射光を前記2つのカメラ20R,20Lそれぞれによって受光することにより,ウェーハ1表面の光切断線の像(前記ライン光の像)を得る。
このような形状測定装置Z2’においても,前記形状測定装置Z2と同様に,前記計算機30’が2つのカメラ20R,20Lの撮像画像に基づいて簡易な三角測量計算を実行することにより,ウェーハ1の厚みDを算出することができる。
FIG. 16 is a diagram illustrating a schematic configuration of a shape measuring device Z2 ′ (an example of a shape measuring device according to the embodiment of the second invention) which is an application example of the shape measuring device Z2 described above.
Hereinafter, only the difference between the shape measuring device Z2 ′ and the shape measuring device Z2 will be described. In FIG. 16, the same components as those shown in FIGS. 1 and 13 are denoted by the same reference numerals. 16A is a plan view (partially block diagram) of the shape measuring device Z2 ′, and FIG. 16B is a side view (partially omitted) of the shape measuring device Z2 ′.
The shape measuring device Z2 ′ has the same configuration as the shape measuring device Z2 except that the position of the thickness measuring light source 40 (40R, 40L) is different.
As shown in FIG. 16, the thickness measuring system in the shape measuring apparatus Z2 ′ uses line light to each of the surfaces on both sides in the thickness direction in the vicinity of the end surface of the measurement site P by the thickness measuring light sources 40R and 40L. Is irradiated from an oblique direction, and the specularly reflected light is received by the two cameras 20R and 20L, respectively, to obtain an image of the light cutting line on the surface of the wafer 1 (image of the line light).
In such a shape measuring apparatus Z2 ′, similarly to the shape measuring apparatus Z2, the computer 30 ′ executes simple triangulation calculation based on the images taken by the two cameras 20R and 20L, thereby obtaining the wafer 1 Thickness D can be calculated.

また,計算機30’は,LED駆動回路11を通じて複数のLED12を順次切り替えて点灯させる過程(ステップS1〜S5)において,一部のLED12については,各カメラ20R,20Lに対応する複数のLED12を同時に点灯させるよう制御する(切替型光照射手段の一例)。
図13に示すように,円弧上に複数配列されたLED12のうち,第1カメラ20Rに対し,第2カメラ20Lとは反対側に配置されているLED12Rの一部(例えば,LED12Ra)については,その出力光は,ウェーハ1により遮断されて第2カメラ20Lには到達しない(検出されない)。
同様に,第2カメラ20Lに対し,第1カメラ20Rとは反対側に配置されているLED12Lの一部(例えば,LED12La)については,その出力光は,ウェーハ1により遮断されて第2カメラ20Lには到達しない。
そこで,計算機30’は,ステップS2において,第1カメラ20Rに対応する一部のLED(LED12Raなど)と,第2カメラ20Lに対応する一部のLED(LED12Laなど)とが同時に点灯するようLED駆動回路11を制御する。
これにより,測定時間を短縮できる。
なお,図13に示した形状測定装置Z2は,2台のカメラ20を備えるものであるが,3台以上のカメラ20を備えた構成としても,同様の作用効果が得られる。
Further, in the process of sequentially turning on and turning on the plurality of LEDs 12 through the LED drive circuit 11 (steps S1 to S5), the computer 30 ′ simultaneously turns on the plurality of LEDs 12 corresponding to the cameras 20R and 20L for some of the LEDs 12. Control to turn on (an example of a switching type light irradiation means).
As shown in FIG. 13, among the plurality of LEDs 12 arranged on the arc, a part of the LED 12R (for example, LED 12Ra) disposed on the opposite side of the second camera 20L with respect to the first camera 20R is as follows. The output light is blocked by the wafer 1 and does not reach the second camera 20L (not detected).
Similarly, with respect to a part of the LED 12L (for example, the LED 12La) disposed on the opposite side to the first camera 20R with respect to the second camera 20L, the output light is blocked by the wafer 1 and the second camera 20L. Will not reach.
Therefore, in step S2, the computer 30 ′ causes the LEDs corresponding to the first camera 20R (LED12Ra, etc.) and the LEDs corresponding to the second camera 20L (LED12La, etc.) to light up simultaneously. The drive circuit 11 is controlled.
Thereby, the measurement time can be shortened.
The shape measuring apparatus Z2 shown in FIG. 13 includes two cameras 20, but the same operation and effect can be obtained even with a configuration including three or more cameras 20.

以上に示した実施形態では,拡散光源であるLED12をそのまま光源として採用している。このような構成を採用できる理由は,各LED12が,測定部位Pの大きさ(奥行きの長さ)に比べて十分に遠い距離に配置されており,各LED12の光が測定部位Pにおいて平行光とみなせるためである。
一方,LED12等の光源を測定部位Pに近づけて配置する場合,その光源の光を,レンズを用いて平行光とした上で測定部位Pに照射することが望ましい。
また,前述した実施形態では,光源としてLED12を採用しているが,レーザダイオードや白熱電球,蛍光灯など,他の種類の光源を採用してもかまわない。
また,カメラ20は,目的に応じて前述の実施形態とは異なる位置及び向きで設置されることも考えられる。
また,一般的なエッジプロファイル測定では,測定部位P各々について,一次元方向(ウェーハ1の厚み方向)の表面角度分布を測定できれば十分である。このため,測定部位Pからの反射光の輝度を検出する手段として,複数の光電変換素子が一列に(1次元方向に)配列されて構成された一次元の受光器を用いることも考えられる。但し,その場合,前記形状測定装置Z2においては,前記厚み測定システムを構成するカメラ(撮像手段)を別途設ける必要がある。
また,前記形状測定装置X2は,前記厚み測定用光源40と2つのカメラ20R,20Lとを用いて光学的にウェーハ1の厚みを測定する前記厚み測定システムを備えるものであるが,超音波等を利用した非接触式の厚み計を備えた形状測定装置も考えられる。
なお,本発明に係る形状測定装置は,アルミサブストレート,ガラスサブストレートなどの薄片試料についても,同様にエッジプロファイルの測定が可能である。
In the embodiment described above, the LED 12 that is a diffused light source is directly used as a light source. The reason why such a configuration can be adopted is that each LED 12 is arranged at a distance far enough from the size (depth length) of the measurement site P, and the light from each LED 12 is parallel light at the measurement site P. It is because it can be considered.
On the other hand, when a light source such as the LED 12 is disposed close to the measurement site P, it is desirable to irradiate the measurement site P with the light from the light source as parallel light using a lens.
In the above-described embodiment, the LED 12 is used as the light source. However, other types of light sources such as a laser diode, an incandescent bulb, and a fluorescent lamp may be used.
It is also conceivable that the camera 20 is installed at a position and orientation different from those of the above-described embodiment according to the purpose.
In general edge profile measurement, it is sufficient if the surface angle distribution in the one-dimensional direction (the thickness direction of the wafer 1) can be measured for each measurement site P. For this reason, as a means for detecting the brightness of the reflected light from the measurement site P, it is conceivable to use a one-dimensional light receiver in which a plurality of photoelectric conversion elements are arranged in a line (in a one-dimensional direction). However, in that case, in the shape measuring apparatus Z2, it is necessary to separately provide a camera (imaging means) constituting the thickness measuring system.
The shape measuring apparatus X2 includes the thickness measuring system that optically measures the thickness of the wafer 1 using the thickness measuring light source 40 and the two cameras 20R and 20L. A shape measuring device equipped with a non-contact type thickness gauge using the above can also be considered.
In addition, the shape measuring apparatus according to the present invention can measure the edge profile in the same manner for a thin sample such as an aluminum substrate or a glass substrate.

また,前述した実施形態では,測定部位Pからの反射光を直接的にカメラ20に入射させる構成を示した。しかしながら,測定部位Pからの反射光を変向させる光学機器(ミラーなど)を設け,その光学機器により変向された反射光をカメラ20に入射させる構成も考えられる。これにより,光源(LED12)が配置される平面に沿う方向への反射光を検出したい場合に,設置スペースが比較的大きいカメラ20と光源との干渉を回避できる。これにより,光照射角度の範囲を拡大でき,測定部位Pの表面角度の測定範囲をより広げることができる。
また,前述した実施形態における光照射装置10は,複数の光源(LED12)を順次切り替えて点灯させる切替型の光照射装置であった。しかしながら,光照射装置としては,1つ又は比較的少数の光源(LED等)を一の平面内の複数の位置(例えば,光照射装置10において各LED12が配置された位置)各々に順次移動させる光源移動機構を備え,その移動先の各位置で光源を点灯させる移動型の光照射装置も考えられる。このような移動型の光照射装置によっても,前記光照射装置10と同様に,測定部位Pに対して順次異なる照射角度φで光を照射する装置を構成できる。
この移動型の照明装置としては,例えば,基準位置Qを中心とする円弧状にレールと,そのレールに沿ってLED等の光源を移動させる移動機構と,この移動機構によってLEDが予め定められた複数の位置各々に到達したことを検知する位置センサと,光源がその位置センサにより検知される各位置へ順次移動するよう前記移動機構を制御する制御装置とを備えたものが考えられる。
In the above-described embodiment, the configuration in which the reflected light from the measurement site P is directly incident on the camera 20 has been described. However, a configuration in which an optical device (such as a mirror) that changes the reflected light from the measurement site P is provided and the reflected light that is changed by the optical device is incident on the camera 20 is also conceivable. Thereby, when it is desired to detect reflected light in a direction along a plane on which the light source (LED 12) is arranged, interference between the camera 20 and the light source having a relatively large installation space can be avoided. Thereby, the range of the light irradiation angle can be expanded, and the measurement range of the surface angle of the measurement site P can be further expanded.
In addition, the light irradiation device 10 in the above-described embodiment is a switching type light irradiation device that sequentially turns on and turns on a plurality of light sources (LEDs 12). However, as a light irradiation device, one or a relatively small number of light sources (LEDs, etc.) are sequentially moved to a plurality of positions in one plane (for example, positions where the LEDs 12 are arranged in the light irradiation device 10). A moving light irradiation device that includes a light source moving mechanism and lights the light source at each position of the moving destination is also conceivable. Even with such a moving light irradiation device, similarly to the light irradiation device 10, it is possible to configure a device that sequentially irradiates the measurement site P with different irradiation angles φ.
As this movable illumination device, for example, a rail in an arc shape centered on the reference position Q, a moving mechanism for moving a light source such as an LED along the rail, and an LED is predetermined by this moving mechanism It is conceivable to include a position sensor that detects arrival at each of a plurality of positions and a control device that controls the moving mechanism so that the light source sequentially moves to each position detected by the position sensor.

ところで,複数の光源(前述の実施形態ではLED12)を切り替えて測定部位Pに光を照射する光照射装置10を用いる場合,光源それぞれの個体差により,各光源から基準位置Qの測定部位Pに照射される光の光量(強度)にばらつきが生じ得る。そこで,そのばらつきが極力小さくなるよう予め調整することが重要である。
具体的には,測定部位Pが配置される基準位置Qに光センサを配置し,各光源を順次切り替えて点灯させたときに,その光センサで検出される光強度がほぼ一定のレベルとなるように各光源に供給する電力(電圧や電流),即ち,各光源の発光量(発光強度)を予め調整しておく。
例えば,光源がLEDである場合,各LEDに対する電力供給ラインに可変抵抗を設け,この可変抵抗の抵抗値を調整することによって各LEDへの供給電流を予め調整する。或いは,各LEDに対する電力供給をパルス幅変調(PWM)によって制御可能とするパルス幅変調装置を設け,これによって各LEDへの供給電力を予め調整する。
その他,測定部位Pが配置される基準位置Qに反射方向や反射率が既知の反射部材(鏡など)を配置し,各光源を順次切り替えて点灯させたときにカメラ20で検出される光強度のばらつきに基づいて,光源ごとの光強度の補正係数を予め算出して記憶しておくことも考えられる。そして,実際の測定時には,その補正係数に基づく補正後の測定値(光強度分布)を用いて測定する。
以上に示すような調整を行うことにより,光源の特性のばらつきに起因する測定誤差が発生することを回避できる。
By the way, when using the light irradiation device 10 that switches a plurality of light sources (the LEDs 12 in the above-described embodiment) and irradiates the measurement site P with light, the individual light sources change from each light source to the measurement site P at the reference position Q. There may be variations in the amount (intensity) of the irradiated light. Therefore, it is important to adjust in advance so that the variation becomes as small as possible.
Specifically, when a light sensor is disposed at the reference position Q where the measurement site P is disposed, and each light source is sequentially switched and turned on, the light intensity detected by the light sensor becomes a substantially constant level. Thus, the power (voltage or current) supplied to each light source, that is, the light emission amount (light emission intensity) of each light source is adjusted in advance.
For example, when the light source is an LED, a variable resistor is provided on the power supply line for each LED, and the supply current to each LED is adjusted in advance by adjusting the resistance value of the variable resistor. Alternatively, a pulse width modulation device that can control the power supply to each LED by pulse width modulation (PWM) is provided, thereby adjusting the power supplied to each LED in advance.
In addition, the light intensity detected by the camera 20 when a reflecting member (mirror, etc.) having a known reflection direction and reflectance is arranged at the reference position Q where the measurement site P is arranged, and each light source is sequentially switched on. It is also conceivable to calculate and store a light intensity correction coefficient for each light source in advance based on the variation of the light intensity. In actual measurement, measurement is performed using the corrected measurement value (light intensity distribution) based on the correction coefficient.
By performing the adjustment as described above, it is possible to avoid occurrence of a measurement error due to variations in the characteristics of the light source.

本発明は,半導体ウェーハ,ハードディスク用のアルミサブストレートやガラスサブストレート等の薄片試料の形状測定装置への利用が可能である。   The present invention can be applied to a shape measuring apparatus for a thin sample such as an aluminum substrate or a glass substrate for semiconductor wafers and hard disks.

第1発明の実施形態に係る形状測定装置Z1の概略構成図。The schematic block diagram of the shape measuring apparatus Z1 which concerns on embodiment of 1st invention. 光照射角度及び表面角度の定義を表す図。The figure showing the definition of a light irradiation angle and a surface angle. 形状測定装置Z1に採用され得るテレセントリックレンズ方式のカメラの特性を表す図。The figure showing the characteristic of the camera of the telecentric lens system which can be employ | adopted for the shape measuring apparatus Z1. 形状測定装置Z1にテレセントリックレンズ方式のカメラを採用した場合の測定部位の表面角度と光路との関係を模式的に表した図。The figure which represented typically the relationship between the surface angle of a measurement site | part at the time of employ | adopting the camera of a telecentric lens system for the shape measuring apparatus Z1, and an optical path. 形状測定装置Z1により算出された測定部位の表面角度分布及びエッジプロファイルを表すグラフ。The graph showing the surface angle distribution and edge profile of the measurement site | part calculated by the shape measuring apparatus Z1. 形状測定装置Z1に採用され得る非テレセントリックレンズ方式のカメラの特性を表す図。The figure showing the characteristic of the camera of a non-telecentric lens system which can be employ | adopted for the shape measuring apparatus Z1. 形状測定装置Z1に非テレセントリックレンズ方式のカメラを採用した場合の測定部位の表面角度と光路との関係を模式的に表した図。The figure which represented typically the relationship between the surface angle of a measurement site | part at the time of employ | adopting the camera of a non-telecentric lens system for the shape measuring apparatus Z1, and an optical path. 測定部位の形状及び形状測定装置Z1のカメラによる撮影画像の第1例を模式的に表した図。The figure which represented typically the 1st example of the shape of a measurement part, and the picked-up image by the camera of shape measuring apparatus Z1. 測定部位の形状及び形状測定装置Z1のカメラによる撮影画像の第2例を模式的に表した図。The figure which represented typically the 2nd example of the shape of a measurement site | part, and the picked-up image by the camera of shape measuring apparatus Z1. 形状測定装置Z1による撮影画像の一例を表す図。The figure showing an example of the picked-up image by shape measuring apparatus Z1. 所定の演算対象位置における光照射角度と反射光輝度との対応関係の一例を表すグラフ。The graph showing an example of the correspondence of the light irradiation angle in a predetermined calculation target position, and reflected light brightness | luminance. 形状測定装置Z1による測定手順を表すフローチャート。The flowchart showing the measurement procedure by the shape measuring apparatus Z1. 第2発明の実施形態に係る形状測定装置Z2の概略構成を表す図。The figure showing schematic structure of the shape measuring apparatus Z2 which concerns on embodiment of 2nd invention. 形状測定装置Z2における厚み測定の原理を表す概念図。The conceptual diagram showing the principle of the thickness measurement in the shape measuring apparatus Z2. 形状測定装置Z2により得られる2台のカメラ各々に対応する表面角度分布及びエッジプロファイルのフィッティング処理前後の状態を表す図。The figure showing the state before and after the fitting process of the surface angle distribution and edge profile corresponding to each of two cameras obtained by the shape measuring apparatus Z2. 形状測定装置Z2の応用例である形状測定装置Z2’の概略構成を表す図。The figure showing schematic structure of shape measuring apparatus Z2 'which is an application example of shape measuring apparatus Z2. 形状測定の対象である半導体ウェーハにおける厚み測定に好適な位置を表す断面図。Sectional drawing showing the position suitable for the thickness measurement in the semiconductor wafer which is the object of shape measurement.

符号の説明Explanation of symbols

Z1,Z2,Z2’:形状測定装置
1 :ウェーハ
10:光照射装置
11:LED駆動回路
12:LED
13:切り欠き部
20,20R,20L:カメラ
30,30’:計算機
40(40R,40L):厚み測定用光源
50…測定部位におけるウェーハの厚み方向の断面を含む平面
Z1, Z2, Z2 ': Shape measuring device 1: Wafer 10: Light irradiation device 11: LED drive circuit 12: LED
13: Notches 20, 20R, 20L: Cameras 30, 30 ′: Computer 40 (40R, 40L): Light source for thickness measurement 50: a plane including a cross section in the thickness direction of the wafer at the measurement site

Claims (9)

薄片試料の端面の形状を測定する形状測定装置であって,
一の平面内の複数の位置各々で光源を点灯させることにより,前記薄片試料における端面及びその近傍の厚み方向両側の面を含む測定部位に対して順次異なる照射角度で光を照射する第1の光照射手段と,
前記測定部位に対して各々異なる方向に配置され,前記第1の光照射手段の光照射による前記測定部位からの略正反射方向への反射光の一次元若しくは二次元の輝度分布を検出する複数の光検出手段と,
前記第1の光照射手段により順次異なる照射角度で光が照射されるごとに前記測定部位からの反射光の輝度分布を前記光検出手段を通じて取得する反射光輝度取得手段と,
複数の前記反射光輝度取得手段各々により取得された複数の前記反射光の輝度分布ごとに,該反射光の輝度分布及び前記第1の光照射手段により照射された光の照射角度に基づいて,前記測定部位の一部の領域の表面角度の分布を演算する表面角度分布演算手段と,
前記測定部位における前記厚み方向両側の面の部分について前記薄片試料の厚みを測定する厚み測定手段と,
前記表面角度分布演算手段による前記一部の領域の表面角度の分布の演算結果に基づく前記一部の領域の表面形状各々を,前記薄片試料の厚み方向におけるそれらの相対位置を前記厚み測定手段の測定結果に基づき調整してつなぎ合わせる処理を実行することにより,前記測定部位全体の表面形状を演算するつなぎ合わせ演算手段と,
を具備してなることを特徴とする形状測定装置。
A shape measuring device for measuring the shape of the end face of a thin sample,
By illuminating the light source at each of a plurality of positions in one plane, light is sequentially irradiated at different irradiation angles to the measurement site including the end surface of the thin sample and the surfaces on both sides in the thickness direction in the vicinity thereof. Light irradiation means;
A plurality of one-dimensional or two-dimensional luminance distributions that are arranged in different directions with respect to the measurement part and detect reflected light in a substantially regular reflection direction from the measurement part by light irradiation of the first light irradiation means. Light detection means,
Reflected light luminance acquisition means for acquiring the luminance distribution of the reflected light from the measurement site through the light detection means each time light is sequentially irradiated at different irradiation angles by the first light irradiation means;
For each of the plurality of reflected light luminance distributions acquired by each of the plurality of reflected light luminance acquisition means, based on the luminance distribution of the reflected light and the irradiation angle of the light emitted by the first light irradiation means, Surface angle distribution calculating means for calculating the distribution of the surface angle of a partial region of the measurement site;
A thickness measuring means for measuring the thickness of the thin sample with respect to the portions on both sides in the thickness direction in the measurement site;
The surface angle distribution of the surface shape of each of said partial region based on the operation result of the distribution of the surface angle of the partial region said by the computing means, the thickness measuring means and their relative positions in the thickness direction of the thin sample by performing the measurements on the basis of the adjustment to piece together process, and joining means for calculating a front surface shape of the entire measurement site,
A shape measuring apparatus comprising:
前記光検出手段が,前記測定部位における前記厚み方向両側の面各々の二次元の像を撮像する2つの撮像手段を含み,
前記厚み測定手段が,
前記測定部位における前記厚み方向両側の面各々に光を照射する第2の光照射手段と,
前記第2の光照射手段により光が照射された前記測定部位における前記厚み方向両側の面各々の像を前記2つの撮像手段を通じて取得し,取得した像に基づいて光の照射位置を検出することにより前記薄片試料の厚みを算出する厚み算出手段と,
を具備してなる請求項1に記載の形状測定装置。
The light detection means includes two imaging means for capturing a two-dimensional image of each surface on both sides in the thickness direction of the measurement site;
The thickness measuring means is
Second light irradiating means for irradiating each of the surfaces on both sides in the thickness direction of the measurement site;
Acquiring images of the surfaces on both sides in the thickness direction of the measurement site irradiated with light by the second light irradiation means through the two imaging means, and detecting a light irradiation position based on the acquired images; Thickness calculating means for calculating the thickness of the flake sample by
The shape measuring apparatus according to claim 1, comprising:
前記表面角度分布演算手段が,前記光検出手段の光検出範囲における複数の演算対象位置各々について,前記光の照射角度と前記反射光の輝度との対応関係に基づいて前記反射光の輝度がピークとなるときの前記光の照射角度を推定する演算を行うことにより,前記演算対象位置各々の表面角度を算出してなる請求項1又は2のいずれかに記載の形状測定装置。   The surface angle distribution calculating unit has a peak luminance of the reflected light based on a correspondence relationship between the irradiation angle of the light and the luminance of the reflected light for each of a plurality of calculation target positions in the light detection range of the light detecting unit. The shape measuring apparatus according to claim 1, wherein a surface angle at each of the calculation target positions is calculated by performing an operation for estimating an irradiation angle of the light when 前記第1の光照射手段が,前記一の平面内の複数の位置各々に配置された複数の光源を順次切り替えて点灯させることにより,前記測定部位に対して順次異なる照射角度で光を照射する切替型光照射手段である請求項1〜3のいずれかに記載の形状測定装置。   The first light irradiating means sequentially illuminates the measurement site with different irradiation angles by sequentially switching and lighting a plurality of light sources arranged at a plurality of positions in the one plane. The shape measuring device according to any one of claims 1 to 3, wherein the shape measuring device is a switching type light irradiation means. 前記切替型光照射手段における複数の光源が,前記測定部位の配置位置を中心とする円弧上に配置されてなる請求項4に記載の形状測定装置。   The shape measuring apparatus according to claim 4, wherein the plurality of light sources in the switchable light irradiating means are arranged on an arc centered at the arrangement position of the measurement site. 複数の前記光検出手段が,前記測定部位を基点として約90°をなす方向に配置された2つの光検出手段である請求項1〜5のいずれかに記載の形状測定装置。   The shape measuring apparatus according to claim 1, wherein the plurality of light detecting means are two light detecting means arranged in a direction of about 90 ° with the measurement site as a base point. 前記薄片試料が薄板状の半導体ウェーハであり,
前記厚み測定手段が,前記半導体ウェーハの表裏両面におけるベベル部との境界位置から略1mm内側の位置において前記半導体ウェーハの厚みを測定してなる請求項1〜6のいずれかに記載の形状測定装置。
The thin sample is a thin semiconductor wafer,
The shape measuring apparatus according to claim 1, wherein the thickness measuring unit measures the thickness of the semiconductor wafer at a position approximately 1 mm inside from a boundary position between the front and back surfaces of the semiconductor wafer and a bevel portion. .
薄片試料の端面の形状を測定する形状測定方法であって,
一の平面内の複数の位置各々で光源を点灯させる第1の光照射手段により,前記薄片試料の端面及びその近傍の厚み方向両側の面を含む測定部位に対して順次異なる照射角度で光を照射する第1の光照射工程と,
前記測定部位に対して各々異なる方向に配置された光検出手段により,前記第1の光照射工程の光照射による前記測定部位からの略正反射方向への反射光の一次元若しくは二次元の輝度分布を検出する光検出工程と,
前記第1の光照射工程により順次異なる照射角度で光が照射されるごとに前記測定部位からの反射光の輝度分布を前記光検出工程の実行により取得する反射光輝度取得工程と,
前記反射光輝度取得工程により取得された複数の前記反射光の輝度分布ごとに,該反射光の輝度分布及び前記第1の光照射工程により照射された光の照射角度に基づいて,前記測定部位の一部の領域の表面角度の分布を演算する表面角度分布演算工程と,
所定の厚み測定手段により前記測定部位における前記厚み方向両側の面の部分について前記薄片試料の厚みを測定する厚み測定工程と,
所定の演算手段により,前記表面角度分布演算工程による前記一部の領域の表面角度の分布の演算結果に基づく前記一部の領域の表面形状各々を,前記薄片試料の厚み方向におけるそれらの相対位置を前記厚み測定工程の測定結果に基づき調整してつなぎ合わせる処理を実行することにより,前記測定部位全体の表面形状を演算するつなぎ合わせ演算工程と,
を実行してなることを特徴とする形状測定方法。
A shape measuring method for measuring the shape of an end face of a thin sample,
The first light irradiation means for turning on the light source at each of a plurality of positions in one plane emits light at different irradiation angles sequentially with respect to the measurement site including the end surface of the thin sample and the surfaces on both sides in the thickness direction in the vicinity thereof. A first light irradiation step of irradiating;
One-dimensional or two-dimensional luminance of reflected light from the measurement site in a substantially regular reflection direction by light irradiation in the first light irradiation step by light detection means arranged in different directions with respect to the measurement site. A light detection process for detecting the distribution;
A reflected light luminance acquisition step of acquiring a luminance distribution of reflected light from the measurement site by execution of the light detection step each time light is irradiated at sequentially different irradiation angles in the first light irradiation step;
For each of the plurality of reflected light luminance distributions acquired by the reflected light luminance acquisition step, the measurement site is based on the luminance distribution of the reflected light and the irradiation angle of the light irradiated by the first light irradiation step. A surface angle distribution calculating step for calculating the distribution of the surface angle of a part of the area,
A thickness measuring step of measuring the thickness of the thin sample with respect to portions on both sides in the thickness direction in the measurement site by a predetermined thickness measuring means;
By a predetermined calculation means, the said surface shape of each of the partial region based on the operation result of the distribution of the surface angle of the partial region by the surface angle distribution calculating step, thereof in the thickness direction of the thin sample relative by executing the processing position joining adjusted based on the measurement result of the thickness measuring step, and joining calculating step of calculating a front surface shape of the entire measurement site,
The shape measuring method characterized by performing.
前記光検出手段が,前記測定部位における前記厚み方向両側の面各々の二次元の像を撮像する2つの撮像手段を含み,
前記厚み測定工程において,
所定の第2の光照射手段により前記測定部位における前記厚み方向両側の面各々に光を照射する第2の光照射工程と,
前記第2の光照射工程により光が照射された前記測定部位における前記厚み方向両側の面各々の像を前記2つの撮像手段を通じて取得し,取得した像に基づいて光の照射位置を検出することにより前記薄片試料の厚みを算出する処理を所定の演算手段により実行する厚み算出工程と,
を実行してなる請求項8に記載の形状測定方法。
The light detection means includes two imaging means for capturing a two-dimensional image of each surface on both sides in the thickness direction of the measurement site;
In the thickness measurement step,
A second light irradiating step of irradiating each surface on both sides in the thickness direction of the measurement site with a predetermined second light irradiating means;
Acquiring images of the surfaces on both sides in the thickness direction of the measurement site irradiated with light in the second light irradiation step through the two imaging means, and detecting a light irradiation position based on the acquired images; A thickness calculating step of performing a process of calculating the thickness of the flake sample by a predetermined calculating means;
The shape measuring method according to claim 8, wherein:
JP2007144185A 2007-05-30 2007-05-30 Shape measuring device and shape measuring method Active JP4897573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007144185A JP4897573B2 (en) 2007-05-30 2007-05-30 Shape measuring device and shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007144185A JP4897573B2 (en) 2007-05-30 2007-05-30 Shape measuring device and shape measuring method

Publications (2)

Publication Number Publication Date
JP2008298546A JP2008298546A (en) 2008-12-11
JP4897573B2 true JP4897573B2 (en) 2012-03-14

Family

ID=40172203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007144185A Active JP4897573B2 (en) 2007-05-30 2007-05-30 Shape measuring device and shape measuring method

Country Status (1)

Country Link
JP (1) JP4897573B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256217A (en) * 2009-04-27 2010-11-11 Kobe Steel Ltd Shape inspection device and shape inspection method
JP2011145171A (en) * 2010-01-14 2011-07-28 Nikon Corp Shape detection device
US8629902B2 (en) * 2010-10-12 2014-01-14 Kla-Tencor Corporation Coordinate fusion and thickness calibration for semiconductor wafer edge inspection
NL2019007A (en) * 2016-06-13 2017-12-20 Asml Netherlands Bv Methods and apparatus for determining the position of a target structure on a substrate, methods and apparatus for determining the position of a substrate
CN115325956B (en) * 2022-10-17 2023-02-03 南昌昂坤半导体设备有限公司 Wafer warping degree measuring method
CN117450955B (en) * 2023-12-21 2024-03-19 成都信息工程大学 Three-dimensional measurement method for thin object based on space annular feature

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797022B2 (en) * 1989-09-11 1995-10-18 株式会社東芝 Shape measuring device, shape measuring method, and calibration method of shape measuring device
JP3321207B2 (en) * 1992-09-18 2002-09-03 三菱レイヨン株式会社 Dimension measuring device
JP3186634B2 (en) * 1997-03-18 2001-07-11 トヨタ自動車株式会社 Method and apparatus for processing captured images by multi-stage illumination
JP2000304520A (en) * 1999-04-23 2000-11-02 Matsushita Electric Works Ltd Shape measuring apparatus and shape measuring method of solder fillet
JP2003075124A (en) * 2001-09-06 2003-03-12 Okamoto Machine Tool Works Ltd Thickness measuring device of wafer
JP4740826B2 (en) * 2006-02-23 2011-08-03 株式会社神戸製鋼所 Shape measuring device and shape measuring method

Also Published As

Publication number Publication date
JP2008298546A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP4740826B2 (en) Shape measuring device and shape measuring method
KR100753885B1 (en) Image obtaining apparatus
US10455137B2 (en) Auto-focus system
US8243285B2 (en) Inspection system and method
JP4897573B2 (en) Shape measuring device and shape measuring method
CN106933071B (en) Focusing leveling device and method
EP3686550A1 (en) Three-dimensional shape measuring apparatus
KR20130045351A (en) Apparatus and method for three dimensional inspection of wafer saw marks
US20140354797A1 (en) Calibration block for measuring warpage, warpage measuring apparatus using the same, and method thereof
KR20120038072A (en) Inspection apparatus and compensating method thereof
JP4877100B2 (en) Mounting board inspection apparatus and inspection method
US9594028B2 (en) Method and apparatus for determining coplanarity in integrated circuit packages
JP5291140B2 (en) Shape measuring device and shape measuring method
JP2010256151A (en) Shape measuring method
JP2013228264A (en) Protrusion height measuring apparatus
JP3609325B2 (en) 3D measuring device
JP2007285778A (en) Distance measuring method and surface shape measuring device
JP2004006504A (en) Bump inspection method and apparatus
JP2010256217A (en) Shape inspection device and shape inspection method
US9841299B2 (en) Position determining device, position determining method, lithographic apparatus, and method for manufacturing object
KR20130022415A (en) Inspection apparatus and compensating method thereof
JP5280918B2 (en) Shape measuring device
KR20120086333A (en) High speed optical inspection system with adaptive focusing
KR20170047140A (en) Inspection apparatus
KR101005076B1 (en) Apparatus and method for detecting bump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4897573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3