JP5350472B2 - トピックに関する複数の製品にランクを付ける製品ランク付け方法及び製品ランク付けシステム - Google Patents

トピックに関する複数の製品にランクを付ける製品ランク付け方法及び製品ランク付けシステム Download PDF

Info

Publication number
JP5350472B2
JP5350472B2 JP2011514785A JP2011514785A JP5350472B2 JP 5350472 B2 JP5350472 B2 JP 5350472B2 JP 2011514785 A JP2011514785 A JP 2011514785A JP 2011514785 A JP2011514785 A JP 2011514785A JP 5350472 B2 JP5350472 B2 JP 5350472B2
Authority
JP
Japan
Prior art keywords
snippet
product
topic
relevance
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011514785A
Other languages
English (en)
Other versions
JP2011530729A (ja
Inventor
シルマン、マイケル
チャンドラン、ラジェッシュ
Original Assignee
ワイズ テクノロジーズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ワイズ テクノロジーズ インコーポレイテッド filed Critical ワイズ テクノロジーズ インコーポレイテッド
Publication of JP2011530729A publication Critical patent/JP2011530729A/ja
Application granted granted Critical
Publication of JP5350472B2 publication Critical patent/JP5350472B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/951Indexing; Web crawling techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Development Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Finance (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Databases & Information Systems (AREA)
  • Accounting & Taxation (AREA)
  • Educational Administration (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Description

本発明は、電子的なデータ、例えばユーザ貢献型のオンラインコンテンツで利用できる情報を用いて、製品の異なる側面に基づき製品の品質を評価する製品ランク付け方法及び製品ランク付けシステムに関する。
関連出願
本願は、「System and Method for Aggregating and Summarizing Product/Topic Sentiment」を発明の名称とする、2008年6月19日に出願された米国仮特許出願第61/074061号の利益及び優先権を主張し、この米国仮特許出願文献は、引用することにより、本願に完全に援用される。
消費者は、製品の購入決定をするために他の人の意見を使うのを好む。従来、消費者は、製品の購入判断をするのに、限られた情報源、例えば家族、友人、販売員、従来からの印刷物あるいは放送媒体を利用することができた。インターネットを用いて、電子データにアクセスすることができるようになり、消費者は、製品の購入判断をするのに役立つ情報にアクセスできるようになった。この情報は、様々な形式、例えば製品情報のあるウェブページ、ブログ若しくはフォーラムでの製品レビュー、又はオンラインビデオクリップ等によって利用することができる。このような情報は、調査をするための様々な情報源を消費者に提供する。ある消費者が探している製品の種類や製品の目的に関係なく、多くの人々が、既にその目的で製品を購入していたり、広範囲にその製品を使用していたり、公衆アクセス可能な電子媒体のフォーラムで彼らの意見を表現していたりする確率が高い。
しかしながら、かなり多くの関連情報が、ある目的のために製品に関連があり、利用できる一方、その情報は、多くの情報源の間に分布されていることがあり、また、各情報源は、異なるフォーマットでその情報を提供している場合がある。この情報の多様な内容によって、製品カテゴリ内で製品の一貫した意見を集めて、数十又は数百の製品の中から購入判断対象を絞り込んで、最終的に、購入する1つの製品に落とし込むことは、個人にとって、困難なものとなっている。
本発明の製品ランク付け方法及び製品ランク付けシステムは、トピックに関して製品の品質を評価することを可能にする。製品のランク付けは、テキストドキュメントのスニペット内で利用可能な情報に基づいて決定される。スニペットは、トピックに対する各スニペットの関連性の評価、トピックに関する各スニペットの感想の評価及び各スニペットの信頼性の評価を決定するために解析される。トピックに関する製品の集約品質スコア(aggregate quality score)は、スニペットの関連性の評価、感想の評価及び信頼性の評価を含む、各スニペットに関連した要素に基づいて決定される。
一実施の形態において、テキストのスニペットは、製品の情報を含むドキュメントをオンライン情報源から集約することによって得られる。テキストのスニペットは、トピックに関して製品を記述するテキストの一部に相当する。スニペットの関連性の評価は、トピックを記述した用語を有するスニペットを識別し、特定されたスニペットを処理することによって計算される。トピックに関してスニペットの関連性を表現する特徴ベクトルは、特定された各スニペットに対して計算される。特定された各スニペットの関連性スコア(relevance score)は、スニペットに関連した特徴ベクトルの統計解析に基づいて決定される。他の実施の形態において、特徴ベクトルの成分は、トピックを記述するテキストパターンと一致させることによって計算される。
一実施の形態において、トピックに関する各スニペットの感想の評価は、トピックを記述した用語を有するスニペットを特定し、各スニペットを処理することによって決定される。特徴ベクトルは、スニペット毎に計算される。特徴ベクトルの成分は、スニペット内で記述される感想に基づいて決定される。特定されたスニペットの特徴ベクトルの統計解析は、スニペット毎に感想スコア(sentiment score)を決定するために実行される。
スニペットの信頼性の評価は、スニペット内の情報の信頼性を示す情報に基づいて決定される。スニペットの信頼性の評価は、トピックの書き手の信頼性、情報源の信頼性、役に立つ情報又は役に立たない情報の数を特定してユーザから受け取るフィードバック及びスニペットの長さを含む要素に基づいて決定される。
トピックに関する製品の全体的な品質スコアは、各スニペットに対応する投票数の評価の集約値(aggregate value)として決定される。スニペットに対応する投票数は、スニペットによって決定されるので、トピックに関して製品の品質を示す。他の実施の形態において、全体的な品質スコアの計算は、他の要素、例えば各スニペットの寿命(age)を含んでいる。
ここで記述され、及び以下の詳細な説明で記述される特徴及び効果は、全てが含まれるものではない。多くの付加された特徴及び効果は、図面、明細書及びクレームを考慮することにより当業者とって明らかにされる。
サーバ及び/又はクライアントとして用いるコンピュータの例を示すハイレベルのブロック図である。 本発明の一実施の形態に基づいて、製品/トピックの感想を集約及び要約するシステムの主要なサブシステムを示すシステムアーキテクチャ図である。 本発明の一実施の形態に基づいて、図2に示す各サブシステムの様々な構成要素を示すシステムアーキテクチャ図である。 本発明の一実施の形態に基づいて、製品/トピックの感想を集約及び要約する処理を示すハイレベルのフローチャートである。 本発明の一実施の形態に基づいて、製品/トピックの品質基準(quality metrics)を計算するために、集約されたデータを解析する処理を示すフローチャートである。 本発明の一実施の形態に基づいて、テキストのスニペットの関連性スコア(relevance score)を計算する処理を示すフローチャートである。 本発明の一実施の形態に基づいて、テキストのスニペットの感想スコア(sentiment score)を計算する処理を示すフローチャートである。 本発明の一実施の形態に基づいて、テキストのスニペットの信頼性スコア(credibility score)を計算する処理を示すフローチャートである。 本発明の一実施の形態に基づいて、製品/トピックの品質スコアを計算する処理を示すフローチャートである。 本発明の一実施の形態に基づいて、製品/トピックの品質スコアに関連付けられた情報を示すグラフィカルユーザインタフェースを示す図である。
これらの図は、説明だけの目的で、本発明の様々な実施の形態を示している。当業者であれば、ここに説明する構造及び方法の他の実施の形態を、ここに説明する発明の原理を逸脱することなく、採用できることは、以下の説明から容易に理解することができる。
図1は、一実施の形態に基づくクライアント及び/又はサーバとして用いる代表的なコンピュータ100の機能を示すハイレベルのブロック図である。少なくとも1個のプロセッサ110がバス145に接続されていることが示されている。また、メモリ115と、記憶装置130と、キーボード135と、グラフィックアダプタ120と、ポインティングデバイス140と、ネットワークアダプタ125とがバス145に接続されている。ディスプレイ105は、グラフィックアダプタ120に接続されている。
プロセッサ110は、任意の汎用プロセッサ、例えばインテル製x86互換CPUである。一実施の形態において、記憶装置130は、ハードディスクドライブであるが、データを記憶することが可能な任意の他の装置、例えば書き込み可能なコンパクトディスク(CD)、デジタルビデオディスク(DVD)及び/又は半導体メモリであってもよい。メモリ115は、例えばファームウェア、リードオンリメモリ(ROM)、ランダムアクセスメモリ(RAM)又は不揮発性RAM(NVRAM)であってもよく、プロセッサ110によって用いられる命令及びデータを格納する。ポインティングデバイス140は、マウス、トラックボール又は他の種類のポインティングデバイスであってもよく、コンピュータ100にデータを入力するキーボード135と組み合わせて用いられる。グラフィックアダプタ120は、ディスプレイ105上に画像及び他の情報を表示させる。ネットワークアダプタ125は、コンピュータ100をネットワークに接続させる。
技術的に知られているように、コンピュータ100は、コンピュータプログラムモジュールを実行する。本明細書で用いる場合、用語「モジュール」は、特定の機能を働かせる、コンピュータのプログラム論理及び/又はデータのことを指す。モジュールは、ハードウェア、ファームウェア及び/又はソフトウェアの形で、コンピュータ100に実装される。一実施の形態において、モジュールは、記憶装置130に格納され、メモリ115にロードされ、プロセッサ110によって実行される。
一実施の形態において利用されるコンピュータ100の種類は、その実施の形態、及び構成要素(entity)によって利用される処理パワーによって変わる。例えば、クライアントが必要とする処理パワーは、通常、サーバよりも低い。したがって、クライアントは、標準的なパーソナルコンピュータシステム又は携帯型電子機器とすることができる。対照的に、サーバは、本明細書で説明する機能を実現するために、より高性能のコンピュータ及び/又は連携して動作する複数のコンピュータから構成される。また、コンピュータ100は、上述した構成要素のうちのいくつかがなくてもよい。例えば、クライアントとして動作する携帯電話には、ポインティングデバイスがなくてもよく、サーバとして動作するコンピュータには、キーボード及びディスプレイがなくてもよい。
図2は、一実施の形態に基づいて、製品/トピックの感想を集約及び要約する(aggregating and summarizing)製品ランク付けシステム200を構成する主要なサブシステムを示す図である。以下、これらのサブシステムをモジュールとも呼ぶ。集約サブシステム(aggregation subsystem)230は、例えばワールドワイドウェブ(以下、単に「ウェブ」ともいう。)全体に亘って分散している様々な情報源250から、多様な製品情報を収集する。情報源250の例として、製品仕様205、価格情報210、レビュー215、ブログ投稿記事(blog posts)220又はフォーラム投稿記事(forum posts)225がある。情報源の他の例として、ソーシャルネットワークの会員によって投稿されたステータスメッセージ、ユーザの共有注釈(shared annotations)、例えばブックマーク、ニース記事(news articles)等がある。情報を表現するウェブサイト全体に亘って用いられる唯一の代表的規格があるわけではなく、また、情報が絶えず変化しているので、多数の製品カテゴリに亘って異なる情報源から得た情報を処理することは難しい作業(challenging)である。一般的には、製品の品質解析の正確さは、処理のために使われたデータの量及び多様性によって向上する。より多くの多様なデータを収集することにより、顧客満足度、感想及びインターネット全体に亘る製品の広範囲の良好な評価が得られる。
情報の関連性に関する部分は、情報源250の多様な集合から検索されて、格納されたデータから抽出される。例えば、製品関連のブログ投稿記事を検索するときには、集約サブシステム230は、ブログ投稿記事のテキストを格納するが、そのウェブページ上のブログナビゲーションヘッダ(blog navigation headers)又は広告は格納しない。集約サブシステム230によって集約された製品情報は、1つの統一表現に正規化(normalized)することができる。例えば、製品は、多様な情報源250に亘って、様々な名称及び略称(nicknames)で呼ばれることがある。異なる製品のそれぞれには、固有の識別子が割り当てられる。各製品は、その製品について収集された情報に加えて、製品カテゴリに関連付けられる。
解析サブシステム235は、収集された情報を利用し、品質に基づいて又はトピックによって、製品をランク付けする(後述する)。製品は、製品レビューの集合が与えられた製品の総体的な品質判定によって決定したそれらの全体の品質に基づいて、ランク付けすることができる。製品は、トピックと呼ばれる製品の特定の側面、例えば製品の特徴、属性、使用法又はユーザの人物像(personas)に基づいて、ランク付けすることができる。例えば、特定のデジタルカメラは、特に軽量かつコンパクトであるが、バッテリ寿命はひどく短いということがある。あるいは、製品の品質は、特定の使用法又は用途に対する製品の適合性に基づいて、ランク付けすることができる。例えば、水中写真用にとても適しているカメラは、ポートレート撮影には適しておらず、その逆もそうである。製品は、特定のタイプのユーザ(人物像とも称される)に対する製品の適合性に基づいて、ランク付けすることができる。例えば、プロのカメラマンに適しているカメラは、初心者ユーザには適しておらず、その逆もそうである。
表示サブシステム240は、ユーザインタフェースによって、ユーザに解析された情報を表示する。ユーザインタフェースによって、ユーザは、価格、特徴、属性、用途、人物像について製品のフィルタリングを容易に行うことができる。例えば、ユーザが200ドル未満で、バッテリの持ちがよく、お母さん向けの5メガピクセルのカメラを探している場合、ユーザは、ユーザインタフェースによって、製品のこれらの側面の全てについてフィルタをかけることができる。ユーザインタフェースによって、ユーザは、様々な基準に従って製品を比較することができる。上述の例では、ユーザが、基準の集合を有し、3つの異なる候補の製品のうちのいずれかに決定しようとする場合、ユーザは、候補のカメラを、カメラを選択するのに用いる基準によって、比較することができる。ユーザインタフェースによって、ユーザは、ランキングに対応する簡単な品質判定(summary quality judgments)の背後にある個々の詳細な意見をブラウズすることができる。例えば、ユーザが、あるカメラがなぜお母さん向けとして高い評価なのかを知りたい場合、そのカメラを持っているお母さんの経験を記述したレビュー及び投稿記事にフィルタをかけることは容易である(肯定的感想、否定的感想又は全ての感想)。
図3は、製品ランク付けシステム200の様々な構成要素を示しており、本発明の一実施の形態に基づいて、図2に示す様々なサブシステムの詳細を含むシステムアーキテクチャ図である。集約サブシステム230は、ユニフォームレコードロケータ(以下、URLという。)リポジトリ300と、ドキュメント格納装置330と、正規化データ格納装置305と、URLサーバ310と、ドキュメントプロセッサ315と、フェッチャ(fetcher)325と、コンテンツ抽出装置320とを備える。製品ランク付けシステム200は、拡張性又は信頼性を目的として、特定の構成要素、例えばURLサーバ310、フェッチャ325、ドキュメントプロセッサ315又はドキュメント格納装置330の複数のインスタンスを走らせることができる。
URLリポジトリ300は、製品ランク付けシステム200が辿ったURLのリストを収容する。URLは、ウェブページを取り出す出発点としての種(seed)URLとして提供され、あるいはドキュメントプロセッサ315によってポピュレートされる(populated)。URLサーバ310は、ウェブページがフェッチャ325によって取得されるシーケンス及びタイミングを規定する。URLサーバ310は、変更の頻度、製品の新しさ、問題の製品寿命に基づいて予め計算された新しいコンテンツ(例えばレビュー記事及び更新された製品価格)の到着の傾向を含むシーケンス及びタイミングを規定する様々な基準(metrics)を用いる。例えば、新製品は、その発売日(release date)の直後の期間に、より多くのレビューを得る傾向あるが、製品の種類によっては、古い製品ほど、新しいレビューを得る機会が少ない。URLサーバ310は、異なるURL及びそれらの内容の比較に基づいて、URLの正規化及び最小化(minimization)を実行する。類似した内容を示すURLは、URLのより単純な表現にマージすることができる。フェッチャ325は、URLサーバ310からURLを取得し、取得されたURLに対してハイパーテキスト転送プロトコル(HTTP)要求を発行し、検索されたページコンテンツをドキュメント格納装置330に格納する。ドキュメント格納装置330により、正規化URLに基づくページコンテンツの高速記憶及び検索(fast storage and lookup)が可能となる。一実施の形態において、高速検索は、ページコンテンツのハッシュベース又は他の索引付け(indexing)によって達成することができる。ドキュメント格納装置330により、ドキュメントプロセッサ315は、ドキュメントに注釈を付けることができる。ドキュメントプロセッサ315は、ドキュメント格納装置330内のドキュメントを調べ、調査したドキュメントを抽出及び/又は増やす(augments)。ドキュメントプロセッサ315は、コンテンツ抽出、URL抽出(URLリポジトリ300に保管する新しいURLの取得)を含む機能を実行することができる。正規化データ格納装置305は、解析サブシステム235及び表示サブシステム240によって消費(consumption)に適した、ウェブから取得されたデータの整理された表現(cleaned representation)を含んでいる。コンテンツ抽出装置320は、ユーザに提示できる製品の品質スコア(quality scores)を計算するのに関連したコンテンツを抽出する。ウェブサイトは、その構成を変えることがあり、また、ユーザが作成したコンテンツは、新しいコンテンツ、編集等のために、ページからページに移動されることがあるので、コンテンツ抽出装置320は、抽出されたコンテンツを更新し続ける。
解析サブシステム235は、関連性解析装置335と、感想解析装置340と、評判(reputation)解析装置345と、品質スコア計算モジュール355と、トピックモデル(topic model)格納装置370と、感想モデル(sentiment model)格納装置375と、評判格納装置380とを備えている。トピックモデル格納装置370は、トピックに一致した製品をランク付けするのに役立つスコアを決定するのに有用な、各トピックに特有の情報を含んでいる。例えば、テキストのスニペットがトピックに関連するときには、トピック「自動車(Automobiles)用のGPS(グローバルポジショニングシステム)」は、スコアを決定するための用語として、用語「車(car)」、「運転(driving)」、「ハンズフリー」を含む可能性がある。トピックモデルの品質は、関連性スコア(relevance score)の精度を決定することができる。トピックモデルは、入力に一致したテキストパターン(text patterns)の集合を含むことができる。トピックモデルは、入力に一致したテキストパターンの集合、スニペットの有効値の集合又は製品のメタデータの正規表現(regular expression)を含むことができる(例えば、2シートベビーカーだけが、トピック「双子」に関連する)。これらのテキストパターンは、人間によって入力することができ、あるいは二次資料(secondary source)、例えば類語辞典(thesaurus)から推測することができる(また、テキストパターン「自動車」の存在は、トピック「車」に関連性があることを意味している)。入力に適用できる標準パターン(standard patterns、単独又は品詞タグ(part of speech tags)が組み合わされたnグラム(N-grams))の大きな集合も存在する。
感想モデル格納装置375は、製品に対するテキストのスニペットの感想を決定するのに役立つ情報を含んでいる。例えば、用語「すばらしい(great)」、「すごい(awesome)」は、肯定的感想に対応し、用語「私は嫌い(I hate)」、「ひどい(terrible)」は、否定的感想に対応する。評判格納装置380は、情報源及びユーザの信頼性に基づいて、スニペットの信頼性を評価するのに役立つ情報を保管している。関連性解析装置335は、スニペットをランク付けするスニペットの関連性スコアを、トピックに対するそれらの関連性に基づいて計算する。感想解析装置340は、感想モデル格納装置375内で利用できる情報に基づいて、スニペットの感想スコア(sentiment score)を決定する。感想スコアは、基準(measure)を、スニペットの利用できる情報に基づいて、製品トピックに対する肯定的類似点(positive likeness)又は否定的類似点に提供する。評判解析装置345は、評判格納装置380内で利用できる情報に基づいて、スニペットの信頼性スコアを決定する。トピックモデル格納装置370及び感想モデル格納装置375は、専門家によって生成する(populated)ことができる。あるいは、トピックモデル格納装置370及び感想モデル格納装置375は、機械学習技術を用いて、生成することができる。例えば、一実施の形態において、ドキュメントの集合の全ての単語(word、ユニグラム(unigrams))を処理し、各単語の重み(weights)を学習し、そして、重みが約0である単語を除去し、その結果、モデルに対して重要な単語の集合を得ることができる。例えば、感想における単語「すばらしい」に0.8の重みが割り当てられ、単語「ひどい」に−0.8の重みが割り当てられ、単語「ギア(gear)」に0.001の重みが割り当てられてもよい。同様に、関連性モデル「休暇用のカメラ(cameras for vacation)」に対する単語「休暇」、「旅行(trip)」が正の重み(positive weights)を有し、単語「ホーム(home)」が負の重みを有し、単語「カメラ」が、0に近い重みを有していてもよい。単語の有無(非存在の場合は0、存在する場合は1)の加重和をとることができる分類子(classifier)によって、スニペットを分類することができる。上述した例では、説明の目的のために単純なモデル(simplified model)を示したが、現実のモデル(world models)は、より複雑(sophisticated)である。非常に大きな正の重みを有するユニグラムを含むクエリ(query)におけるスニペットを考慮する場合、その考慮に対してスニペットの良好な集合が得られる。
表示サブシステム240は、ユーザ対話処理モジュール360と、ユーザフィードバックモジュール365とを備える。ユーザ対話処理モジュール360は、解析サブシステム235によって生成された情報をユーザに提示する。ユーザは、ユーザが興味のあるトピックを指示する入力を、ユーザ対話処理モジュール360を用いて入力することができる。ユーザフィードバックモジュール365によって、ユーザは、トピックモデル格納装置370、感想モデル格納装置375及び正規化データ格納装置305に格納されているモデルを改良する学習に役立つ情報を入力することができる。例えば、製品トピックに対して決定された品質スコアが誤っており、ユーザの意見では、品質スコアが他の値でなければならないことを示す情報を入力することができる。フィードバックは、今後の結果を向上できるように、解析サブシステム235で使われるパラメータを修正するのに用いられる。
ドキュメントプロセッサ315は、更なるメタデータ、例えば「商品名又は型番のような(likely product name or model number)」によって、ドキュメントに注釈を付ける構文解析部(parsers)を実装している。構文解析部は、正規表現と、ハイパーテキスト記述言語(以下、HTMLという。)のドキュメントオブジェクトモデル(以下、DOMという。)のナビゲーション規則との組合せを含むテキストパターンベースの技術を使用する。正規表現/DOMのナビゲーション規則は、所定のページからコンテンツ、例えばレビューを抽出するのに用いられる手動でコード化されたパターン(hand-coded patterns)の集合である。表現又はナビゲーション規則のそれぞれは、(ウェブサイト−識別子、ページ−タイプ)の組合せに関連付けられており、ウェブサイト−識別子は、ウェブページを識別する情報、例えばウェブサイトのURLであり、ページ−タイプは、ウェブページのカテゴリ、例えば小売業者のウェブサイト上の製品ページ又は製品リストページを表している。例えば、URLがwww.acme.comの小売業者ウェブサイトの(ウェブサイト−識別子、ページ−タイプ)組合せは、(www.acme.com、製品−ページ)及び(www.acme.com、製品−リスト−ページ)とすることができる。同様に、URLがwww.acme2.comの異なるウェブサイトの(ウェブサイト−識別子、ページ−タイプ)組合せは、(www.acme2.com、製品−ページ)及び(www.acme2.com、製品−リスト−ページ)とすることができる。抽出されたデータは、そのタイプ、例えば「商品名」、「型番」、「製品カテゴリ」、「レビューテキスト」、「仕様名/値」等によって注釈が付けられる。ドキュメントプロセッサ315は、テキストパターンベースの技術を用いて、更なるメタデータを含むコンテンツを識別し、正規化データ格納装置305に格納する。ドキュメントプロセッサ315は、統計分類機構(statistical classification mechanisms)、例えば単純ベイズ分類器(Naive Bayes classifier)、回帰分析(regression)等を、このメタデータによって強化されたコンテンツに適用して、データの種類毎の分類子を生成する。一実施の形態において、製品に関するユーザの感想についての特定のコンテンツに対して隠れマルコフモデル(Hidden Markov Models)を用いる。新しいウェブページがあった場合、そのコンテンツを前処理して、HTMLタグを除去し、句の集合(collection of phrases)、すなわち文(sentences)を残すことができる。そして、このコンテンツは、上述した分類器に供給される。そのような分類毎に、製品ランク付けシステム200は、信頼度(confidence level、例えば0.0〜1.0)を割り当てる。信頼度が、経験的に決定された製品−カテゴリ及びコンテンツ−タイプに依存した閾値よりも低い場合、コンテンツは、人間による手動抽出のために待ち行列に入れることができる。この抽出されたコンテンツは、解析段階に供給される。
図4は、発明の一実施の形態に基づく製品ランク付けシステム200のハイレベルの処理を示すフローチャートである。集約サブシステム230は、ステップ410において、様々な情報源250から取得したデータを集約する。解析サブシステム235は、ステップ420において、ステップ410で集約した情報を解析して、製品及びトピックの品質基準(quality metrics)を計算する。表示サブシステム240は、ステップ430において、ステップ420での解析結果をユーザに表示する。いくつかの実施の形態では、ステップ430でユーザに表示した情報によって、ユーザは、どのように結果が得られたかを示す情報を調べ及び見ることができるとともに、結果の品質/正確さに対するユーザの意見をフィードバックすることができる。図4の個々のステップを、以下で詳細に説明する。
データの集約(Aggregation of Data)
一実施の形態において、コンテンツ抽出装置320は、特定の製品又はラベルを付されたドキュメントのそれぞれが参照する製品の分類を識別することによって、利用可能なコンテンツの正規化(normalization)を実行する。テキストによって参照される製品の識別は、多くの人が製品を参照する方法(小売業者、型番、微細な属性の相違、略称、在庫維持単位(SKU)等を含む)が異なるために、困難なものとなっている。入力データは、まったく体系化されておらず、ウェブサイト、特に小さなウェブサイトでは、標準化された命名方式(naming schemes)に固定させることができない。ラベルを付されたドキュメントによって参照される製品を識別するのに用いられる技術には、マッチングルールエンジン(matching rules engine)及び手動マッチングを用いるものが含まれる。マッチングルール、例えば「型番は、既知の製品と一致する」、「技術仕様は、既知の製品と一致する」、「発売日は、既知の製品に近い」等の集合は、新しく抽出されたドキュメントで評価される。そのような結果のそれぞれには、マッチングの全体的な信頼度(confidence)を判定するのに用いられる信頼値(例えば、0.0〜1.0)を割り当てることができる。いくつかの実施の形態においては、既知の製品のキー属性(key attributes、例えば名称及び型番)に関する逆索引(inverted index)を用いて、マッチングの速度を上げることができる。信頼度が所定の閾値未満の場合、コンテンツは、人間の監視者に提示することができる。監視者には、新しいページのラベルが付されたコンテンツと、監視者が既存の製品カタログに対して一致を決定する、あるいは新しい製品を生成するのに用いることができる考えられる一致のリストと(list of possible matches)が提示される。既にカタログ内で製品に対する一致を見つかっている場合、異なる情報源から取得されたデータには矛盾(conflicting data)がある可能性がある。矛盾は、情報源に、信頼性の値(credibility value)を割り当てることによって解決される。新しい情報源が製品ランク付けシステム200に現れたときには、その信頼性の値は、そのデータの既知の情報源に対する相関に基づいて、上方又は下方に調整される。情報源の信頼性の値は、人間の監視者によって定期的に監視してもよい。解析サブシステム235及び表示サブシステム240によって、入力として用いられた全ての製品及び関連したデータの正規化された表現は、正規化データ格納装置305に格納される。いくつかの実施の形態において、正規化データ格納装置305に格納されたドキュメントは、1つ以上の文又は節に相当するテキストスニペット(text snippets)に対応している。
関連性解析(Relevance Analysis)
図5は、ステップ410において情報源250から集約した情報のステップ420における解析の全てステップを示すフローチャートである。解析により、集められたスニペットにおける利用可能な製品に関連した情報に基づいて、製品の全体的な品質アセスメント(quality assessment)の評価を提供する製品の品質スコアを決定する。また、解析により、製品の特徴、属性、使用法又はユーザの人物像の集合に関する製品の品質提供評価アセスメント(product providing quality assessment)に関連したトピックのトピックスコアを決定する。一実施の形態において、トピック、製品の集合、それらの製品を議論するレビュー(あるいは、任意の他のテキスト)の集合並びに製品関するメタデータの集合、例えば価格及び仕様書が与えられた場合、解析により、トピックに関する各製品の正規化スコア(例えば0〜100)を決定する。スコアは、製品を、そのトピックに対してランク付け、すなわち順番を付ける(rank-order)のに用いることができる。解析の結果は、ユーザがフィルタをかけ、比較し、彼らのニーズ及び好み(preferences)に適した製品を決定するのに役立つ。
関連性解析装置335は、ステップ510において、製品/トピックに対するスニペットの関連性を解析して、スニペットがトピックに対してどれくらい関連するかを示す、スニペットに対する関連性スコアを決定する。製品は、それに関連付けられた任意の数のテキストスニペット、例えば、製品に関するユーザ又は専門家のレビュー、ブログ又はフォーラム投稿記事、解説記事(articles)等を有することができる。スニペットは、任意の長さとすることができ、投稿記事、投稿記事の節、文又は文より短い句を含むことができる。各スニペットは、問題のトピックに言及してもよく、言及していなくてもよい。例えば、トピックが「スポーツ用のデジタルカメラ(Digital Cameras for Sports)」である場合、書き手がホッケの試合の写真を撮るためにどのようにカメラを使ったかについて記述しているスニペットは、そのトピックに関連する。同様に、動きの速い被写体又は移動撮影用のカメラの性能について議論しているスニペットは、トピック「スポーツ用のデジタルカメラ」に関連する。カメラのバッテリ寿命又は家族写真用に使いやすいカメラに重点を置いているスニペットは、トピックス「スポーツ用のデジタルカメラ」とは関連しない。
感想解析装置340は、ステップ520において、感想解析を実行して、トピックに対するスニペットの感想を示す製品/トピックに関して、スニペットの感想スコアを決定する。製品と関連した1つ以上のテキストスニペットの集合がある場合、感想解析装置340は、ステップ520において、感想、すなわちそれらのスニペットの傾向が肯定的であるか、否定的であるか、中立であるかどうかを決定する。上述した例においては、書き手がホッケの試合の写真を撮るカメラを使ったことを書いたスニペットは、どれくらいうまく試合の写真を撮ることができたかを公表していてもよく、どれくらいその性能に失望したかを公表していてもよく、あるいは結果を述べずにそのカメラを使用したことだけを公表していてもよい。感想は、区間(例えば肯定的、中立、否定的、さらに細分化して、「いくぶん肯定的(somewhat positive)」、「いくぶん否定的」)の集合として表現されるか、または、否定的から肯定的までの連続したスケールとして表現されるかいずれかであり、好みの度合いを表現することができる。
評判解析装置345は、ステップ530において、ドキュメントの信頼性を解析して、スニペットに対する信頼性スコアを決定する。いくつかの実施の形態において、信頼性スコアは、スニペットと関連している一方で、他の実施の形態においては、信頼性スコアは、スニペットとトピックの組合せと関連している。スニペットの信頼性は、書き手の信頼性及びドキュメントの情報源の信頼性を含む要素に基づいて解析される。例えば、書き手がその製品を支持することに非常に偏っているので、製品のメーカによるスニペットは、あまり当てにならない。同様に、完全な製品レビューを書き込んでいる有名なリポータは、なんら実証することなく、製品が「お粗末である(sucks)」との書き込んでいる第三者よりも信頼できる。いくつかの製品レビューサイトで、ユーザは「役立つレビュー」又は「役立たないレビュー」としてレビューをマークすることができ、これは、また、そのスニペットの評判に、又はその投稿をした書き手に寄与することもできる。
トピックに関連し、トピックに対してある感想を表現するスニペットの集合がある場合、集約品質スコア(aggregate quality score)は、ステップ540において、トピックに関して製品毎に、品質スコア計算モジュール355によって決定される。直観的には、トピックに関連し、そのトピックに対して肯定的傾向を表現する各スニペットは、「得票数が上がる」と考えられる。同様に、トピックに関連する否定的な各スニペットは、「得票数が下がる」ことになる。集約品質スコアは、スニペットの関連性スコア、スニペットの感想スコア及びスニペットの信頼性スコアを含む様々な要素に基づいて計算される。品質スコアの計算に関する詳細は、以下で説明する。一実施の形態において、1つのステップにおける計算結果が他のステップにおける計算に必要でない限り、ステップ510、520、530は、ステップ540において品質スコアの計算結果を得るために、いかなる順番で実行することができる。
フィードバックは、ステップ550において、様々な機構によって取得されて、製品ランク付けシステム200によって計算される品質スコアを向上させる。一実施の形態において、ユーザ対話処理モジュール360は、製品/トピック及びスニペットに関連したスコアを示す表示を、製品ランク付けシステム200のエンドユーザ又は製品ランク付けシステム200が高品質の結果を出力することを保証する責任を負う管理者に表示する。その表示に基づいて、ユーザは、ユーザフィードバックモジュール365によって取り入れられるフィードバックを、製品ランク付けシステム200に与える。製品ランク付けシステム200は、このフィードバックに適応し、学習して、より良好な結果を出力する。例えば、相対的な製品品質は、ランク付けされたリストとして表示される。ユーザは、これらの可視化情報をブラウズすることができ、そのランキングに同意しない場合、ユーザは、例えば製品のランキングの得票を上げる又は下げるべきと提案することによって、ユーザフィードバックモジュール365にフィードバックを提供することができる。製品ランク付けシステム200は、この情報に基づいて、より良好なスコアを出力することを学習するので、この種のフィードバックは、処理をする製品/トピックの品質スコアの計算を向上させるのに用いることができる。
また、ユーザは、ランキングを決定するのに用いられる個々のスニペットをブラウズすることもできる。どのようにカメラが「美しく光を捕らえるか」について記述したレビューは、カメラの「重量」に関連するレビューと間違えられることがある。ユーザは、トピック「重量」と無関係なものとして、このスニペットをマークすることができ、また、トピック「画質」に関連するものとして、このスニペットをマークすることもできる。同様に、「そのカメラの弱光設定を発見するまでは、そのカメラで屋内で写真を撮ることが、どんなに私は嫌いだったか」と公表しているスニペットは、句「私は嫌いだった」のために、非常に否定的な感想と間違えられることがある。「肯定的」、「否定的」又は「中立」としてスニペットをマークすることによって、ユーザは、製品ランク付けシステム200の感想の評価を修正することができ、製品ランク付けシステム200は、修正から学習して、より正確な関連性の評価及び感想の評価を生成する。学習過程の詳細については、以下に説明する。
いくつかの実施の形態において、間接的なフィードバックは、ユーザアクションから得ることができる。例えば、所定のトピックに対する製品のリストがユーザに提示された場合に、ユーザが製品の詳細な情報に興味のあったことを示すユーザアクション中のクリック操作は、肯定的なフィードバックを示す。他方、最高のランク付けをされた製品を無視し、より低くランク付けされた製品の情報を取り出すユーザの操作は、最高のランク付けをされた製品に対する否定的なフィードバックの指標と考えられる。一実施の形態において、スニペットの信頼性スコアの計算は、書き手の信頼性スコアの評価にフィードバックを提供することができる。例えば、低い信頼性スコアしか達成していないいくつかのスニペットを提供している書き手には、低い書き手信頼性スコアを割り当てることができる。ステップ550において、ユーザ又は他の手段から得られたフィードバックは、図5における処理の1つのステップ、例えば、関連性解析ステップ510又は感想解析ステップ520に対する入力として提供され、あるいは、フィードバックは、複数のステップに入力することもできる。一実施の形態において、ユーザインタフェースがユーザに提供され、ユーザインタフェースによって、ユーザは、スニペット上でクリックスルー(click-through)することで、その全てのレビューを見ることができる。ユーザがスニペットに対する関心を示したときから、ユーザによるクリックスルーは、スニペットの関連性の指標となる。
図6は、本発明の実施の形態に基づいて、ステップ510において、関連性の解析を行い/テキストの関連性スコアを計算する関連性解析装置335によって実行される処理のフローチャートを示す図である。スニペットの解析は、「投票」に類似するものと考えられ、投票とは、トピックに関連したテキストスニペットが、最終的なスコアに重み付けされるということである。スニペットの関連性スコアは、テキストスニペットがトピックに関連するかどうかを示している。ステップ510における関連性解析の処理は、テキストスニペット、テキストスニペットに関するメタデータ(書き手、情報源、投稿日付、レビュースコア等)及びその入力としての製品に関するメタデータを識別する。処理は、トピックに関する情報(knowledge)を表現するトピックモデルを用いる。関連性解析は、トピックに対するスニペットの関連性の評価の程度を決定する。
図6に示すように、ユーザ対話処理モジュール360は、ステップ605において、クエリをユーザから受け取る。クエリは、トピックから用語(terms)を提供する。関連性解析装置335は、ステップ610において、トピックに関連するスニペットを識別する。一実施の形態において、全ての利用可能なスニペットは、あらゆるトピックの関連性スコアを計算するのに用いられる。しかしながら、多数のスニペットを有する製品ランク付けシステム200においては、各トピック毎に、全てのスニペットのそれぞれを調べるのは、非効率である。このような状況においては、スニペットの部分集合を、トピックに対する関連性スコアを計算するのに用いることができる。一実施の形態において、関連性解析装置335は、スニペットの部分集合を計算するために、トピックモデルからの用語に基づくクエリを用いる。例えば、トピックモデルからの最も高く重み付けされたnグラムは、トピックに対する関連性スコアを計算するのに用いられるスニペットの部分集合を計算するのに用いられる。最も高く重み付けされた用語を問い合わせることによって計算された部分集合は、トピックモデルからの他の用語を用いることによって、さらに洗練された(refined)ものとすることができる。スニペットを部分集合にすることによって、スニペットの数をかなり減らすことができる。適用可能性解析(applicability analysis)のこの技術は、文がトピックに関連するかどうかを検出する一般的な技術なので、また、この技術は、レビューにおいて製品の参照(references)を見つけるのに適用することができる。特定の製品、例えばモトローラ製RAZRカメラの場合を考える。この製品に対する参照は、「モトローラRAZR」、「モトローラ」、「RAZR」、「V3(これは、人気商品の改良版である)」等の文字列を含んでいてもよい。テキストのスニペットにおいて、これらの製品を「見つける(spot)」ために、特定の製品を参照する文字列を認識するモデルが作られる。ここに説明する学習技術は、また、スニペットにおいて、製品の参照を見つけることに適用することができる。
トピックに関連するスニペットの部分集合が与えられた場合、関連性解析装置335は、ステップ615〜630を用いて、そのトピックの関連性スコアに対するスニペットの寄与を計算する各スニペットを解析する。関連性解析装置335は、ステップ615において、スニペットを選択し、ステップ620において、トピックモデルからテキストパターンを選択し、ステップ625において、トピックモデルからのテキストパターンをスニペットとマッチングする。例えば、1つの単語「車」を有するトピックモデルの単純な場合において、単語「車」を含むあらゆるテキストスニペットは、関連性1を返し、単語「車」を含まないあらゆるスニペットは、関連性0を返す。一般的に、各スニペットの関連性を計算するために、複数の要素を考えるとき、関連性解析装置335は、ステップ630において、スニペットの特徴ベクトルを計算する。特徴ベクトルの各成分は、スニペットの関連性を計算するのに用いられる1つの要素によって決定される。いくつかの実施の形態において、ステップ615、620が、スニペットに対応する特徴ベクトルの成分を計算する特定の実施の形態を表しているので、ステップ615、620は、オプションと考えることができる。
いくつかの実施の形態において、関連性解析装置335は、各スニペットの特徴ベクトルの成分を計算するのに、以下の基準のうちの1つ以上を用いる。
(1)そのトピックに対する1つ以上の手作業による正規表現(regular expressions)の集合の有無。
(2)最も頻度の高いK個のユニグラム、バイグラム及びトライグラムの有無(K=10000)。
(3)既製の品詞タグ付け機を用いて計算されるように、品詞情報によって注釈が付けられた最も頻度の高いK個のユニグラム、バイグラム及びトライグラムの有無(K=300)。
(4)製品の論理述語(boolean predicates)の集合のいずかに対する製品メタデータのマッチング(「type=DSLR AND (価格<1000 OR brand=Acme)」)。
関連性スコアを評価する他の基準としては、例えば、経験則(heuristics)、例えばスニペットの長さと、スニペットの長さに基づくスカラ値と、スニペット内の句のインスタンスの数と、スニペットの先頭又は末尾に対する句の近接度(proximity)の基準(measure)と、製品属性の値とが考えられる。一般的に、所定の閾値に対してあらゆるスカラ関数を比較する全ての論理式は、製品メタデータの述語、テキストの本文における句の有無、品詞タグ、構文木タグ等を設定する。また、語幹処理(Stemming)は、単語に適用することがある。語幹処理は、単語をその語幹(root)の形式に減少させる処理であり、要素によって特徴空間の大きさを減らす。例えば、「inflating」、「inflation」、「inflates」及び「inflate」は全て、同じ語幹である「inflat」まで減らすことができる。これにより、製品ランク付けシステム200は、学習を容易にすることができる。多くの語幹処理アルゴリズムは、以下の参考文献に示されている。これらの全ては、引用することによって、本明細書に援用される。(1)PORTER,M.F.(1980)「AN ALGORITHM FOR SUFFIX STRIPPING, PROGRAM」,14(3):130-137、(2)Krovetz,R.「Viewing Morophology as an Inference Process」,Annual ACM Conference on Research and Development in Information Retrieval,1993、(3)Lovins,J.B.「Development of a Stemming Algorithm.」,Mechanical Translation and Computational Linguistics 11,1968,22-31、(4)ウェブ上の利用可能なランカスタ語幹処理アルゴリズムは、次のURLにある。「www.comp.lancs.ac.uk/computing/research/stemming/index.htm」、(5)Jenkins,Marie-Claire,Smith,Dan,「Conservative stemming for search and indexing」,SIGIR 2005。語幹処理は、情報を減らすので、一実施の形態では、経験的に(heuristically)単語を1つにして、ハードコードされた語幹処理ルールの拡張可能な辞書を有する伝統的な語幹処理を用いている。
ステップ630において計算される特徴ベクトルは、バイナリ成分(入力1と一致しない各テキストパターンに対しては0、一致する各テキストパターンに対しては1)によるベクトルであってもよく、又は連続的なベクトル(各エントリは、テキストパターンが入力と一致した回数である)であってもよい。一実施の形態において、1つのn次元ベクトルは、スニペット毎に計算され、統計解析技術は、更なる処理であるステップ635に対して用いられる。トピックモデルは、これらのテキストパターンがどのように関連性スコアに寄与するかを学習した重み付けを含んでいる。ユーザが解析出力を修正すると、重み付けは、より正確なものに更新される。モデルによって利用することができる多くの重み付け及び更新の方法があり、これらの方法では、例えばベイジアンネットワーク、決定木、サポートベクタ分類、線形回帰、サポートベクタ回帰、ニューラルネットワーク、ブーステッド決定木等の技術を用いて、分類及び回帰を行う。選択肢の統計解析技術は、ステップ635において、所定の特徴ベクトルに適用されて、スニペットに対してスコア又は個々の分類を割り当てる(例えば無関係=0、一部関連=0.5、高い関連=1に変換される。)。
感想解析
図7は、本発明の一実施の形態に基づいて、ステップ520における感想解析の実行、テキストのスニペットの感想スコアを計算するのに用いられる処理を示すフローチャートである。入力のテキストパターン(の特徴)及び重み付け方式を含む感想モデルは、入力データに適用されて、感想スコアの評価基準を生成する。一実施の形態において、感想解析のステップが1つのモジュール、例えば、関連性解析装置335によって、関連性解析のステップと共に実行されるように、感想解析及び関連性解析は、1つの処理に結合される。他の実施の形態において、感想解析は、感想解析装置340によって実行される、感想解析に特定のステップを含む別々の処理として計算される。2つの処理を分離することは実際的な利益がある。例えば、人々が肯定的感想及び否定的感想(「すばらしい」、「ひどい」等)を表現する方法は、トピック間に大きな相違があるので、関連性解析がトピック毎に実行でき、一方では、感想解析をトピックのカテゴリ毎、又は全体のレベルで実行することができるようになる。感想解析装置340は、以下のような細分化の程度(granularity)により、感想解析を実行することができる。
(1)トピック毎、
(2)トピックカテゴリに対して、
(3)全体レベルでの全てのトピックに対して、
(4)所定のコンテクストに対する最適なアプローチを得られるような、上述の3つのモデルの組合せ。
分類結果を結合させる機構(Mechanisms of combining classifier results)は、以下を含む。
(1)出力の加重和を計算し、経験的に重み付けを決定すること、
(2)ニューラルネットワーク(又は任意の他の分類子)に入力を与え、自動的に重み付け/メタモデルを学習すること、
(3)各アルゴリズムがその重み付けに加えて信頼性(a confidence)を返し、その信頼性によって加重和を計算すること、
(4)ニューラルネットワークのような学習アルゴリズムに出力及び信頼性を与えること。
さらに、感想の全ての段階に対してユーザにより補正された(ラベルを付された)スニペットは、トピックモデルを調整するのに用いられ、全てのトピックによるスニペットは、感想モデルを調整するのに用いられる。
図7に示すように、感想解析装置340は、ステップ700において、感想スコアを計算するスニペットを識別する。識別されたスニペットの集合は、スニペットの集合の全体又は部分集合である。例えば、図6のフローチャートを用いる関連性解析装置335によって計算されるような、トピックに関連するスニペットの部分集合は、感想スコアを計算するスニペットの集合として、ステップ700において識別される。ユーザ要求が入った場合には、感想解析は、バッチ処理としてオフラインで実行されることがあり、又は即時実行される場合もある。要求があった場合に、実行される計算量が少ないので、バッチ処理を用いる前に感想解析を実行しておくことは、オンライン要求の性能を向上させることになる。感想解析装置340は、ステップ705において、スニペットを選択し、ステップ710において、感想モデルからテキストパターンを選択し、ステップ715において、そのテキストパターンと選択されたスニペットとのマッチングをする。いくつかの実施の形態において、ステップ710、715では、代わりの機構が任意にスニペットの感想を評価するのに用いられることがある。スニペットの感想を評価する感想解析装置340によって用いられる機構は、以下を含む。
(1)最も頻度の高いK個のユニグラム、バイグラム及びトライグラムの有無(K=10000)。
(2)既製の品詞タグ付け機を用いて計算されるように、品詞情報によって注釈を付けた、最も頻度の高いK個のユニグラム、バイグラム及びトライグラムの有無(K=300)。
(3)製品の全体的な(K=10の区間に)量子化された品質スコア。一般的に、その製品のユーザによってその製品が好まれている場合に、その製品についての全ての与えられるスニペットは肯定的な評価である可能性が高いので、製品の品質スコアは感想解析に影響を与える。
(4)考慮中のレビューの(K=10の区間に)量子化されたスコア。例えば、低い信頼性のレビューは、感想解析の観点から、あまり有意であるとはいえない。
感想スコアを評価する他の基準としては、例えば、経験則、例えばスニペットの単語のインスタンスの数と、nグラムの特徴間の論理積(conjunctions)又は分離(disjunctions)とが考えられる。
感想解析装置340は、ステップ720において、特徴ベクトルの成分として、スニペットの感想を定量化する様々な機構によって計算される値を結合して、スニペットに対応する特徴ベクトルを計算する。感想解析装置は、例えば分類技術又は回帰技術を用いて、ステップ725において、統計解析を実行し、ステップ730において、スニペットに対する感想スコアを割り当てる。ステップ735において、未処理のスニペットがまだある場合には、感想解析装置340は、未処理のスニペットに対してステップ705−730を繰り返す。
評判解析
図8は、一実施の形態に基づいて、ステップ530における信頼性解析を実行し、テキストのスニペットの信頼性スコアを計算する評判解析装置345によって実行される処理を示すフローチャートである。スニペットは、その信頼性スコアを計算するステップ800において識別される。一実施の形態において、信頼性解析は、スニペットの全ての集合に対して実行される。他の実施の形態において、信頼性解析は、ステップ530における信頼性解析によって計算される解析の部分集合に対して実行される。信頼性解析は、学習モデルを利用して、投稿記事又は書き手の信頼性を評価する。しかしながら、その投稿自体の内容についてよりも(内容については考慮されるけれども)、より投稿及び書き手についてのメタデータに基づいて、その評価がなされる。一実施の形態において、スニペットの信頼性解析は、オフラインで実行されるバッチ処理として実行される。他の実施の形態において、ユーザ要求があった場合には、信頼性解析は即時実行される。要求があった場合に、実行される計算量がより少ないので、バッチ処理を用いる前に信頼性解析を実行することは、オンライン要求の性能を向上させる。評判解析装置345は、ステップ805において、その信頼性スコアを計算するのに、識別されたスニペットからスニペットを選択する。スニペットの信頼性は、様々な要素に基づいて評価される。
評判解析装置345は、ステップ810において、スニペットの書き手の信頼性を評価する。書き手による投稿数は、書き手の信頼性をゆがめることがある。ほとんどが信用できる投稿の書き手である場合には、書き手の信頼性は、増大する。信用できる投稿をほとんどしていない書き手の場合には、書き手の信頼性は、減少する可能性がある。同様に、書き手の意見が一貫して大多数の意見と一致しない場合にも、書き手の信頼性は減少する。一実施の形態において、書き手の信頼性と対応する特徴は、その書き手による信用できる投稿数のヒストグラム(区間の数K=3)として表現される。それで、書き手の1つの投稿の信頼性値が、信頼性値<0.33であり、3つの投稿の信頼性値が、0.33と0.66の間の値であり、7つの投稿の信頼性値が、信頼性>0.66である場合には、その書き手の信頼性の特徴は、(1、3、7)となる。
評判解析装置345は、ステップ815において、情報源の信頼性を評価する。記事の投稿がされた情報源は、投稿の信頼性に有意な影響を有する。情報源の信頼性が一貫して全体の他の部分の信頼性と一致しない場合、又は一貫して信頼性の低い投稿ばかりを有している場合には、その信頼性は低下し、同様に、その投稿自体の信頼性を低下させてしまう。一実施の形態において、情報源の信頼性は、4つの機能によってモデル化される。第1の特徴は、全ての投稿に対するレビュースコアの分布によるその特定の情報源に対するレビュースコアの分布間の距離である。これは、カルバックライブラー情報量(Kullback-Leibler divergence)又は他の統計的相違度基準を用いてモデル化できる。2、3、4番目の特徴は、書き手の信頼性の基準と同じであるが、書き手によるレビューではなく、入力情報としての情報源からのレビューを用いる。
評判解析装置345は、ステップ820において、投稿の有用性に基づいて投稿の信頼性を評価する。有用な投稿は、「役立つ」又は「役立たない」としてレビューにマークを付する、製品ランク付けシステム200のユーザによって、フィードバックを表現する。利用可能な場合には、役立つ投稿は、投稿に対する信頼性の有用な基準を提供する。この情報は、いくつかの投稿に対しては利用できない場合がある。この情報が利用できる場合には、信頼性にとって十分な代用(proxy)となり、他の要素の相対的重要度のモデルを調整するために用いられる。役立つ情報に対応する特徴は、投稿記事の役に立つ情報の数に対応する離散値として表現される。投稿が5つの役立つ情報を有している場合には、その値は、5である。役立つ情報の数及び役立たない情報の数は、別々の成分として表現される。これは、結果として学習アルゴリズムが独立して2つの値の高機能な組合せを学習することを可能にする一般的な表現である。
評判解析装置345は、ステップ825において、スニペットが得られるところからの投稿の内容に基づいて、スニペットの信頼性を評価する。投稿のテキストの内容は、信頼性の指標となり得る。例えば、投稿記事の長さは、その信頼性に比例する。より長い投稿記事は、一般的に、対象及びより多くの信頼性に対するより高い関心を示すといえる。言い回し(wording)の選択肢は、信頼性に影響を及ぼすこともできる。言い回しの選択肢は(nグラムによってモデル化されたときは)、ランダムであるよりも、投稿の信頼性をより良く予測することができる。それ自体では、これは信頼するには十分ではないが、他の要素と結合される場合には、製品ランク付けシステム200の精度を向上させる。一実施の形態において、先頭のnグラム、例えば、最初の10000個のユニグラムの頻度が、投稿の信頼性の基準として用いられる。nグラムの頻度が高ければ高いほど、投稿の信頼性も高くなる。
評判解析装置345は、任意の順序で、ステップ810、815、820、825を実行することができる。ステップ835において、識別されたスニペットから利用可能な多くの未処理のスニペットがある間は、評判解析装置345は、スニペットの信頼性を評価する。スニペットの信頼性の評価の問題は、回帰問題としてモデル化される。回帰分析の出力は、入力としても用いられる。例えば、書き手の信頼性は様々な投稿の信頼性に基づいている。したがって、評判解析装置345は、書き手及び情報源の双方の信頼性についての入力[0,0,0]の初期値を設定することによって、反復して計算を実行することができる(カルバックライブラー情報量は、演繹的に計算される)。
投稿の信頼性は、情報源、書き手/情報源の信頼性の更新値及び繰り返される処理の範囲内で全ての書き手に対して計算される。この処理は、多数回の繰返しを行い、固定点に収束させる(例えば、より信用できない投稿は、それらの情報源/書き手の信頼性を低下させ、続いて、それ自体の信頼性等を低下させる)。固定数の繰返し、例えば計算の2回繰返しは、この値への発見的方法による近似操作として実行される。他の実施の形態においては、他の方法を用いる。例えば、全ての情報源/書き手に対する情報源/書き手信頼性を計算し、情報源/書き手にランク付けをし、その結果を区間内に量子化する。
品質スコア計算
図9は、本発明の実施の形態に基づいて、ステップ540において、品質スコア計算モジュール355によって用いられる製品/トピックの品質スコアを決定する処理を示すフローチャートである。品質スコア計算モジュール355は、ステップ905において、品質スコアを計算するのに、スニペットを識別する。スニペットを計算する様々なスコア、例えば、関連性スコア、感想スコア及び信頼性スコアは、製品/トピックの全体的な品質を評価する製品/トピックに対する1つのスコアに結合される。様々な実施の形態において、製品/トピックの品質スコアは、異なる方法で計算される。一実施の形態において、スニペットのスコアの集合の平均値が計算され、その集合の「平均」スコアが生成される。他の実施の形態において、スニペットのスコアの集合の中央値が計算され、その集合の「中央」のスコアが生成されて、一般的には、異常値データの影響を与えにくくしている。
よい代表的な品質スコアとは、様々な指標によって表現されるような、「正確で、一般的な感想を反映する」ものである。ステップ910、915、920において評価されるように、ここで示される指標のいくつかは、スニペットの関連性、感想及び信頼性を含んでいる。他の指標は、以下のものを含んでいる。
(1)最新購買日。特にテクノロジが急速に変化する製品カテゴリ、例えばエレクトロニクス商品に対する新しいスニペットは、古いスニペットよりも、より大きな重み付けがされる。
(2)数量。トピックに関連するより多くのスニペットを有する製品は、関連するスニペットの少ない製品より目立っていると考えられる(肯定的であるか、否定的であるかは、それらのスニペットの感想による)。
(3)異常値。製品に対する一般的な意見が肯定的な場合であっても、否定的な感想が少しある場合もある。これらの少数の意見は、適切な方法で全体的なスコアに影響を及ぼす必要がある。すなわち、否定的な感想は、妥当な少数派又は製品をこれまで使ったことのない、ただ反対意見を持つ人の集合である可能性がある。
(4)メタデータ。製品についてのメタデータは、特定のトピックに対するその製品の品質を判断するのに用いられる。例えば、製品の価格は、カメラが良い物であるかどうかにかなり影響を及ぼす。スニペットがこれを裏付けている間は、価格情報が利用でき、トピック「価値」と関連する知識が利用できる場合には、製品の価格は、「価値」に対して全体的な品質スコアを決定するのに非常に役に立つ情報である。同様に、一人乗りのベビーカーは、たとえどんなに多くのスニペットが双子に言及していたとしても、双子に対しては適切でない可能性が高い。品質スコアの評価は、これらの要素のそれぞれが各要素に対して、適切な重み付けを用いることによって、どの程度全体のスコアに寄与するかを決定する。一実施の形態において、要素の重み付けは、異なるカテゴリに対して異なる。例えば、最新購買日についての要素は、変化の速いカテゴリにおいては、かなり寄与することができる一方で、特定のメタデータは、特定のトピック又はカテゴリにより大きく寄与することがある。
直観的に、それがトピックに関して肯定的な投票をする各スニペットは、投票数が増え、否定的なスニペットは投票数が減少する。品質スコアを計算する上述の様々な要素は、ステップ925において、方程式(1)を用いて投票数を決定する。
Figure 0005350472
パラメータλl、λ2、λ3、λ4は、各要素、すなわち関連性、感想、信頼性及び最新購買日がスニペットの得票に寄与することを決定する。ステップ930において、残りの未処理のスニペットがある間は、各スニペットに対する投票が計算される。他の実施の形態において、方程式(2)を用いて加重和を計算する。
Figure 0005350472
方程式(2)を用いて計算された合計値は、線形回帰問題に直接写像し、線形回帰問題においては、パラメータλ1、λ2、λ3、λ4、λ5は、データから直接的に学習することができる。一実施の形態において、方程式(2)で用いられる定数の値の例は、λ1=0.5、λ2=0.3、λ3=0.2、λ4=0.1、λ5=0.1である。他の実施の形態において、異なる回帰評価、例えば線形回帰、サポートベクタ回帰、ロバスト回帰等の技術が用いられ、各カテゴリに対して手動によってパラメータλ5を評価する。
一実施の形態において、各製品に対する品質スコアは、ステップ950において、方程式(3)を用いて計算される。
Figure 0005350472
演算子|S|は、集合Sにおける要素数を返し、演算子avg(S)は、集合Sの平均である。係数θ、θは、どの程度各要素が投票の平均スコアに対して寄与するかを決定し、係数θ、θの値は、経験的に決定される。一実施の形態において、係数θ、θは、データ管理者及び/又はエンドユーザによって手動で投票数の上げ下げをされるデータの最小2乗誤差(又は任意の損失関数)を最小にしようとするグリッドサーチによって決定される。一実施の形態において、用いられる定数の例は、θ=1、θ=1.5である。一実施の形態において、関数avg(votesnippet)は、異常値除去によって平均を計算する。例えば、最終のスコアが上下して結果をゆがめてしまう全ての異常値を除去しようとする場合において、得票の上部と下部のK=5%が除外される。
異なる実施の形態では、ステップ940において、以下の技術を用いて品質スコアを計算する。
(1)重み付きデータの統計的平均値を決定すること。
(2)特定の特性の累積分布関数(CDF)、例えば線形曲線、ロジスティック曲線、正規分布等に品質スコアを出力させること。
(3)その分布を観察したときの尤度が最適最尤推定値から90%以上になるように、最大値を予測評価するために、t検定(学生の分布)を用いること。
(4)回帰分析技術を用いること。回帰分析技術においては、入力される情報の特徴がレビューの割合のヒストグラムであり(信頼性によって、任意的に重み付けされる)、そのヒストグラムは、スコアの区間に分割される。例えば、スコア1かつ重み付け1の10件のレビューと、スコア2かつ重み付け2の5件のレビューと、スコア3かつ重み付け4のレビューが0件と、スコア5かつ重み付け10のレビューが1件である場合には、その特徴ベクトルは、(0.333,0.333,0,0.333)となる。この特徴ベクトルは、任意の回帰分析技術、例えば線形回帰、多項式補間、ノンパラメトリック分析等において用いることができる。
フィードバック
スコアを付けられた製品/トピックは、ユーザ対話処理モジュール360によって、製品ランク付けシステム200のユーザ又は製品ランク付けシステム200が高品質の結果を生成することを確保するのに責任を負うシステム管理者に対して表示される。ユーザ又は管理者は、製品ランク付けシステム200によって計算される結果の精度を示す、製品ランク付けシステム200へのフィードバックを行う。ユーザによって提供されるフィードバックは、ユーザフィードバックモジュール365によって取り入れられ、結果の品質を向上させるように、製品ランク付けシステム200のパラメータを変更する。一実施の形態において、ユーザが製品ランク付けシステム200によって計算される結果に同意しない場合には、ユーザは「最善のリスト」中の結果の順序が誤っていることを、そのリスト内の製品のランクを上下に移動させることにより、又は製品をリストに加えたり若しくはリストから完全に削除したりすることにより、明示することができる。製品ランク付けシステム200に対するこのフィードバックは、品質スコアを付する段階であることを製品ランク付けシステム200に知らせる(任意に関連性、感想又は信頼性解析も)。
他の実施の形態において、ユーザは、最終結果に寄与した個々のスニペットをブラウズすることができる。ユーザにとっては、これが所定の製品の、トピックに関するランク付けが高いか、低いかを実証するのに役立つが、この処理で間違った解析結果を修正する機会ともなる。ユーザがトピックに関連しないスニペットを見る場合には、それは無関係なものとして、それをマークすることができる。ユーザが間違った感想を付された関連スニペットを見る場合には、ユーザは、正しい感想をマークすることができる。そして、最後に、ユーザが、信用できるとは思えないスニペットを何らかの方法で見るとき、ユーザはそれを疑わしいものとしてマークすることができる。
学習及び適合度は、受け取ったフィードバックの種類に従い、異なったものとして実現される。関連性、感想及び信頼性解析については、フィードバックは、ラベルが付されたものとして捕らえることができ、そのユーザ及び他のユーザによって寄与を受けた、任意の他のラベルが付されたデータとともに格納される。ラベルは、スニペットの参照先(スニペットID)、ユーザ、ラベルが生成された日時及び所望の出力(関連性/非関連性、肯定的、否定的、中立、信頼性あり、疑わしい)を含んでいる。適切な解析は、データの新しい集合でのモデル(例えばベイジアンネットワーク、サポートベクタマシン、ニューラルネットワーク、ブースティング等)に従って再調整され、改良されたモデルが結果を出力し、その入力で再度動作する。
一実施の形態において、品質スコアについて、更新された製品ランク付けシステム200は、以下のように動作する。ユーザが、ランク付けされた順序リストで投票によって製品の投票数を上下させる場合には、記憶された情報は、修正をしたユーザ、修正した日時、製品及び修正が適用されたトピックであり、スコアの差分によって、リスト中の望ましいいくつか場所に製品を移動させる必要があったものである。例えば、製品Aのランクが78であり、製品Bのランクが80であり、また、リスト上で、製品Aは、製品Bより上位であるべきとユーザが申し立てた場合には、記憶される差分は、2.1である。ユーザが製品Aがそのリストに属さないと申し立てた場合には、より目立つラベルで、適用不可と記憶される。
品質スコアの計算が回帰問題としてモデル化される場合には、フィードバックを取り入れる方法は、ユーザの投票によって生成されるような新しいリストから回帰分析のパラメータを再学習することである。多くの回帰分析技術は、予測されたスコア及び望ましいスコアの間の差分を最小にするパラメータの集合を選択する。一実施の形態において、ノンパラメトリックサポートベクタ回帰技術(nonparametric support vector regression technique)が用いられる。
ユーザ対話処理モジュール360は、正規化データ格納装置305内の情報を用いて生成される動的ウェブページの集合に基づいて、ユーザに対する情報を表示する。ユーザに示される情報は、ユーザのニーズと一致させるために、製品仕様によってフィルタをかけられる(例えばカメラに対して「メガピクセル」、「バッテリ寿命」等)。感想解析によって生成されたデータは、ユーザが製品全体、特徴、使用法及び人物像について考慮する方法と、より良く一致させるのに用いられる。
ユーザは、以下のような様々な方法で、考慮したい製品を限定することができる。
(1)製品リストページ。このページは、カテゴリ(例えば「デジタルカメラ」)内で製品の完全なリストから始めることができ、価格及び他の属性(「5〜7メガピクセル」)に基づいてフィルタをかけることができる製品のリストである。ユーザは、後の比較のために興味がある製品をマークすることもできる。
(2)比較ページ。このページは、ユーザが、価格情報を含む仕様書に基づいて、製品の比較をすることができるサーチグリッドによって、製品の仕様書を表示する。
(3)トピックリストページ。トピック毎に、製品は、製品及び/又はトピックのランクの順序で表示される。これにより、ユーザは、素早く、どの製品が製品仕様の詳細な知識を必要とすることなく、ユーザの要求する必要条件と最も一致するか判断することができる。ユーザは、ユーザが選択したトピックだけに限られた製品リストページに移行することができる。
各製品は、製品についての詳細(写真、価格及び仕様書)を含む、対応製品詳細ページを有する。図10は、本発明の一実施の形態に基づいて、レビュー記事に焦点に合わせたユーザインタフェースを示す図である。ユーザは、所定の製品が比較的高いトピックスコアを有するトピックを提示される。これらのトピックは、使用法(「休暇用のデジタルカメラ」)、人物像(「プロ用」)、属性(「優れたバッテリ寿命を持つ」)等である。ユーザが、トピックフィルタ領域1010でトピック名のうちの1つをクリックするとき、ユーザは、そのトピックに対するトピックスコアに寄与するレビューの集合を含む関連性レビュー1020を見ることができる。特に寄与したレビュー中の句及び文は、異なる色で強調されて、ユーザがレビューコンテンツの性質に素早く焦点を合わせることを可能にする。
変形例
本発明の好ましい実施の形態は、図面に関連して上述された。「一実施の形態」又は「実施の形態」に対する明細書における引用は、実施の形態に関連して記述される特定の特徴、構成又は特性が発明の少なくとも1つの実施の形態に含まれることを意味する。「一実施の形態において」との明細書の様々な場所で現れる句の全てが、同じ実施の形態を必ずしも参照しているというわけではない。
一部は、コンピュータメモリ中のデータビットでのアルゴリズム及び演算の記号表現に関して示されたものである。これらのアルゴリズムの記述及び表現は、データ処理技術分野における当業者にとっては通常用いられる手段であり、他分野の当業者に最も効果的にそれらの要旨を示すことができる。この明細書に記載されたアルゴリズムは、一般的に設計され、所望の結果に導くステップ(命令)からなる一貫したシーケンスである。そのステップは、物理量についての物理操作を必要とするものである。通常、これらの数値(quantities)は、記憶され、移動され、結合され、比較され、さもなければ処理されることが可能な電気、磁気、光学信号の形式をとるが、必ずしもそうとは限らない。主に一般的な用法上の理由であるが、これらの信号をビット、値、要素、記号、文字、用語、番号等と称することが通常は都合よい。さらに、一般性を失わずに、モジュール又はコード装置として物理量の物理操作を必要とするステップの特定の配置を参照言及するのにも、通常、都合がよい。
しかしながら、これらの用語及び類似する用語の全ては、適切な物理量と関連しており、また、単にこれらの数値に適用される都合よい標識に過ぎない。以下の説明から明らかなように、その他の場合には特に断らない限り、明細書の記載、用語、例えば「処理すること」、「計算すること」、「表示すること」、「決定すること」等を用いる説明によって理解され、コンピュータシステム又は類似の計算装置の動作及び処理を参照し、コンピュータシステム等は、コンピュータシステムメモリ、レジスタ若しくは他の情報記憶装置等、伝送装置又は表示装置内の物理(電気)量として表現されるデータを処理し及び変換する。
本発明の特定の実施の形態において、アルゴリズムの形式で、本明細書で説明する処理のステップ及び命令が含まれる。本発明のステップ及び命令がソフトウェア、ファームウェア又はハードウェアで実現されることに留意する必要があり、ソフトウェアで実現される場合には、ダウンロードすることができ、様々なオペレーティングシステムによって用いられる異なるプラットホームにおいて動作する。
本発明は、このような方法で動作する装置にも関する。この装置は、その目的に対して特に構成され、又はこの装置は、コンピュータに記憶されたコンピュータプログラムによって選択的に動作され、若しくは再構成された汎用コンピュータにより構成することができる。そのようなコンピュータプログラムは、コンピュータで読み取り可能な記憶媒体、特段制限はないが、例えば任意の種類のディスク装置であり、フレキシブル磁気ディスク、光学ディスク、コンパクトディスクリードオンリメモリ(CD−ROM)、光磁気ディスク、リードオンリメモリ(ROM)、ランダムアクセスメモリ、消去可能プログラマブルリードオンリメモリ(EPROM)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、磁気若しくは光学読み取りカード、特定用途向け集積回路(ASIC)、又は電子命令を記憶するのに適した記憶媒体に記憶され、また、それぞれの記憶媒体とコンピュータとを接続するシステムバスがある。さらに、明細書に記載のコンピュータは、シングルプロセッサを含んでいてもよく、計算能力の向上のためにマルチプロセッサを採用するアーキテクチャであってもよい。
本明細書で説明するアルゴリズム及びディスプレイは、いかなる特定のコンピュータ又は他の装置に本質的に限定されるものではない。様々な汎用システムは、本明細書での開示に従って、プログラムとともに用いられ、さらに専用の装置を構成して、本発明の方法のステップを実行するのは容易であることが理解される。さらに、本発明においては、いかなるの特定のプログラミング言語に関して記述されるものではない。様々なプログラミング言語が、本明細書で説明する本発明の技術の開示を実現するのに用いられることはいうまでもなく、特定のプログラミング言語に対して任意に参照することができ、本発明の使用可能性及びベストモードの開示に提供される。
さらに、明細書で用いられる言語は、主に読みやすさ及び教育目的のために選択されており、発明の要旨を詳細に記述し、又は外延を記述するのに選択できない。したがって、本発明の開示は、実施例ではあっても、発明の範囲を制限するものではない。

Claims (19)

  1. コンピュータによって実行される、トピックに関する複数の製品にランクを付ける製品ランク付け方法において、
    製品の情報を含むドキュメントを受け取るステップと、
    上記トピックに関する製品を記述するテキストの一部を含む、上記ドキュメントからのテキストのスニペットを計算するステップと、
    上記トピックに対する各スニペットの関連性の評価を決定するステップと、
    上記トピックに関する各スニペットの感想の評価を決定するステップと、
    上記各スニペットに関連する要素に基づいて上記製品にランクを付ける、上記複数の製品のそれぞれの集約品質スコアを決定するステップとを有し、
    上記集約品質スコアは、上記スニペットの関連性の評価と、上記スニペットの感想の評価と、上記スニペットの信頼性の評価とを含むことを特徴とする製品ランク付け方法。
  2. 上記各スニペットの信頼性の評価を決定するステップを更に有する請求項1記載の製品ランク付け方法。
  3. 上記トピックに関する製品のランキングを決定するのに用いられる情報を表示するステップを更に有する請求項1記載の製品ランク付け方法。
  4. 上記各スニペットの関連性の評価を決定するステップは、
    上記トピックを記述した用語をそれぞれ含む上記複数のスニペットの部分集合を識別するステップと、
    上記各スニペットの特徴ベクトルを計算するステップと、
    上記スニペットに関連する上記特徴ベクトルの統計解析に基づいて、該スニペットの関連性スコアを決定するステップとを有し、
    上記特徴ベクトルの成分は、上記トピックに対する各スニペットの関連性に基づいて決定されることを特徴とする請求項1記載の製品ランク付け方法。
  5. 上記スニペットの特徴ベクトルを計算するステップは、
    上記トピックに基づくパターンを選択するステップと、
    上記テキストパターンが上記スニペットにどの程度良く一致するかに基づいて、上記特徴ベクトルの成分を決定するステップとを有することを特徴する請求項4記載の製品ランク付け方法。
  6. 上記トピックに基づくパターンは、
    上記トピックを記述した用語を有する正規表現と、
    上記トピックを記述した用語を有し、上記複数のスニペット内におけるその出現頻度に基づいて選択されたnグラムと、
    上記トピックを記述した用語を有し、上記複数のスニペット内におけるその出現頻度に基づいて選択され、品詞情報によって注釈が付けられたnグラムと、
    製品メタデータに基づく論理述語と、
    上記スニペットの長さに基づくスカラ値と、
    上記スニペット内の句のインスタンスの数と、
    上記スニペットの先頭又は末尾に対する句の近接度の基準とのうちの少なくとも1つを含むことを特徴とする請求項5記載の製品ランク付け方法。
  7. 上記スニペットの感想の評価を決定するステップは、
    上記トピックを記述した用語をそれぞれ含む上記複数のスニペットの部分集合を識別するステップと、
    上記各スニペットの特徴ベクトルを計算するステップと、
    上記スニペットに関連する上記特徴ベクトルの統計解析に基づいて、該スニペットの感想スコアを決定するステップとを有し、
    上記特徴ベクトルの成分は、上記スニペットによって記述された感想に基づいて決定されることを特徴とする請求項1記載の製品ランク付け方法。
  8. 上記複数のスニペットの部分集合は、上記トピックに対する各スニペットの関連性に基づいて識別されることを特徴とする請求項7記載の製品ランク付け方法。
  9. 上記スニペットの特徴ベクトルを計算するステップは、
    上記スニペットによって記述された上記感想スコアを決定する基準に基づいて、上記特徴ベクトルの成分を決定するステップを有することを特徴とする請求項7記載の製品ランク付け方法。
  10. 上記スニペットによって記述された上記感想スコアを決定する上記基準は、
    上記複数のスニペット内におけるその出現頻度に基づいて選択されたnグラムを、感想を記述する用語と一致をさせること、
    上記複数のスニペット内におけるその出現頻度に基づいて選択され、品詞情報によって注釈が付けられたnグラムを、感想を記述する用語と一致をさせることとの少なくとも一方を含むことを特徴とする請求項9記載の製品ランク付け方法。
  11. 上記各スニペットの信頼性の評価を決定することは、1つ以上の要素に基づくことであり、該1つ以上の要素は、
    上記スニペットの書き手の信頼性の基準と、
    上記スニペットが得られた情報源の信頼性の基準と、
    上記スニペットに関連した役立つ情報及び役立たない情報の数と、
    上記スニペットに関連した投稿記事のサイズとを含むことを特徴とする請求項2記載の製品ランク付け方法。
  12. 上記スニペットに関連する要素は、
    該スニペットの寿命を更に含むことを特徴とする請求項1記載の製品ランク付け方法。
  13. 上記トピックスに関する製品の集約品質スコアは、各スニペットに対応する投票の評価の集約値として決定され、
    上記投票は、上記スニペットが決定した上記トピックに関する製品の品質を示すことを特徴とする請求項2記載の製品ランク付け方法。
  14. 上記各スニペットに対応する投票は、関連性の第1の定数乗の評価に基づいて決定される関連性スコアと、感想の第2の定数乗の評価に基づいて決定される感想スコアと、信頼性の第3の定数乗の評価に基づいて決定される信頼性スコアとを含む複数の項の積として決定されることを特徴とする請求項13記載の製品ランク付け方法。
  15. 上記複数の項には、上記スニペットの寿命の関数に対応した項を更に含むことを特徴とする請求項14記載の製品ランク付け方法。
  16. 上記各スニペットに対応する投票は、関連性の第1の定数乗の評価に基づいて決定される関連性スコアと、感想の第2の定数乗の評価に基づいて決定される感想スコアと、信頼性の第3の定数乗の評価に基づいて決定される信頼性スコアとを含む複数の項の加重和として決定されることを特徴とする請求項13記載の製品ランク付け方法。
  17. 上記複数の項は、上記スニペットの寿命の関数に対応した項を更に含むことを特徴とする請求項16記載の製品ランク付け方法。
  18. コンピュータによって実行される、トピックに関する複数の製品にランクを付ける製品ランク付けシステムにおいて、
    コンピュータプロセッサと、
    上記コンピュータプロセッサで実行されるコンピュータプログラムモジュールを格納したコンピュータで読み取り可能な記憶媒体とを備え、
    上記コンピュータプログラムモジュールは、
    複数のオンライン情報源から集約された、製品の情報を含むドキュメントを受け取り、上記トピックに関する製品を記述するテキストの一部を含む、該ドキュメントからのテキストのスニペットを計算する集約モジュールと、
    上記トピックに対する各スニペットの関連性の評価を決定する関連性解析モジュールと、
    上記トピックに関連する上記スニペットの感想の評価を決定する感想解析モジュールと、
    上記各スニペットに関連する要素に基づいて上記製品にランクを付ける、上記複数の製品のそれぞれの集約品質スコアを決定する品質スコア計算モジュールとを含み、
    上記品質スコア計算モジュールは、上記スニペットの関連性の評価と、上記スニペットの感想の評価と、上記スニペットの信頼性の評価とを含むことを特徴とする製品ランク付けシステム。
  19. トピックに関する複数の製品にランクを付けるコンピュータ実行コードを格納する、コンピュータで読み取り可能な記憶媒体に記憶されたコンピュータプログラムにおいて、
    複数のオンライン情報源から集約された、製品の情報を含むドキュメントを受け取り、上記トピックに関する製品を記述するテキストの一部を含む、該ドキュメントからのテキストのスニペットを計算する集約モジュールと、
    上記トピックに対する各スニペットの関連性の評価を決定する関連性解析モジュールと、
    上記トピックに関する各スニペットの感想の評価を決定する感想解析モジュールと、
    上記各スニペットに関連する要素に基づいて上記製品にランクを付ける、上記複数の製品のそれぞれの集約品質スコアを決定する品質スコア計算モジュールとを含み、
    上記集約品質スコアは、上記スニペットの関連性の評価と、上記スニペットの感想の評価と、上記スニペットの信頼性の評価とを含むことを特徴とするコンピュータプログラム。
JP2011514785A 2008-06-19 2009-06-17 トピックに関する複数の製品にランクを付ける製品ランク付け方法及び製品ランク付けシステム Expired - Fee Related JP5350472B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US7406108P 2008-06-19 2008-06-19
US61/074,061 2008-06-19
PCT/US2009/047707 WO2009155375A2 (en) 2008-06-19 2009-06-17 System and method for aggregating and summarizing product/topic sentiment

Publications (2)

Publication Number Publication Date
JP2011530729A JP2011530729A (ja) 2011-12-22
JP5350472B2 true JP5350472B2 (ja) 2013-11-27

Family

ID=41432182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011514785A Expired - Fee Related JP5350472B2 (ja) 2008-06-19 2009-06-17 トピックに関する複数の製品にランクを付ける製品ランク付け方法及び製品ランク付けシステム

Country Status (5)

Country Link
US (1) US20090319342A1 (ja)
EP (1) EP2304660A4 (ja)
JP (1) JP5350472B2 (ja)
AU (1) AU2009260033A1 (ja)
WO (1) WO2009155375A2 (ja)

Families Citing this family (302)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8677377B2 (en) 2005-09-08 2014-03-18 Apple Inc. Method and apparatus for building an intelligent automated assistant
US8108398B2 (en) * 2007-06-29 2012-01-31 Microsoft Corporation Auto-summary generator and filter
US7987188B2 (en) * 2007-08-23 2011-07-26 Google Inc. Domain-specific sentiment classification
CA2702937C (en) 2007-10-17 2014-10-07 Neil S. Roseman Nlp-based content recommender
US8417713B1 (en) 2007-12-05 2013-04-09 Google Inc. Sentiment detection as a ranking signal for reviewable entities
US10002189B2 (en) 2007-12-20 2018-06-19 Apple Inc. Method and apparatus for searching using an active ontology
US9330720B2 (en) 2008-01-03 2016-05-03 Apple Inc. Methods and apparatus for altering audio output signals
US8010539B2 (en) * 2008-01-25 2011-08-30 Google Inc. Phrase based snippet generation
US8799773B2 (en) * 2008-01-25 2014-08-05 Google Inc. Aspect-based sentiment summarization
US8086557B2 (en) * 2008-04-22 2011-12-27 Xerox Corporation Method and system for retrieving statements of information sources and associating a factuality assessment to the statements
US8731995B2 (en) * 2008-05-12 2014-05-20 Microsoft Corporation Ranking products by mining comparison sentiment
US8375100B1 (en) 2008-06-05 2013-02-12 United Services Automobile Association (Usaa) Systems and methods for sending consolidated electronic mail messages
US8676904B2 (en) 2008-10-02 2014-03-18 Apple Inc. Electronic devices with voice command and contextual data processing capabilities
US9129008B1 (en) 2008-11-10 2015-09-08 Google Inc. Sentiment-based classification of media content
US8768759B2 (en) * 2008-12-01 2014-07-01 Topsy Labs, Inc. Advertising based on influence
US20100153185A1 (en) * 2008-12-01 2010-06-17 Topsy Labs, Inc. Mediating and pricing transactions based on calculated reputation or influence scores
WO2010065111A1 (en) 2008-12-01 2010-06-10 Topsy Labs, Inc. Ranking and selecting enitities based on calculated reputation or influence scores
US9213687B2 (en) * 2009-03-23 2015-12-15 Lawrence Au Compassion, variety and cohesion for methods of text analytics, writing, search, user interfaces
US8768930B2 (en) * 2009-10-10 2014-07-01 Oracle International Corporation Product classification in procurement systems
US8972436B2 (en) * 2009-10-28 2015-03-03 Yahoo! Inc. Translation model and method for matching reviews to objects
US11023675B1 (en) 2009-11-03 2021-06-01 Alphasense OY User interface for use with a search engine for searching financial related documents
US8484286B1 (en) * 2009-11-16 2013-07-09 Hydrabyte, Inc Method and system for distributed collecting of information from a network
US11113299B2 (en) 2009-12-01 2021-09-07 Apple Inc. System and method for metadata transfer among search entities
US9110979B2 (en) 2009-12-01 2015-08-18 Apple Inc. Search of sources and targets based on relative expertise of the sources
US8892541B2 (en) 2009-12-01 2014-11-18 Topsy Labs, Inc. System and method for query temporality analysis
US9129017B2 (en) 2009-12-01 2015-09-08 Apple Inc. System and method for metadata transfer among search entities
US11036810B2 (en) 2009-12-01 2021-06-15 Apple Inc. System and method for determining quality of cited objects in search results based on the influence of citing subjects
US11122009B2 (en) 2009-12-01 2021-09-14 Apple Inc. Systems and methods for identifying geographic locations of social media content collected over social networks
US9280597B2 (en) 2009-12-01 2016-03-08 Apple Inc. System and method for customizing search results from user's perspective
US9454586B2 (en) 2009-12-01 2016-09-27 Apple Inc. System and method for customizing analytics based on users media affiliation status
US8356025B2 (en) * 2009-12-09 2013-01-15 International Business Machines Corporation Systems and methods for detecting sentiment-based topics
US8990124B2 (en) * 2010-01-14 2015-03-24 Microsoft Technology Licensing, Llc Assessing quality of user reviews
US10276170B2 (en) 2010-01-18 2019-04-30 Apple Inc. Intelligent automated assistant
US8290812B2 (en) * 2010-02-17 2012-10-16 Demand Media, Inc. Providing a result with a requested accuracy using individuals previously acting with a consensus
US8682667B2 (en) 2010-02-25 2014-03-25 Apple Inc. User profiling for selecting user specific voice input processing information
US8645125B2 (en) 2010-03-30 2014-02-04 Evri, Inc. NLP-based systems and methods for providing quotations
US8725494B2 (en) * 2010-03-31 2014-05-13 Attivio, Inc. Signal processing approach to sentiment analysis for entities in documents
US20110258560A1 (en) * 2010-04-14 2011-10-20 Microsoft Corporation Automatic gathering and distribution of testimonial content
US20110295845A1 (en) * 2010-05-27 2011-12-01 Microsoft Corporation Semi-Supervised Page Importance Ranking
US20110302102A1 (en) * 2010-06-03 2011-12-08 Oracle International Corporation Community rating and ranking in enterprise applications
US8555155B2 (en) * 2010-06-04 2013-10-08 Apple Inc. Reader mode presentation of web content
US8954425B2 (en) * 2010-06-08 2015-02-10 Microsoft Corporation Snippet extraction and ranking
US8458115B2 (en) 2010-06-08 2013-06-04 Microsoft Corporation Mining topic-related aspects from user generated content
US8719207B2 (en) 2010-07-27 2014-05-06 Oracle International Corporation Method and system for providing decision making based on sense and respond
US20120036085A1 (en) * 2010-08-05 2012-02-09 Accenture Global Services Gmbh Social media variable analytical system
CA2806729A1 (en) * 2010-08-06 2012-02-09 Acquire Media Ventures Inc. Method and system for pacing, ack'ing, timing, and handicapping (path) for simultaneous receipt of documents
US8838633B2 (en) * 2010-08-11 2014-09-16 Vcvc Iii Llc NLP-based sentiment analysis
US8612293B2 (en) 2010-10-19 2013-12-17 Citizennet Inc. Generation of advertising targeting information based upon affinity information obtained from an online social network
US10515147B2 (en) * 2010-12-22 2019-12-24 Apple Inc. Using statistical language models for contextual lookup
US20120179751A1 (en) * 2011-01-06 2012-07-12 International Business Machines Corporation Computer system and method for sentiment-based recommendations of discussion topics in social media
WO2012116236A2 (en) 2011-02-23 2012-08-30 Nova Spivack System and method for analyzing messages in a network or across networks
US8484228B2 (en) * 2011-03-17 2013-07-09 Indian Institute Of Science Extraction and grouping of feature words
US9262612B2 (en) 2011-03-21 2016-02-16 Apple Inc. Device access using voice authentication
US8856056B2 (en) * 2011-03-22 2014-10-07 Isentium, Llc Sentiment calculus for a method and system using social media for event-driven trading
US20120246092A1 (en) * 2011-03-24 2012-09-27 Aaron Stibel Credibility Scoring and Reporting
US9063927B2 (en) * 2011-04-06 2015-06-23 Citizennet Inc. Short message age classification
WO2012142158A2 (en) * 2011-04-11 2012-10-18 Credibility Corp. Visualization tools for reviewing credibility and stateful hierarchical access to credibility
US9202200B2 (en) * 2011-04-27 2015-12-01 Credibility Corp. Indices for credibility trending, monitoring, and lead generation
CN102760264A (zh) 2011-04-29 2012-10-31 国际商业机器公司 为互联网上的评论生成摘录的计算机实现的方法和系统
US20120304072A1 (en) * 2011-05-23 2012-11-29 Microsoft Corporation Sentiment-based content aggregation and presentation
US8374885B2 (en) * 2011-06-01 2013-02-12 Credibility Corp. People engine optimization
US8977947B2 (en) 2011-06-03 2015-03-10 Apple Inc. Method for presenting documents using a reading list panel
US10057736B2 (en) 2011-06-03 2018-08-21 Apple Inc. Active transport based notifications
JP5717549B2 (ja) * 2011-06-10 2015-05-13 株式会社野村総合研究所 感性分析システム及びプログラム
JP5599073B2 (ja) * 2011-06-10 2014-10-01 株式会社野村総合研究所 感性分析システム及びプログラム
US8589407B2 (en) * 2011-06-17 2013-11-19 Google Inc. Automated generation of suggestions for personalized reactions in a social network
JP5209089B2 (ja) * 2011-06-29 2013-06-12 ヤフー株式会社 投稿情報評価装置及び投稿情報評価方法
JP5318917B2 (ja) * 2011-06-30 2013-10-16 楽天株式会社 レビュー投稿制御装置、レビュー投稿制御方法、レビュー投稿制御プログラム、及びそのプログラムを記録するコンピュータ読み取り可能な記録媒体
EP2546760A1 (en) * 2011-07-11 2013-01-16 Accenture Global Services Limited Provision of user input in systems for jointly discovering topics and sentiment
US10127522B2 (en) * 2011-07-14 2018-11-13 Excalibur Ip, Llc Automatic profiling of social media users
US8671098B2 (en) 2011-09-14 2014-03-11 Microsoft Corporation Automatic generation of digital composite product reviews
US9275148B1 (en) * 2011-09-23 2016-03-01 Shauki Elassaad System and method for augmented browsing and knowledge discovery
US8798995B1 (en) * 2011-09-23 2014-08-05 Amazon Technologies, Inc. Key word determinations from voice data
US8849826B2 (en) 2011-09-30 2014-09-30 Metavana, Inc. Sentiment analysis from social media content
WO2013059290A1 (en) * 2011-10-17 2013-04-25 Metavana, Inc. Sentiment and influence analysis of twitter tweets
US9009024B2 (en) * 2011-10-24 2015-04-14 Hewlett-Packard Development Company, L.P. Performing sentiment analysis
US9189797B2 (en) 2011-10-26 2015-11-17 Apple Inc. Systems and methods for sentiment detection, measurement, and normalization over social networks
US20130124653A1 (en) * 2011-11-16 2013-05-16 Loopa Llc Searching, retrieving, and scoring social media
US20130132851A1 (en) * 2011-11-22 2013-05-23 International Business Machines Corporation Sentiment estimation of web browsing user
US8818788B1 (en) 2012-02-01 2014-08-26 Bazaarvoice, Inc. System, method and computer program product for identifying words within collection of text applicable to specific sentiment
CA2864076C (en) 2012-02-07 2022-10-04 Social Market Analytics, Inc. Systems and methods of detecting, measuring, and extracting signatures of signals embedded in social media data streams
US8832092B2 (en) 2012-02-17 2014-09-09 Bottlenose, Inc. Natural language processing optimized for micro content
US10134385B2 (en) 2012-03-02 2018-11-20 Apple Inc. Systems and methods for name pronunciation
US10372741B2 (en) 2012-03-02 2019-08-06 Clarabridge, Inc. Apparatus for automatic theme detection from unstructured data
US9697490B1 (en) 2012-03-05 2017-07-04 Reputation.Com, Inc. Industry review benchmarking
US10636041B1 (en) 2012-03-05 2020-04-28 Reputation.Com, Inc. Enterprise reputation evaluation
US9633118B2 (en) 2012-03-13 2017-04-25 Microsoft Technology Licensing, Llc. Editorial service supporting contrasting content
US10366399B1 (en) * 2012-03-15 2019-07-30 Amazon Technologies, Inc. Detecting item trends
US9348811B2 (en) * 2012-04-20 2016-05-24 Sap Se Obtaining data from electronic documents
US9418389B2 (en) 2012-05-07 2016-08-16 Nasdaq, Inc. Social intelligence architecture using social media message queues
US10304036B2 (en) 2012-05-07 2019-05-28 Nasdaq, Inc. Social media profiling for one or more authors using one or more social media platforms
US10417037B2 (en) 2012-05-15 2019-09-17 Apple Inc. Systems and methods for integrating third party services with a digital assistant
US9678948B2 (en) * 2012-06-26 2017-06-13 International Business Machines Corporation Real-time message sentiment awareness
US11093984B1 (en) 2012-06-29 2021-08-17 Reputation.Com, Inc. Determining themes
US9009126B2 (en) 2012-07-31 2015-04-14 Bottlenose, Inc. Discovering and ranking trending links about topics
US9785890B2 (en) * 2012-08-10 2017-10-10 Fair Isaac Corporation Data-driven product grouping
EP2888678A4 (en) * 2012-08-22 2016-07-20 Sentiment 360 Ltd PARTICIPATION TOOL FOR WEBSITE
CN103678335B (zh) * 2012-09-05 2017-12-08 阿里巴巴集团控股有限公司 商品标识标签的方法、装置及商品导航的方法
JP6049136B2 (ja) * 2012-11-07 2016-12-21 株式会社Kddi総合研究所 ネットワーク管理システムおよび方法
WO2014075094A2 (en) * 2012-11-09 2014-05-15 Trusper, Inc. Trusted social networks
US9240184B1 (en) * 2012-11-15 2016-01-19 Google Inc. Frame-level combination of deep neural network and gaussian mixture models
US9047327B2 (en) 2012-12-03 2015-06-02 Google Technology Holdings LLC Method and apparatus for developing a social hierarchy
KR101423544B1 (ko) * 2012-12-06 2014-08-01 고려대학교 산학협력단 시맨틱 토픽 추출 장치 및 방법
CN103870973B (zh) * 2012-12-13 2017-12-19 阿里巴巴集团控股有限公司 基于电子信息的关键词提取的信息推送、搜索方法及装置
US9690775B2 (en) 2012-12-27 2017-06-27 International Business Machines Corporation Real-time sentiment analysis for synchronous communication
US9460083B2 (en) 2012-12-27 2016-10-04 International Business Machines Corporation Interactive dashboard based on real-time sentiment analysis for synchronous communication
US9020956B1 (en) * 2012-12-31 2015-04-28 Google Inc. Sentiment and topic based content determination methods and systems
US9229988B2 (en) * 2013-01-18 2016-01-05 Microsoft Technology Licensing, Llc Ranking relevant attributes of entity in structured knowledge base
US20140214617A1 (en) * 2013-01-29 2014-07-31 360Pi Corporation Pricing intelligence for non-identically identified products
US9177554B2 (en) 2013-02-04 2015-11-03 International Business Machines Corporation Time-based sentiment analysis for product and service features
KR20240132105A (ko) 2013-02-07 2024-09-02 애플 인크. 디지털 어시스턴트를 위한 음성 트리거
US9692771B2 (en) * 2013-02-12 2017-06-27 Symantec Corporation System and method for estimating typicality of names and textual data
US8762302B1 (en) 2013-02-22 2014-06-24 Bottlenose, Inc. System and method for revealing correlations between data streams
US9247013B2 (en) * 2013-03-08 2016-01-26 Oracle International Corporation System for repetitively executing rules-based configurable business application operations
US20140280017A1 (en) * 2013-03-12 2014-09-18 Microsoft Corporation Aggregations for trending topic summarization
US20140278811A1 (en) * 2013-03-13 2014-09-18 Salesify, Inc. Sales and marketing support applications for generating and displaying business intelligence
US8712907B1 (en) 2013-03-14 2014-04-29 Credibility Corp. Multi-dimensional credibility scoring
US9432325B2 (en) 2013-04-08 2016-08-30 Avaya Inc. Automatic negative question handling
CN104133830A (zh) * 2013-05-02 2014-11-05 乐视网信息技术(北京)股份有限公司 一种数据获取方法
WO2014197335A1 (en) 2013-06-08 2014-12-11 Apple Inc. Interpreting and acting upon commands that involve sharing information with remote devices
KR101772152B1 (ko) 2013-06-09 2017-08-28 애플 인크. 디지털 어시스턴트의 둘 이상의 인스턴스들에 걸친 대화 지속성을 가능하게 하기 위한 디바이스, 방법 및 그래픽 사용자 인터페이스
US10176167B2 (en) 2013-06-09 2019-01-08 Apple Inc. System and method for inferring user intent from speech inputs
US9514133B1 (en) * 2013-06-25 2016-12-06 Jpmorgan Chase Bank, N.A. System and method for customized sentiment signal generation through machine learning based streaming text analytics
US9268770B1 (en) 2013-06-25 2016-02-23 Jpmorgan Chase Bank, N.A. System and method for research report guided proactive news analytics for streaming news and social media
US20150052077A1 (en) * 2013-08-14 2015-02-19 Andrew C. Gorton Review transparency indicator system and method
US9665665B2 (en) 2013-08-20 2017-05-30 International Business Machines Corporation Visualization credibility score
US9710550B2 (en) 2013-09-05 2017-07-18 TSG Technologies, LLC Systems and methods for identifying issues in electronic documents
US9715492B2 (en) 2013-09-11 2017-07-25 Avaya Inc. Unspoken sentiment
US20150073774A1 (en) * 2013-09-11 2015-03-12 Avaya Inc. Automatic Domain Sentiment Expansion
US9569510B2 (en) * 2013-09-30 2017-02-14 International Business Machines Corporation Crowd-powered self-improving interactive visualanalytics for user-generated opinion data
US20150112772A1 (en) * 2013-10-11 2015-04-23 Crowdpac, Inc. Interface and methods for tracking and analyzing political ideology and interests
US9990422B2 (en) * 2013-10-15 2018-06-05 Adobe Systems Incorporated Contextual analysis engine
US10430806B2 (en) 2013-10-15 2019-10-01 Adobe Inc. Input/output interface for contextual analysis engine
US10235681B2 (en) 2013-10-15 2019-03-19 Adobe Inc. Text extraction module for contextual analysis engine
CN104679769B (zh) * 2013-11-29 2018-04-06 国际商业机器公司 对产品的使用场景进行分类的方法及装置
US10296160B2 (en) 2013-12-06 2019-05-21 Apple Inc. Method for extracting salient dialog usage from live data
US20150220946A1 (en) * 2014-01-31 2015-08-06 Verint Systems Ltd. System and Method of Trend Identification
US20170186055A1 (en) * 2014-03-27 2017-06-29 Einstein Industries, Inc. Improved reviews and ratings
US10949753B2 (en) * 2014-04-03 2021-03-16 Adobe Inc. Causal modeling and attribution
US10170123B2 (en) 2014-05-30 2019-01-01 Apple Inc. Intelligent assistant for home automation
US9430463B2 (en) 2014-05-30 2016-08-30 Apple Inc. Exemplar-based natural language processing
US9715875B2 (en) 2014-05-30 2017-07-25 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
US9633004B2 (en) 2014-05-30 2017-04-25 Apple Inc. Better resolution when referencing to concepts
CN110797019B (zh) 2014-05-30 2023-08-29 苹果公司 多命令单一话语输入方法
US10282467B2 (en) 2014-06-26 2019-05-07 International Business Machines Corporation Mining product aspects from opinion text
US11250450B1 (en) 2014-06-27 2022-02-15 Groupon, Inc. Method and system for programmatic generation of survey queries
US9317566B1 (en) 2014-06-27 2016-04-19 Groupon, Inc. Method and system for programmatic analysis of consumer reviews
US10878017B1 (en) 2014-07-29 2020-12-29 Groupon, Inc. System and method for programmatic generation of attribute descriptors
US9886479B2 (en) * 2014-07-29 2018-02-06 International Business Machines Corporation Managing credibility for a question answering system
US10963928B2 (en) * 2014-08-21 2021-03-30 Stubhub, Inc. Crowdsourcing seat quality in a venue
US20160070803A1 (en) * 2014-09-09 2016-03-10 Funky Flick, Inc. Conceptual product recommendation
US10089660B2 (en) * 2014-09-09 2018-10-02 Stc.Unm Online review assessment using multiple sources
US9818400B2 (en) 2014-09-11 2017-11-14 Apple Inc. Method and apparatus for discovering trending terms in speech requests
US10074360B2 (en) 2014-09-30 2018-09-11 Apple Inc. Providing an indication of the suitability of speech recognition
US10127911B2 (en) 2014-09-30 2018-11-13 Apple Inc. Speaker identification and unsupervised speaker adaptation techniques
US9668121B2 (en) 2014-09-30 2017-05-30 Apple Inc. Social reminders
US10977667B1 (en) 2014-10-22 2021-04-13 Groupon, Inc. Method and system for programmatic analysis of consumer sentiment with regard to attribute descriptors
US20160156579A1 (en) * 2014-12-01 2016-06-02 Google Inc. Systems and methods for estimating user judgment based on partial feedback and applying it to message categorization
US10341376B2 (en) 2014-12-29 2019-07-02 Guidewire Software, Inc. Diversity analysis with actionable feedback methodologies
WO2017078986A1 (en) 2014-12-29 2017-05-11 Cyence Inc. Diversity analysis with actionable feedback methodologies
US9253203B1 (en) * 2014-12-29 2016-02-02 Cyence Inc. Diversity analysis with actionable feedback methodologies
US11863590B2 (en) 2014-12-29 2024-01-02 Guidewire Software, Inc. Inferential analysis using feedback for extracting and combining cyber risk information
US10050990B2 (en) 2014-12-29 2018-08-14 Guidewire Software, Inc. Disaster scenario based inferential analysis using feedback for extracting and combining cyber risk information
US11855768B2 (en) 2014-12-29 2023-12-26 Guidewire Software, Inc. Disaster scenario based inferential analysis using feedback for extracting and combining cyber risk information
US9521160B2 (en) 2014-12-29 2016-12-13 Cyence Inc. Inferential analysis using feedback for extracting and combining cyber risk information
US10050989B2 (en) 2014-12-29 2018-08-14 Guidewire Software, Inc. Inferential analysis using feedback for extracting and combining cyber risk information including proxy connection analyses
US9699209B2 (en) 2014-12-29 2017-07-04 Cyence Inc. Cyber vulnerability scan analyses with actionable feedback
US10152299B2 (en) 2015-03-06 2018-12-11 Apple Inc. Reducing response latency of intelligent automated assistants
US9721566B2 (en) 2015-03-08 2017-08-01 Apple Inc. Competing devices responding to voice triggers
US9886953B2 (en) 2015-03-08 2018-02-06 Apple Inc. Virtual assistant activation
US10404748B2 (en) 2015-03-31 2019-09-03 Guidewire Software, Inc. Cyber risk analysis and remediation using network monitored sensors and methods of use
US10460227B2 (en) 2015-05-15 2019-10-29 Apple Inc. Virtual assistant in a communication session
US10083688B2 (en) 2015-05-27 2018-09-25 Apple Inc. Device voice control for selecting a displayed affordance
US9578173B2 (en) 2015-06-05 2017-02-21 Apple Inc. Virtual assistant aided communication with 3rd party service in a communication session
US20160364733A1 (en) * 2015-06-09 2016-12-15 International Business Machines Corporation Attitude Inference
US20160378747A1 (en) 2015-06-29 2016-12-29 Apple Inc. Virtual assistant for media playback
US10509832B2 (en) * 2015-07-13 2019-12-17 Facebook, Inc. Generating snippet modules on online social networks
US10289731B2 (en) * 2015-08-17 2019-05-14 International Business Machines Corporation Sentiment aggregation
US11164223B2 (en) 2015-09-04 2021-11-02 Walmart Apollo, Llc System and method for annotating reviews
US10140646B2 (en) * 2015-09-04 2018-11-27 Walmart Apollo, Llc System and method for analyzing features in product reviews and displaying the results
US10073794B2 (en) 2015-10-16 2018-09-11 Sprinklr, Inc. Mobile application builder program and its functionality for application development, providing the user an improved search capability for an expanded generic search based on the user's search criteria
US10282737B2 (en) 2015-11-03 2019-05-07 International Business Machines Corporation Analyzing sentiment in product reviews
US10956666B2 (en) 2015-11-09 2021-03-23 Apple Inc. Unconventional virtual assistant interactions
US10534814B2 (en) * 2015-11-11 2020-01-14 Facebook, Inc. Generating snippets on online social networks
CN105488024B (zh) * 2015-11-20 2017-10-13 广州神马移动信息科技有限公司 网页主题句的抽取方法及装置
US11004096B2 (en) 2015-11-25 2021-05-11 Sprinklr, Inc. Buy intent estimation and its applications for social media data
US10049668B2 (en) 2015-12-02 2018-08-14 Apple Inc. Applying neural network language models to weighted finite state transducers for automatic speech recognition
US10223066B2 (en) 2015-12-23 2019-03-05 Apple Inc. Proactive assistance based on dialog communication between devices
US10713588B2 (en) * 2016-02-23 2020-07-14 Salesforce.Com, Inc. Data analytics systems and methods with personalized sentiment models
US10572524B2 (en) * 2016-02-29 2020-02-25 Microsoft Technology Licensing, Llc Content categorization
WO2017149540A1 (en) * 2016-03-02 2017-09-08 Feelter Sales Tools Ltd Sentiment rating system and method
US20170270572A1 (en) * 2016-03-18 2017-09-21 Trackstreet, Inc. System and method for autonomous internet searching and display of product data and sending alerts
US10599699B1 (en) * 2016-04-08 2020-03-24 Intuit, Inc. Processing unstructured voice of customer feedback for improving content rankings in customer support systems
US10147122B2 (en) 2016-05-18 2018-12-04 Google Llc Prioritizing topics of interest determined from product evaluations
WO2017203681A1 (ja) * 2016-05-27 2017-11-30 楽天株式会社 情報処理装置、情報処理方法、プログラム、記憶媒体
US9898258B2 (en) * 2016-05-31 2018-02-20 International Business Machines Corporation Versioning of build environment information
US11227589B2 (en) 2016-06-06 2022-01-18 Apple Inc. Intelligent list reading
US10049663B2 (en) 2016-06-08 2018-08-14 Apple, Inc. Intelligent automated assistant for media exploration
US10586535B2 (en) 2016-06-10 2020-03-10 Apple Inc. Intelligent digital assistant in a multi-tasking environment
DK179415B1 (en) 2016-06-11 2018-06-14 Apple Inc Intelligent device arbitration and control
DK201670540A1 (en) 2016-06-11 2018-01-08 Apple Inc Application integration with a digital assistant
US10664899B2 (en) 2016-08-15 2020-05-26 Google Llc Systems and methods for detection of navigation to physical venue and suggestion of alternative actions
US10268677B2 (en) * 2016-08-16 2019-04-23 International Business Machines Corporation Decomposing composite product reviews
US10474753B2 (en) 2016-09-07 2019-11-12 Apple Inc. Language identification using recurrent neural networks
US10579625B2 (en) * 2016-09-15 2020-03-03 Walmart Apollo, Llc Personalized review snippet generation and display
US10223353B1 (en) * 2016-09-20 2019-03-05 Amazon Technologies Dynamic semantic analysis on free-text reviews to identify safety concerns
US10043516B2 (en) 2016-09-23 2018-08-07 Apple Inc. Intelligent automated assistant
US10417671B2 (en) 2016-11-01 2019-09-17 Yext, Inc. Optimizing dynamic review generation for redirecting request links
US11204787B2 (en) 2017-01-09 2021-12-21 Apple Inc. Application integration with a digital assistant
US10462095B2 (en) 2017-01-10 2019-10-29 International Business Machines Corporation Time and sentiment based messaging
US10397326B2 (en) 2017-01-11 2019-08-27 Sprinklr, Inc. IRC-Infoid data standardization for use in a plurality of mobile applications
US20180260389A1 (en) * 2017-03-08 2018-09-13 Fujitsu Limited Electronic document segmentation and relation discovery between elements for natural language processing
US10614141B2 (en) * 2017-03-15 2020-04-07 Facebook, Inc. Vital author snippets on online social networks
US11182825B2 (en) 2017-04-21 2021-11-23 International Business Machines Corporation Processing image using narrowed search space based on textual context to detect items in the image
DK201770383A1 (en) 2017-05-09 2018-12-14 Apple Inc. USER INTERFACE FOR CORRECTING RECOGNITION ERRORS
US10417266B2 (en) 2017-05-09 2019-09-17 Apple Inc. Context-aware ranking of intelligent response suggestions
US10484320B2 (en) 2017-05-10 2019-11-19 International Business Machines Corporation Technology for multi-recipient electronic message modification based on recipient subset
US10395654B2 (en) 2017-05-11 2019-08-27 Apple Inc. Text normalization based on a data-driven learning network
US10726832B2 (en) 2017-05-11 2020-07-28 Apple Inc. Maintaining privacy of personal information
US11301477B2 (en) 2017-05-12 2022-04-12 Apple Inc. Feedback analysis of a digital assistant
US20180336275A1 (en) 2017-05-16 2018-11-22 Apple Inc. Intelligent automated assistant for media exploration
US10311144B2 (en) 2017-05-16 2019-06-04 Apple Inc. Emoji word sense disambiguation
US10403278B2 (en) 2017-05-16 2019-09-03 Apple Inc. Methods and systems for phonetic matching in digital assistant services
DK179549B1 (en) 2017-05-16 2019-02-12 Apple Inc. FAR-FIELD EXTENSION FOR DIGITAL ASSISTANT SERVICES
US10628528B2 (en) 2017-06-29 2020-04-21 Robert Bosch Gmbh System and method for domain-independent aspect level sentiment detection
US10796328B2 (en) 2017-07-25 2020-10-06 Target Brands, Inc. Method and system for soliciting and rewarding curated audience feedback
US11232363B2 (en) * 2017-08-29 2022-01-25 Jacov Jackie Baloul System and method of providing news analysis using artificial intelligence
US10972299B2 (en) * 2017-09-06 2021-04-06 Cisco Technology, Inc. Organizing and aggregating meetings into threaded representations
US10733982B2 (en) 2018-01-08 2020-08-04 Apple Inc. Multi-directional dialog
US10733375B2 (en) 2018-01-31 2020-08-04 Apple Inc. Knowledge-based framework for improving natural language understanding
US10360631B1 (en) 2018-02-14 2019-07-23 Capital One Services, Llc Utilizing artificial intelligence to make a prediction about an entity based on user sentiment and transaction history
IT201800002691A1 (it) * 2018-02-14 2019-08-14 Emanuele Pedrona Metodo di gestione automatica di magazzini e similari
US10789959B2 (en) 2018-03-02 2020-09-29 Apple Inc. Training speaker recognition models for digital assistants
US10592604B2 (en) 2018-03-12 2020-03-17 Apple Inc. Inverse text normalization for automatic speech recognition
US10818288B2 (en) 2018-03-26 2020-10-27 Apple Inc. Natural assistant interaction
US10909331B2 (en) 2018-03-30 2021-02-02 Apple Inc. Implicit identification of translation payload with neural machine translation
WO2019192710A1 (de) 2018-04-05 2019-10-10 Products Up GmbH Verfahren zum darstellen und verändern von datenverknüpfungen mittels einer graphischen benutzeroberfläche
US11145294B2 (en) 2018-05-07 2021-10-12 Apple Inc. Intelligent automated assistant for delivering content from user experiences
US10928918B2 (en) 2018-05-07 2021-02-23 Apple Inc. Raise to speak
US10984780B2 (en) 2018-05-21 2021-04-20 Apple Inc. Global semantic word embeddings using bi-directional recurrent neural networks
DK180639B1 (en) 2018-06-01 2021-11-04 Apple Inc DISABILITY OF ATTENTION-ATTENTIVE VIRTUAL ASSISTANT
US10892996B2 (en) 2018-06-01 2021-01-12 Apple Inc. Variable latency device coordination
US11386266B2 (en) 2018-06-01 2022-07-12 Apple Inc. Text correction
DK201870355A1 (en) 2018-06-01 2019-12-16 Apple Inc. VIRTUAL ASSISTANT OPERATION IN MULTI-DEVICE ENVIRONMENTS
DK179822B1 (da) 2018-06-01 2019-07-12 Apple Inc. Voice interaction at a primary device to access call functionality of a companion device
US11076039B2 (en) 2018-06-03 2021-07-27 Apple Inc. Accelerated task performance
US20200065868A1 (en) * 2018-08-23 2020-02-27 Walmart Apollo, Llc Systems and methods for analyzing customer feedback
JP7024663B2 (ja) * 2018-08-27 2022-02-24 日本電信電話株式会社 評価更新装置、方法、及びプログラム
US11010561B2 (en) 2018-09-27 2021-05-18 Apple Inc. Sentiment prediction from textual data
US11170166B2 (en) 2018-09-28 2021-11-09 Apple Inc. Neural typographical error modeling via generative adversarial networks
US10839159B2 (en) 2018-09-28 2020-11-17 Apple Inc. Named entity normalization in a spoken dialog system
US11462215B2 (en) 2018-09-28 2022-10-04 Apple Inc. Multi-modal inputs for voice commands
US11475898B2 (en) 2018-10-26 2022-10-18 Apple Inc. Low-latency multi-speaker speech recognition
US10482116B1 (en) 2018-12-05 2019-11-19 Trasers, Inc. Methods and systems for interactive research report viewing
CN111415176B (zh) * 2018-12-19 2023-06-30 杭州海康威视数字技术股份有限公司 一种满意度评价方法、装置及电子设备
CN109858770A (zh) * 2019-01-02 2019-06-07 口口相传(北京)网络技术有限公司 对象质量评估方法和装置
US11638059B2 (en) 2019-01-04 2023-04-25 Apple Inc. Content playback on multiple devices
US11107092B2 (en) * 2019-01-18 2021-08-31 Sprinklr, Inc. Content insight system
US11507609B1 (en) * 2019-03-07 2022-11-22 Hrl Laboratories, Llc System for generating topic-based sentiment time series from social media data
US10963639B2 (en) * 2019-03-08 2021-03-30 Medallia, Inc. Systems and methods for identifying sentiment in text strings
US11348573B2 (en) 2019-03-18 2022-05-31 Apple Inc. Multimodality in digital assistant systems
US11475884B2 (en) 2019-05-06 2022-10-18 Apple Inc. Reducing digital assistant latency when a language is incorrectly determined
US11307752B2 (en) 2019-05-06 2022-04-19 Apple Inc. User configurable task triggers
DK201970509A1 (en) 2019-05-06 2021-01-15 Apple Inc Spoken notifications
US11423908B2 (en) 2019-05-06 2022-08-23 Apple Inc. Interpreting spoken requests
US11140099B2 (en) 2019-05-21 2021-10-05 Apple Inc. Providing message response suggestions
US11496600B2 (en) 2019-05-31 2022-11-08 Apple Inc. Remote execution of machine-learned models
DK180129B1 (en) 2019-05-31 2020-06-02 Apple Inc. USER ACTIVITY SHORTCUT SUGGESTIONS
US11289073B2 (en) 2019-05-31 2022-03-29 Apple Inc. Device text to speech
US11360641B2 (en) 2019-06-01 2022-06-14 Apple Inc. Increasing the relevance of new available information
US11715134B2 (en) 2019-06-04 2023-08-01 Sprinklr, Inc. Content compliance system
US11144730B2 (en) 2019-08-08 2021-10-12 Sprinklr, Inc. Modeling end to end dialogues using intent oriented decoding
US10628630B1 (en) 2019-08-14 2020-04-21 Appvance Inc. Method and apparatus for generating a state machine model of an application using models of GUI objects and scanning modes
US10552299B1 (en) 2019-08-14 2020-02-04 Appvance Inc. Method and apparatus for AI-driven automatic test script generation
WO2021056255A1 (en) 2019-09-25 2021-04-01 Apple Inc. Text detection using global geometry estimators
US11334592B2 (en) * 2019-10-15 2022-05-17 Wheelhouse Interactive, LLC Self-orchestrated system for extraction, analysis, and presentation of entity data
US11379092B2 (en) 2019-11-11 2022-07-05 Klarna Bank Ab Dynamic location and extraction of a user interface element state in a user interface that is dependent on an event occurrence in a different user interface
US11366645B2 (en) 2019-11-11 2022-06-21 Klarna Bank Ab Dynamic identification of user interface elements through unsupervised exploration
US11442749B2 (en) 2019-11-11 2022-09-13 Klarna Bank Ab Location and extraction of item elements in a user interface
US11726752B2 (en) 2019-11-11 2023-08-15 Klarna Bank Ab Unsupervised location and extraction of option elements in a user interface
US11086486B2 (en) 2019-11-11 2021-08-10 Klarna Bank Ab Extraction and restoration of option selections in a user interface
US11409546B2 (en) * 2020-01-15 2022-08-09 Klarna Bank Ab Interface classification system
US11386356B2 (en) 2020-01-15 2022-07-12 Klama Bank AB Method of training a learning system to classify interfaces
US10846106B1 (en) 2020-03-09 2020-11-24 Klarna Bank Ab Real-time interface classification in an application
US11842361B2 (en) * 2020-03-17 2023-12-12 Luth Research, Llc Online behavior, survey, and social research system
US11496293B2 (en) 2020-04-01 2022-11-08 Klarna Bank Ab Service-to-service strong authentication
KR102439984B1 (ko) * 2020-07-20 2022-09-02 김동진 웹 사이트 정보제공시스템
KR102414848B1 (ko) * 2020-07-20 2022-06-29 김동진 상품 정보제공시스템
CN112269777B (zh) * 2020-10-12 2022-09-27 同盾控股有限公司 一种数据产品质量评估方法及装置
CN112417162B (zh) * 2020-11-13 2024-07-05 中译语通科技股份有限公司 实体关系线索片段的关联方法及装置
US11893385B2 (en) 2021-02-17 2024-02-06 Open Weaver Inc. Methods and systems for automated software natural language documentation
US11836202B2 (en) 2021-02-24 2023-12-05 Open Weaver Inc. Methods and systems for dynamic search listing ranking of software components
US12106094B2 (en) 2021-02-24 2024-10-01 Open Weaver Inc. Methods and systems for auto creation of software component reference guide from multiple information sources
US11947530B2 (en) 2021-02-24 2024-04-02 Open Weaver Inc. Methods and systems to automatically generate search queries from software documents to validate software component search engines
US11921763B2 (en) 2021-02-24 2024-03-05 Open Weaver Inc. Methods and systems to parse a software component search query to enable multi entity search
US11960492B2 (en) 2021-02-24 2024-04-16 Open Weaver Inc. Methods and systems for display of search item scores and related information for easier search result selection
US11836069B2 (en) 2021-02-24 2023-12-05 Open Weaver Inc. Methods and systems for assessing functional validation of software components comparing source code and feature documentation
US11853745B2 (en) 2021-02-26 2023-12-26 Open Weaver Inc. Methods and systems for automated open source software reuse scoring
US20220318290A1 (en) * 2021-04-05 2022-10-06 Vidya Narayanan System and method for content creation and moderation in a digital platform
US20220318861A1 (en) * 2021-04-06 2022-10-06 International Business Machines Corporation Automated user rating score accuracy estimation
CN113282704A (zh) * 2021-05-07 2021-08-20 天津科技大学 一种对评论有用性进行判断和筛选的方法与装置
US20220398635A1 (en) * 2021-05-21 2022-12-15 Airbnb, Inc. Holistic analysis of customer sentiment regarding a software feature and corresponding shipment determinations

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5794207A (en) * 1996-09-04 1998-08-11 Walker Asset Management Limited Partnership Method and apparatus for a cryptographically assisted commercial network system designed to facilitate buyer-driven conditional purchase offers
JPH10508964A (ja) * 1994-11-08 1998-09-02 バーミア、テクノロジーズ、インコーポレーテッド 料金設定機能を有するオンラインサービス開発ツール
US5710887A (en) * 1995-08-29 1998-01-20 Broadvision Computer system and method for electronic commerce
US6314406B1 (en) * 1996-06-26 2001-11-06 Telxon Corporation Customer information network
US5864863A (en) * 1996-08-09 1999-01-26 Digital Equipment Corporation Method for parsing, indexing and searching world-wide-web pages
US6016504A (en) * 1996-08-28 2000-01-18 Infospace.Com, Inc. Method and system for tracking the purchase of a product and services over the Internet
US6754636B1 (en) * 1996-09-04 2004-06-22 Walker Digital, Llc Purchasing systems and methods wherein a buyer takes possession at a retailer of a product purchased using a communication network
US7039603B2 (en) * 1996-09-04 2006-05-02 Walker Digital, Llc Settlement systems and methods wherein a buyer takes possession at a retailer of a product purchased using a communication network
US6332129B1 (en) * 1996-09-04 2001-12-18 Priceline.Com Incorporated Method and system for utilizing a psychographic questionnaire in a buyer-driven commerce system
US5991740A (en) * 1997-06-10 1999-11-23 Messer; Stephen Dale Data processing system for integrated tracking and management of commerce related activities on a public access network
US6029141A (en) * 1997-06-27 2000-02-22 Amazon.Com, Inc. Internet-based customer referral system
US6112185A (en) * 1997-06-30 2000-08-29 Walker Digital, Llc Automated service upgrade offer acceptance system
US6101482A (en) * 1997-09-15 2000-08-08 International Business Machines Corporation Universal web shopping cart and method of on-line transaction processing
US6473752B1 (en) * 1997-12-04 2002-10-29 Micron Technology, Inc. Method and system for locating documents based on previously accessed documents
US6249773B1 (en) * 1998-03-26 2001-06-19 International Business Machines Corp. Electronic commerce with shopping list builder
AU6049999A (en) * 1998-09-17 2000-04-03 Nexchange Corporation Affiliate commerce system and method
DE19849354A1 (de) * 1998-10-19 2000-04-20 Deutsche Telekom Ag Verfahren zur datenbankgestützten Selektion von Produkten für Electronic-Commerce-Anwendungen im Internet
US6134548A (en) * 1998-11-19 2000-10-17 Ac Properties B.V. System, method and article of manufacture for advanced mobile bargain shopping
US6338050B1 (en) * 1998-11-16 2002-01-08 Trade Access, Inc. System and method for providing and updating user supplied context for a negotiations system
DE69942735D1 (de) * 1998-12-10 2010-10-21 Lucent Technologies Inc PABX-Verwaltung
US6925442B1 (en) * 1999-01-29 2005-08-02 Elijahu Shapira Method and apparatus for evaluating vistors to a web server
US7065500B2 (en) * 1999-05-28 2006-06-20 Overture Services, Inc. Automatic advertiser notification for a system for providing place and price protection in a search result list generated by a computer network search engine
US7225182B2 (en) * 1999-05-28 2007-05-29 Overture Services, Inc. Recommending search terms using collaborative filtering and web spidering
US6467080B1 (en) * 1999-06-24 2002-10-15 International Business Machines Corporation Shared, dynamically customizable user documentation
US6405175B1 (en) * 1999-07-27 2002-06-11 David Way Ng Shopping scouts web site for rewarding customer referrals on product and price information with rewards scaled by the number of shoppers using the information
US7127415B1 (en) * 1999-11-16 2006-10-24 Regency Ventures Ltd. Method and system for acquiring branded promotional products
US6490575B1 (en) * 1999-12-06 2002-12-03 International Business Machines Corporation Distributed network search engine
US6366907B1 (en) * 1999-12-15 2002-04-02 Napster, Inc. Real-time search engine
AUPQ475799A0 (en) * 1999-12-20 2000-01-20 Youramigo Pty Ltd An internet indexing system and method
US7162437B2 (en) * 2000-01-06 2007-01-09 Drugstore.Com, Inc. Method and apparatus for improving on-line purchasing
WO2001052122A2 (en) * 2000-01-10 2001-07-19 Skulogix Inc. Method and system for facilitating fulfillment of electronic commercial transactions
US6665658B1 (en) * 2000-01-13 2003-12-16 International Business Machines Corporation System and method for automatically gathering dynamic content and resources on the world wide web by stimulating user interaction and managing session information
US7076455B1 (en) * 2000-01-14 2006-07-11 Bruce A. Fogelson Builders on-line assistant
US6516312B1 (en) * 2000-04-04 2003-02-04 International Business Machine Corporation System and method for dynamically associating keywords with domain-specific search engine queries
US6633867B1 (en) * 2000-04-05 2003-10-14 International Business Machines Corporation System and method for providing a session query within the context of a dynamic search result set
US7080073B1 (en) * 2000-08-18 2006-07-18 Firstrain, Inc. Method and apparatus for focused crawling
US20020103658A1 (en) * 2001-01-31 2002-08-01 Vaishali Angal Process for compiling and centralizing business data
US7472104B2 (en) * 2001-03-13 2008-12-30 Sony Corporation Method and system for distributing product information
US20020194166A1 (en) * 2001-05-01 2002-12-19 Fowler Abraham Michael Mechanism to sift through search results using keywords from the results
US20030023514A1 (en) * 2001-05-24 2003-01-30 Peter Adler Unified automatic online marketplace and associated web site generation and transaction system
US20030014306A1 (en) * 2001-07-13 2003-01-16 Marko Kurt R. Method and system for providing coupons
US20030101126A1 (en) * 2001-11-13 2003-05-29 Cheung Dominic Dough-Ming Position bidding in a pay for placement database search system
AU2003228366A1 (en) * 2002-03-25 2003-10-13 Michael Z. Morciz Accessing deep web information using a search engine
CA2379306A1 (en) * 2002-03-27 2003-09-27 Ibm Canada Limited-Ibm Canada Limitee Site architectures: an approach to modeling e-commerce web sites
US7158983B2 (en) * 2002-09-23 2007-01-02 Battelle Memorial Institute Text analysis technique
US7089231B2 (en) * 2002-12-31 2006-08-08 International Business Machines Corporation System and method for searching a plurality of databases distributed across a multi server domain
US20040225562A1 (en) * 2003-05-09 2004-11-11 Aquantive, Inc. Method of maximizing revenue from performance-based internet advertising agreements
WO2005031589A1 (en) * 2003-09-23 2005-04-07 Marchex, Inc. Performance-based online advertising system and method
US7346839B2 (en) * 2003-09-30 2008-03-18 Google Inc. Information retrieval based on historical data
WO2005057358A2 (en) * 2003-12-04 2005-06-23 Perfect Market Technologies, Inc. Search engine that dynamically generates search listings
WO2005057359A2 (en) * 2003-12-04 2005-06-23 Perfect Market Technologies, Inc. Transparent search engine
US7962461B2 (en) * 2004-12-14 2011-06-14 Google Inc. Method and system for finding and aggregating reviews for a product
US20060129463A1 (en) * 2004-12-15 2006-06-15 Zicherman Amir S Method and system for automatic product searching, and use thereof
US7599966B2 (en) * 2005-01-27 2009-10-06 Yahoo! Inc. System and method for improving online search engine results
US7788087B2 (en) * 2005-03-01 2010-08-31 Microsoft Corporation System for processing sentiment-bearing text
US7519562B1 (en) * 2005-03-31 2009-04-14 Amazon Technologies, Inc. Automatic identification of unreliable user ratings
JP2008537225A (ja) * 2005-04-11 2008-09-11 テキストディガー,インコーポレイテッド クエリについての検索システムおよび方法
JP4451354B2 (ja) * 2005-06-30 2010-04-14 株式会社野村総合研究所 話題規模管理装置
WO2007131213A2 (en) * 2006-05-05 2007-11-15 Visible Technologies, Inc. Systems and methods for consumer-generated media reputation management
US7720835B2 (en) * 2006-05-05 2010-05-18 Visible Technologies Llc Systems and methods for consumer-generated media reputation management
US8862591B2 (en) * 2006-08-22 2014-10-14 Twitter, Inc. System and method for evaluating sentiment
US7930302B2 (en) * 2006-11-22 2011-04-19 Intuit Inc. Method and system for analyzing user-generated content
US20080249764A1 (en) * 2007-03-01 2008-10-09 Microsoft Corporation Smart Sentiment Classifier for Product Reviews
US20090083096A1 (en) * 2007-09-20 2009-03-26 Microsoft Corporation Handling product reviews
WO2009052373A1 (en) * 2007-10-17 2009-04-23 Ratepoint, Inc. System and method for collecting bonafide reviews of ratable objects
US9646078B2 (en) * 2008-05-12 2017-05-09 Groupon, Inc. Sentiment extraction from consumer reviews for providing product recommendations
US9031996B2 (en) * 2010-03-15 2015-05-12 Salesforce.Com System, method and computer program product for creating a plurality of CNAMES for a website
US20120109765A1 (en) * 2010-08-31 2012-05-03 CEA Overseas LLC International e-commerce system
US8589406B2 (en) * 2011-03-03 2013-11-19 Hewlett-Packard Development Company, L.P. Deduplication while rebuilding indexes

Also Published As

Publication number Publication date
JP2011530729A (ja) 2011-12-22
AU2009260033A1 (en) 2009-12-23
EP2304660A4 (en) 2013-11-27
WO2009155375A2 (en) 2009-12-23
US20090319342A1 (en) 2009-12-24
WO2009155375A3 (en) 2012-06-07
EP2304660A2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP5350472B2 (ja) トピックに関する複数の製品にランクを付ける製品ランク付け方法及び製品ランク付けシステム
US11699035B2 (en) Generating message effectiveness predictions and insights
US8355997B2 (en) Method and system for developing a classification tool
JP6177871B2 (ja) 製品情報の公開
US8311957B2 (en) Method and system for developing a classification tool
Chehal et al. Implementation and comparison of topic modeling techniques based on user reviews in e-commerce recommendations
US8352455B2 (en) Processing a content item with regard to an event and a location
US9384233B2 (en) Product synthesis from multiple sources
US10410224B1 (en) Determining item feature information from user content
US20190318407A1 (en) Method for product search using the user-weighted, attribute-based, sort-ordering and system thereof
US8782037B1 (en) System and method for mark-up language document rank analysis
US20110179114A1 (en) User communication analysis systems and methods
US20090319449A1 (en) Providing context for web articles
US20130268519A1 (en) Fact verification engine
WO2019217096A1 (en) System and method for automatically responding to user requests
Song et al. Recommendation vs sentiment analysis: A text-driven latent factor model for rating prediction with cold-start awareness
CN104111925A (zh) 项目推荐方法和装置
CN112182239B (zh) 信息检索方法和装置
CN115098619A (zh) 资讯去重方法、装置、电子设备及计算机可读取存储介质
US20240020476A1 (en) Determining linked spam content
Park et al. Review mining using lexical knowledge and modality analysis
CN113468422A (zh) 搜索方法、装置、电子设备及存储介质
Mouine et al. Identifying Multiple Topics in Texts.
CN111201523A (zh) 自然语言文本文件中的搜索项提取和优化
Durao et al. Medical Information Retrieval Enhanced with User’s Query Expanded with Tag-Neighbors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees