JP5348529B2 - Distributed power system - Google Patents

Distributed power system Download PDF

Info

Publication number
JP5348529B2
JP5348529B2 JP2008278442A JP2008278442A JP5348529B2 JP 5348529 B2 JP5348529 B2 JP 5348529B2 JP 2008278442 A JP2008278442 A JP 2008278442A JP 2008278442 A JP2008278442 A JP 2008278442A JP 5348529 B2 JP5348529 B2 JP 5348529B2
Authority
JP
Japan
Prior art keywords
power
distributed power
load
distributed
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008278442A
Other languages
Japanese (ja)
Other versions
JP2010110088A (en
Inventor
茂生 沼田
俊博 山根
英介 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2008278442A priority Critical patent/JP5348529B2/en
Publication of JP2010110088A publication Critical patent/JP2010110088A/en
Application granted granted Critical
Publication of JP5348529B2 publication Critical patent/JP5348529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distributed power supply system that achieves high-accuracy load-following operation when executing operation control of each distributed power supply. <P>SOLUTION: The distributed power supply system is configured such that a distributed power supply having the highest load-following performance is connected to the vicinity of a connection point with a commercial system in order to reduce a load on the commercial system by integratively controlling a plurality of distributed power supplies each having different following performance with respect to load variations. The distributed power supply system includes a power measuring means for measuring power of a secondary-side position of the connection point, and a control means for controlling output power of the distributed power supply, having the highest load-following performance, on the basis of the power value measured by the power measuring means. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、負荷変動に対する追従性能の異なる複数種類の分散型電源を統合的に制御することによって負荷変動補償を行う分散型電源システムに関する。   The present invention relates to a distributed power supply system that performs load fluctuation compensation by comprehensively controlling a plurality of types of distributed power supplies having different tracking performance with respect to load fluctuation.

電力市場自由化後の社会動向として、以下の(1)〜(4)に示す理由からさまざまな分散型電源(天然ガスコージェネレーションや燃料電池)がエネルギー供給設備として建物内に進出してくる可能性が高くなっている。
(1)熱電併給により、相当高い総合エネルギー効率(80%強)を期待できる。
(2)CO排出量削減が期待できる。
(3)商用系統からの契約電力量の削減や配電施設の低減によるコスト削減が期待できる。
(4)震災、火災時の自立安定性が高い。
As social trends after the liberalization of the electric power market, various distributed power sources (natural gas cogeneration and fuel cells) may enter the building as energy supply facilities for the reasons shown in (1) to (4) below. Is high.
(1) A considerably high total energy efficiency (over 80%) can be expected by cogeneration.
(2) Reduction of CO 2 emissions can be expected.
(3) It can be expected to reduce costs by reducing the amount of contracted power from the commercial grid and by reducing distribution facilities.
(4) High independence during earthquakes and fires.

現在これらの分散型電源は、主に需要家のエネルギーコスト削減を目的として導入されており、稼働率が高くなり経済性を発揮しやすい「ベースロード運転」(図5(a)参照)によって定格運転されている。今後、より多くの分散型電源が需要家サイドに入り、ベースロード運転にて商用系統に接続されると、商用系統は負荷変動の補償ばかりを求められ、電圧や周波数変動の調整機能(これをアンシラリー機能という)を一手に引き受けることになる。端的に言えば、電力会社が損な役割を担うことになる。   Currently, these distributed power sources are introduced mainly for the purpose of reducing energy costs for customers, and are rated by “base load operation” (see Fig. 5 (a)), which is easy to achieve high operating rate and economy. It is driving. In the future, when more distributed power sources enter the consumer side and are connected to the commercial grid by base load operation, the commercial grid will only be required to compensate for load fluctuations and adjust voltage and frequency fluctuation adjustment functions (this (This is called an ancillary function). In short, the power company will play a detrimental role.

一方、国の施策として、分散型電源の負荷追従運転によって商用系統への負担を軽減して協調関係の構築を目指す動きがある。近年、議論が始まった「マイクログリッド」である。マイクログリッドの思想を取り込んだ分散型電源によるエネルギー供給システムでは、商用系統連系時には買電一定運転(図5(b)参照)が、また自立運転時には自立範囲内に安定した品質の電力を供給することが求められている。   On the other hand, as a national measure, there is a movement aiming to build a cooperative relationship by reducing the burden on the commercial system by load following operation of distributed power sources. The “microgrid” has recently been discussed. In an energy supply system using a distributed power supply that incorporates the idea of microgrids, constant power purchase operation (see Fig. 5 (b)) is connected during commercial grid connection, and stable quality power is supplied within the independent range during autonomous operation. It is requested to do.

系統連系時の買電一定運転ならびに自立運転時の安定した品質での電力供給は、マイクログリッド内の負荷変動と分散型電源による出力の需給バランスを常に一致すること(負荷追従運転)によって実現される。特に自立運転時においては需給バランスがずれてしまうと周波数や電圧といった電力品質が著しく悪化してしまい、最悪の場合には分散型電源が停止して自立運転が維持できなくなる。   Constant power purchase during grid interconnection and stable power supply during independent operation are realized by always matching the load fluctuation in the microgrid and the output supply / demand balance by the distributed power supply (load following operation). Is done. In particular, if the supply and demand balance is shifted during the independent operation, the power quality such as frequency and voltage is remarkably deteriorated. In the worst case, the distributed power supply is stopped and the independent operation cannot be maintained.

負荷追従運転を実現するための方法は2つに大別することができる。1つ目は特許文献1に記載の系統安定化装置のように、各分散型電源が自律的に負荷電力を計測して負荷追従運転を行う方法(分散制御)であり、この方法を用いると高速な負荷変動に対する追従運転が実現できる。しかし、複数の分散型電源が導入されるケースにおいては、各分散型電源が同時に同じ負荷変動に対して負荷追従運転を行ってしまうことで出力の干渉が発生してしまい、結果として負荷追従運転が失敗する恐れがある。   Methods for realizing the load following operation can be roughly divided into two methods. The first is a method (distributed control) in which each distributed power source autonomously measures load power and performs load following operation like the system stabilization device described in Patent Document 1, and this method is used. Follow-up operation for high-speed load fluctuation can be realized. However, in cases where multiple distributed power sources are introduced, each distributed power source simultaneously performs load following operation for the same load fluctuation, resulting in output interference, resulting in load following operation. There is a risk of failure.

2つ目の方法としては特許文献2に記載の分散型電源の制御方法(統合制御)がある。これは計測した負荷電力を基に、追従性能の異なる複数種類の分散型電源(図6参照)を組み合わせて当該周波数帯域を分担させることで負荷追従運転を実現するとしている。そのため統合的な出力調整を行うために、「負荷、買電、分散型電源出力の計測系」と「分散型電源出力の制御系」を持つ制御システム(制御の頭脳部)を構築する必要がある。   As a second method, there is a distributed power control method (integrated control) described in Patent Document 2. Based on the measured load power, load follow-up operation is realized by combining a plurality of types of distributed power sources (see FIG. 6) having different follow-up performance and sharing the frequency band. Therefore, in order to perform integrated output adjustment, it is necessary to construct a control system (the brain of control) that has a "load, power purchase, distributed power output measurement system" and a "distributed power output control system". is there.

一方、特許文献3に記載されているように分散型電源が商用系統に繋がっている(系統連系)エネルギー供給システムが知られている。図4は、特許文献3に記載されているエネルギー供給システムの構成を示すブロック図である。図4に示すように、負荷5に対して商用系統7が繋がっており、商用系統7が供給している電力を計測する電力計測器17が備えられている。また、分散型電源は、ガスエンジン1、二次電池2、電気二重層キャパシタ等の電力貯蔵装置3及び電力出力を制御する制御コンピュータ4から構成する。ガスエンジン1には、有効電力(PGE)を計測して、制御コンピュータ4に対して出力する電力計測器11を備えている。二次電池2には、有効電力(PBES)を計測して、制御コンピュータ4に対して出力する電力計測器12を備えている。電力貯蔵装置3には、有効電力(PEDLC)を計測して、制御コンピュータ4に対して出力する電力計測器13を備えている。 On the other hand, as described in Patent Document 3, an energy supply system in which a distributed power source is connected to a commercial system (system interconnection) is known. FIG. 4 is a block diagram showing the configuration of the energy supply system described in Patent Document 3. As shown in FIG. As shown in FIG. 4, a commercial system 7 is connected to the load 5, and a power measuring instrument 17 that measures the power supplied by the commercial system 7 is provided. The distributed power source includes a gas engine 1, a secondary battery 2, a power storage device 3 such as an electric double layer capacitor, and a control computer 4 that controls power output. The gas engine 1 includes a power meter 11 that measures active power (P GE ) and outputs the measured power to the control computer 4. The secondary battery 2 includes a power measuring instrument 12 that measures active power (P BES ) and outputs it to the control computer 4. The power storage device 3 includes a power meter 13 that measures active power (P EDLC ) and outputs it to the control computer 4.

電力の需給においては瞬時々々における需要と供給が一致するという前提がある。すなわち図4に示すシステムにおいては、PL=PGE+PBES+PEDLC+PGRIDが必ず成立する。このPLから各分散型電源の出力を決定することにより買電電力を一定とすることができる。すなわち、負荷推定値PLから買電目標値PGRIDを減算した差分によってガスエンジン1の出力指令値を決定し、これにより負荷変動の主成分を補償する。また、負荷推定値PLから買電目標値PGRIDとガスエンジン1の出力値PGEを減算することにより、二次電池2の補償するべきPBESが得られ、ガスエンジン1で補償できなかった高速な負荷変動を補償する。さらに、負荷推定値PLから買電目標値PGRIDとガスエンジン1の出力値PGE並びに二次電池2の出力値PBESを減算することで、電力貯蔵装置3が補償すべき成分が得られ、さらに高速な負荷変動を補償することができる。ガスエンジン1、二次電池2及び電力貯蔵装置3によって負荷追従が実現できた場合、商用系統7からの買電電力はPGRIDで一定となる。
特開2007−020361号公報 特開2006−246584号公報 特開2008−228422号公報
In the supply and demand of electric power, there is a premise that the demand and supply in an instant will coincide. That is, in the system shown in FIG. 4, PL = P GE + P BES + P EDLC + P GRID is always established. The purchased power can be made constant by determining the output of each distributed power source from this PL. That is, the output command value of the gas engine 1 is determined by the difference obtained by subtracting the power purchase target value PGRID from the load estimated value PL, thereby compensating for the main component of load fluctuation. Further, by subtracting the power purchase target value P GRID and the output value P GE of the gas engine 1 from the estimated load value PL, P BES to be compensated for the secondary battery 2 was obtained, and the gas engine 1 could not compensate. Compensates for fast load fluctuations. Further, by subtracting the power purchase target value P GRID , the output value P GE of the gas engine 1 and the output value P BES of the secondary battery 2 from the estimated load value PL, a component to be compensated for by the power storage device 3 is obtained. Further, it is possible to compensate for faster load fluctuations. When load following can be realized by the gas engine 1, the secondary battery 2, and the power storage device 3, the purchased power from the commercial system 7 is constant at PGRID .
JP 2007-020361 A JP 2006-246484 A JP 2008-228422 A

しかしながら、図4に示すように二次電池2や電力貯蔵装置3が商用系統7から見て末端部に設置されている系統構成では、超急速な負荷変動に追従可能である(最も応答性に優れた)電力貯蔵装置3の出力指令値を決定する為に必要となる「PLOAD−PGE−PBES」の値を直接測定することが不可能であるため、複数の測定値を利用して「PLOAD−PGE−PBES」の値を推定する必要がある。電力貯蔵装置3の出力指令値を決定する為に必要となる「PLOAD−PGE−PBES」とは、商用系統7からの一定買電以外に、分散型電源が出力しなければならない電力のうち、最も応答性に優れた電力貯蔵装置3が分担出力すべき電力指令値である。この「PLOAD−PGE−PBES」の値を推定する際、測定値取得の時間同期をとる必要があるが、厳密に同期をとることは現実的には不可能なため、推定した「PLOAD−PGE−PBES」の値には誤差を含んでしまうという問題がある。また、電力貯蔵装置3と連系点が離れているため、連系点電力を一定にするために出力した電力を一部損失してしまい、高精度な補償が行うことができないという問題もある。 However, in the system configuration in which the secondary battery 2 and the power storage device 3 are installed at the end as viewed from the commercial system 7 as shown in FIG. Since it is impossible to directly measure the value of “P LOAD -P GE -P BES ”, which is necessary for determining the output command value of the power storage device 3 (excellent), a plurality of measured values are used. Therefore, it is necessary to estimate the value of “P LOAD −P GE −P BES ”. “P LOAD -P GE -P BES ” required to determine the output command value of the power storage device 3 is the power that the distributed power supply must output in addition to the constant power purchase from the commercial system 7. Among these, the power command value that should be shared and output by the power storage device 3 having the most responsiveness. When estimating the value of “P LOAD -P GE -P BES ”, it is necessary to synchronize the time of measurement value acquisition. However, since it is practically impossible to strictly synchronize, the estimated “ There is a problem that the value of “P LOAD −P GE −P BES ” includes an error. In addition, since the power storage device 3 and the connection point are separated, there is a problem in that a part of the output power is lost to make the connection point power constant, and high-precision compensation cannot be performed. .

本発明は、このような事情に鑑みてなされたもので、各分散型電源の運転制御を実施する際に高精度な負荷追従運転を実現することができる分散型電源システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a distributed power supply system capable of realizing highly accurate load following operation when performing operation control of each distributed power supply. And

本発明は、負荷変動に対する追従性能が異なる複数の分散型電源を統合的に制御して商用系統への負担を軽減するために、負荷追従性能の最も高い分散型電源を除く分散型電源が前記商用系統と接続される第1接続点よりも前記商用系統に近い第2接続点に負荷追従性能の最も高い分散型電源が接続される分散型電源システムであって、前記第1接続点より上流において前記第2接続点の二次側位置の電力を計測することで、負荷の計測電力値から負荷追従性能の最も高い分散型電源を除く分散型電源の各計測電力値を減算した値を計測する電力計測手段と、前記電力計測手段による計測電力値に基づいて出力指令値を決定し、決定した出力指令値により前記負荷追従性能の最も高い分散型電源の出力電力を制御する制御手段とを備えたことを特徴とする。
In order to reduce the burden on the commercial system by comprehensively controlling a plurality of distributed power sources having different tracking performance with respect to load fluctuations, the distributed power sources except the distributed power source having the highest load following performance are A distributed power supply system in which a distributed power supply having the highest load following performance is connected to a second connection point that is closer to the commercial system than a first connection point that is connected to the commercial system, and is upstream of the first connection point Measures the value obtained by subtracting each measured power value of the distributed power supply excluding the distributed power supply with the highest load following performance from the measured power value of the load by measuring the power at the secondary side position of the second connection point in Power measuring means for determining the output command value based on the measured power value by the power measuring means, and a control means for controlling the output power of the distributed power source having the highest load following performance based on the determined output command value. Prepared And features.

本発明によれば、分散型電源システムにおいて、各分散型電源の運転制御を実施する際に高精度な負荷追従運転を実現することができるため、結果として商用系統連系時の買電一定制御を高精度で実現することができるという効果が得られる。   According to the present invention, in the distributed power supply system, it is possible to realize highly accurate load following operation when performing the operation control of each distributed power supply, and as a result, constant power purchase control during commercial grid connection Can be realized with high accuracy.

<第1の実施形態>
以下、本発明の一実施形態による分散型電源システムを図面を参照して説明する。図1は同実施形態の構成を示すブロック図である。この図において、図4に示す従来の装置と同一の部分には同一の符号を付し、その説明を省略する。この図に示す装置が従来の装置と異なる点は、負荷5と商用系統7との間に、複数の分散型電源のうち負荷追従性能の最も高い分散型電源(ここでは電力貯蔵装置3が該当する)を除く分散型電源(ガスエンジン1及び二次電池2)が接続点P1において接続され、接続点P1と商用系統7との間に負荷追従性能の最も高い分散型電源(電力貯蔵装置3)が接続点P2において接続されている点である。また、電力貯蔵装置3の接続位置の変更に伴い、接続点P1と、接続点P2との間の電力を電力計測器13によって計測し、アナログの信号線S1により計測値を制御コンピュータ4へ出力するようにしている。なお図1に示す矢印A1、A2、A3の方向を、各点における計測値の正方向とする。
<First Embodiment>
Hereinafter, a distributed power supply system according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the embodiment. In this figure, the same parts as those of the conventional apparatus shown in FIG. The device shown in this figure is different from the conventional device in that the distributed power source having the highest load following performance among the plurality of distributed power sources (in this case, the power storage device 3 is applicable) between the load 5 and the commercial system 7. Distributed power sources (gas engine 1 and secondary battery 2) are connected at connection point P1, and the distributed power source (power storage device 3) having the highest load following performance is connected between connection point P1 and commercial system 7. ) Is a point connected at the connection point P2. Further, along with the change of the connection position of the power storage device 3, the power between the connection point P1 and the connection point P2 is measured by the power meter 13, and the measured value is output to the control computer 4 by the analog signal line S1. Like to do. Note that the directions of arrows A1, A2, and A3 shown in FIG. 1 are the positive directions of the measured values at each point.

このような接続形態にして、電力貯蔵装置3を商用系統7の連系点近傍に接続し、その二次側位置(下流側)にて電力計測器13により電力計測を行えば、負荷追従性能の最も高い分散型電源である電力貯蔵装置3の出力指令値となる「PLOAD−PGE−PBES」を直接計測することが可能となる。この計測値を、制御コンピュータ4に対して出力した上で、特に出力決定のための演算を行なうことなく制御コンピュータ4から最終的な出力指令値PsEDLCを電力貯蔵装置3に対して出力することが可能となる。 If the power storage device 3 is connected in the vicinity of the connection point of the commercial system 7 in such a connection form, and the power measurement is performed by the power meter 13 at the secondary side position (downstream side), the load follow-up performance It is possible to directly measure “P LOAD −P GE −P BES ” that is the output command value of the power storage device 3 that is the highest distributed power source. The measured value is output to the control computer 4, and the final output command value Ps EDLC is output from the control computer 4 to the power storage device 3 without particularly performing an operation for determining the output. Is possible.

<第2の実施形態>
次に、図2を参照して、図1に示す分散型電源システムの変形例を説明する。この図において、図1に示す装置と同一の部分には同一の符号を付し、その説明を省略する。この図に示す装置が図1に示す装置と異なる点は、接続点P1と、接続点P2との間の電力を電力計測器13によって計測し、この計測値をアナログの信号線S2により直接電力貯蔵装置3に対して出力し、電力貯蔵装置3のみを分散して制御を行うようにした点である。
<Second Embodiment>
Next, a modified example of the distributed power supply system shown in FIG. 1 will be described with reference to FIG. In this figure, the same parts as those in the apparatus shown in FIG. The difference between the apparatus shown in FIG. 1 and the apparatus shown in FIG. 1 is that the power between the connection point P1 and the connection point P2 is measured by the power measuring instrument 13, and the measured value is directly converted into power by the analog signal line S2. The output is to the storage device 3 and only the power storage device 3 is distributed and controlled.

このような接続形態にして、電力貯蔵装置3を商用系統7の連系点近傍に接続し、その二次側位置(下流側)にて電力計測器13により電力計測を行えば、負荷追従性能の最も高い分散型電源である電力貯蔵装置3の出力指令値となる「PLOAD−PGE−PBES」を直接計測することが可能となる。この計測値に基づいて電力貯蔵装置3の出力指令値を求めて、この出力指令値に基づいて電力貯蔵装置3の出力を制御することが可能となる。 If the power storage device 3 is connected in the vicinity of the connection point of the commercial system 7 in such a connection form, and the power measurement is performed by the power meter 13 at the secondary side position (downstream side), the load follow-up performance It is possible to directly measure “P LOAD −P GE −P BES ” that is the output command value of the power storage device 3 that is the highest distributed power source. Based on this measured value, the output command value of the power storage device 3 can be obtained, and the output of the power storage device 3 can be controlled based on this output command value.

<第3の実施形態>
次に、図3を参照して、図2に示す分散型電源システムの変形例を説明する。この図において、図2に示す装置と同一の部分には同一の符号を付し、その説明を省略する。この図に示す装置が図2に示す装置と異なる点は、制御コンピュータ4と電力計測器17を省き、ガスエンジン1及び二次電池2のそれぞれについても分散して制御を行うようにした点である。このために、電力計測器11の出力を周波数フィルタ18によって特定の周波数成分のみを抽出して、この特定の周波数成分の計測値に基づいてガスエンジン1の出力指令値を求めて、この出力指令値に基づいてガスエンジン1の出力を制御する。また、電力計測器12の出力を周波数フィルタ19によって特定の周波数成分のみを抽出して、この特定の周波数成分の計測値に基づいて二次電池2の出力指令値を求めて、この出力指令値に基づいて二次電池2の出力を制御する。
<Third Embodiment>
Next, a modification of the distributed power supply system shown in FIG. 2 will be described with reference to FIG. In this figure, the same parts as those of the apparatus shown in FIG. The apparatus shown in this figure is different from the apparatus shown in FIG. 2 in that the control computer 4 and the power meter 17 are omitted, and the gas engine 1 and the secondary battery 2 are also distributed and controlled. is there. For this purpose, only a specific frequency component is extracted from the output of the power meter 11 by the frequency filter 18, an output command value of the gas engine 1 is obtained based on the measured value of the specific frequency component, and this output command The output of the gas engine 1 is controlled based on the value. Further, only a specific frequency component is extracted from the output of the power meter 12 by the frequency filter 19, and an output command value of the secondary battery 2 is obtained based on the measured value of the specific frequency component. Is used to control the output of the secondary battery 2.

このような接続形態にして、電力貯蔵装置3を商用系統7の連系点近傍に接続し、その二次側位置(下流側)にて電力計測器13により電力計測を行えば、負荷追従性能の最も高い分散型電源である電力貯蔵装置3の出力指令値となる「PLOAD−PGE−PBES」を直接計測することが可能となる。この計測値に基づいて電力貯蔵装置3の出力指令値を求めて、この出力指令値に基づいて電力貯蔵装置3の出力を制御することが可能となる。また、電力貯蔵装置3を商用系統7の連系点近傍に接続したため、各分散型電源を分散制御としても問題なく出力の制御を行うことが可能となる。 If the power storage device 3 is connected in the vicinity of the connection point of the commercial system 7 in such a connection form, and the power measurement is performed by the power meter 13 at the secondary side position (downstream side), the load follow-up performance It is possible to directly measure “P LOAD −P GE −P BES ” that is the output command value of the power storage device 3 that is the highest distributed power source. Based on this measured value, the output command value of the power storage device 3 can be obtained, and the output of the power storage device 3 can be controlled based on this output command value. Further, since the power storage device 3 is connected in the vicinity of the interconnection point of the commercial system 7, it is possible to control the output without any problem even if each distributed power source is used as distributed control.

なお、前述した説明においては、商用系統7の連系点近傍に接続する分散型電源を電力貯蔵装置3として説明したが、商用系統7の連系点近傍に接続する分散型電源は、分散型電源システムを構成する電源のうち、負荷追従性能の最も高い分散型電源を用いるようにすればよい。例えば、図1〜3に示す分散型電源システムは、図6に示す第1類〜第4類の全ての電源を備えている構成であるため、第4類の電力貯蔵装置3を商用系統7の連系点近傍に接続するようにしたが、第1類〜第3類の電源が備えられている場合は、第3類の二次電池等の電源を商用系統7の連系点近傍に接続するようにすればよい。   In the above description, the distributed power source connected near the interconnection point of the commercial system 7 has been described as the power storage device 3, but the distributed power source connected near the interconnection point of the commercial system 7 is distributed type. Of the power sources constituting the power system, a distributed power source having the highest load following performance may be used. For example, the distributed power supply system shown in FIGS. 1 to 3 is configured to include all of the first to fourth power sources shown in FIG. However, if a power source of type 1 to type 3 is provided, a power source such as a secondary battery of type 3 is connected to the vicinity of the connection point of the commercial system 7. What is necessary is just to make it connect.

以上説明したように、電力貯蔵装置3(負荷追従性能の最も高い分散型電源)を商用系統7との連系点近傍に接続するようにしたため、電力貯蔵装置3の出力指令値を決定する為に必要な「PLOAD−PGE−PBES」を一箇所で直接計測でき、電力貯蔵装置3からの出力によって高精度に系統連系時の買電一定制御を実現することが可能となる。また、電力貯蔵装置3の出力指令値を決定する為に必要な「PLOAD−PGE−PBES」を一箇所で直接計測できるため、測定の時間同期をとるための装置が不要となり、システム構成を簡単にすることができる。また、商用系統7の連系点直近に電力貯蔵装置3を設置することにより、電力貯蔵装置3の出力損失がほぼゼロになるため、高精度に系統連系時の買電一定制御が可能となる。 As described above, since the power storage device 3 (distributed power source having the highest load following performance) is connected in the vicinity of the connection point with the commercial system 7, the output command value of the power storage device 3 is determined. It is possible to directly measure “P LOAD -P GE -P BES ” required for the power supply, and it is possible to realize constant power purchase control at the time of grid interconnection with high accuracy by the output from the power storage device 3. In addition, since “P LOAD -P GE -P BES ” necessary for determining the output command value of the power storage device 3 can be directly measured at one place, an apparatus for taking time synchronization of the measurement becomes unnecessary, and the system The configuration can be simplified. Moreover, since the output loss of the power storage device 3 becomes almost zero by installing the power storage device 3 in the immediate vicinity of the connection point of the commercial system 7, it is possible to control power purchase constant at the time of system connection with high accuracy. Become.

本発明の第1の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of the 1st Embodiment of this invention. 本発明の第2の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of the 2nd Embodiment of this invention. 本発明の第3の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of the 3rd Embodiment of this invention. 従来技術のシステム構成を示すブロック図である。It is a block diagram which shows the system configuration of a prior art. ベースロード運転と買電一定運転の状態を示す説明図である。It is explanatory drawing which shows the state of a base load driving | operation and a power purchase fixed driving | operation. 分散型電源の特徴を示す説明図である。It is explanatory drawing which shows the characteristic of a distributed power supply.

符号の説明Explanation of symbols

1・・・ガスエンジン、2・・・二次電池、3・・・電力貯蔵装置、4・・・制御コン
ピュータ、5・・・負荷、6・・・計測できない負荷、7・・・商用系統、11、12、
13、15、17・・・電力計測器、18、19・・・周波数フィルタ
DESCRIPTION OF SYMBOLS 1 ... Gas engine, 2 ... Secondary battery, 3 ... Electric power storage apparatus, 4 ... Control computer, 5 ... Load, 6 ... Load which cannot be measured, 7 ... Commercial system , 11, 12,
13, 15, 17 ... power meter, 18, 19 ... frequency filter

Claims (1)

負荷変動に対する追従性能が異なる複数の分散型電源を統合的に制御して商用系統への負担を軽減するために、負荷追従性能の最も高い分散型電源を除く分散型電源が前記商用系統と接続される第1接続点よりも前記商用系統に近い第2接続点に負荷追従性能の最も高い分散型電源が接続される分散型電源システムであって、
前記第1接続点より上流において前記第2接続点の二次側位置の電力を計測することで、負荷の計測電力値から負荷追従性能の最も高い分散型電源を除く分散型電源の各計測電力値を減算した値を直接計測する電力計測手段と、
前記電力計測手段による計測電力値に基づいて出力指令値を決定し、決定した出力指令値に基づいて前記負荷追従性能の最も高い分散型電源の出力電力を制御する制御手段と
を備えたことを特徴とする分散型電源システム。
In order to reduce the burden on the commercial system through integrated control of multiple distributed power supplies with different follow-up performance against load fluctuations, distributed power sources other than the distributed power source with the highest load-following performance are connected to the commercial system. A distributed power supply system in which a distributed power supply having the highest load following performance is connected to a second connection point closer to the commercial system than the first connection point,
By measuring the power at the secondary side position of the second connection point upstream from the first connection point , each measured power of the distributed power source excluding the distributed power source having the highest load following performance from the measured power value of the load A power measuring means for directly measuring a value obtained by subtracting the value ;
Control means for determining an output command value based on a measured power value by the power measuring means, and controlling output power of the distributed power source having the highest load following performance based on the determined output command value. Features a distributed power supply system.
JP2008278442A 2008-10-29 2008-10-29 Distributed power system Active JP5348529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278442A JP5348529B2 (en) 2008-10-29 2008-10-29 Distributed power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278442A JP5348529B2 (en) 2008-10-29 2008-10-29 Distributed power system

Publications (2)

Publication Number Publication Date
JP2010110088A JP2010110088A (en) 2010-05-13
JP5348529B2 true JP5348529B2 (en) 2013-11-20

Family

ID=42298980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278442A Active JP5348529B2 (en) 2008-10-29 2008-10-29 Distributed power system

Country Status (1)

Country Link
JP (1) JP5348529B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4369071B2 (en) * 2001-03-30 2009-11-18 東京瓦斯株式会社 Power supply system, reactive power supply method, private power generation facility disconnection method, and reactive power supply command device
JP4852885B2 (en) * 2005-05-24 2012-01-11 株式会社明電舎 Load following operation control method with multiple types of distributed power supply
JP4866764B2 (en) * 2007-03-12 2012-02-01 清水建設株式会社 Control method of distributed power supply
JP4949902B2 (en) * 2007-03-16 2012-06-13 日本碍子株式会社 Secondary battery power control method

Also Published As

Publication number Publication date
JP2010110088A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP4852885B2 (en) Load following operation control method with multiple types of distributed power supply
US8401712B2 (en) Method for controlling distributed power sources
US9927825B2 (en) Frequency stabilizing apparatus for isolated system
JP2010022122A (en) Stabilization control method for distributed power supply
JP4866764B2 (en) Control method of distributed power supply
EP2936643A1 (en) Coordinated control method of generator and svc for improving power plant active power throughput and controller thereof
JP2012130146A (en) Self-supporting power supply system adjustment device and adjustment method for self-supporting power supply system
US9997921B2 (en) Solar power conversion system and method
KR20210011727A (en) System and Method for Controlling Inertial of Energy Storage System
KR101302866B1 (en) System for controlling power
JP5019372B2 (en) Control method of distributed power supply
JP5348529B2 (en) Distributed power system
EP2849305B1 (en) Voltage fluctuation suppressing apparatus
JP2012005277A (en) Reactive power compensation device having power current calculation function, and system and method thereof
WO2014167830A1 (en) Power control system
JP2012125052A (en) Control system, control circuit constituting the same, distributed power supply equipped with the same, and server constituting control system
KR20130035115A (en) Vdcol(voltage dependent current order limiter)) controller
JP5131528B2 (en) Power control device
JP4847771B2 (en) Grid-connected inverter device
CN110011316B (en) Energy control method based on instantaneous space vector and double P-Q theory
Xie et al. Parameter optimization for current controller in HVDC control system
KR101667594B1 (en) Microgrid system including variable speed diesel generator and control method thereof
JP2017033665A (en) Control method of control apparatus, control system, and control apparatus
EP3928424B1 (en) Advanced cross-current compensation system and method for enhancing reactive current sharing
JP7069257B2 (en) Control circuit of static VAR compensator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130808

R150 Certificate of patent or registration of utility model

Ref document number: 5348529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150