JP5346427B2 - Nano diamond - Google Patents

Nano diamond Download PDF

Info

Publication number
JP5346427B2
JP5346427B2 JP2006066612A JP2006066612A JP5346427B2 JP 5346427 B2 JP5346427 B2 JP 5346427B2 JP 2006066612 A JP2006066612 A JP 2006066612A JP 2006066612 A JP2006066612 A JP 2006066612A JP 5346427 B2 JP5346427 B2 JP 5346427B2
Authority
JP
Japan
Prior art keywords
nanodiamond
group
particle size
average particle
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006066612A
Other languages
Japanese (ja)
Other versions
JP2007238411A (en
Inventor
直樹 小松
直樹 門田
隆英 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomei Diamond Co Ltd
Original Assignee
Tomei Diamond Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomei Diamond Co Ltd filed Critical Tomei Diamond Co Ltd
Priority to JP2006066612A priority Critical patent/JP5346427B2/en
Publication of JP2007238411A publication Critical patent/JP2007238411A/en
Application granted granted Critical
Publication of JP5346427B2 publication Critical patent/JP5346427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、ナノダイヤモンドに関するものであり、さらに詳しくは、表面処理したナノダイヤモンドであって、所望の平均粒径において水に対する分散性の高いナノダイヤモンドに関する。   The present invention relates to nanodiamonds, and more particularly to surface-treated nanodiamonds, which are highly dispersible in water at a desired average particle size.

ナノダイヤモンドは、ダイヤモンド固有の性質に加え、粒径が小さく、表面積が大きいという特徴を有している。さらに、安価で入手が容易にもかかわらず、用途開発は進んでいない。その大きな理由として表面修飾の困難さが挙げられる。   Nanodiamonds are characterized by a small particle size and a large surface area in addition to the properties unique to diamond. Furthermore, despite the low cost and availability, application development has not progressed. The main reason is the difficulty of surface modification.

従来、ナノダイヤモンドは、爆発法や高温高圧法などの方法によって製造されていた。爆発法は、トリニトロトルエンおよびヘキソーゲンを爆発させることにより、ナノサイズのダイヤモンドを得る方法である(非特許文献1参照)。爆発法によって得られるナノダイヤモンドは、平均粒径が4nmほどであり、非常に小さいために表面積が大きく、また、得られた粗生成物の酸による洗浄により表面が酸化的な官能基で覆われていることから、水への分散性が高い。   Conventionally, nanodiamond has been produced by a method such as an explosion method or a high temperature / high pressure method. The explosion method is a method of obtaining nano-sized diamond by exploding trinitrotoluene and hexogen (see Non-Patent Document 1). Nanodiamond obtained by the explosion method has an average particle size of about 4 nm and a very small surface area, so that the surface area is covered with oxidative functional groups by washing the resulting crude product with acid. Therefore, dispersibility in water is high.

一方、高温高圧法は、例えば密閉された高圧容器内で、鉄やコバルト等の金属の存在下、1〜10GPaの高い静圧、および800〜2000℃の高温に原料グラファイト粉末を保持し、ダイヤモンドに対する安定条件を実現することによって、グラファイト粉末をダイヤモンドへ直接相転移させる方法である(特許文献1参照)。粗生成物を粉砕、洗浄、そして分級した後に得られるナノダイヤモンドは、アモルファスカーボンやグラファイトといったダイヤモンド以外の炭素質の混入も少なく、粒径も揃っている。   On the other hand, the high-temperature and high-pressure method holds the raw graphite powder at a high static pressure of 1 to 10 GPa and a high temperature of 800 to 2000 ° C. in the presence of a metal such as iron or cobalt in a sealed high-pressure vessel, for example. This is a method in which a graphite powder is directly phase-transformed into diamond by realizing a stable condition with respect to (see Patent Document 1). Nanodiamonds obtained after pulverizing, washing, and classifying the crude product have little carbonaceous contamination other than diamond, such as amorphous carbon and graphite, and have a uniform particle size.

このような高温高圧法により得られるナノダイヤモンドは、爆発法ナノダイヤモンドに比べ、粒径が大きく、その結果、比表面積が小さくなり、表面官能基の分散に対する寄与が限られることから、分散性はあまり高くないと考えられてきた。また、高温高圧法により得られるナノダイヤモンドの粒径は、せいぜい数十ナノメートルが限度で、十数ナノメートル、あるいは数ナノメートルの粒径は得ることはできないと考えられてきた。以上のことから、用いられる用途が非常に限られてきた。   Nanodiamonds obtained by such a high-temperature and high-pressure method have a larger particle size than explosive nanodiamonds, resulting in a smaller specific surface area and limited contribution to the dispersion of surface functional groups. It has been considered not so expensive. Further, it has been considered that the nanodiamond obtained by the high-temperature and high-pressure method has a maximum particle size of several tens of nanometers, and a particle size of several tens of nanometers or several nanometers cannot be obtained. In view of the above, the applications used have been very limited.

A.Kruger,F.Kataoka,M.Ozawa,T.Fujino,Y.Suzuki,A.E.Aleksenskii,A.Ya.Vul’,E.Osawa,“Unusually tight aggregation in detonation nanodiamond: Identification and distegnation”Carbon,43,1722−1730(2005)A. Kruger, F.A. Kataoka, M .; Ozawa, T .; Fujino, Y .; Suzuki, A .; E. Aleksenskii, A.M. Ya. Vul ', E.I. Osawa, “Unusually light aggregation in detonation nanodiamond: Identification and distribution” Carbon, 43, 1722-1730 (2005) 特開2002−66302号公報JP 2002-66302 A

本発明は、高温高圧法のように比較的平均粒径が大きいナノダイヤモンドにおいても、水に対する分散度が高いナノダイヤモンドを提供することを目的とする。また、分散を経ることにより、より小さな粒径であり、かつ、表面の化学構造が制御されたナノダイヤモンドを提供することを目的とする。   An object of the present invention is to provide a nanodiamond having a high degree of dispersion in water even in a nanodiamond having a relatively large average particle diameter as in the high-temperature and high-pressure method. Another object of the present invention is to provide a nanodiamond having a smaller particle size and a controlled chemical structure on the surface through dispersion.

本発明は、平均粒径が6〜200nmのナノダイヤモンドであって、ナノダイヤモンド120mgに対して超純水8ml加えて得た懸濁液を遠心分離し、上澄み液5ml中の20℃におけるナノダイヤモンドの分散度が0.35mg/ml以上であるナノダイヤモンドに関する。   The present invention relates to nanodiamond having an average particle diameter of 6 to 200 nm, and a suspension obtained by adding 8 ml of ultrapure water to 120 mg of nanodiamond is centrifuged to obtain nanodiamond at 20 ° C. in 5 ml of supernatant. Relates to a nanodiamond having a dispersity of 0.35 mg / ml or more.

ナノダイヤモンドの表面が、アセチル基、ヒドロキシル基、アミノ基、カルボキシル基、シアノ基、シアノメチル基、ポリビニルアルコール、ポリエーテル、ペプチド、アミド、エステル、アンモニウム、カルボキシラート、チオールおよびこれらのカチオン性またはアニオン性の塩の少なくとも1種で表面修飾されたものであることが好ましい。   The surface of nanodiamond is acetyl group, hydroxyl group, amino group, carboxyl group, cyano group, cyanomethyl group, polyvinyl alcohol, polyether, peptide, amide, ester, ammonium, carboxylate, thiol and their cationic or anionic property It is preferable that the surface is modified with at least one of the above salts.

また、本発明は、平均粒径が6〜25nmであって、ナノダイヤモンドの表面が、アセチル基、ヒドロキシル基、アミノ基、カルボキシル基、シアノ基、シアノメチル基、ポリビニルアルコール、ポリエーテル、ペプチド、アミド、エステル、アンモニウム、カルボキシラート、チオールおよびこれらのカチオン性またはアニオン性の塩の少なくとも1種で表面修飾されたナノダイヤモンドにも関する。   In the present invention, the average particle diameter is 6 to 25 nm, and the surface of the nanodiamond is acetyl group, hydroxyl group, amino group, carboxyl group, cyano group, cyanomethyl group, polyvinyl alcohol, polyether, peptide, amide. , Esters, ammonium, carboxylates, thiols and nanodiamonds surface-modified with at least one of their cationic or anionic salts.

また、本発明は、(a)ナノダイヤモンドを水素で還元する工程および
(b)還元されたナノダイヤモンドに官能基を導入する工程を含む請求項1、2または3記載のナノダイヤモンドの製造方法にも関する。
Furthermore, the present invention provides the method for producing nanodiamond according to claim 1, 2 or 3, comprising (a) a step of reducing the nanodiamond with hydrogen and (b) a step of introducing a functional group into the reduced nanodiamond. Also related.

さらに、(c)官能基で表面修飾されたナノダイヤモンドを溶媒に分散させ、得られた分散液を乾燥させて分級する工程を含むことが好ましい。   Furthermore, it is preferable to include a step of (c) dispersing the nanodiamond surface-modified with a functional group in a solvent and drying and classifying the obtained dispersion.

ナノダイヤモンドが、高温高圧法により製造されたものであることが好ましい。   The nanodiamond is preferably produced by a high temperature and high pressure method.

さらに、本発明は、平均粒径が30nm未満であって、高温高圧法により製造されたナノダイヤモンドにも関する。   Furthermore, the present invention also relates to nanodiamonds having an average particle size of less than 30 nm and produced by a high temperature high pressure method.

ナノダイヤモンドの表面が、アセチル基、ヒドロキシル基、アミノ基、カルボキシル基、シアノ基、シアノメチル基、ポリビニルアルコール、ポリエーテル、ペプチド、アミド、エステル、アンモニウム、カルボキシラート、チオールおよびこれらのカチオン性またはアニオン性の塩の少なくとも1種で表面修飾されたものであることが好ましい。   The surface of nanodiamond is acetyl group, hydroxyl group, amino group, carboxyl group, cyano group, cyanomethyl group, polyvinyl alcohol, polyether, peptide, amide, ester, ammonium, carboxylate, thiol and their cationic or anionic property It is preferable that the surface is modified with at least one of the above salts.

本発明によれば、ナノダイヤモンドの表面を化学的に修飾することによって、平均粒径が比較的大きいものであっても、コロイド溶液として水に分散させることができる。また、比較的粒径の小さなナノダイヤモンドほど分散性がよいことから、分散を経ることで比較的小さな粒径のナノダイヤモンドを簡便に抽出することができる。これにより、従来、高温高圧法により合成されたナノダイヤモンドでは最小の例えば約10nmの平均粒径を持つナノダイヤモンドを得ることができる。   According to the present invention, by chemically modifying the surface of the nanodiamond, even a relatively large average particle size can be dispersed in water as a colloidal solution. In addition, since nanodiamonds having a relatively small particle size have better dispersibility, nanodiamonds having a relatively small particle size can be easily extracted through dispersion. This makes it possible to obtain nanodiamonds having an average particle size of, for example, about 10 nm, which is the smallest among nanodiamonds conventionally synthesized by a high temperature and high pressure method.

本発明は、平均粒径が6〜200nmのナノダイヤモンドであって、ナノダイヤモンド120mgに対して超純水8mlを加え、超音波照射により懸濁液を調製し、該懸濁液に遠心分離を行うことにより得られる上澄み液5ml中の20℃におけるナノダイヤモンドの分散度が0.35mg/ml以上であるナノダイヤモンドに関する。   The present invention relates to nanodiamond having an average particle diameter of 6 to 200 nm. To 120 mg of nanodiamond, 8 ml of ultrapure water is added, a suspension is prepared by ultrasonic irradiation, and the suspension is centrifuged. The present invention relates to a nanodiamond having a dispersion degree of nanodiamond at 20 ° C. in 5 ml of a supernatant obtained by performing the treatment of 0.35 mg / ml or more.

ナノダイヤモンドの平均粒径の下限は、6nmであり、7nmが好ましく、8nmがより好ましい。平均粒径が6nmより小さいナノダイヤモンドは、高温高圧法で製造することが非常に困難である。一方、爆発法を用いることで4〜5nmのナノダイヤモンドを製造することは可能であり、より大きな分散性を示すことも知られているが、表面の化学構造を制御することが極めて困難である。また、平均粒径の上限は、200nmであり、100nmが好ましく、50nmがより好ましく、30nmがさらに好ましく、25nmが特に好ましい。平均粒径が200nmより大きいと、比表面積が小さくなることから、表面官能基の分散度に与える影響が小さくなるため、分散性が減少する傾向がある。また、ナノダイヤモンドの製造において、高温高圧法を用いた場合は、30nm以下が好ましい。   The lower limit of the average particle diameter of the nanodiamond is 6 nm, preferably 7 nm, and more preferably 8 nm. Nanodiamonds having an average particle size of less than 6 nm are very difficult to produce by a high-temperature and high-pressure method. On the other hand, it is possible to produce nano-diamonds of 4 to 5 nm by using the explosion method, and it is also known to exhibit greater dispersibility, but it is extremely difficult to control the chemical structure of the surface. . The upper limit of the average particle diameter is 200 nm, preferably 100 nm, more preferably 50 nm, still more preferably 30 nm, and particularly preferably 25 nm. When the average particle size is larger than 200 nm, the specific surface area becomes small, and thus the influence on the degree of dispersion of the surface functional groups becomes small, so that the dispersibility tends to decrease. Further, in the production of nanodiamond, when a high temperature and high pressure method is used, 30 nm or less is preferable.

本発明のナノダイヤモンドは、水に対して分散性が非常に高いが、その理由は、ナノダイヤモンドの表面が、アセチル基、ヒドロキシル基、アミノ基、カルボキシル基、シアノ基、シアノメチル基、ポリビニルアルコール、ポリエーテル、ペプチド、アミド、エステル、アンモニウム、カルボキシラートおよびチオール、また、これらのカチオン性またはアニオン性の塩によって化学的に表面修飾されているからである。   The nanodiamond of the present invention is very dispersible in water because the surface of the nanodiamond is acetyl group, hydroxyl group, amino group, carboxyl group, cyano group, cyanomethyl group, polyvinyl alcohol, This is because polyether, peptide, amide, ester, ammonium, carboxylate and thiol, and their cationic or anionic salts are chemically surface modified.

ナノダイヤモンドは、水に分散させることによりコロイド状分散液となる。ナノダイヤモンドの水に対する分散度は、ナノダイヤモンド中のある一定の割合、つまり全体の約3.4%の小さな粒径のものが選択的に分散されるものと考えられる。一定の超純水に対して、ナノダイヤモンドを添加していくと、ナノダイヤモンドがある一定の量に達したとき飽和分散度となる。ナノダイヤモンド120mgに対して超純水8mlを加え、超音波照射により懸濁液を調製し、該懸濁液に遠心分離を行うことにより得られる上澄み液5ml中の20℃におけるナノダイヤモンドの分散度は、0.35mg/ml以上が好ましく、1.0mg/ml以上がより好ましく、2.0mg/ml以上がさらに好ましい。分散度が、0.35mg/mlより小さいと一定量を分散させるのに多くの溶媒が必要となり、あまり実用的でない。また、分散度の上限は特に制限されないが、20.0mg/ml以下が好ましい。なお、前記分散度は、平均粒径30nmのナノダイヤモンドに水を加え、20℃に保った状態で、超音波照射を30分間行い、ナノダイヤモンドの懸濁液を形成させ、超音波照射後の懸濁液に対して、最大遠心加速度18500gにて、10分間の遠心分離を行う。そののちに上澄み液5mlを定量し、乾燥してナノダイヤモンドの重量を秤量することにより、ナノダイヤモンド重量/分散液の体積(mg/ml)によって算出される値である。   Nanodiamond becomes a colloidal dispersion by dispersing in water. The degree of dispersion of nanodiamonds in water is considered to be such that a certain proportion in nanodiamonds, that is, particles having a small particle size of about 3.4% of the total are selectively dispersed. When nanodiamond is added to a certain amount of ultrapure water, the degree of saturation dispersion is reached when the nanodiamond reaches a certain amount. Dispersion degree of nanodiamond at 20 ° C. in 5 ml of a supernatant obtained by adding 8 ml of ultrapure water to 120 mg of nanodiamond, preparing a suspension by ultrasonic irradiation, and centrifuging the suspension. Is preferably 0.35 mg / ml or more, more preferably 1.0 mg / ml or more, and even more preferably 2.0 mg / ml or more. If the degree of dispersion is less than 0.35 mg / ml, a large amount of solvent is required to disperse a certain amount, which is not practical. The upper limit of the dispersity is not particularly limited, but is preferably 20.0 mg / ml or less. The degree of dispersion was determined by adding water to nanodiamond having an average particle size of 30 nm and maintaining the temperature at 20 ° C. for 30 minutes to form a nanodiamond suspension to form a nanodiamond suspension. The suspension is centrifuged for 10 minutes at a maximum centrifugal acceleration of 18500 g. Thereafter, 5 ml of the supernatant is quantified, dried, and the weight of the nanodiamond is weighed, which is a value calculated by nanodiamond weight / dispersion volume (mg / ml).

また、本発明は、(a)ナノダイヤモンドを水素で還元する工程および(b)還元されたナノダイヤモンドに官能基を導入する工程を含む前記ナノダイヤモンドの製造方法にも関する。   The present invention also relates to a method for producing the nanodiamond, which includes (a) a step of reducing the nanodiamond with hydrogen and (b) a step of introducing a functional group into the reduced nanodiamond.

ナノダイヤモンドの製造方法としては、高温高圧法および爆発法が挙げられるが、爆発法では、得られるナノダイヤモンドは水への溶解性が高いが、アモルファスカーボンやグラファイトといった他の炭素質の混入が多く、これら炭素質を取り除くのが困難であるという問題がある。また、表面化学修飾を行うことが非常に困難である、ということも我々の研究から明らかになっている。一方、高温高圧法によって合成されたナノダイヤモンドは、表面制御が比較的容易であり、その種類により溶解度をも制御することが可能である。高温高圧法は、例えば密閉された高圧容器内で、鉄やコバルト等の金属の存在下、1〜10GPa、より好ましくは2〜6GPaの高い静圧、および800〜1500℃、より好ましくは1000〜1300℃の高温に原料グラファイト粉末を保持し、ダイヤモンドに対する安定条件を実現することによって、グラファイト粉末をダイヤモンドへ直接相転移させる方法である。   Nano diamond production methods include high-temperature and high-pressure methods and explosion methods. In the explosion method, the resulting nano-diamonds are highly soluble in water, but contain many other carbonaceous substances such as amorphous carbon and graphite. There is a problem that it is difficult to remove these carbonaceous substances. It is also clear from our research that it is very difficult to carry out surface chemical modifications. On the other hand, nano-diamonds synthesized by the high-temperature and high-pressure method are relatively easy to control the surface, and the solubility can be controlled depending on the type. The high-temperature and high-pressure method is a high static pressure of 1 to 10 GPa, more preferably 2 to 6 GPa, and 800 to 1500 ° C., more preferably 1000 to 100 ° C. in the presence of a metal such as iron or cobalt in a sealed high-pressure vessel. In this method, the graphite powder is held at a high temperature of 1300 ° C., and a stable condition for diamond is realized, whereby the graphite powder is directly phase-transformed into diamond.

ナノダイヤモンドを水素で還元する工程(a)は、ナノダイヤモンドを水素気流中で加熱させることにより還元することができる。ナノダイヤモンドを還元する際の反応温度は、400〜1000℃が好ましく、500〜800℃がより好ましい。反応温度が、400℃より小さいと、水素化が十分に進行しない可能性がある。一方、反応温度が、1000℃より大きいと、熱による構造変化が起こる可能性がある。   The step (a) of reducing the nanodiamond with hydrogen can be reduced by heating the nanodiamond in a hydrogen stream. 400-1000 degreeC is preferable and, as for the reaction temperature at the time of reduce | restoring nanodiamond, 500-800 degreeC is more preferable. If the reaction temperature is lower than 400 ° C., hydrogenation may not proceed sufficiently. On the other hand, when the reaction temperature is higher than 1000 ° C., structural change due to heat may occur.

還元されたナノダイヤモンドに官能基を導入する工程(b)は、例えば官能基がヒドロキシル基である場合、前記工程(a)により得られる還元されたナノダイヤモンドを酢酸中、過酸化ベンゾイルを加えた後、加熱することでCH3COO−、PhCOO−を導入し、このエステルを水酸化ナトリウムなどの塩基性水溶液、もしくは塩酸等の酸性水溶液中で加水分解を行うことにより得られる。ナノダイヤモンドを酸化する際に用いる溶媒としては、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸等が挙げられる。ラジカル開始剤としては、過酸化ベンゾイル、過酢酸、パーオキシド、AIBN等が挙げられる。ラジカル開始剤の配合量は、ナノダイヤモンド100重量部に対して、30〜1000重量部が好ましく、50〜500重量部がより好ましい。酸化剤の配合量が30重量部より小さいと、導入される官能基の数が少なくなる傾向がある。一方、ラジカル開始剤の配合量が1000重量部より大きいと、反応が暴走し、危険な状態になる可能性がある。ナノダイヤモンドを酸化する際の反応温度は、ラジカル開始剤によって異なるが、40〜150℃が好ましく、70〜90℃がより好ましい。反応温度が、40℃より低いと、ラジカルの生成速度が遅くなり、その結果、反応が進行しにくくなる傾向がある。一方、反応温度が、150℃より高いと、導入された官能基が脱離する可能性がある。 In the step (b) of introducing a functional group into the reduced nanodiamond, for example, when the functional group is a hydroxyl group, benzoyl peroxide is added to the reduced nanodiamond obtained in the step (a) in acetic acid. Then, CH 3 COO— and PhCOO— are introduced by heating, and this ester is obtained by hydrolysis in a basic aqueous solution such as sodium hydroxide or an acidic aqueous solution such as hydrochloric acid. Examples of the solvent used for oxidizing nanodiamond include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, and the like. Examples of the radical initiator include benzoyl peroxide, peracetic acid, peroxide, AIBN and the like. The blending amount of the radical initiator is preferably 30 to 1000 parts by weight and more preferably 50 to 500 parts by weight with respect to 100 parts by weight of nanodiamond. When the blending amount of the oxidizing agent is smaller than 30 parts by weight, the number of functional groups to be introduced tends to decrease. On the other hand, if the blending amount of the radical initiator is larger than 1000 parts by weight, the reaction may run out of control and may be in a dangerous state. Although the reaction temperature at the time of oxidizing a nano diamond changes with radical initiators, 40-150 degreeC is preferable and 70-90 degreeC is more preferable. When the reaction temperature is lower than 40 ° C., the radical generation rate becomes slow, and as a result, the reaction tends to hardly proceed. On the other hand, when the reaction temperature is higher than 150 ° C., the introduced functional group may be eliminated.

また、エステル化したナノダイヤモンドを加水分解する際の溶媒は、水または含水の有機溶媒などが挙げられる。エステル化したナノダイヤモンドを加水分解する際の塩基の配合量は、ナノダイヤモンド100重量部に対して、10〜1000重量部が好ましく、50〜500重量部がより好ましい。配合量が10重量部より小さいと、十分に加水分解が進行せず、未反応となる可能性がある。一方、配合量が1000重量部より大きいと、反応後に塩基を取り除くため、何回も洗浄を繰り返す必要が出てくる。加水分解の温度は、20〜120℃が好ましく、40〜80℃がより好ましい。反応温度が、40℃より小さいと、加水分解に時間がかかる傾向がある。一方、反応温度が、80℃より大きいと、溶媒である水の揮発が大きくなる傾向がある。   Examples of the solvent for hydrolyzing the esterified nanodiamond include water or a water-containing organic solvent. The blending amount of the base when hydrolyzing the esterified nanodiamond is preferably 10 to 1000 parts by weight and more preferably 50 to 500 parts by weight with respect to 100 parts by weight of the nanodiamond. If the blending amount is less than 10 parts by weight, the hydrolysis does not proceed sufficiently and there is a possibility that it will be unreacted. On the other hand, if the blending amount is larger than 1000 parts by weight, the base is removed after the reaction, so that it is necessary to repeat washing many times. The temperature for hydrolysis is preferably 20 to 120 ° C, more preferably 40 to 80 ° C. When the reaction temperature is lower than 40 ° C., hydrolysis tends to take time. On the other hand, when the reaction temperature is higher than 80 ° C., volatilization of water as a solvent tends to increase.

また、ナノダイヤモンドにアミノ基を導入する場合は、ナノダイヤモンドと塩素を反応させ、そののちアンモニアと反応させることによって得られる。ナノダイヤモンドと塩素を反応させる方法としては、封管中加熱する方法や塩素を流しながら電気炉中で加熱する方法が挙げられる。ナノダイヤモンドと塩素を反応させる際の温度は、250〜600℃が好ましく、300〜450℃がより好ましい。反応温度が、250℃より小さいと、十分に塩素化が進行しない傾向がある。一方、反応温度が、600℃より大きいと、表面の化学構造が熱により影響を受け、脱塩素を起こす可能性がある。また、ナノダイヤモンドとアンモニアを反応させる方法としては、封管中加熱する方法やアンモニアを流しながら電気炉中で加熱する方法が挙げられる。また、アンモニアと反応させる際の反応温度は、300〜800℃が好ましく、400〜600℃がより好ましい。反応温度が、300℃より小さいと、十分にアミノ化が進行しない傾向がある。一方、反応温度が、800℃より大きいと、表面の化学構造が熱により影響を受け、脱アミノ化を起こす可能性がある。   In addition, when an amino group is introduced into nanodiamond, it can be obtained by reacting nanodiamond with chlorine and then reacting with ammonia. Examples of the method of reacting nanodiamond with chlorine include a method of heating in a sealed tube and a method of heating in an electric furnace while flowing chlorine. The temperature at the time of reacting nanodiamond and chlorine is preferably 250 to 600 ° C, more preferably 300 to 450 ° C. When the reaction temperature is lower than 250 ° C., chlorination does not proceed sufficiently. On the other hand, if the reaction temperature is higher than 600 ° C., the chemical structure of the surface is affected by heat, which may cause dechlorination. Examples of the method of reacting nanodiamond with ammonia include a method of heating in a sealed tube and a method of heating in an electric furnace while flowing ammonia. Moreover, 300-800 degreeC is preferable and the reaction temperature at the time of making it react with ammonia has more preferable 400-600 degreeC. When the reaction temperature is lower than 300 ° C., amination tends not to proceed sufficiently. On the other hand, if the reaction temperature is higher than 800 ° C., the chemical structure of the surface is affected by heat, which may cause deamination.

さらに、ナノダイヤモンドにシアノメチル基を導入する場合は、前記工程(a)により得られる還元されたナノダイヤモンドをアセトニトリル中、過酸化ベンゾイルを加えた後、加熱することにより得られる。   Furthermore, when introducing a cyanomethyl group into nanodiamond, it is obtained by heating the reduced nanodiamond obtained by the step (a) after adding benzoyl peroxide in acetonitrile.

さらに、工程(c)において、官能基で表面修飾されたナノダイヤモンドを溶媒に分散させ、得られた分散液を乾燥させて分級することが好ましい。官能基で表面修飾されたナノダイヤモンドを溶媒に分散させ、懸濁液を調製し、遠心分離を行った場合には、粒径の大きいナノダイヤモンドは沈殿し、粒径の小さいナノダイヤモンドは水に分散する傾向にある。そこで、この工程(C)を実行することにより、ナノダイヤモンドを分級することができる。分級されたナノダイヤモンドは平均粒径が小さいため、水に対して分散しやすく、溶解度が大きくなる点で好ましい。   Furthermore, in the step (c), it is preferable to disperse the nanodiamond whose surface has been modified with a functional group in a solvent and classify the resulting dispersion by drying. When nanodiamonds surface-modified with functional groups are dispersed in a solvent, and a suspension is prepared and centrifuged, nanodiamonds with a large particle size precipitate and nanodiamonds with a small particle size are dissolved in water. Tend to disperse. Therefore, nanodiamonds can be classified by executing this step (C). Since the classified nanodiamond has a small average particle size, it is preferable in that it is easily dispersed in water and has high solubility.

本発明のナノダイヤモンドの用途としては、たとえばナノバイオ、ナノ医療の分野で用いられ、例えば、生体適合性の高い医用材料、細胞への導入と可視化、標識細胞の生体内でのモニタリング、ドラッグデリバリーシステム、検査試薬などに用いることができ、また、他の分野では、ポリマー中のフィラー、ポリマーの補強剤、大きな屈折率を活かしたディスプレイへの応用、研磨剤などに用いることができる。   The use of the nanodiamond of the present invention is, for example, in the fields of nanobiotechnology and nanomedicine. For example, biomaterials with high biocompatibility, introduction and visualization into cells, monitoring of labeled cells in vivo, drug delivery systems In other fields, it can be used for fillers in polymers, reinforcing agents for polymers, applications for displays utilizing a large refractive index, abrasives, and the like.

以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

実施例1
<水素化ナノダイヤモンド表面へのヒドロキシル基の導入>
水素化ナノダイヤモンド(ND−Hn)(平均粒径:30nm)(トーメイダイヤ(株)製)20mgと酢酸5mlを入れ、さらに過酸化ベンゾイル50mgを加え、超音波照射下、75℃で1時間反応させ、表面の水素原子をアセチル基に表面修飾したナノダイヤモンド(ND−(OAc)m)18mgを得た。
Example 1
<Introduction of hydroxyl group to hydrogenated nanodiamond surface>
Hydrogenated nanodiamond (ND-H n) (average particle diameter: 30 nm) (manufactured by Tomei Diamond Co.) placed 20mg and acetic acid 5 ml, further benzoyl peroxide 50mg addition, under microwave irradiation for 1 hour at 75 ° C. The reaction was performed to obtain 18 mg of nano diamond (ND- (OAc) m ) whose surface hydrogen atoms were modified to acetyl groups.

さらに、アセチル基に表面修飾したナノダイヤモンド18mgに、25%水酸化ナトリウム水溶液5mlを入れ、120℃で3時間反応させ、アセチル基をヒドロキシル基に加水分解させ、ヒドロキシル基で表面修飾したナノダイヤモンド(ND−(OH)m)16mgを得た。 Further, 18 mg of nanodiamond surface-modified to acetyl group was charged with 5 ml of 25% aqueous sodium hydroxide solution, reacted at 120 ° C. for 3 hours to hydrolyze the acetyl group to hydroxyl group, and nanodiamond surface-modified with hydroxyl group ( ND- (OH) m ) 16 mg was obtained.

実施例2
<水素化ナノダイヤモンド表面へのアミノ基の導入>
水素化ナノダイヤモンド(ND−Hn)(平均粒径:30nm)(トーメイダイヤ(株)製)50mgを電気管状炉内に静置し、管状炉内に窒素ガスとアンモニアガスの混合ガス(窒素ガス:アンモニアガス=1:1)を流速100mlで流通させた。管状炉内の温度を450℃に保ち、3時間反応させ、アミノ基に表面修飾したND(ND−(NH2m)50mgを得た。
Example 2
<Introduction of amino groups on the surface of hydrogenated nanodiamond>
Hydrogenated nanodiamond (ND-H n) (average particle diameter: 30 nm) were allowed to stand (Tomei Diamond Co., Ltd.) 50 mg in an electric tube furnace, a mixed gas of nitrogen gas and ammonia gas in a tubular furnace (nitrogen Gas: ammonia gas = 1: 1) was circulated at a flow rate of 100 ml. The temperature in the tubular furnace was kept at 450 ° C. and reacted for 3 hours to obtain 50 mg of ND (ND- (NH 2 ) m ) whose surface was modified with an amino group.

ND−(NH2mの水に対する分散度を、以下の方法によって測定し、評価した。 The degree of dispersion of ND- (NH 2 ) m in water was measured and evaluated by the following method.

<分散度>
平均粒径30nmのNDを120mg秤量し、10ml容量のサンプル瓶に移した。そこにメスピペットにて超純水8mlを加え、卓上超音波照射器(ヤマト科学(株)製)のタンク内を20℃に保った状態で、超音波照射を30分間行った。超音波照射後の懸濁液に対して、最大遠心加速度18500Gにて、10分間の遠心分離を行った。上澄みの上層5mlをホールピペットで定量し、ロータリーエバポレーターにて濃縮乾固した後、真空下にて乾燥して重量を測定した。得られた重量から分散度(mg/ml)を決定した。
<Dispersity>
120 mg of ND having an average particle diameter of 30 nm was weighed and transferred to a 10 ml capacity sample bottle. 8 ml of ultrapure water was added thereto using a measuring pipette, and ultrasonic irradiation was carried out for 30 minutes while keeping the inside of a tank of a tabletop ultrasonic irradiator (manufactured by Yamato Scientific Co., Ltd.) at 20 ° C. The suspension after ultrasonic irradiation was centrifuged for 10 minutes at a maximum centrifugal acceleration of 18500G. An upper layer of 5 ml of the supernatant was quantified with a whole pipette, concentrated and dried with a rotary evaporator, and then dried under vacuum to measure the weight. The dispersity (mg / ml) was determined from the weight obtained.

測定結果より、得られたND−(NH2mの水に対する分散度は、4.16mg/mlであった。 From the measurement results, the degree of dispersion of the obtained ND- (NH 2 ) m in water was 4.16 mg / ml.

比較例1
水素化ナノダイヤモンドの水に対する溶解度を、実施例2と同様の方法にて測定し、評価した。測定結果より、水に対する分散度は、0.34mg/mlであった。
Comparative Example 1
The solubility of hydrogenated nanodiamond in water was measured and evaluated in the same manner as in Example 2. From the measurement results, the degree of dispersion in water was 0.34 mg / ml.

Claims (4)

(a)平均粒径が6〜30nmである高温高圧法により製造され粉砕されたナノダイヤモンドを水素で還元する工程および(A) reducing the nanodiamond produced and pulverized by a high temperature and high pressure method having an average particle size of 6 to 30 nm with hydrogen;
(b)還元されたナノダイヤモンドに官能基を導入する工程を(B) introducing a functional group into the reduced nanodiamond;
含むナノダイヤモンドの製造方法。  A method for producing nano-diamonds.
さらに、(c)官能基で表面修飾されたナノダイヤモンドを溶媒に分散させて懸濁液を調整し、遠心分離を行い得られた分散液を乾燥させて分級する工程を含むIn addition, (c) a step of dispersing the nanodiamond surface-modified with a functional group in a solvent to prepare a suspension, centrifuging, and drying and classifying the resulting dispersion.
請求項1に記載のナノダイヤモンドの製造方法。The manufacturing method of the nano diamond of Claim 1.
前記官能基がアセチル基又はアミノ基を含む
請求項1又は2に記載のナノダイヤモンドの製造方法。
The functional group includes an acetyl group or an amino group
The manufacturing method of the nano diamond of Claim 1 or 2.
平均粒径が6〜30nmである高温高圧法により製造されたナノダイヤモンドであって、A nanodiamond produced by a high-temperature and high-pressure method having an average particle size of 6 to 30 nm,
アセチル基又はアミノ基およびこれらのカチオン性またはアニオン性の塩の少なくとも1種で表面修飾され、  Surface-modified with at least one of an acetyl group or an amino group and a cationic or anionic salt thereof,
ナノダイヤモンド120mgに対して超純水8ml加えて得た懸濁液を遠心分離し、上澄み液5ml中の20℃におけるナノダイヤモンドの分散度が0.35mg/ml以上である  A suspension obtained by adding 8 ml of ultrapure water to 120 mg of nanodiamond is centrifuged, and the dispersion degree of nanodiamond at 20 ° C. in 5 ml of the supernatant is 0.35 mg / ml or more.
請求項1〜3の何れか一項に記載の方法で製造されたナノダイヤモンド。  The nano diamond manufactured by the method as described in any one of Claims 1-3.
JP2006066612A 2006-03-10 2006-03-10 Nano diamond Active JP5346427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066612A JP5346427B2 (en) 2006-03-10 2006-03-10 Nano diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066612A JP5346427B2 (en) 2006-03-10 2006-03-10 Nano diamond

Publications (2)

Publication Number Publication Date
JP2007238411A JP2007238411A (en) 2007-09-20
JP5346427B2 true JP5346427B2 (en) 2013-11-20

Family

ID=38584304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066612A Active JP5346427B2 (en) 2006-03-10 2006-03-10 Nano diamond

Country Status (1)

Country Link
JP (1) JP5346427B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10081546B2 (en) 2015-09-01 2018-09-25 Hyundai Motor Company Nano-diamond, method of manufacturing the same, and nano-fluid using the same

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090037774A (en) * 2007-10-13 2009-04-16 나노다이아몬드 주식회사 Nanodiamond compounds synthesized by surface functionalization
JP5359166B2 (en) 2007-10-15 2013-12-04 セントラル硝子株式会社 Method for preparing fluorinated nanodiamond dispersion
RU2010135375A (en) * 2008-01-25 2012-02-27 Зе Риджентс оф зи Юнивесити оф Кэлифонье (US) METHOD FOR PRODUCING NANODIAMOND (OPTIONS), METHOD FOR PRODUCING CARBON MATERIAL, NANODIAMOND FIBER AND ITS CONTAINING MATERIAL
JP2009214051A (en) * 2008-03-11 2009-09-24 Tokyo Univ Of Science Diamond solid acid, and solid acid catalyst and solid electrolyte consisting of the diamond solid acid
JP5275088B2 (en) * 2009-03-03 2013-08-28 株式会社ダイセル Surface-modified nanodiamond and method for producing the same
KR101103683B1 (en) * 2009-03-04 2012-01-11 이화여자대학교 산학협력단 Antioxidant effect of functional nanodiamonds and its applications
JP5399118B2 (en) 2009-04-13 2014-01-29 株式会社ダイセル Surface-modified nanodiamond and method for producing the same
WO2010138837A2 (en) * 2009-05-28 2010-12-02 Northwestern University Nanodiamond particle complexes
JP2011026390A (en) * 2009-07-22 2011-02-10 Kobe Univ Coating composition and film comprising the coating composition
JP5435477B2 (en) * 2010-01-22 2014-03-05 アイテック株式会社 Composite plating solution in which fine diamond particles are dispersed and method for producing the same
WO2011115314A1 (en) * 2010-03-18 2011-09-22 나노다이아몬드 주식회사 Antioxidant effect of functional nanodiamond and a use therefor
ES2376937B1 (en) * 2010-04-09 2013-02-01 Infinitec Activos, S.L. CONJUGATED COMPOUND FOR USE AS AN ACTIVE PRINCIPLE IN COSMETIC AND PHARMACEUTICAL PRODUCTS, AS WELL AS PROCEDURE FOR OBTAINING SUCH CONJUGATED COMPOUND.
JP5614538B2 (en) * 2010-09-30 2014-10-29 アイテック株式会社 Method for forming composite plating film
FI126408B (en) * 2013-12-19 2016-11-15 Carbodeon Ltd Oy Zeta positive amino-functionalized nanodiamant powder, zeta positive amino functionalized nanodiamant dispersion and processes for making them
JP6472715B2 (en) * 2015-06-11 2019-02-20 株式会社ダイセル Nanodiamond dispersion and method for producing the same
JP2017075220A (en) * 2015-10-14 2017-04-20 株式会社ダイセル Abrasive composition for CMP
JP6770469B2 (en) * 2016-04-01 2020-10-14 株式会社ダイセル Surface-modified nanodiamond and its organic solvent dispersion
JP6824086B2 (en) * 2016-04-01 2021-02-03 株式会社ダイセル Manufacturing method of surface-modified nanodiamond
EP3438047B1 (en) * 2016-04-01 2022-06-01 Daicel Corporation Surface-modified nanodiamond, organic solvent dispersion thereof, and method for producing surface-modified nanodiamond
JP6893769B2 (en) * 2016-10-28 2021-06-23 株式会社ダイセル Manufacturing method of nanodiamond organic solvent dispersion liquid and nanodiamond organic solvent dispersion liquid
JP2020025519A (en) * 2018-08-16 2020-02-20 浜松ホトニクス株式会社 Method for observing cell aggregates
CN114341055B (en) * 2019-08-30 2024-03-08 株式会社大赛璐 Method for manufacturing surface-modified nano diamond
CN110723732B (en) * 2019-09-30 2023-12-15 王偲偲 Preparation method of super-dispersed nano-diamond suspension
CN114426809A (en) * 2022-02-17 2022-05-03 上海映智研磨材料有限公司 Silicon oxide modified nano diamond abrasive particles and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3094433B2 (en) * 1990-09-25 2000-10-03 日本電気株式会社 Diamond fine powder manufacturing method and manufacturing equipment
RU2051092C1 (en) * 1991-12-25 1995-12-27 Научно-производственное объединение "Алтай" Diamond-containing substance and a method of its preparing
JP2691884B2 (en) * 1995-07-10 1997-12-17 株式会社石塚研究所 Hydrophilic diamond fine particles and method for producing the same
JP3460594B2 (en) * 1997-10-09 2003-10-27 三菱マテリアル株式会社 Seed diamond powder with excellent adhesion to artificial diamond film formation surface
US6372002B1 (en) * 2000-03-13 2002-04-16 General Electric Company Functionalized diamond, methods for producing same, abrasive composites and abrasive tools comprising functionalized diamonds
JP3500423B2 (en) * 2000-08-29 2004-02-23 独立行政法人物質・材料研究機構 Nanodiamond and its manufacturing method
JP2004339412A (en) * 2003-05-16 2004-12-02 Ishizuka Kenkyusho:Kk Submicron diamond powder for abrasive material and method for producing the same powder
WO2005065809A1 (en) * 2003-12-11 2005-07-21 Sumitomo Electric Industries, Ltd. High-hardness conductive diamond polycrystalline body and method for producing same
JP5070688B2 (en) * 2005-08-22 2012-11-14 住友電気工業株式会社 High hardness diamond polycrystal and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10081546B2 (en) 2015-09-01 2018-09-25 Hyundai Motor Company Nano-diamond, method of manufacturing the same, and nano-fluid using the same

Also Published As

Publication number Publication date
JP2007238411A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP5346427B2 (en) Nano diamond
Ederer et al. Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation
Abdolmaleki et al. Preparation, characterization and surface morphology of novel optically active poly (ester-amide)/functionalized ZnO bionanocomposites via ultrasonication assisted process
Wan et al. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization
N'Guyen et al. Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions.
Dolmatov et al. Detonation nanodiamonds: New aspects in the theory and practice of synthesis, properties and applications
Feng et al. Simultaneous reduction and surface functionalization of graphene oxide by chitosan and their synergistic reinforcing effects in PVA films
Tai et al. Study of surface modification of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH)
JP5399118B2 (en) Surface-modified nanodiamond and method for producing the same
Arnault Surface modifications of nanodiamonds and current issues for their biomedical applications
JP5614643B2 (en) Size-controlled surface-modified nanodiamond
Zhou et al. Facile fabrication of dextran-based fluorescent nanogels as potential glucose sensors
Basiuk et al. Solvent-free covalent functionalization of nanodiamond with amines
Sun et al. Glucose-and temperature-responsive core–shell microgels for controlled insulin release
Krueger Current issues and challenges in surface chemistry of nanodiamonds
Fu et al. Ovalbumin as a precursor for green synthesis of highly fluorescent carbon dots for cell imaging
Ravishankar et al. Rapid, solvent-free synthesis of amorphous, photoluminescent, carbon nanodots from imidazole and maleic anhydride solids
Burleson et al. Surface modification of nanodiamonds for biomedical application and analysis by infrared spectroscopy
Kurdtabar et al. Characterization of a multi-responsive magnetic graphene oxide nanocomposite hydrogel and its application for DOX delivery
Medeiros et al. Synthesis and characterization of a magnetic bio-nanocomposite based on magnetic nanoparticles modified by acrylated fatty acids derived from castor oil
Sotoma et al. Monodispersed colloidal solutions of surface-modified detonation-synthesized nanodiamonds and their aggregation resistance
KR20130079983A (en) Zirconium oxide nanoparticles and hydrosol of the same and composition and method for manufacturing zirconium oxide nanoparticles
US10081546B2 (en) Nano-diamond, method of manufacturing the same, and nano-fluid using the same
Gökalp et al. Photoluminescence, photothermal and magnetic properties of nitrogen doped graphene quantum dots based ternary nanocomposite
Yao et al. Synthesis of pH-responsive nanocomposites of gold nanoparticles and graphene oxide and their applications in SERS and catalysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5346427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250