JP5344837B2 - LAMINATE FOR BATTERY PACKAGE BODY, ITS MANUFACTURING METHOD, AND BATTERY - Google Patents

LAMINATE FOR BATTERY PACKAGE BODY, ITS MANUFACTURING METHOD, AND BATTERY Download PDF

Info

Publication number
JP5344837B2
JP5344837B2 JP2008080965A JP2008080965A JP5344837B2 JP 5344837 B2 JP5344837 B2 JP 5344837B2 JP 2008080965 A JP2008080965 A JP 2008080965A JP 2008080965 A JP2008080965 A JP 2008080965A JP 5344837 B2 JP5344837 B2 JP 5344837B2
Authority
JP
Japan
Prior art keywords
layer
sealant
acid
battery
anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008080965A
Other languages
Japanese (ja)
Other versions
JP2009238475A (en
Inventor
有弘 穴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2008080965A priority Critical patent/JP5344837B2/en
Publication of JP2009238475A publication Critical patent/JP2009238475A/en
Application granted granted Critical
Publication of JP5344837B2 publication Critical patent/JP5344837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、電池用外装体及びその外装体を用いた電池に関する。   The present invention relates to a battery case and a battery using the case.

近年、パソコン、携帯電話等の携帯端末装置、ビデオカメラ、衛星などに用いられる電池として、超薄型化、小型化の可能なリチウム電池が盛んに開発されている。このリチウム電池の外装材料は、従来用いられていた金属製缶とは異なり、軽量で電池の形状を自由に選択できるという利点から、基材層/アルミニウム箔層/シーラント層のような構成の積層体が用いられるようになってきた。   2. Description of the Related Art In recent years, lithium batteries that can be made extremely thin and small have been actively developed as batteries used in portable terminal devices such as personal computers and mobile phones, video cameras, and satellites. Unlike the metal cans that have been used in the past, this lithium battery exterior material is lightweight and has a structure such as a base material layer / aluminum foil layer / sealant layer because of the advantage that the battery shape can be freely selected. The body has come to be used.

リチウム電池は、電池内容物として正極材及び負極材と共に、炭酸プロピレン、炭酸エチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルなどの非プロトン性溶媒にリチウム塩を溶解した電解液若しくはその電解液を含浸させたポリマーゲルからなる電解質層を含んでいる。このような強浸透性の溶媒がシーラント層を通過すると、アルミニウム箔層とシーラント層間のラミネート強度を低下させてデラミネーションを生じさせ、最終的には電解液が漏れ出すといった問題が生じる。また、電池の電解質であるリチウム塩としてはLiPF6、LiBF4 等の物質が用いられているが、これらの塩は水分との加水分解反応によりフッ酸を発生し、フッ酸がアルミニウム箔を腐食することによりラミネート強度を低下させる。電池外装材料は、このように電解質に対する耐性を有していることが必要である。 Lithium battery is impregnated with electrolyte solution or lithium electrolyte dissolved in aprotic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate together with positive electrode material and negative electrode material as battery contents And an electrolyte layer made of a polymer gel. When such a strong permeable solvent passes through the sealant layer, the laminate strength between the aluminum foil layer and the sealant layer is lowered to cause delamination, and finally the electrolyte leaks. Lithium salt, which is the battery electrolyte, uses LiPF 6 , LiBF 4, etc., but these salts generate hydrofluoric acid by hydrolysis with water, and the hydrofluoric acid corrodes the aluminum foil. By doing so, the laminate strength is lowered. Thus, the battery exterior material needs to have resistance to the electrolyte.

さらに、リチウム電池はさまざまな環境下で使用されることを想定して、より過酷な耐性を備えている必要がある。例えば、モバイル機器に使用される場合には、車内等の60〜70℃という高温環境での耐漏液性が要求される。また、携帯電話に使用され誤って水中に落としたことを想定し、水分が浸入しないよう耐水性も必要とされる。   Furthermore, the lithium battery needs to have more severe resistance assuming that it is used in various environments. For example, when used in a mobile device, liquid leakage resistance in a high temperature environment of 60 to 70 ° C. such as in a car is required. In addition, water resistance is also required to prevent moisture from entering, assuming that it was used in a mobile phone and accidentally dropped into water.

このような状況のもと、耐電解液性を向上させたリチウム電池用外装材料が種々提案されている(特許文献1〜4)。
特開2001−243928号公報 特開2004−42477号公報 特開2004−142302号公報 特開2002−187233号公報
Under such circumstances, various exterior materials for lithium batteries having improved electrolyte resistance have been proposed (Patent Documents 1 to 4).
Japanese Patent Laid-Open No. 2001-243928 JP 2004-42477 A JP 2004-142302 A JP 2002-187233 A

しかしながら、前記提案されているリチウム電池用包装材料は、いずれも耐漏液性や耐水性の点で不十分であった。   However, all of the proposed packaging materials for lithium batteries are insufficient in terms of leakage resistance and water resistance.

本発明の課題は、耐電解液性とともに、耐漏液性と耐水性にも優れる電池用外装体及び前記外装体を用いた電池を提供することにある。   The subject of this invention is providing the battery using the exterior body for batteries which is excellent also in leakage resistance and water resistance with electrolyte solution resistance, and the said exterior body.

すなわち本発明は、基材層、バリア層、アンカー層、シーラント層および接着層がこの順に積層されてなり、前記アンカー層および接着層が、(メタ)アクリル酸エステル成分を含有する酸変性ポリオレフィン樹脂を含むことを特徴とする電池用外装体であり、また、前記外装体を用いた電池である。   That is, in the present invention, a base material layer, a barrier layer, an anchor layer, a sealant layer, and an adhesive layer are laminated in this order, and the anchor layer and the adhesive layer contain an (meth) acrylic acid ester component. It is the battery exterior body characterized by including this, Moreover, it is a battery using the said exterior body.

本発明の電池用外装体は、基材層の一方の面に、アルミニウム箔層、アンカー層、シーラント層、接着層が順次積層されてなる電池用外装体において、アンカー層および接着層に特定の樹脂を用いることにより、電池の外装体として用いた場合に優れた耐電解液性、耐漏液性と耐水性を発揮する。このため、電池の寿命が延び、取扱上の安全性も高まり、産業上の利用価値は非常に高い。   The battery outer body of the present invention is a battery outer body in which an aluminum foil layer, an anchor layer, a sealant layer, and an adhesive layer are sequentially laminated on one surface of a base material layer. By using the resin, it exhibits excellent electrolytic solution resistance, leakage resistance and water resistance when used as a battery outer package. For this reason, the life of the battery is extended, the safety in handling is increased, and the industrial utility value is very high.

また、本発明の製造方法によれば、アンカー層及び接着層として積層する酸変性ポリオレフィン樹脂の目付量を調整しやすく、また、厚みを薄く制御し易いため、効率よく生産を行うことができる。また、水性分散体を用いるため環境面でも好ましい。   Moreover, according to the manufacturing method of this invention, since the fabric weight of the acid-modified polyolefin resin laminated | stacked as an anchor layer and an adhesion layer is easy to adjust, and it is easy to control thickness thinly, it can produce efficiently. Moreover, since an aqueous dispersion is used, it is preferable also from an environmental viewpoint.

本発明の電池用外装体は、厚み方向に順に、基材層、バリア層、アンカー層、シーラント層、接着層をこの順に積層した構成を有する。   The battery exterior body of this invention has the structure which laminated | stacked the base material layer, the barrier layer, the anchor layer, the sealant layer, and the contact bonding layer in this order in the thickness direction.

基材層は、単層若しくは多層の耐熱性高分子フィルムからなり、例えば、ポリエステルフィルム、ポリアミドフィルム、ポリプロピレンフィルム等の延伸もしくは未延伸フィルムなどの単体フィルム、あるいは前記単体フィルムを積層した多層フィルムなどが使用できる。耐ピンホール性、絶縁性を向上させるために総厚みは6〜40μmが好ましく、さらに好ましくは10〜25μmである。   The base material layer is composed of a single-layer or multilayer heat-resistant polymer film, for example, a single film such as a stretched or unstretched film such as a polyester film, a polyamide film, or a polypropylene film, or a multilayer film in which the single films are laminated. Can be used. In order to improve pinhole resistance and insulation, the total thickness is preferably 6 to 40 μm, more preferably 10 to 25 μm.

基材層とバリア層の間には、必要に応じて、プライマー層を設けることができる。プライマー層は、シランカップリング剤やポリエステルポリオールあるいはポリエーテルポリオール、アクリルポリオールを主剤としたポリウレタン系接着剤からなっており、塗布量は乾燥状態で1〜5g/m2とすることが好ましい。 A primer layer can be provided between the base material layer and the barrier layer as necessary. The primer layer is made of a polyurethane adhesive mainly composed of a silane coupling agent, polyester polyol, polyether polyol or acrylic polyol, and the coating amount is preferably 1 to 5 g / m 2 in a dry state.

バリア層は、アルミナやシリカを蒸着した蒸着層、またはアルミニウム箔などを用いることができるが、バリア性の点からアルミニウム箔を用いることが好ましい。   As the barrier layer, a vapor-deposited layer obtained by vapor-depositing alumina or silica, an aluminum foil, or the like can be used, but an aluminum foil is preferably used from the viewpoint of barrier properties.

アルミニウム箔を使用する場合は、厚みが9〜200μmの軟質アルミニウム箔、特に鉄含有率が0.1〜9.0質量%の軟質アルミニウム箔が耐ピンホール性、成形加工時の延展性の点で好ましい。鉄含有率が0.1質量%未満であると、耐ピンホール性、延展性を十分に付与させることができず、9.0質量%を越えると柔軟性が損なわれる場合がある。   When an aluminum foil is used, a soft aluminum foil having a thickness of 9 to 200 μm, in particular, a soft aluminum foil having an iron content of 0.1 to 9.0% by mass is resistant to pinholes and stretchability at the time of molding. Is preferable. If the iron content is less than 0.1% by mass, sufficient pinhole resistance and ductility cannot be imparted, and if it exceeds 9.0% by mass, flexibility may be impaired.

軟質アルミニウム箔を用いる場合、アンカー層との接着性を向上させるために、アンカー層を積層する面に公知の表面処理を行うことが好ましく、酸脱脂剤による脱脂処理、ベーマイト処理のような熱水変性処理、アルマイト処理のような陽極酸化処理又はクロメート処理のような化成処理を行うことが好ましい。特に好ましい表面処理の例としては、一ナトリウム二フッ化アンモニウムなどのフッ素含有化合物を無機酸で溶解させた酸脱脂剤で処理する方法が挙げられ、軟質アルミニウム箔の脱脂効果だけでなく不動態であるアルミニウムのフッ化物を形成させることが可能であり、耐フッ酸性という点で有効である。   In the case of using a soft aluminum foil, it is preferable to perform a known surface treatment on the surface on which the anchor layer is laminated in order to improve the adhesion with the anchor layer, and hot water such as a degreasing treatment with an acid degreasing agent or a boehmite treatment. It is preferable to perform a chemical conversion treatment such as a modification treatment, an anodizing treatment such as alumite treatment, or a chromate treatment. An example of a particularly preferred surface treatment is a method of treating with a fluorine-containing compound such as monosodium ammonium difluoride dissolved in an inorganic acid with an acid degreasing agent. In addition to the degreasing effect of a soft aluminum foil, It is possible to form a certain aluminum fluoride, which is effective in terms of resistance to hydrofluoric acid.

本発明の電池用外装体は、アンカー層および接着層として、(メタ)アクリル酸エステル成分を含有する酸変性ポリオレフィン樹脂を含む。アンカー層、接着層には同一の酸変性ポリオレフィン樹脂を用いてもよいし、それぞれの層に異なる酸変性ポリオレフィン樹脂を使用してもよい。   The battery outer body of the present invention includes an acid-modified polyolefin resin containing a (meth) acrylic acid ester component as an anchor layer and an adhesive layer. The same acid-modified polyolefin resin may be used for the anchor layer and the adhesive layer, or different acid-modified polyolefin resins may be used for the respective layers.

酸変性ポリオレフィン樹脂の主成分であるオレフィン成分は特に限定されないが、エチレン、プロピレン、イソブチレン、2−ブテン、1−ブテン、1−ペンテン、1−ヘキセン等の炭素数2〜6のアルケンが好ましく、これらの混合物を用いてもよい。この中で、エチレン、プロピレン、イソブチレン、1−ブテン等の炭素数2〜4のアルケンがより好ましく、エチレン、プロピレンがさらに好ましく、エチレンが最も好ましい。   The olefin component that is the main component of the acid-modified polyolefin resin is not particularly limited, but an alkene having 2 to 6 carbon atoms such as ethylene, propylene, isobutylene, 2-butene, 1-butene, 1-pentene, 1-hexene is preferable, Mixtures of these may be used. Among these, alkene having 2 to 4 carbon atoms such as ethylene, propylene, isobutylene and 1-butene is more preferable, ethylene and propylene are further preferable, and ethylene is most preferable.

酸変性ポリオレフィン樹脂は、不飽和カルボン酸成分により酸変性されたものである。不飽和カルボン酸成分としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、クロトン酸等のほか、不飽和ジカルボン酸のハーフエステル、ハーフアミド等が挙げられる。中でもアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸が好ましく、特にアクリル酸、無水マレイン酸が好ましい。また、不飽和カルボン酸成分は、酸変性ポリオレフィン樹脂中に共重合されていればよく、その形態は限定されず、共重合の状態としては、例えば、ランダム共重合、ブロック共重合、グラフト共重合(グラフト変性)などが挙げられる。   The acid-modified polyolefin resin is acid-modified with an unsaturated carboxylic acid component. Examples of unsaturated carboxylic acid components include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, crotonic acid, and the like, as well as unsaturated dicarboxylic acid half esters and half amides. It is done. Of these, acrylic acid, methacrylic acid, maleic acid, and maleic anhydride are preferable, and acrylic acid and maleic anhydride are particularly preferable. The unsaturated carboxylic acid component only needs to be copolymerized in the acid-modified polyolefin resin, and the form thereof is not limited. Examples of the copolymerization state include random copolymerization, block copolymerization, and graft copolymerization. (Graft modification) and the like.

酸変性ポリオレフィン樹脂中の不飽和カルボン酸成分の含有量は、バリア層とシーラント層との接着性のバランスから、0.01〜10質量%が好ましく、0.1〜5質量%がより好ましく、0.5〜4質量%がさらに好ましく、1〜4質量%が特に好ましい。含有量が0.01質量未満の場合はアルミニウム箔等のバリア層との十分な接着性が得られない場合がある。また、10質量%を超える場合はシーラント層との接着性が低下する場合がある。   The content of the unsaturated carboxylic acid component in the acid-modified polyolefin resin is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, from the balance of adhesion between the barrier layer and the sealant layer. 0.5-4 mass% is further more preferable, and 1-4 mass% is especially preferable. When the content is less than 0.01 mass, sufficient adhesion with a barrier layer such as an aluminum foil may not be obtained. Moreover, when it exceeds 10 mass%, adhesiveness with a sealant layer may fall.

酸変性ポリオレフィン樹脂は、(メタ)アクリル酸エステル成分を含有している必要がある。この成分を含有していないと、バリア層やシーラント層との十分な接着性が得られない。(メタ)アクリル酸エステル成分としては、(メタ)アクリル酸と炭素数1〜30のアルコールとのエステル化物が挙げられ、中でも入手のし易さの点から、(メタ)アクリル酸と炭素数1〜20のアルコールとのエステル化物が好ましい。(メタ)アクリル酸エステル成分の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル等が挙げられる。これらの混合物を用いてもよい。この中で、入手の容易さと接着性の点から、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸オクチルがより好ましく、アクリル酸エチル、アクリル酸ブチルがより好ましく、アクリル酸エチルが特に好ましい。(なお、「(メタ)アクリル酸〜」とは、「アクリル酸〜またはメタクリル酸〜」を意味する。)   The acid-modified polyolefin resin needs to contain a (meth) acrylic acid ester component. If this component is not contained, sufficient adhesion to the barrier layer or sealant layer cannot be obtained. Examples of the (meth) acrylic acid ester component include an esterified product of (meth) acrylic acid and an alcohol having 1 to 30 carbon atoms, and (meth) acrylic acid and carbon number 1 from the viewpoint of easy availability. Esterified products with ˜20 alcohols are preferred. Specific examples of the (meth) acrylic acid ester component include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, (meth ) Octyl acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, and the like. Mixtures of these may be used. Among these, from the viewpoint of easy availability and adhesiveness, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hexyl acrylate, octyl acrylate are more preferable, ethyl acrylate, More preferred is butyl acrylate, and particularly preferred is ethyl acrylate. ("(Meth) acrylic acid" means "acrylic acid or methacrylic acid".)

酸変性ポリオレフィン樹脂における(メタ)アクリル酸エステル成分の含有量は、耐内容物性が向上する点から、0.1〜25質量%であることが好ましく、1〜20質量%であることがより好ましく、2〜18質量%であることがさらに好ましい。(メタ)アクリル酸エステル成分の含有量が0.1質量%未満の場合はアルミニウム箔やポリオレフィン樹脂系フィルムとの接着性が低下する傾向にあり、25質量%を超える場合は耐内容物性が低下してしまう。また、(メタ)アクリル酸エステル成分は、酸変性ポリオレフィン樹脂中に共重合されていればよく、その形態は限定されず、共重合の状態としては、例えば、ランダム共重合、ブロック共重合、グラフト共重合(グラフト変性)等が挙げられる。   The content of the (meth) acrylic acid ester component in the acid-modified polyolefin resin is preferably from 0.1 to 25% by mass, more preferably from 1 to 20% by mass, from the viewpoint of improving content resistance. 2 to 18% by mass is more preferable. When the content of the (meth) acrylic acid ester component is less than 0.1% by mass, the adhesiveness to the aluminum foil or the polyolefin resin film tends to decrease, and when it exceeds 25% by mass, the content resistance decreases. Resulting in. Further, the (meth) acrylic acid ester component may be copolymerized in the acid-modified polyolefin resin, and the form thereof is not limited. Examples of the copolymerization state include random copolymerization, block copolymerization, and grafting. Examples include copolymerization (graft modification).

酸変性ポリオレフィン樹脂の具体例としては、エチレン−(メタ)アクリル酸エステル−無水マレイン酸共重合体が最も好ましい。共重合体の形態はランダム共重合体、ブロック共重合体、グラフト共重合体等のいずれでもよいが、入手が容易という点でランダム共重合体、グラフト共重合体が好ましい。   As a specific example of the acid-modified polyolefin resin, an ethylene- (meth) acrylic acid ester-maleic anhydride copolymer is most preferable. The form of the copolymer may be any of a random copolymer, a block copolymer, a graft copolymer, etc., but a random copolymer and a graft copolymer are preferred from the viewpoint of easy availability.

アンカー層および接着層の目付量は、接着面の面積に対して、0.001〜5g/mの範囲であることが好ましく、0.01〜3g/mであることがより好ましく、0.02〜2g/mであることがさらに好ましく、0.03〜1g/mであることが特に好ましく、0.05〜1g/mであることが最も好ましい。アンカー層が0.001g/m未満ではバリア層との接着性が不十分となる恐れがあり、接着層が0.001g/m未満だと特に電池タブ部の接着性が不十分となる恐れがある。また、アンカー層、接着層とも5g/mを超える場合は経済的に不利であるだけでなく、端面から内部へ透過する水分によってリチウム塩が分解されてフッ酸が発生し、電池性能が劣化するおそれがある。 Basis weight of the anchor layer and the adhesive layer, the area of the bonding surface, is preferably in the range of 0.001 to 5 g / m 2, more preferably from 0.01 to 3 g / m 2, 0 further preferably .02~2g / m 2, particularly preferably from 0.03~1g / m 2, and most preferably 0.05 to 1 g / m 2. If the anchor layer is less than 0.001 g / m 2 , the adhesion to the barrier layer may be insufficient, and if the adhesion layer is less than 0.001 g / m 2 , the adhesion of the battery tab portion is particularly insufficient. There is a fear. In addition, when both the anchor layer and the adhesive layer exceed 5 g / m 2 , not only is it economically disadvantageous, but also lithium salt is decomposed by moisture permeating from the end face to generate hydrofluoric acid, which deteriorates battery performance. There is a risk.

アンカー層及び接着層に用いる酸変性ポリオレフィン樹脂に関しては、分子量が高い方が耐電解液性は良好である。分子量の目安となる190℃、2160g荷重におけるメルトフローレートは、100g/分以下が好ましく、30g/分以下がより好ましく、0.001〜20g/10分がさらに好ましく、0.01〜10g/10分が特に好ましい。メルトフローレートが100g/分を超える場合は耐内容物性が低下する傾向にあり、0.001g/分未満の場合は樹脂を高分子量化する際の製造面に制約を受ける。   Regarding the acid-modified polyolefin resin used for the anchor layer and the adhesive layer, the higher the molecular weight, the better the electrolytic solution resistance. The melt flow rate at 190 ° C. and 2160 g load, which is a measure of molecular weight, is preferably 100 g / min or less, more preferably 30 g / min or less, further preferably 0.001 to 20 g / 10 min, and 0.01 to 10 g / 10 Minutes are particularly preferred. If the melt flow rate exceeds 100 g / min, the resistance to physical properties tends to decrease, and if it is less than 0.001 g / min, there are restrictions on the production surface when the resin is made high molecular weight.

酸変性ポリオレフィン樹脂には、他の樹脂を20質量%以下で含有していてもよい。例えば、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビリニデン、エチレン−(メタ)アクリル酸共重合体、スチレン−マレイン酸樹脂、スチレン−ブタジエン樹脂、ブタジエン樹脂、アクリロニトリル−ブタジエン樹脂、ポリ(メタ)アクリロニトリル樹脂、(メタ)アクリルアミド樹脂、塩素化ポリエチレン樹脂、塩素化ポリプロピレン樹脂、ポリエステル樹脂、変性ナイロン樹脂、ウレタン樹脂、フェノール樹脂、シリコーン樹脂、エポキシ樹脂等が挙げられる。   The acid-modified polyolefin resin may contain other resin at 20% by mass or less. For example, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, ethylene- (meth) acrylic acid copolymer, styrene-maleic acid resin, styrene-butadiene resin, butadiene resin, acrylonitrile-butadiene Examples include resins, poly (meth) acrylonitrile resins, (meth) acrylamide resins, chlorinated polyethylene resins, chlorinated polypropylene resins, polyester resins, modified nylon resins, urethane resins, phenol resins, silicone resins, and epoxy resins.

酸変性ポリオレフィン樹脂は、架橋剤を含有していてもよい。架橋剤としては、イソシアネート化合物、メラミン化合物、尿素化合物、エポキシ化合物、カルボジイミド化合物、オキサゾリン基含有化合物、アジリジン化合物、ジルコニウム塩化合物、シランカップリング剤等が挙げられる。これらの含有量は耐電解液性を考慮し、適宜、決めればよい。   The acid-modified polyolefin resin may contain a crosslinking agent. Examples of the crosslinking agent include isocyanate compounds, melamine compounds, urea compounds, epoxy compounds, carbodiimide compounds, oxazoline group-containing compounds, aziridine compounds, zirconium salt compounds, silane coupling agents, and the like. These contents may be appropriately determined in consideration of the resistance to electrolytic solution.

本発明の外装体のシーラント層には、公知のシーラント樹脂が使用でき、例えば、ポリエステルエラストマー、ポリウレタンエラストマー、低密度ポリエチレン(LDPE)や高密度ポリエチレン(HDPE)などのポリエチレン、酸変性ポリエチレン、ポリプロピレン、酸変性ポリプロピレン、共重合ポリプロピレン、エチレン−ビニルアセテート共重合体、エチレン−(メタ)アクリル酸エステル共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン系アイオノマー等のポリオレフィン樹脂等が挙げられ、中でも、耐電解液性からオレフィン系樹脂が好ましく、低温シール性の点からポリエチレン系樹脂がより好ましく、安価であることからポリエチレンが特に好ましい。   A known sealant resin can be used for the sealant layer of the exterior body of the present invention. For example, polyester elastomer, polyurethane elastomer, polyethylene such as low density polyethylene (LDPE) and high density polyethylene (HDPE), acid-modified polyethylene, polypropylene, Examples include acid-modified polypropylene, copolymerized polypropylene, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene- (meth) acrylic acid copolymer, and polyolefin resins such as ethylene ionomers. Among them, an olefin resin is preferable from the viewpoint of resistance to electrolytic solution, a polyethylene resin is more preferable from the viewpoint of low-temperature sealability, and polyethylene is particularly preferable because it is inexpensive.

本発明のシーラント層の厚みは、0.1〜500μmであることが好ましく、1〜100μmであることがより好ましく、5〜80μmであることがさらに好ましく、10〜50μmであることが特に好ましい。シーラントの厚みが0.1μm未満であれば、発電要素をヒートシールによって封止する際に接着性が不十分となる恐れがあり、500μmを超えると経済的に不利であるため好ましくない。   The thickness of the sealant layer of the present invention is preferably 0.1 to 500 μm, more preferably 1 to 100 μm, further preferably 5 to 80 μm, and particularly preferably 10 to 50 μm. If the thickness of the sealant is less than 0.1 μm, the adhesiveness may be insufficient when the power generating element is sealed by heat sealing, and if it exceeds 500 μm, it is not preferable because it is economically disadvantageous.

シーラント層を設ける方法は特に限定されないが、前記したシーラント樹脂からなるシーラントフィルムとアンカー層を熱によって貼り合わせる方法(熱ラミネート、ドライラミネート)やアンカー層に溶融させた前記樹脂を押し出して貼り合わせる方法(押出ラミネート)などが挙げられる。   The method of providing the sealant layer is not particularly limited, but the method of bonding the sealant film made of the sealant resin and the anchor layer by heat (thermal lamination, dry lamination) or the method of extruding and bonding the resin melted in the anchor layer (Extrusion lamination).

本発明において、アンカー層及び接着層を設ける方法は特に限定されないが、例えば、酸変性ポリオレフィン樹脂を溶解または分散させて塗工剤とし、これをバリア層またはシーラント層に塗布して媒体を乾燥させる方法、剥離紙上に酸変性ポリオレフィン樹脂を溶解または分散させた塗工剤を塗布して媒体を乾燥させた樹脂層をバリア層またはシーラント層上に転写する方法、Tダイにより酸変性ポリオレフィン樹脂をバリア層またはシーラント層上に溶融押出する方法等が挙げられる。中でも、環境面や性能面の点から、酸変性ポリオレフィン樹脂を水性媒体中に溶解または分散させた塗工剤(水性分散体)をバリア層またはシーラント層に塗布して媒体を乾燥させる方法が、酸変性ポリオレフィン樹脂層、すなわち、アンカー層及び接着層の目付量を調整しやすく、特に、厚みを薄く制御し易い点から好ましい。   In the present invention, the method for providing the anchor layer and the adhesive layer is not particularly limited. For example, the acid-modified polyolefin resin is dissolved or dispersed to form a coating agent, which is applied to the barrier layer or sealant layer, and the medium is dried. A method in which a coating layer in which an acid-modified polyolefin resin is dissolved or dispersed is applied onto a release paper, and a resin layer obtained by drying the medium is transferred onto a barrier layer or a sealant layer. Examples thereof include a method of melt extrusion onto a layer or a sealant layer. Among these, from the viewpoint of environmental and performance, a method of applying a coating agent (aqueous dispersion) in which an acid-modified polyolefin resin is dissolved or dispersed in an aqueous medium to the barrier layer or the sealant layer and drying the medium, It is preferable because the basis weight of the acid-modified polyolefin resin layer, that is, the anchor layer and the adhesive layer can be easily adjusted, and in particular, the thickness can be easily controlled thinly.

水性分散体を使用する場合には、バリア層に水性分散体を塗布、乾燥してアンカー層を形成し、次いでインラインでシーラント樹脂を溶融押出(押出ラミネート)することによってシーラント層を積層し、さらにシーラント層上に水性分散体を塗布、乾燥して接着層する方法、または、シーラントフィルムの両面に水性分散体を塗布、乾燥してアンカー層、接着層を形成し、シーラントフィルムに設けた前記アンカー層をバリア層と熱接着する方法などが簡便であり、特に好ましい方法である。
When using an aqueous dispersion, the aqueous dispersion is applied to the barrier layer, dried to form an anchor layer, and then the sealant layer is laminated by melt extrusion (extrusion lamination) of the sealant resin in-line. A method in which an aqueous dispersion is applied onto a sealant layer and dried to form an adhesive layer, or an aqueous dispersion is applied to both sides of the sealant film and dried to form an anchor layer and an adhesive layer. A method of thermally bonding the anchor layer to the barrier layer is simple and particularly preferable.

上記のような方法に適した酸変性ポリオレフィン樹脂の水性分散体としては、例えば、国際公開02/055598号パンフレットに記載されたものが挙げられる。   Examples of the aqueous dispersion of the acid-modified polyolefin resin suitable for the above method include those described in International Publication No. 02/055598.

水性分散体を用いる場合、その塗布方法としては、公知の方法、例えばグラビアロールコーティング、リバースロールコーティング、ワイヤーバーコーティング、リップコーティング、エアナイフコーティング、カーテンフローコーティング、スプレーコーティング、浸漬コーティング、はけ塗り法等により基材表面に均一にコーティングし、必要に応じて室温付近でセッティングした後、乾燥処理又は乾燥のための加熱処理に供することにより、均一な樹脂層を塗布面に密着させて形成することができる。   In the case of using an aqueous dispersion, known application methods such as gravure roll coating, reverse roll coating, wire bar coating, lip coating, air knife coating, curtain flow coating, spray coating, dip coating, and brush coating are used. Coat the surface of the substrate evenly by setting, etc., and set it near room temperature as necessary, then subject it to drying treatment or heat treatment for drying to form a uniform resin layer in close contact with the coated surface Can do.

水性分散体を用いる場合、耐内容物性を低下させないために、乳化剤あるいは保護コロイド作用を有する化合物の使用はできるだけ少量にとどめることが好ましく、使用しないことが最も好ましい。   In the case of using an aqueous dispersion, it is preferable to use an emulsifier or a compound having a protective colloid action as little as possible, and most preferably not to use, in order not to deteriorate the content resistance.

本発明の電池用外装体は、発電要素と組み合わされて電池を構成する。発電要素とは、正極活物質と集電体からなる正極、セパレータ、負極活物質と集電体からなる負極、電解液からなり、正極、負極はそれぞれ端部に延出されたタブを有する。   The battery outer body of the present invention is combined with a power generation element to constitute a battery. The power generation element is composed of a positive electrode composed of a positive electrode active material and a current collector, a separator, a negative electrode composed of a negative electrode active material and a current collector, and an electrolytic solution, and each of the positive electrode and the negative electrode has a tab extended at an end.

上記の発電要素の構成物質は特に限定されず、公知の発電要素を用いることができる。正極活物質の例としては、マンガン酸リチウムなどのリチウム塩や金属リチウムなどが挙げられ、正極の集電体の例としてはアルミニウム箔が挙げられる。セパレータとしては、ポリエチレンやポリプロピレンの微多孔膜が挙げられる。負極活物質の例としては、黒鉛が挙げられ、マンガン酸リチウムなどのリチウム塩や金属リチウムなどが用いられ、正極の集電体の例としてはアルミニウム箔があげられる。電解液としては、四フッ化ホウ酸リチウム(LiBF)や六フッ化リン酸リチウム塩(LiPF6)等のリチウム塩を、エチルカーボネート(EC)、エチルメチルカーボネート(EMC)、プロピレンカーボネート等に溶解したものが挙げられる。 The constituent material of the power generation element is not particularly limited, and a known power generation element can be used. Examples of the positive electrode active material include lithium salts such as lithium manganate and metallic lithium, and examples of the positive electrode current collector include aluminum foil. Examples of the separator include polyethylene and polypropylene microporous membranes. Examples of the negative electrode active material include graphite, lithium salts such as lithium manganate, metallic lithium, and the like are used. Examples of the positive electrode current collector include aluminum foil. As the electrolyte, lithium salts such as lithium tetrafluoroborate (LiBF 4 ) and lithium hexafluorophosphate (LiPF 6 ) can be used as ethyl carbonate (EC), ethyl methyl carbonate (EMC), propylene carbonate, etc. What was melt | dissolved is mentioned.

以下に実施例によって本発明を具体的に説明するが、本発明はこれらによって限定されるものではない。
(1)酸変性ポリオレフィン樹脂の構成
H−NMR分析(バリアン社製、300MHz)より求めた。オルトジクロロベンゼン(d)を溶媒とし、120℃で測定した。
(2)酸変性ポリオレフィン樹脂のメルトフローレート(MFR)
JIS 6730記載(190℃、2160g荷重)の方法で測定した。
(3)目付量
あらかじめ面積と質量を計測した基材に酸変性ポリオレフィン樹脂の水性分散体を所定量、塗工し、100℃で2分間、乾燥した。得られた積層体の質量を測定し、塗工前の基材の質量を差し引くことで塗工量を求めた。塗工量と塗工面積から目付量(g/m)を計算した。
(4)耐電解液性
作製した外装体を100×15mmの寸法に裁断して試験片とした。この試験片を、電解液を充填した容器中に挿入して密栓し、85℃、3時間保管後、さらに水中に1昼夜浸漬した後の試験片の剥離状況を目視で観察した。剥離が認められなかったものを○、剥離が認められたものを×とした。なお、電解液は、エチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1(質量比)の溶液にLiPFが1.5Mになるように調整した液を用いた。
(5)耐水性
作製した外装体を100×15mmの寸法に裁断して試験片とし、その試験片を1昼夜85℃の水中に浸漬した後の試験片の剥離状況を目視で観察した。剥離が認められなかったものを○、剥離が認められたものを×とした。
(6)耐漏液性
作製した電池を50℃の乾燥機にいれて、耐漏液性を調べた。電解液の漏れが認められなかったものを○、電解液の漏れが認められたものを×とした。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.
(1) Configuration of acid-modified polyolefin resin
It calculated | required from < 1 > H-NMR analysis (The product made by Varian, 300MHz). Orthodichlorobenzene (d 4 ) was used as a solvent, and measurement was performed at 120 ° C.
(2) Melt flow rate (MFR) of acid-modified polyolefin resin
It measured by the method of JIS6730 description (190 degreeC, 2160g load).
(3) Weight per unit area A predetermined amount of an aqueous dispersion of acid-modified polyolefin resin was applied to a substrate whose area and mass were measured in advance, and dried at 100 ° C. for 2 minutes. The mass of the obtained laminate was measured, and the coating amount was determined by subtracting the mass of the base material before coating. The basis weight (g / m 2 ) was calculated from the coating amount and the coating area.
(4) Electrolytic solution resistance The produced exterior body was cut into a size of 100 × 15 mm to obtain a test piece. The test piece was inserted into a container filled with an electrolytic solution and sealed, and stored at 85 ° C. for 3 hours and further immersed in water for one day and night. The case where peeling was not recognized was rated as ◯, and the case where peeling was recognized was marked as x. Incidentally, the electrolytic solution was used a solution LiPF 6 in solution was adjusted to 1.5M of ethylene carbonate / diethyl carbonate / dimethyl carbonate = 1/1/1 (mass ratio).
(5) Water resistance The produced exterior body was cut | judged to the dimension of 100x15 mm, and it was set as the test piece, and the peeling condition of the test piece after immersing the test piece in 85 degreeC water for one day and night was observed visually. The case where peeling was not recognized was rated as ◯, and the case where peeling was recognized was marked as x.
(6) Liquid leakage resistance The produced battery was put into a 50 degreeC dryer, and liquid leakage resistance was investigated. The case where leakage of the electrolytic solution was not recognized was rated as “◯”, and the case where leakage of the electrolytic solution was recognized was marked as “X”.

参考例1
〔酸変性ポリオレフィン樹脂水性分散体E−1の製造〕
ヒーター付きの密閉できる耐圧1リットル容ガラス容器を備えた撹拌機を用いて、60.0gの酸変性ポリオレフィン樹脂(アルケマ社製ボンダインTX−8030)、90.0gのイソプロパノール、3.0gのトリエチルアミンおよび147.0gの蒸留水をガラス容器内に仕込み、撹拌翼の回転速度を300rpmとして撹拌したところ、容器底部には樹脂粒状物の沈澱は認められず、浮遊状態となっていることが確認された。そこでこの状態を保ちつつ、10分後にヒーターの電源を入れ加熱した。そして系内温度を140〜145℃に保ってさらに30分間撹拌した。その後、水浴につけて、回転速度300rpmのまま攪拌しつつ室温(約25℃)まで冷却した後、300メッシュのステンレス製フィルター(線径0.035mm、平織)で加圧濾過(空気圧0.2MPa)し、乳白色の均一な酸変性ポリオレフィン樹脂水性分散体E−1を得た。E−1の固形分濃度は20.0質量%であった。
Reference example 1
[Production of acid-modified polyolefin resin aqueous dispersion E-1]
Using a stirrer equipped with a hermetically sealed 1 liter glass container with a heater, 60.0 g acid-modified polyolefin resin (Arkema Bondine TX-8030), 90.0 g isopropanol, 3.0 g triethylamine and When 147.0 g of distilled water was charged into a glass container and stirred at a rotation speed of the stirring blade of 300 rpm, no precipitation of resin particles was observed at the bottom of the container, and it was confirmed that the container was in a floating state. . Therefore, while maintaining this state, the heater was turned on and heated after 10 minutes. Then, the system temperature was kept at 140 to 145 ° C. and further stirred for 30 minutes. Then, after putting in a water bath and cooling to room temperature (about 25 ° C.) while stirring at a rotational speed of 300 rpm, pressure filtration (air pressure 0.2 MPa) with a 300 mesh stainless steel filter (wire diameter 0.035 mm, plain weave) As a result, a milky white uniform acid-modified polyolefin resin aqueous dispersion E-1 was obtained. The solid content concentration of E-1 was 20.0% by mass.

参考例2
〔酸変性ポリオレフィン樹脂水性分散体E−2の製造〕
酸変性ポリオレフィン樹脂としてボンダインHX−8290(アルケマ社製)を用い、水性分散体E−1の製造と同様の操作を行って酸変性ポリオレフィン樹脂水性分散体E−2を得た。E−2の固形分濃度は20.0質量%であった。
Reference example 2
[Production of acid-modified polyolefin resin aqueous dispersion E-2]
Bondin HX-8290 (manufactured by Arkema) was used as the acid-modified polyolefin resin, and the same operation as in the production of the aqueous dispersion E-1 was performed to obtain an acid-modified polyolefin resin aqueous dispersion E-2. The solid content concentration of E-2 was 20.0% by mass.

参考例3
〔酸変性ポリオレフィン樹脂水性分散体E−3の製造〕
ヒーター付きの密閉できる耐圧1リットル容ガラス容器を備えた撹拌機を用いて、60.0gのエチレン−アクリル酸共重合体樹脂(ダウケミカル社製プリマコール5980I)、16.8gのTEA、および223.2gの蒸留水をガラス容器内に仕込み、撹拌翼の回転速度を300rpmとして撹拌したところ、容器底部には樹脂粒状物の沈澱は認められず、浮遊状態となっていることが確認された。そこでこの状態を保ちつつ、10分後にヒーターの電源を入れ加熱した。そして系内温度を140〜145℃に保ってさらに30分間撹拌した。その後、水浴につけて、回転速度300rpmのまま攪拌しつつ室温(約25℃)まで冷却した後、300メッシュのステンレス製フィルター(線径0.035mm、平織)で加圧濾過(空気圧0.2MPa)し、微白濁の水性分散体E−3を得た。E−3の固形分濃度は20.1質量%であった。
Reference example 3
[Production of acid-modified polyolefin resin aqueous dispersion E-3]
Using a stirrer equipped with a hermetically sealed 1 liter glass container equipped with a heater, 60.0 g ethylene-acrylic acid copolymer resin (Primacol 5980I manufactured by Dow Chemical Company), 16.8 g TEA, and 223 When 2 g of distilled water was charged into a glass container and stirred at a rotation speed of the stirring blade of 300 rpm, no sedimentation of resin particles was observed at the bottom of the container, confirming that it was in a floating state. Therefore, while maintaining this state, the heater was turned on and heated after 10 minutes. Then, the system temperature was kept at 140 to 145 ° C. and further stirred for 30 minutes. Then, after putting in a water bath and cooling to room temperature (about 25 ° C.) while stirring at a rotational speed of 300 rpm, pressure filtration (air pressure 0.2 MPa) with a 300 mesh stainless steel filter (wire diameter 0.035 mm, plain weave) As a result, a slightly cloudy aqueous dispersion E-3 was obtained. The solid content concentration of E-3 was 20.1% by mass.

水性分散体E−1〜E−3の製造に使用した酸変性ポリオレフィン樹脂の組成を表1に示した。   Table 1 shows the composition of the acid-modified polyolefin resin used for the production of the aqueous dispersions E-1 to E-3.

実施例1
厚さ12μmの二軸延伸ポリエステル樹脂フィルム(ユニチカ社製「エンブレットPET−12」)を使用し、プライマーとしてポリエステル樹脂フィルムのコロナ処理面に二液硬化型のポリウレタン系接着剤(東洋モートン社製)を乾燥後の塗布量が5g/m2になるようにグラビアコート後、乾燥し、バリア層として厚さ40μmの軟質アルミニウム箔(8079材、東洋アルミニウム社製、商品名:CE)の両面を酸脱脂したものを貼り合わせたバリア性基材を得た。次いで、バリア性基材のアルミニウム箔面に酸変性ポリオレフィン樹脂水性分散体E−1の10%希釈液を乾燥後の塗布量が0.7g/m2となるように塗布し、100℃で2分間、乾燥させアンカー層を形成させた。
Example 1
A biaxially stretched polyester resin film ("Embret PET-12" manufactured by Unitika Ltd.) with a thickness of 12 μm is used, and a two-component curable polyurethane adhesive (manufactured by Toyo Morton Co., Ltd.) is used as a primer on the corona-treated surface of the polyester resin film. ) Is dried after gravure coating so that the coating amount after drying is 5 g / m 2 , and both sides of a 40 μm thick soft aluminum foil (8079 material, Toyo Aluminum Co., Ltd., trade name: CE) are used as a barrier layer. A barrier base material to which the acid degreased material was bonded was obtained. Next, a 10% diluted solution of the acid-modified polyolefin resin aqueous dispersion E-1 was applied to the aluminum foil surface of the barrier base material so that the coating amount after drying was 0.7 g / m 2, and 2 at 100 ° C. An anchor layer was formed by drying for a minute.

次いで、押出機を備えたラミネート装置を用いて、接着層の表面にシーラント樹脂としてLDPE(住友化学社製L211)を溶融押出して、30μmのLDPE層からなるシーラント層を形成した。さらに、シーラント層上に酸変性ポリオレフィン樹脂水性分散体E−1の10%希釈液を乾燥後の塗布量が0.7g/m2 となるように塗布し、100℃で2分間、乾燥させ接着層を形成させて外装体を得た。 Next, using a laminator equipped with an extruder, LDPE (L211 manufactured by Sumitomo Chemical Co., Ltd.) was melt-extruded as a sealant resin on the surface of the adhesive layer to form a sealant layer composed of a 30 μm LDPE layer. Further, a 10% diluted solution of acid-modified polyolefin resin aqueous dispersion E-1 was applied onto the sealant layer so that the coating amount after drying was 0.7 g / m 2, and dried at 100 ° C. for 2 minutes for adhesion. A layer was formed to obtain an outer package.

一方、40μmのアルミニウム箔に、マンガン酸リチウムとE−1を固形分質量比で90/10となるように混合したペーストを乾燥後の厚みが30μmとなるように塗工し、乾燥させて50mm×100mmの正極を得た。40μmの銅箔に黒鉛とE−1を固形分質量比で90/10となるように混合したペーストを乾燥後の厚みが30μmとなるように塗工し、乾燥させて50mm×100mmの負極を得た。乾燥は、正極、負極とも85℃で30分乾燥した後、120℃減圧下で12時間乾燥させた。90mm×150mmの接着層を上側とする外装体、正極タブ、塗工面を上面とする正極、58mm×110mmのセパレータ(ポリプロピレンの微多孔膜)、塗工面を下面とする負極、負極タブ、接着層を下側とする90mm×150mmの外装体の順に積層させてから、そのうちの3辺を15mm幅でヒートシールし、袋状にした。残りの1辺は、正極、負極のそれぞれのタブとして10mm×50mm×15μmのアルミニウム箔を袋から10mmだけ出しておき、エチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1の溶液にLiPFが1.5Mになるように調整した電解液を充填してからヒートシールして封止した。ヒートシールは、160℃×1kg/cm2×1秒の条件で行った。 On the other hand, a paste prepared by mixing lithium manganate and E-1 in a solid content mass ratio of 90/10 on a 40 μm aluminum foil was applied to a thickness of 30 μm after drying, and dried to a thickness of 50 mm. A positive electrode of × 100 mm was obtained. A paste prepared by mixing graphite and E-1 on a 40 μm copper foil so as to have a solid content mass ratio of 90/10 was coated to a thickness of 30 μm after drying, and dried to form a negative electrode of 50 mm × 100 mm. Obtained. For drying, both the positive electrode and the negative electrode were dried at 85 ° C. for 30 minutes and then dried under reduced pressure at 120 ° C. for 12 hours. Exterior body with 90 mm × 150 mm adhesive layer as the upper side, positive electrode tab, positive electrode with the coated surface as the upper surface, 58 mm × 110 mm separator (polypropylene microporous film), negative electrode with the coated surface as the lower surface, negative electrode tab, adhesive layer Was laminated in the order of 90 mm × 150 mm outer package, and three sides were heat-sealed with a width of 15 mm to form a bag. For the remaining one side, 10 mm × 50 mm × 15 μm aluminum foil is taken out from the bag as tabs of the positive electrode and the negative electrode, and LiPF 6 is added to a solution of ethylene carbonate / diethyl carbonate / dimethyl carbonate = 1/1/1. Was filled with an electrolyte adjusted to 1.5M, and then heat sealed. Heat sealing was performed under the conditions of 160 ° C. × 1 kg / cm 2 × 1 second.

実施例2
実施例1において、酸変性ポリオレフィン樹脂水性分散体E−1に代えてE−2を用いた以外は実施例1と同様の操作を行って外装体、電池を得た。
Example 2
In Example 1, an exterior body and a battery were obtained by performing the same operation as in Example 1 except that E-2 was used instead of the acid-modified polyolefin resin aqueous dispersion E-1.

実施例3
実施例1において、アンカー層、接着層の塗布量を0.07g/m2 とした以外は実施例1と同様の操作で外装体、電池を得た。
Example 3
In Example 1, an exterior body and a battery were obtained in the same manner as in Example 1 except that the application amount of the anchor layer and the adhesive layer was 0.07 g / m 2 .

実施例4
実施例1において、シーラント樹脂としてエチレン−メタクリル酸共重合体(三井・デュポンケミカル社製ニュクレルAN4228C)を用いた以外は実施例1と同様の操作で外装体、電池を得た。
Example 4
In Example 1, an exterior body and a battery were obtained in the same manner as in Example 1 except that an ethylene-methacrylic acid copolymer (Mitsui / Du Pont Chemical Co., Ltd. Nucrel AN4228C) was used as the sealant resin.

比較例1
実施例1において、酸変性ポリオレフィン樹脂水性分散体E−1に代えて、E−3を用いた以外は実施例1と同様にして外装体を得た。
Comparative Example 1
In Example 1, an exterior body was obtained in the same manner as in Example 1 except that E-3 was used instead of the acid-modified polyolefin resin aqueous dispersion E-1.

比較例2
実施例1において、接着層として、酸変性ポリオレフィン樹脂に代えてポリウレタン樹脂を用いた。すなわち、実施例1と同様の操作を、E−1に変えてポリウレタン樹脂水性分散体(旭電化社製、アデカボンタイターHUX380、固形分濃度37質量%)の10%希釈液を用いて行い、外装体を得た。
Comparative Example 2
In Example 1, a polyurethane resin was used as the adhesive layer instead of the acid-modified polyolefin resin. That is, the same operation as in Example 1 was performed using a 10% diluted solution of an aqueous polyurethane resin dispersion (Asahi Denka Co., Adekabon titer HUX380, solid concentration 37% by mass) instead of E-1. An exterior body was obtained.

比較例3
実施例1において、アンカー層の形成を行わず、バリア性基材のアルミニウム箔面に直接、LDPEを溶融押出して外装体を得たこと以外は実施例1と同様にして、外装体、電池を得た。
Comparative Example 3
In Example 1, without forming the anchor layer, the exterior body and the battery were prepared in the same manner as in Example 1 except that the exterior body was obtained by melt-extrusion of LDPE directly onto the aluminum foil surface of the barrier base material. Obtained.

比較例4
実施例1において、接着層を形成しなかったこと以外は実施例1と同様にして、外装体、電池を得た。
Comparative Example 4
In Example 1, an exterior body and a battery were obtained in the same manner as in Example 1 except that the adhesive layer was not formed.

実施例1〜4および比較例1〜4で得られた各外装体について、耐電解液性、耐水性、耐漏液性試験を行った。結果を表2に示す。   Each exterior body obtained in Examples 1 to 4 and Comparative Examples 1 to 4 was subjected to an electrolytic solution resistance, water resistance, and liquid leakage resistance test. The results are shown in Table 2.

実施例1〜4においては、いずれも耐電解液性、耐水性、耐漏液性に優れていた。
しかし、各比較例においては、次のような問題があった。
In Examples 1-4, all were excellent in electrolyte solution resistance, water resistance, and liquid leakage resistance.
However, each comparative example has the following problems.

比較例1、2は、アンカー層、接着層として用いた樹脂が本発明の範囲から外れるものであったため、対電解液性、耐水性に劣っていた。   In Comparative Examples 1 and 2, since the resin used as the anchor layer and the adhesive layer was out of the scope of the present invention, the resistance to electrolytic solution and the water resistance were inferior.

比較例3、4は、アンカー層、接着層のいずれか一方のみの形成であったため、耐漏液性に劣っていた。   In Comparative Examples 3 and 4, since only one of the anchor layer and the adhesive layer was formed, the leakage resistance was inferior.

Claims (4)

基材層、バリア層、アンカー層、シーラント層および接着層がこの順に積層されてなり、前記アンカー層および接着層が、(メタ)アクリル酸エステル成分を0.1〜25質量%含有する酸変性ポリオレフィン樹脂を含み、かつアンカー層および接着層の目付量が0.001〜1g/mの範囲であることを特徴とする電池装体用積層体A base material layer, a barrier layer, an anchor layer, a sealant layer, and an adhesive layer are laminated in this order, and the anchor layer and the adhesive layer contain 0.1 to 25% by mass of a (meth) acrylic acid ester component. It includes a polyolefin resin, and the battery outer Sokarada laminate for the basis weight of the anchor layer and the adhesive layer, characterized in that in the range of 0.001 to 1 g / m 2. 発電要素と、請求項1に記載の電池装体用積層体を具備する電池。 A power generating element, a battery having a battery outside Sokarada for laminate according to claim 1. 基材層、バリア層、アンカー層、シーラント層および接着層がこの順に積層されてなり、前記アンカー層および接着層が、(メタ)アクリル酸エステル成分を含有する酸変性ポリオレフィン樹脂を含む電池装体用積層体の製造方法であって、前記バリア層に前記酸変性ポリオレフィン樹脂の水性分散体を塗布、乾燥して前記アンカー層を形成し、次いでインラインでシーラント樹脂を溶融押出することによって前記シーラント層を積層し、さらに前記シーラント層上に前記水性分散体を塗布、乾燥して前記接着層を形成することを特徴とする電池装体用積層体の製造方法。 Base layer, a barrier layer, an anchor layer, a sealant layer and an adhesive layer stacked in this order, the anchor layer and the adhesive layer, the battery outside instrumentation including an acid-modified polyolefin resin containing a (meth) acrylic acid ester component a method of manufacturing a body for the laminate, applying the aqueous dispersion of the acid-modified polyolefin resin on the barrier layer, said sealant by drying to form the anchor layer, and then melt-extruding the sealant resin inline the layers were laminated, further applying the aqueous dispersion on the sealant layer, method for producing a battery outside Sokarada for laminates dried and forming the adhesive layer. 基材層、バリア層、アンカー層、シーラント層および接着層がこの順に積層されてなり、前記アンカー層および接着層が、(メタ)アクリル酸エステル成分を含有する酸変性ポリオレフィン樹脂を含む電池外装体用積層体の製造方法であって、前記アンカー層及び前記接着層を設けるに際し、シーラントフィルムの両面に前記酸変性ポリオレフィン樹脂の水性分散体を塗布、乾燥して、前記シーラントフィルムの一方の面に前記アンカー層を、他方の面に前記接着層を形成したのち、前記シーラントフィルムに設けた前記アンカー層を前記バリア層と熱接着によって積層することを特徴とする電池装体用積層体の製造方法。 A battery outer body comprising a base material layer, a barrier layer, an anchor layer, a sealant layer, and an adhesive layer laminated in this order, wherein the anchor layer and the adhesive layer include an acid-modified polyolefin resin containing a (meth) acrylic acid ester component. a method of manufacturing a use laminate, upon providing the anchor layer and the adhesive layer, both surfaces coated with an aqueous dispersion of the acid-modified polyolefin resin of the sealant film, and dried on one surface of the sealant film the anchor layer, after forming the adhesive layer on the other surface, the manufacture of the battery outside Sokarada laminate for, which comprises laminating the anchor layer provided on the sealant film by the barrier layer and the thermally adhesive Method.
JP2008080965A 2008-03-26 2008-03-26 LAMINATE FOR BATTERY PACKAGE BODY, ITS MANUFACTURING METHOD, AND BATTERY Expired - Fee Related JP5344837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080965A JP5344837B2 (en) 2008-03-26 2008-03-26 LAMINATE FOR BATTERY PACKAGE BODY, ITS MANUFACTURING METHOD, AND BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080965A JP5344837B2 (en) 2008-03-26 2008-03-26 LAMINATE FOR BATTERY PACKAGE BODY, ITS MANUFACTURING METHOD, AND BATTERY

Publications (2)

Publication Number Publication Date
JP2009238475A JP2009238475A (en) 2009-10-15
JP5344837B2 true JP5344837B2 (en) 2013-11-20

Family

ID=41252183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080965A Expired - Fee Related JP5344837B2 (en) 2008-03-26 2008-03-26 LAMINATE FOR BATTERY PACKAGE BODY, ITS MANUFACTURING METHOD, AND BATTERY

Country Status (1)

Country Link
JP (1) JP5344837B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175841A (en) * 2010-02-24 2011-09-08 Unitika Ltd Polyamide laminated film for lithium ion secondary battery exterior
JP5690577B2 (en) * 2010-12-22 2015-03-25 大倉工業株式会社 Nonaqueous electrolyte battery or capacitor packaging
JP5755975B2 (en) 2011-09-01 2015-07-29 昭和電工パッケージング株式会社 Battery exterior material and lithium secondary battery
JP5853639B2 (en) * 2011-11-25 2016-02-09 ソニー株式会社 Lithium ion battery, separator for lithium ion battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP5914380B2 (en) * 2013-02-18 2016-05-11 大日本印刷株式会社 Battery packaging materials
JP5783196B2 (en) * 2013-02-18 2015-09-24 大日本印刷株式会社 Battery packaging materials
US10236479B2 (en) 2013-02-18 2019-03-19 Dai Nippon Printing Co., Ltd. Power-cell packaging material
JP6393971B2 (en) * 2013-10-03 2018-09-26 凸版印刷株式会社 Secondary battery exterior material and secondary battery
JP6458338B2 (en) * 2013-11-01 2019-01-30 凸版印刷株式会社 Secondary battery exterior material, secondary battery, and secondary battery exterior material manufacturing method
JP6282997B2 (en) * 2015-04-24 2018-02-21 大日本印刷株式会社 Battery packaging materials
JP2017162830A (en) * 2017-04-27 2017-09-14 大日本印刷株式会社 Packaging material for battery
JP7287276B2 (en) 2017-05-29 2023-06-06 東洋紡株式会社 Polyolefin adhesive composition
JP7215091B2 (en) 2017-12-22 2023-01-31 東洋紡株式会社 Polyolefin adhesive composition
JP7176216B2 (en) * 2018-03-29 2022-11-22 大日本印刷株式会社 Aging-less sealant film and rolls, laminates, packaging materials, and packages using the age-less sealant film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523080B2 (en) * 1998-03-20 2010-08-11 大日本印刷株式会社 battery
JP4294770B2 (en) * 1998-10-20 2009-07-15 大日本印刷株式会社 Polymer battery case sheet
JP2006066113A (en) * 2004-08-25 2006-03-09 Toppan Printing Co Ltd Laminating material and outer packaging for battery using laminating material
JP4839752B2 (en) * 2005-09-21 2011-12-21 大日本印刷株式会社 In-mold label and packaging container for storage battery using the same
JP2007095462A (en) * 2005-09-28 2007-04-12 Dainippon Printing Co Ltd Battery exterior sheet manufacturing method, battery exterior sheet, and battery

Also Published As

Publication number Publication date
JP2009238475A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5344837B2 (en) LAMINATE FOR BATTERY PACKAGE BODY, ITS MANUFACTURING METHOD, AND BATTERY
JP5670803B2 (en) Battery exterior body, manufacturing method thereof, and battery
JP2010212070A (en) Battery and method of manufacturing the same
JP5036333B2 (en) Packaging materials
JP5169112B2 (en) Flat type electrochemical cell metal terminal sealing adhesive sheet
CN108198965A (en) Molding packaging material and battery case
JP4978126B2 (en) Lithium battery packaging
JP6672586B2 (en) Exterior materials for lithium batteries
JP2017120790A (en) Adhesive film for tightly sealing metal terminal portion of electricity storage device
JP2011076887A (en) Packaging material for lithium ion battery
KR20100008592A (en) The manufacturing method of the packing material for the bulk lithium polymer secondary battery
JP5034402B2 (en) Lithium battery packaging
JP2001006631A (en) Battery armor laminated element
JP4576787B2 (en) Laminated body and laminated packaging material
CN107305930A (en) Electrical storage device housing material and electrical storage device
JP6728579B2 (en) Secondary battery exterior material
JP2004042477A (en) Laminated body and packaging material
JP2012084587A (en) Protective sheet for solar cell module and solar cell module
JP6096540B2 (en) Manufacturing method of laminated body for battery exterior
JP5609920B2 (en) Polymer battery
JP4397445B2 (en) Polymer battery exterior
CN118251794A (en) Packaging material for secondary battery
JP4451215B2 (en) Secondary battery laminate
JP5414832B2 (en) Method for producing composite packaging material for polymer battery
JP2003062932A (en) Laminate and packaging material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130813

R150 Certificate of patent or registration of utility model

Ref document number: 5344837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees