JP5344731B2 - Visible light responsive semiconductor device and photoelectrode, and light energy conversion system using the same - Google Patents

Visible light responsive semiconductor device and photoelectrode, and light energy conversion system using the same Download PDF

Info

Publication number
JP5344731B2
JP5344731B2 JP2007061037A JP2007061037A JP5344731B2 JP 5344731 B2 JP5344731 B2 JP 5344731B2 JP 2007061037 A JP2007061037 A JP 2007061037A JP 2007061037 A JP2007061037 A JP 2007061037A JP 5344731 B2 JP5344731 B2 JP 5344731B2
Authority
JP
Japan
Prior art keywords
semiconductor
photocurrent
photoelectrode
cathode
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007061037A
Other languages
Japanese (ja)
Other versions
JP2007273463A (en
Inventor
和弘 佐山
道雄 岡本
健男 荒井
秀樹 杉原
真利 柳田
由也 小西
靖和 岩崎
亮 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nissan Motor Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nissan Motor Co Ltd
Priority to JP2007061037A priority Critical patent/JP5344731B2/en
Publication of JP2007273463A publication Critical patent/JP2007273463A/en
Application granted granted Critical
Publication of JP5344731B2 publication Critical patent/JP5344731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Hybrid Cells (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high performance photo-response semiconductor element using a group of new semiconductors which show response of a cathode photoelectric current with p type property or an anode photoelectric current with n type property in high efficiency and which is stable. <P>SOLUTION: The semiconductor element has a porous thin film of a compound oxide semiconductor containing copper and further at least one element M selected from a group of bismuth, nickel, silicon, titanium, yttrium, alkali earth metal, and lanthanoid formed on a conductive substrate, and has visible light response showing a cathode photoelectric current and/or anode photoelectric current. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、銅系半導体光電極とそれを用いた光エネルギー変換システムに関するものである。   The present invention relates to a copper-based semiconductor photoelectrode and a light energy conversion system using the same.

n型の二酸化チタン(TiO2)光電極を用いた光電気化学的水分解の報告以来、光エネルギー用いて水を分解して水素を製造する酸化物半導体光電極システムが注目されている。太陽光を効率よく利用するため、特に可視光応答性半導体材料の開発が急がれている。
ケイ素(Si)やリン化ガリウム(GaP)などの非酸化物系半導体を用いた研究も盛んであるが、これらは不安定で且つ製造コストが高い。これに対し、金属の酸化物および酸素を部分的に含む複合酸化物半導体は安定な材料が多く、また比較的容易に製造できるため製造コストが安い利点がある。太陽光を利用するためには大面積化が必要であり、このような酸化物半導体の利点は重要である。
また、大面積化・実用化するためには、電極構造も非常に重要である。従来型の光電極は半導体粉末原料を焼き固めたペレット型であるが、大面積化が難しいという欠点があった。さらに、ペレットがミリメートルサイズと厚いために電子や正孔の移動距離が大きく、電極表面で反応が起こる前に電荷再結合が起こり、電気分解反応の効率が悪かった。
Since the report of photoelectrochemical water splitting using n-type titanium dioxide (TiO 2 ) photoelectrodes, oxide semiconductor photoelectrode systems that produce hydrogen by splitting water using light energy have attracted attention. In order to efficiently use sunlight, development of a visible light responsive semiconductor material is urgently required.
Research using non-oxide semiconductors such as silicon (Si) and gallium phosphide (GaP) is also active, but these are unstable and high in manufacturing cost. On the other hand, a complex oxide semiconductor partially containing metal oxide and oxygen has many stable materials and has an advantage of low manufacturing cost because it can be manufactured relatively easily. In order to use sunlight, it is necessary to increase the area, and the advantage of such an oxide semiconductor is important.
In addition, the electrode structure is also very important for increasing the area and putting it to practical use. The conventional photoelectrode is a pellet type in which the semiconductor powder raw material is baked and hardened, but has a drawback that it is difficult to increase the area. Furthermore, since the pellets are as thick as millimeters, the distance of movement of electrons and holes was large, and charge recombination occurred before the reaction occurred on the electrode surface, resulting in poor efficiency of the electrolysis reaction.

ところで、近年、導電性ガラス上に多孔質の酸化物半導体薄膜を湿式法で作成する研究例がいくつか報告されている(例えば、特許文献1、非特許文献1〜4を参照)。導電性ガラスを用いることで、光を導電性ガラス越しに照射でき、電荷の移動距離を短くできるので、効率が向上できると期待される。また、薄膜多孔質状態なので、電解液が薄膜内部まで浸透でき、同様に対電荷の移動距離を短くできるので、効率が向上できると期待される。
この構造を利用して実際に効率の高い多孔質酸化物半導体薄膜を湿式法で作製するためには、元素の選択が重要になる。元素によっては金属前駆体溶液を熱分解させる湿式法が適さず、複合酸化物が合成できなかったり、砕けてしまって膜にならなかったり、結果的に効率が非常に低い場合も多い。また、複合酸化物半導体の構成元素の種類により、吸収波長や半導体のバンド構造が決まる。太陽エネルギー変換のためにはできるだけ長波長の吸収を利用でき、且つ量子収率の高い半導体材料が望まれているが、複合半導体の種類は非常に多く、充分に探索がされていない。
半導体特性の重要な要素としてp−n特性がある。一般的に酸化物や複合酸化物半導体は大部分n型であり、p型特性を示す半導体の光電極の例は非常に少ない。例えば、酸化銅(Cu2O)は不安定で、光分解する。また、鉄(Fe)系のp型複合酸化物半導体についての報告がいくつかあるが(例えば、非特許文献5参照)、光電変換効率が低く、安定性が不明確であった。安定なp型半導体材料があれば、pn接合で効率を向上させることや、水素発生などを行うカソード電極としてp型半導体電極、酸素発生などを行うアノード電極としてn型半導体電極を組み合わせてバイアスがほとんどいらない水分解システムの構築など多くの応用が期待できる。同じ酸化物系ならばp型およびn型を組み合わせて利用した光触媒にも焼成などで簡単に利用できる。しかし、p型複合酸化物半導体の種類は非常に限られており、ポテンシャルのマッチングなどの問題もあるので、この分野の研究の障害となっていた。また、多孔質薄膜電極に関する特許文献がいくつか公開されているが(例えば、特許文献1を参照)、いずれもn型半導体に関するものであり、また、銅を含む半導体もCu−In−Zn系のみである。
このように、高性能なp型の酸化物半導体開発は現状知られている材料では充分とは言えず、新しい材料開発が望まれている。
By the way, in recent years, several research examples of creating a porous oxide semiconductor thin film on a conductive glass by a wet method have been reported (for example, see Patent Document 1 and Non-Patent Documents 1 to 4). By using conductive glass, light can be irradiated through the conductive glass, and the distance of charge movement can be shortened. Therefore, it is expected that efficiency can be improved. In addition, since the thin film is in a porous state, the electrolytic solution can penetrate into the thin film, and similarly, the moving distance of the counter charge can be shortened. Therefore, it is expected that the efficiency can be improved.
In order to produce a highly efficient porous oxide semiconductor thin film by a wet method using this structure, the selection of elements is important. Depending on the element, the wet method of thermally decomposing the metal precursor solution is not suitable, and the composite oxide cannot be synthesized, or it is not crushed to form a film, and as a result, the efficiency is often very low. In addition, the absorption wavelength and the semiconductor band structure are determined depending on the types of constituent elements of the composite oxide semiconductor. For solar energy conversion, a semiconductor material that can utilize absorption at a long wavelength as much as possible and has a high quantum yield is desired. However, there are so many kinds of composite semiconductors that they have not been sufficiently searched.
There is a pn characteristic as an important element of semiconductor characteristics. In general, oxides and complex oxide semiconductors are mostly n-type, and there are very few examples of semiconductor photoelectrodes exhibiting p-type characteristics. For example, copper oxide (Cu 2 O) is unstable and photodecomposes. Moreover, although there are some reports on iron (Fe) -based p-type complex oxide semiconductors (see, for example, Non-Patent Document 5), the photoelectric conversion efficiency is low and the stability is unclear. If there is a stable p-type semiconductor material, the bias is improved by combining a p-type semiconductor electrode as a cathode electrode for generating hydrogen and the like, and an n-type semiconductor electrode as an anode electrode for generating oxygen and the like. Many applications such as the construction of a water splitting system that does not require much can be expected. If the same oxide system is used, the photocatalyst using a combination of p-type and n-type can be easily used by calcination. However, the types of p-type complex oxide semiconductors are very limited and have problems such as potential matching, which has been an obstacle to research in this field. Moreover, although several patent documents regarding a porous thin film electrode are open | released (for example, refer patent document 1), all are related to an n-type semiconductor, Moreover, the semiconductor containing copper is also Cu-In-Zn type | system | group. Only.
Thus, it cannot be said that high-performance p-type oxide semiconductors are sufficiently developed using currently known materials, and new material development is desired.

特開2005−44758号公報JP 2005-44758 A C.Santato,M.Ulmann,J.Augustynski,“J.Phys.Chem.B”,2001,Vol.105,p.936.C. Santoto, M. Ulmann, J. Augustynski, “J. Phys. Chem. B”, 2001, Vol. 105, p. 936. C.Santato,M.Odziemkowski,M.Ulmann,J.Augustynski,“J.Am.Chem.Soc.”,2001,Vol.123,p.10639.C. Santoto, M. Odziemkowski, M. Ulmann, J. Augustynski, “J. Am. Chem. Soc.”, 2001, Vol. 123, p.10639. T.Lindgren,H.Wang,N.Beermann,L.Vayssieres,A.Hagfeldt,S.Lindquest,“Sol.Energy Mater.Sol.Cells”,2002,Vol.71,p.231.T. Lindgren, H. Wang, N. Beermann, L. Vayssieres, A. Hagfeldt, S. Lindquest, “Sol. Energy Mater. Sol. Cells”, 2002, Vol.71, p.231. G.Zhao,H.Kozuka,H.Lin,M.Takahashi,T.Yoko,“Thin Solid Films”,1999,Vol.340,p.125.G.Zhao, H.Kozuka, H.Lin, M.Takahashi, T.Yoko, “Thin Solid Films”, 1999, Vol.340, p.125. “J.Solid State Chem.”,1996,Vol.126,p.227-234.“J. Solid State Chem.”, 1996, Vol. 126, p.227-234.

本発明は、p型特性であるカソード光電流またはn型特性であるアノード光電流の応答を高効率で示しかつ安定な新規半導体の一群を用いた高性能な光応答性の半導体素子を提供することを目的とする。   The present invention provides a high-performance photoresponsive semiconductor element that uses a group of stable new semiconductors that exhibit a high-efficiency response of cathode photocurrent that is p-type characteristics or anode photocurrent that is n-type characteristics. For the purpose.

本発明者らは、材料探索を行い鋭意検討を重ねた結果、銅及び特定の元素Mを含む複合酸化物半導体薄膜の光電流応答性が非常に優れることを見出した。本発明はこのような知見に基づきなされるに至ったものである。
すなわち、本発明は
(1)銅を含み、さらにビスマス、ニッケル、ケイ素、チタン、イットリウム、アルカリ土類金属、及びランタノイドからなる群から選択される少なくとも1つの元素Mを含む複合酸化物半導体の多孔質薄膜が導電性基板上に形成されている半導体素子であって、前記複合酸化物半導体がCuBi24、CuNi23、CuNiO2、CuSiO3、Cu3TiO4、CuYO2.5、CuBa23、CuCaO2、CuLaO2.5、又はCuMgO2であり、カソード光電流および/またはアノード光電流を示すことを特徴とする可視光応答性の半導体素子、
)カソード光電流およびアノード光電流の両方を示す半導体素子であって、電位によりアノードとカソードとが切り替えられることを特徴とする(1)項に記載の半導体素子、
)前記複合酸化物半導体の前駆体の金属塩を溶媒に溶解した溶液を用いて湿式法で作製したことを特徴とする(1)又は(2)項に記載の半導体素子、
As a result of searching for materials and intensive studies, the present inventors have found that the composite oxide semiconductor thin film containing copper and a specific element M has very excellent photocurrent response. The present invention has been made based on such findings.
That is, the present invention is,
(1 ) A porous thin film of a composite oxide semiconductor containing copper and further containing at least one element M selected from the group consisting of bismuth, nickel, silicon, titanium, yttrium, alkaline earth metal, and lanthanoid is conductive. A semiconductor element formed on a substrate, wherein the composite oxide semiconductor is CuBi 2 O 4 , CuNi 2 O 3 , CuNiO 2 , CuSiO 3 , Cu 3 TiO 4 , CuYO 2.5 , CuBa 2 O 3 , CuCaO 2. , CuLaO 2.5 , or CuMgO 2 , a visible light-responsive semiconductor element characterized by exhibiting a cathode photocurrent and / or an anode photocurrent,
(2) In the semiconductor device shown both the cathode beam current and anode photocurrent, characterized in that the switches and the anode and the cathode by the potential (1) The semiconductor device according to claim,
( 3 ) The semiconductor element according to (1) or (2), which is produced by a wet method using a solution in which a metal salt of the precursor of the composite oxide semiconductor is dissolved in a solvent,

)(1)〜()のいずれか1項に記載の半導体素子を用いてなる光電極、
)p型半導体とn型半導体とを組み合わせたことを特徴とする()項に記載の光電極、
)()又は()項に記載の光電極に光を照射し、カソード光電流を利用して半導体上で水を還元して水素を発生させる光エネルギー変換システム、および
)()又は()項に記載の光電極に光を照射し、有害物質や有機物を酸化、還元又は分解する光エネルギー利用システム
を提供するものである。
( 4 ) A photoelectrode comprising the semiconductor element according to any one of (1) to ( 3 ),
( 5 ) The photoelectrode according to item ( 4 ), wherein a p-type semiconductor and an n-type semiconductor are combined.
( 6 ) A photoenergy conversion system that generates light by irradiating the photoelectrode according to the item ( 4 ) or ( 5 ) with light and reducing water on the semiconductor using a cathode photocurrent, and ( 7 ) The present invention provides a light energy utilization system that irradiates light to the photoelectrode described in ( 4 ) or ( 5 ), and oxidizes, reduces, or decomposes harmful substances and organic substances.

本発明の半導体素子は、p型特性であるカソード光電流またはn型特性であるアノード光電流についての光電流応答性が優れる。また、本発明の半導体素子は光電変換素子として好ましく用いることができ、光電極に適用することができ、電位によりアノードとカソードとを切り替えることができ、n型やp型を制御するスイッチング素子としても利用することができる。
また、本発明の光電極に光を照射し、発生したカソード光電流を利用して、本発明の光電極上で水を還元し水素を発生させ、光エネルギーを水素に変換することができる。さらに、同様に本発明の光電極を用いて、光エネルギーを利用して有害物質や有機物を酸化、還元、分解することもできる。
本発明の半導体素子は湿式太陽電池だけでなく、p型およびn型を組み合わせて利用した固体太陽電池や光触媒への応用もできる。
The semiconductor element of the present invention is excellent in photocurrent responsiveness with respect to a cathode photocurrent having p-type characteristics or an anode photocurrent having n-type characteristics. Further, the semiconductor element of the present invention can be preferably used as a photoelectric conversion element, can be applied to a photoelectrode, can be switched between an anode and a cathode according to a potential, and is a switching element that controls n-type or p-type. Can also be used.
Moreover, light can be irradiated to the photoelectrode of the present invention, and the generated cathode photocurrent can be used to reduce water and generate hydrogen on the photoelectrode of the present invention, thereby converting light energy into hydrogen. Furthermore, similarly, the photoelectrode of the present invention can be used to oxidize, reduce, and decompose harmful substances and organic substances using light energy.
The semiconductor element of the present invention can be applied not only to wet solar cells but also to solid solar cells and photocatalysts using a combination of p-type and n-type.

以下、本発明について詳細に説明する。
本発明の半導体素子は、銅(Cu)及び特定の元素Mを含む複合酸化物半導体の多孔質薄膜が導電性基板上に形成されている可視光応答性の半導体素子である。「可視光応答性」とは、可視光線を単に吸収し得るだけでなく、可視光照射によって生成した電荷を反応に利用できる性質を意味する。本発明において可視光とは、好ましくは380〜800nm、より好ましくは400〜800nmのものをいう。
Hereinafter, the present invention will be described in detail.
The semiconductor element of the present invention is a visible light responsive semiconductor element in which a porous thin film of a composite oxide semiconductor containing copper (Cu) and a specific element M is formed on a conductive substrate. “Visible light responsiveness” means not only the ability to absorb visible light but also the property that charges generated by irradiation with visible light can be used for the reaction. In the present invention, visible light is preferably 380 to 800 nm, more preferably 400 to 800 nm.

前記の特定の元素Mは、ビスマス(Bi)、ニッケル(Ni)、ケイ素(Si)、チタン(Ti)、イットリウム(Y)、アルカリ土類金属(Be、Mg、Ca、Sr、Ba、Ra)、ランタノイドからなる群から選ばれる少なくとも1つの元素である。   The specific element M is bismuth (Bi), nickel (Ni), silicon (Si), titanium (Ti), yttrium (Y), alkaline earth metal (Be, Mg, Ca, Sr, Ba, Ra). , At least one element selected from the group consisting of lanthanoids.

前記複合酸化物半導体における組成比率は任意である。ただし、特定の元素Mに対してCuが多すぎる場合は不安定であるためCu/Mの原子数比は、好ましくは0.1以上、より好ましくは0.1以上10以下、さらに好ましくは0.2以上3以下である。また、前記複合酸化物半導体は、構造の定まった複合酸化物であることが重要であり、単なる単純酸化物の混合物ではない。   The composition ratio in the composite oxide semiconductor is arbitrary. However, since it is unstable when there is too much Cu with respect to the specific element M, the atomic ratio of Cu / M is preferably 0.1 or more, more preferably 0.1 or more and 10 or less, and still more preferably 0. .2 or more and 3 or less. In addition, it is important that the complex oxide semiconductor is a complex oxide with a fixed structure, and is not a simple oxide mixture.

前記複合酸化物半導体の具体例としては、CuBi24、CuNi23、CuNiO2、CuSiO3、Cu3TiO4、CuYO2.5、CuBa23、CuCaO2、CuLaO2.5、CuMgO2等が挙げられるが、本発明はこれらに限定されない。 Specific examples of the composite oxide semiconductor include CuBi 2 O 4 , CuNi 2 O 3 , CuNiO 2 , CuSiO 3 , Cu 3 TiO 4 , CuYO 2.5 , CuBa 2 O 3 , CuCaO 2 , CuLaO 2.5 , and CuMgO 2. The present invention is not limited to these examples.

前記導電性基板としてはチタンやステンレスなどの金属や導電性ガラスが利用でき、中でも導電性ガラスが最も好ましい。また、酸化インジウムスズ(ITO)やF−SnO2、Sb−SnO2等を利用することもできる。 As the conductive substrate, metals such as titanium and stainless steel and conductive glass can be used, and among them, conductive glass is most preferable. It is also possible to use indium tin oxide (ITO) and F-SnO 2, Sb-SnO 2 or the like.

本発明の半導体素子において、導電性基板上に半導体の多孔質薄膜が形成されていることは重要である。半導体膜が多孔質構造のものであることにより、半導体膜に形成されている細孔を通じて電解液が薄膜内部まで浸透し、半導体が電解液と大面積で接触できる。この結果、半導体内部で生成した電子の電解液までの移動距離が短いため、電荷が再結合することが少なく、大きな光電流応答を示すことができる。従来のペレット型電極では、ペレットがミリメートルサイズと厚いために電子や正孔の移動距離が大きく、電極表面で反応が起こる前に電荷再結合が起こり、電気分解反応の効率が悪い。   In the semiconductor element of the present invention, it is important that a porous semiconductor thin film is formed on a conductive substrate. Since the semiconductor film has a porous structure, the electrolytic solution penetrates into the thin film through the pores formed in the semiconductor film, and the semiconductor can contact the electrolytic solution in a large area. As a result, since the movement distance of the electrons generated inside the semiconductor to the electrolytic solution is short, the charges are hardly recombined, and a large photocurrent response can be shown. In the conventional pellet-type electrode, since the pellet is as thick as millimeters, the movement distance of electrons and holes is large, charge recombination occurs before the reaction occurs on the electrode surface, and the efficiency of the electrolysis reaction is poor.

半導体の多孔質膜に形成されている細孔の大きさは、電解液の膜内部での移動や酸素・水素等の生成物の拡散を効率よく行う観点からは比較的大きい方が好ましいが、大きすぎると膜強度が弱くなったり電荷の移動がしにくくなったりするので、5〜500nmのいろいろな大きさの細孔が組み合わさった状態が好ましく、5〜300nmの範囲のものの組み合わせがより好ましい。細孔径の制御は、膜を焼成して作製する時に混ぜる有機物の分子量や混合物量で調整できる(例えば、特開2005−44758号公報参照)。半導体の粒子径は、1次粒子径で5〜600nmの範囲が好ましく、10〜100nmの範囲がより好ましい。また、比表面積は1〜300m2/gの範囲が好ましく、2〜100m2/gの範囲がより好ましい。 The size of the pores formed in the semiconductor porous film is preferably relatively large from the viewpoint of efficiently moving the electrolyte solution inside the film and diffusing products such as oxygen and hydrogen, If it is too large, the film strength will be weak and it will be difficult for the charge to move. Therefore, a state where pores of various sizes of 5 to 500 nm are combined is preferable, and a combination in the range of 5 to 300 nm is more preferable. . The control of the pore diameter can be adjusted by the molecular weight or the mixture amount of the organic substance to be mixed when the film is fired (see, for example, JP-A-2005-44758). The particle diameter of the semiconductor is preferably a primary particle diameter in the range of 5 to 600 nm, and more preferably in the range of 10 to 100 nm. The specific surface area is preferably in the range of 1~300m 2 / g, and more preferably in a range of from 2 to 100 m 2 / g.

薄膜の膜厚は、光が十分吸収できる膜厚があれば充分であり、それ以上厚くするとクラックを生じたり、溶液輸送や生成物輸送が妨げられたりするという問題が起こり、性能低下につながる。したがって、半導体膜厚は0.1〜20μmが好ましく、0.2〜5μmがより好ましい。   The thickness of the thin film is sufficient if it has a film thickness that can absorb light sufficiently, and if it is thicker than that, problems such as cracking and solution transportation and product transportation may occur, leading to performance degradation. Therefore, the semiconductor film thickness is preferably 0.1 to 20 μm, and more preferably 0.2 to 5 μm.

半導体薄膜調製法としては、蒸着法やスパッタ法など物理的成膜法よりも湿式法が好ましい。半導体膜の湿式調製法としては、ゾルゲル法や錯体重合法など金属前駆体を溶媒に分散して、塗布後に熱分解(焼成)する方法や、予め半導体の微粒子を固相法などで調製しておき、ペースト状にして塗布後に熱分解(焼成)する方法などがある。融点が低ければ固相法でも良い。塗布方法は、スクリーン印刷やドクターブレード法、スピンコート法、スプレー法、ディップコート法などが利用できる。   As the semiconductor thin film preparation method, a wet method is preferable to a physical film formation method such as a vapor deposition method or a sputtering method. As a wet preparation method of a semiconductor film, a metal precursor such as a sol-gel method or a complex polymerization method is dispersed in a solvent and thermally decomposed (baked) after coating, or semiconductor fine particles are prepared in advance by a solid phase method or the like. In addition, there is a method of making a paste and thermally decomposing (baking) after coating. If the melting point is low, a solid phase method may be used. As a coating method, screen printing, a doctor blade method, a spin coating method, a spray method, a dip coating method, or the like can be used.

焼成温度は基本的には上記で混合した有機物が分解する温度でなくてはいけない。しかし基板の耐熱性もあるため、例えば酸化スズ系導電性ガラス基板を用いる場合には耐熱温度(約800℃)以下が好ましい。また、ビスマス(Bi)は融点が低く昇華し易いので、600℃以下がより好ましく、350〜550℃が特に好ましい。有機物の分解を促進するために酸素中で焼成することも有効である。   The firing temperature must basically be a temperature at which the organic matter mixed above decomposes. However, since the substrate has heat resistance, for example, when a tin oxide conductive glass substrate is used, the heat resistant temperature (about 800 ° C.) or lower is preferable. Moreover, since bismuth (Bi) has a low melting point and is easily sublimated, it is more preferably 600 ° C. or lower, and particularly preferably 350 to 550 ° C. It is also effective to fire in oxygen in order to accelerate the decomposition of organic matter.

部分的に窒素やイオウ、炭素などを含む半導体化合物を作製する場合は、酸化物膜を後からアンモニアや硫化水素などで処理してもよく、または、前駆体酸化物と含窒素化合物もしくは含イオウ化合物とを混合して焼成しても良い。このような部分的に窒素やイオウ、炭素などを含む半導体化合物を作製する場合、窒素やイオウの添加量は好ましくは0.5mol%以上、より好ましくは5mol%以上であり、上限は20mol%以下が好ましく、10mol%以下がより好ましい。   When a semiconductor compound partially containing nitrogen, sulfur, carbon, or the like is manufactured, the oxide film may be treated later with ammonia, hydrogen sulfide, or the like, or the precursor oxide and the nitrogen-containing compound or sulfur-containing compound are treated. A compound may be mixed and fired. In the case of producing a semiconductor compound partially containing nitrogen, sulfur, carbon, etc., the amount of nitrogen or sulfur added is preferably 0.5 mol% or more, more preferably 5 mol% or more, and the upper limit is 20 mol% or less. Is preferable, and 10 mol% or less is more preferable.

本発明の半導体素子は、光電変換素子として好ましく用いることができ、光電極に適用することができる。また、本発明の半導体素子は、カソード光電流および/またはアノード光電流の応答を示す場合がある。この場合、電位によりn型とp型とを切り替えられることが好ましい。このような切り替えにより、本発明の半導体素子はn型やp型を制御するスイッチング素子としても利用することができる。   The semiconductor element of the present invention can be preferably used as a photoelectric conversion element and can be applied to a photoelectrode. In addition, the semiconductor element of the present invention may show a response of a cathode photocurrent and / or an anode photocurrent. In this case, it is preferable that the n-type and the p-type can be switched by the potential. By such switching, the semiconductor element of the present invention can be used as a switching element for controlling n-type or p-type.

次に、本発明の光エネルギー変換システムについて説明する。
本発明の光エネルギー変換システムでは、本発明の光電極を用いて水の電気分解を行うことで、光エネルギーを水素に変換することができる。具体的には、本発明の光電極に光を照射し、発生したカソード光電流を利用して、本発明の光電極上で水を還元し水素を発生させる。このとき、本発明の光電極に対して負側にバイアスをかけてカソード光電流が流れる条件で使用する。半導体の電位によってはバイアスが必要ない場合もある。
Next, the light energy conversion system of the present invention will be described.
In the light energy conversion system of the present invention, light energy can be converted to hydrogen by electrolyzing water using the photoelectrode of the present invention. Specifically, the photoelectrode of the present invention is irradiated with light, and the generated cathode photocurrent is used to reduce water on the photoelectrode of the present invention to generate hydrogen. At this time, the photoelectrode of the present invention is used under the condition that the cathode photocurrent flows with a negative bias. Depending on the potential of the semiconductor, a bias may not be necessary.

同様に本発明の光電極を用いて、光エネルギーを利用して有害物質や有機物を酸化、還元、分解することができる。
本発明の光電極のp型特性を生かし、半導体上で還元反応、対極で酸化反応を進行させるには、半導体電極に対して負側にバイアスをかけてカソード光電流が流れる条件で使用する。このとき、対極にはRuO2/Tiなど酸素発生に好ましい素材を使ったり、n型半導体を用いて同時に光照射したりしてもよい。また場合により、n型特性を生かし、半導体上で酸化反応、対極で還元反応を進行させるには、半導体電極に対して正側にバイアスをかけてアノード光電流が流れる条件で使用する。
電解液は電極が安定な組成のものを選ぶことが好ましい。水分解の場合、強酸性や強アルカリ性を高濃度で使うことを避けることが好ましく、中性付近がより好ましい。例としては、Na2SO4やリン酸ナトリウム、低濃度のNaOHやH2SO4等であり、好ましくはNa2SO4である。また、酢酸ナトリウムなどを添加してもよい。
Similarly, by using the photoelectrode of the present invention, it is possible to oxidize, reduce, and decompose harmful substances and organic substances using light energy.
In order to take advantage of the p-type characteristics of the photoelectrode of the present invention and cause the reduction reaction on the semiconductor and the oxidation reaction to proceed on the counter electrode, the negative electrode is biased with respect to the semiconductor electrode and the cathode photocurrent flows. At this time, a material preferable for oxygen generation such as RuO 2 / Ti may be used for the counter electrode, or light may be irradiated simultaneously using an n-type semiconductor. In some cases, in order to make use of the n-type characteristics and advance the oxidation reaction on the semiconductor and the reduction reaction on the counter electrode, the semiconductor electrode is biased on the positive side and used under the condition that the anode photocurrent flows.
It is preferable to select an electrolyte solution having a stable electrode composition. In the case of water splitting, it is preferable to avoid using strong acidity or strong alkalinity at a high concentration, and the vicinity of neutrality is more preferable. Examples include Na 2 SO 4 and sodium phosphate, low concentrations of NaOH and H 2 SO 4 , preferably Na 2 SO 4 . Further, sodium acetate or the like may be added.

次に、本発明の光触媒について説明する。
上述した可視光応答性の複合酸化物半導体は光触媒用半導体としても利用できる。本発明の光触媒は、上述した特定の複合酸化物半導体を含んでなる。多孔質半導体電極として可視光照射下で光電流が観測できれば、粒子内部での電荷分離能力をその半導体は有していると考えられる。利用できる光吸収範囲は、光電流が観測できる光領域と同等であり、一般的には吸収スペクトル範囲と同じか、またはそれより短波長である。
光触媒における上述した特定の複合酸化物半導体の粒径は、好ましくは10nm〜5000nmであり、より好ましくは20nm〜500nmである。
半導体の伝導帯および価電子帯の電位によって光触媒の用途は限定される。n型半導体の場合、アノード光電流の観測開始電位が伝導帯電位に近い。バンドギャップから価電子帯電位を推定もできる。伝導帯電位がH+/H2電位より負であれば水素発生に用いられ、酸素還元電位より負であれば空気中での有害物分解に利用でき、電解液中のレドックス電位より負であればレドックス(鉄系や硝酸系、ヨウ素系など)を用いた有害物分解に利用できる。価電子帯電位が正に大きくなるほど、酸化力は強くなり、多くの有害物質を分解できる。O2/H2O電位より正であれば、酸素発生に用いることができる。p型半導体の場合、カソード光電流の観測開始電位が価電子帯電位に近い。バンドギャップから伝導帯電位を推定もできる。水素発生能力の高いp型半導体と、酸素発生能力の高いn型半導体を組み合わせれば、バイアスがほとんど無くても水の分解が可能になるので、水分解用光触媒として利用できる。
上述した特定の複合酸化物半導体を光触媒として使用するときは、電解液中だけでなく、純水中や気相反応でも反応を進行させることができる。
光触媒は粉末の懸濁状態で使用しても良いし、安定な基板に固定して用いても良い。
光触媒上に反応を高める目的でさらに助触媒を担持しても良い。助触媒としては、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)、金(Au)、銀(Ag)、イリジウム(Ir)などの貴金属や、Ni、NiOx、RuO2、カーボンなどがある。
Next, the photocatalyst of the present invention will be described.
The visible light responsive complex oxide semiconductor described above can also be used as a semiconductor for a photocatalyst. The photocatalyst of the present invention comprises the specific complex oxide semiconductor described above. If a photocurrent can be observed as a porous semiconductor electrode under visible light irradiation, the semiconductor is considered to have charge separation capability inside the particles. The available light absorption range is equivalent to the light region where photocurrent can be observed, and is generally the same as or shorter than the absorption spectrum range.
The particle size of the specific complex oxide semiconductor described above in the photocatalyst is preferably 10 nm to 5000 nm, more preferably 20 nm to 500 nm.
The application of the photocatalyst is limited by the potential of the conduction band and valence band of the semiconductor. In the case of an n-type semiconductor, the observation start potential of the anode photocurrent is close to the conduction charge position. The valence charge potential can also be estimated from the band gap. It can be used for hydrogen generation if the conduction potential is more negative than the H + / H 2 potential, and can be used for decomposing harmful substances in the air if it is more negative than the oxygen reduction potential, and more negative than the redox potential in the electrolyte. For example, it can be used to decompose harmful substances using redox (iron, nitric acid, iodine, etc.). The higher the valence charge position, the stronger the oxidizing power and the more toxic substances can be decomposed. If it is more positive than the O 2 / H 2 O potential, it can be used for oxygen generation. In the case of a p-type semiconductor, the observation start potential of the cathode photocurrent is close to the valence charge position. The conduction charge potential can also be estimated from the band gap. Combining a p-type semiconductor with a high hydrogen generation capability and an n-type semiconductor with a high oxygen generation capability allows water to be decomposed with almost no bias, and can be used as a photocatalyst for water decomposition.
When the above-described specific complex oxide semiconductor is used as a photocatalyst, the reaction can be advanced not only in the electrolytic solution but also in pure water or a gas phase reaction.
The photocatalyst may be used in a powder suspension state or may be used by being fixed to a stable substrate.
A cocatalyst may be further supported on the photocatalyst for the purpose of enhancing the reaction. Examples of the promoter include noble metals such as platinum (Pt), rhodium (Rh), palladium (Pd), gold (Au), silver (Ag), iridium (Ir), Ni, NiO x , RuO 2 , carbon, and the like. is there.

本発明の光電極又は光触媒は、上述した特定の複合酸化物半導体のうち、p型特性を示す半導体とn型特性を示す半導体とを組み合わせて用いることができる。また、上述したp型特性又はn型特性を示す特定の複合酸化物半導体と、任意の半導体とを組み合わせて用いることもできる。これらの光電極又は光触媒は、発光ダイオード、固体太陽電池、光触媒などに応用することができる。
p型半導体とn型半導体とを組み合わせて用いる場合、p型半導体とn型半導体を直接接触(pn接合)させてもよいし、その間に金属などの伝導性物質や半導体、絶縁体を介在させても良い。伝導性物質としては、例えばドープにより伝導性を高めた酸化スズや酸化亜鉛、酸化インジウムなどがある。また、介在させることができる半導体としては、ドープしていない酸化スズや酸化亜鉛、酸化インジウムなどがある。NaIやFeSOなどのレドックス媒体を含んだ塩も用いられる。絶縁体を介在させる場合はトンネル電流用いるため絶縁層は100nm以下にすることが好ましい。
The photoelectrode or photocatalyst of the present invention can be used by combining a semiconductor exhibiting p-type characteristics and a semiconductor exhibiting n-type characteristics among the specific complex oxide semiconductors described above. In addition, the above-described specific complex oxide semiconductor exhibiting p-type characteristics or n-type characteristics and any semiconductor can be used in combination. These photoelectrodes or photocatalysts can be applied to light emitting diodes, solid solar cells, photocatalysts, and the like.
When a p-type semiconductor and an n-type semiconductor are used in combination, the p-type semiconductor and the n-type semiconductor may be in direct contact (pn junction), or a conductive substance such as metal, a semiconductor, or an insulator is interposed therebetween. May be. Examples of the conductive substance include tin oxide, zinc oxide, and indium oxide whose conductivity is increased by doping. Examples of semiconductors that can be interposed include undoped tin oxide, zinc oxide, and indium oxide. A salt containing a redox medium such as NaI or FeSO 4 is also used. In the case where an insulator is interposed, since the tunnel current is used, the insulating layer is preferably 100 nm or less.

n型半導体としては、一般的なTiO2、WO3、ZnO、CdS、Ta25、Fe23、V25等の他に、これらの元素を含んだSrTiO3、BiVO4などの複合酸化物やTaONなどのオキシナイトライドやTaなどのナイトライド、オキシサルファイド、TiO2−M(ここでMは、N、S、C、Ni、Cr、Sb、Bi等のドーパントを表す。)等のドーピング化合物が用いられる。 Examples of the n-type semiconductor include general TiO 2 , WO 3 , ZnO, CdS, Ta 2 O 5 , Fe 2 O 3 , V 2 O 5, and the like, SrTiO 3 containing these elements, BiVO 4, and the like. the composite oxide or oxynitride or Ta 3 N 5, such as nitride, such as TaON, oxysulfide, M is TiO 2 -M (wherein, N, S, C, Ni , Cr, Sb, dopant Bi, etc. Or the like.).

接触の方法は単に混合するだけでも良いが、良好な接触をするためには、ホモジナイザーで分散したり、乳鉢やボールミルなど機械的混練を充分に行ったりすることが好ましい。半導体粒子の粒子径が小さければ、または表面に欠陥準位が多く存在する場合は、障壁が小さいので、別な伝導性物質の介在は必ずしも必要ない。また、加圧や真空処理、加熱しても良い。有機バインダーを加えて焼き飛ばして良い。加熱温度は半導体バルクが変性しないことが目安であるが、一般的には800℃以下、好ましくは600℃以下である。この場合も上述のように、光触媒上に反応を高める目的でさらにp型及び/又はn型半導体上に助触媒を担持しても良い。助触媒としては、例えばPt、Rh、Pd、Au、Ag、Ir等の貴金属や、Ni、NiOx、RuO2、カーボン等が挙げられる。 The contact method may be simple mixing, but in order to achieve good contact, it is preferable to disperse with a homogenizer or to sufficiently perform mechanical kneading such as a mortar or ball mill. If the particle diameter of the semiconductor particles is small, or if there are many defect levels on the surface, the barrier is small, so that the intervention of another conductive substance is not necessarily required. Further, pressurization, vacuum treatment, or heating may be performed. An organic binder can be added and baked. The heating temperature is generally determined so that the semiconductor bulk is not denatured, but is generally 800 ° C. or lower, preferably 600 ° C. or lower. Also in this case, as described above, a promoter may be further supported on the p-type and / or n-type semiconductor for the purpose of enhancing the reaction on the photocatalyst. Examples of the cocatalyst include noble metals such as Pt, Rh, Pd, Au, Ag, and Ir, Ni, NiO x , RuO 2 , and carbon.

以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these.

実施例1
CuBi24電極を以下のようにして調製した。
シンメトリックス社製Cu塗布液とBi塗布液をCu:Biの化学量論比1:2でよく混合した。得られた溶液を導電性ガラス(F−SnO2、10Ω/sq)にスピンコート法で塗布し、550℃で30分空気焼成した。これを4回繰り返した。膜厚は約0.5〜1μmであった。X線回折計(XRD;MX Laboマックサイエンス社製)によりCuBi24が主生成物であることを同定した。生成した膜は多孔質であり、形成された粒子の大きさはSEM観察の粒子径で30〜40nm程度だった。
この電極をポテンシオスタットに接続した。対極はPtワイヤー、参照極はAg/AgClを用いた。電解液はNa2SO4水溶液を用いた。500WのXeランプに420nm以下のUV光をカットして可視光照射を行った。照射面積は直径6mm円とした。−0.1V電位(vs.Ag/AgCl。以下同じ)において−38μA/cm2のカソード光電流が観測された。結果を表1に示す。
また、自然電極電位(Vset)は光照射で正にシフトし、p型特性の強い光電変換素子として動作することが分かった。
また、この半導体電極に対して正側にバイアスをかけたところアノード光電流が流れることがわかった。
Example 1
A CuBi 2 O 4 electrode was prepared as follows.
Symmetrics Cu coating solution and Bi coating solution were mixed well at a Cu: Bi stoichiometric ratio of 1: 2. The obtained solution was applied to conductive glass (F-SnO 2 , 10Ω / sq) by a spin coating method, and air-baked at 550 ° C. for 30 minutes. This was repeated 4 times. The film thickness was about 0.5-1 μm. An X-ray diffractometer (XRD; manufactured by MX Labo Mac Science Co., Ltd.) identified CuBi 2 O 4 as the main product. The produced film was porous, and the size of the formed particles was about 30 to 40 nm in terms of the particle size observed by SEM.
This electrode was connected to a potentiostat. The counter electrode was Pt wire and the reference electrode was Ag / AgCl. As the electrolytic solution, an aqueous Na 2 SO 4 solution was used. UV light of 420 nm or less was cut into a 500 W Xe lamp and irradiated with visible light. The irradiation area was 6 mm in diameter. A cathode photocurrent of −38 μA / cm 2 was observed at −0.1 V potential (vs. Ag / AgCl; the same applies hereinafter). The results are shown in Table 1.
In addition, it was found that the natural electrode potential (Vset) shifted positively by light irradiation and operated as a photoelectric conversion element having strong p-type characteristics.
It was also found that when the semiconductor electrode was biased to the positive side, anode photocurrent flowed.

実施例2
CuBi24電極を以下のように実施例1とは別法にて調製した。
硝酸ビスマス5水和物(Bi(NO3)3・5H2O)約0.7mol/L酢酸溶液と、硝酸銅・3水和物(Cu(NO3)2・3H2O)約0.08mol/Lアセチルアセトン溶液をそれぞれ約100℃に熱して均一な溶液を得た。この2種類の溶液をCu:Biの化学量論比よりも約1割Bi少なくして(すなわちモル比Cu:Bi=1:1.8として)よく混合し、CuBi24前駆体を得た。得られた溶液を導電性ガラス(F−SnO2、10Ω/sq)にスピンコート法で塗布し、550℃で30分空気焼成した。これを6回繰り返した。膜厚は約0.5〜1μmであった。X線回折計(XRD;MX Laboマックサイエンス社製)によりCuBi24がほぼ単相で生成していることを同定した。生成した膜は多孔質であり、形成された粒子の大きさはSEM観察の粒子径で30〜40nm程度だった。
この電極をポテンシオスタットに接続した。対極はPtワイヤー、参照極はAg/AgClを用いた。電解液はNa2SO4水溶液を用いた。500WのXeランプに420nm以下のUV光をカットして可視光照射を行った。照射面積は直径6mm円とした。−0.1V電位(vs.Ag/AgCl。以下同じ)において−92μA/cm2のカソード光電流が観測された。結果を表1に示す。
また、自然電極電位(Vset)は光照射で正にシフトし、p型特性の強い光電変換素子として動作することが分かった。
また、安定性について確認実験を行った。500WのXeランプの光を直接照射した。10時間光照射を行ったところ、ほぼ一定のカソード電流が観測され続けた。半導体に対する電子のターンオーバー数は10以上であった。また照射後に吸収スペクトルやXRDパターンに大きな変色は見られなかった。
また、この半導体電極に対して正側にバイアスをかけたところアノード光電流が流れることがわかった。
Example 2
A CuBi 2 O 4 electrode was prepared by a method different from Example 1 as follows.
Bismuth nitrate pentahydrate (Bi (NO 3 ) 3 .5H 2 O) about 0.7 mol / L acetic acid solution and copper nitrate trihydrate (Cu (NO 3 ) 2 .3H 2 O) about 0. Each of the 08 mol / L acetylacetone solutions was heated to about 100 ° C. to obtain uniform solutions. These two types of solutions are mixed well by reducing the stoichiometric ratio of Cu: Bi by about 10% Bi (ie, molar ratio Cu: Bi = 1: 1.8) to obtain a CuBi 2 O 4 precursor. It was. The obtained solution was applied to conductive glass (F-SnO 2 , 10Ω / sq) by a spin coating method, and air-baked at 550 ° C. for 30 minutes. This was repeated 6 times. The film thickness was about 0.5-1 μm. It was identified by the X-ray diffractometer (XRD; manufactured by MX Labo MacScience) that CuBi 2 O 4 was produced almost in a single phase. The produced film was porous, and the size of the formed particles was about 30 to 40 nm in terms of the particle size observed by SEM.
This electrode was connected to a potentiostat. The counter electrode was Pt wire and the reference electrode was Ag / AgCl. As the electrolytic solution, an aqueous Na 2 SO 4 solution was used. UV light of 420 nm or less was cut into a 500 W Xe lamp and irradiated with visible light. The irradiation area was 6 mm in diameter. A cathode photocurrent of −92 μA / cm 2 was observed at −0.1 V potential (vs. Ag / AgCl; the same applies hereinafter). The results are shown in Table 1.
In addition, it was found that the natural electrode potential (Vset) shifted positively by light irradiation and operated as a photoelectric conversion element having strong p-type characteristics.
In addition, an experiment for confirming stability was performed. A 500 W Xe lamp was directly irradiated. When light irradiation was performed for 10 hours, a substantially constant cathode current continued to be observed. The turnover number of electrons with respect to the semiconductor was 10 or more. In addition, no significant discoloration was observed in the absorption spectrum or XRD pattern after irradiation.
It was also found that when the semiconductor electrode was biased to the positive side, anode photocurrent flowed.

実施例3
CuNi23、CuNiO2、CuSiO3、Cu3TiO4、CuYO2.5、CuCoO2、CuBa23、CuCaO2、CuLaO2.5、CuMgO2についてそれぞれ実施例1と同様にして半導体薄膜を導電性ガラス上に成膜し光電極を作製した。
作製した光電極について、実施例1と同様にして表1記載の電位において光電流を測定した。結果を表1に示す。表1の結果から明らかなように、いずれも大きなカソード光電流が観測され、p型特性の強い光電変換素子として動作することが分かった。
また、これらの半導体電極に対して正側にバイアスをかけたところアノード光電流が流れることがわかった。
Example 3
In the same manner as in Example 1, CuNi 2 O 3 , CuNiO 2 , CuSiO 3 , Cu 3 TiO 4 , CuYO 2.5 , CuCoO 2 , CuBa 2 O 3 , CuCaO 2 , CuLaO 2.5 , and CuMgO 2 are each made of conductive glass as in the first embodiment. A photoelectrode was produced by forming a film thereon.
About the produced photoelectrode, the photocurrent was measured at the potential shown in Table 1 in the same manner as in Example 1. The results are shown in Table 1. As is clear from the results in Table 1, a large cathode photocurrent was observed, and it was found that the device operates as a photoelectric conversion element having a strong p-type characteristic.
It was also found that anode photocurrent flowed when a positive bias was applied to these semiconductor electrodes.

Figure 0005344731
Figure 0005344731

実施例4
CuBi24の自然電極電位が同条件で測定したWO3の開始電圧より正であることに着目し作用極にWO3、対極にCuBi24を用い2極法で光電流を測定した。その結果、可視光照射時に印加バイアス=0Vでも、2時間以上比較的安定した光電流(60μA/cm2)が観測された。2時間でのターンオーバー数は2以上であり、水の光電気化学的分解反応が可視光かつ無バイアス条件で進行していることがわかった。
Example 4
Focusing on the fact that the natural electrode potential of CuBi 2 O 4 is more positive than the starting voltage of WO 3 measured under the same conditions, the photocurrent was measured by the bipolar method using WO 3 as the working electrode and CuBi 2 O 4 as the counter electrode. . As a result, a relatively stable photocurrent (60 μA / cm 2 ) was observed for 2 hours or more even when the applied bias was 0 V during irradiation with visible light. The number of turnovers in 2 hours was 2 or more, and it was found that the photoelectrochemical decomposition reaction of water proceeded under visible light and no bias conditions.

比較例1
実施例2において硝酸ビスマス5水和物(Bi(NO3)3・5H2O)約0.7mol/L酢酸溶液を用いなかったこと以外は実施例2と同様にして半導体薄膜を導電性ガラス上に成膜し、CuO光電極を作製した。
作製した光電極について、実施例2と同様にして光電流を測定したところ、この電極は光反応中に変化し、2時間後には光電流がゼロになった。また、半導体に対する電子のターンオーバー数は1以下であった。したがって、比較例1のCuO光電極は非常に不安定であることがわかった。
Comparative Example 1
The semiconductor thin film was formed into a conductive glass in the same manner as in Example 2 except that the bismuth nitrate pentahydrate (Bi (NO 3 ) 3 .5H 2 O) of about 0.7 mol / L acetic acid solution was not used in Example 2. A CuO photoelectrode was produced by forming a film thereon.
When the photocurrent was measured for the produced photoelectrode in the same manner as in Example 2, the electrode changed during the photoreaction, and the photocurrent became zero after 2 hours. Moreover, the number of electron turnovers with respect to the semiconductor was 1 or less. Therefore, it was found that the CuO photoelectrode of Comparative Example 1 was very unstable.

比較例2
CuMn24、CuB26、CuAl24、CuCr24についてそれぞれ実施例1と同様にして半導体薄膜を導電性ガラス上に成膜し光電極を作製した。
作製した光電極について、実施例1と同様にして表2記載の電位において光電流を測定した。結果を表2に示す。表2の結果から明らかなように、いずれも実施例1〜3と比べて光電流が非常に低いことが分かった。
Comparative Example 2
CuMn 2 O 4, were prepared CuB 2 O 6, CuAl 2 O 4, CuCr 2 O 4 deposited photoelectrode a semiconductor thin film on the conductive glass in the same manner as in each Example 1 About.
About the produced photoelectrode, the photocurrent was measured at the potential shown in Table 2 in the same manner as in Example 1. The results are shown in Table 2. As is clear from the results in Table 2, it was found that the photocurrent was very low as compared with Examples 1 to 3.

Figure 0005344731
Figure 0005344731

実施例5
実施例1で調製したCuBi24を用いて光触媒活性を測定した。実施例1と同様の実験条件において、電解液の窒素パージ後に電解液に酸素を導入した場合と導入しない場合について、それぞれ光照射の前後における光電流を測定した。
その結果、CuBi24電極のカソード暗電流は電解液に酸素を導入してもしなくてもゼロ付近で変化しなかったが、カソード光電流は酸素を導入すると大きく増加した。このことから、CuBi24半導体が、暗時では電子を受け取れないか酸素を還元できないが、その一方、光照射時では伝導帯に励起された電子が酸素を還元できるという特徴を有することがわかった。
Example 5
The photocatalytic activity was measured using CuBi 2 O 4 prepared in Example 1. Under the same experimental conditions as in Example 1, the photocurrent before and after the light irradiation was measured for each of the cases where oxygen was introduced into the electrolytic solution after nitrogen purge of the electrolytic solution and the case where oxygen was not introduced into the electrolytic solution.
As a result, the cathode dark current of the CuBi 2 O 4 electrode did not change around zero with or without oxygen introduced into the electrolyte, but the cathode photocurrent increased greatly when oxygen was introduced. From this fact, the CuBi 2 O 4 semiconductor cannot receive electrons or cannot reduce oxygen in the dark, but on the other hand, it has a feature that electrons excited in the conduction band can reduce oxygen when irradiated with light. all right.

参考例1
代表的な可視光応答性n型半導体であるWO3光電極についても実施例5と同様にして光触媒活性を測定した。WO3膜はタングステン酸微粒子を積層・500℃焼成して調製した。
その結果、WO3光電極のアノード光電流はアルデヒドやアルコール、有機酸などの有機物を電解液に導入すると大きく増加した。このことから、光照射でWO3半導体の価電子帯に生成した正孔が有機物を効率的に分解できることがわかった。その一方、電解液の窒素パージ後、WO3電極のカソード光電流は電解液に酸素を導入しても変化しなかった。このことから、WO3の伝導帯電子はWO3表面では酸素を還元しにくいか、還元できてもその速度が遅いことがわかった。
Reference example 1
The photocatalytic activity of the WO 3 photoelectrode, which is a representative visible light responsive n-type semiconductor, was measured in the same manner as in Example 5. The WO 3 film was prepared by laminating tungstic acid fine particles and firing at 500 ° C.
As a result, the anode photocurrent of the WO 3 photoelectrode was greatly increased when organic substances such as aldehydes, alcohols and organic acids were introduced into the electrolyte. From this, it was found that the holes generated in the valence band of the WO 3 semiconductor by light irradiation can decompose organic substances efficiently. On the other hand, after nitrogen purge of the electrolyte, the cathode photocurrent of the WO 3 electrode did not change even when oxygen was introduced into the electrolyte. From this, the conduction band electrons of WO 3 is either difficult to reduce the oxygen in the WO 3 surface, the speed is found to be slowly be able to reduction.

実施例6
実施例5で用いたp型CuBi24半導体の強い酸素還元能力と、参考例1で用いたn型WO3半導体の強い有機物酸化能力とを組み合わせることを目的として、CuBi24電極とWO3電極を導線で接合した。電解液にアセトアルデヒドと酸素を導入し、両方の電極に光照射(300W Xeランプ、サーマックス製、1.2×1.5cm)を行った。
その結果、バイアス無しでも導線に270μAの電流がCuBi24電極からWO3電極へ流れた。これは、アセトアルデヒドと酸素がない時の電流(28μA)に比べて1桁高いものであった。このことから、外部からバイアスをかけることなく、WO3電極で有機物が酸化されて電子がCuBi24電極へ流れるとともに、CuBi24電極上で酸素が還元されたことがわかった。
以上の結果から、バイアス無しの電気化学セルでも有害物質分解システムが構築できることがわかった。
Example 6
For the purpose of combining the strong oxygen reduction ability of the p-type CuBi 2 O 4 semiconductor used in Example 5 with the strong organic matter oxidation ability of the n-type WO 3 semiconductor used in Reference Example 1, the CuBi 2 O 4 electrode The WO 3 electrode was joined with a conductive wire. Acetaldehyde and oxygen were introduced into the electrolyte, and both electrodes were irradiated with light (300 W Xe lamp, manufactured by Thermax, 1.2 × 1.5 cm).
As a result, a current of 270 μA flowed from the CuBi 2 O 4 electrode to the WO 3 electrode in the conducting wire without bias. This was an order of magnitude higher than the current in the absence of acetaldehyde and oxygen (28 μA). Therefore, without applying a bias from the outside, electrons are organic matter oxidized in WO 3 electrode with flow to CuBi 2 O 4 electrodes, oxygen on CuBi 2 O 4 electrode was found to have been reduced.
From the above results, it was found that a hazardous substance decomposition system can be constructed even in an electrochemical cell without bias.

実施例7
p型半導体粉末とn型半導体粉末とを組み合わせた粉末光触媒における有機物分解能を測定した。
まず、CuO粉末とBi23粉末を混合して700℃で24時間焼成することでCuBi24を固相合成し、乳鉢で粉砕してCuBi24粉末を調製した。一方、WO3粉末は高純度化学製(99.99%)を用いた。次いで、CuBi24粉末とWO3粉末とを質量比1対2で、メノウ乳鉢を用いて充分に混練し、pn接合型粉末触媒を調製した。このとき、pn接合の観点から両粉末が充分に接触していることが重要であり、混練が不十分な触媒の場合は良好な性能が得られない。
反応容器に前記触媒150mgを投入して密閉した後、シリンジを用いてアセトアルデヒドガス(9000ppm)を導入した。光照射には回転式サンプルホルダーを用いて、バイアル瓶の底面から均一にキセノンランプを照射した。その後、二酸化炭素およびアセトアルデヒドの定量を行った。定量は、メタナイザーを装備したガスクロマトグラフィー(水素炎イオン化検出器;FID)で行った。
一方、比較用に、CuBi24粉末を混合しないWO3粉末だけを用いて、上記と同様にして、光照射を行い、二酸化炭素およびアセトアルデヒドの定量を行った。
反応の経時変化を図1に示す。図1は、光触媒の触媒活性を示すグラフである。縦軸はアセトアルデヒドの酸化によって発生した二酸化炭素量を表し、横軸は光照射時間を表す。●は、CuBi24粉末とWO3粉末とを組み合わせたpn接合型粉末触媒についてのプロットであり、▲は、WO3粉末についてのプロットである。
図1の結果から明らかなように、pn接合型粉末触媒では、180分後には18000ppmのCO2が発生し、完全酸化が進行できることがわかった。また、触媒をそのまま用いてアセトアルデヒドを再導入する試験を5回繰り返したが、触媒活性は全く低下せず、非常に安定であった。
一方、CuBi24粉末を混合しないWO3粉末だけの場合は、180分後には9000ppm程度のCO2が発生したが、それ以上のCO2発生は観測できず、完全酸化ができなかった。
これらの結果から、CuBi24半導体が優れた触媒活性を示し、しかもCuBi24粉末とWO3粉末とを混練して接触させたpn接合型粉末触媒でも、実施例6のCuBi24電極とWO3電極を導線で接合した場合と同様に有害物質を分解できることがわかった。
Example 7
The organic matter resolution in a powder photocatalyst combining a p-type semiconductor powder and an n-type semiconductor powder was measured.
First, CuO powders were mixed with Bi 2 O 3 powder solid phase synthesis was CuBi 2 O 4 by firing at 700 ° C. 24 hours to prepare a CuBi 2 O 4 powder was ground in a mortar. On the other hand, a high purity chemical product (99.99%) was used as the WO 3 powder. Next, CuBi 2 O 4 powder and WO 3 powder were sufficiently kneaded using an agate mortar at a mass ratio of 1 to 2, to prepare a pn junction type powder catalyst. At this time, it is important that both powders are sufficiently in contact from the viewpoint of pn junction, and in the case of a catalyst with insufficient kneading, good performance cannot be obtained.
After 150 mg of the catalyst was charged into the reaction vessel and sealed, acetaldehyde gas (9000 ppm) was introduced using a syringe. A xenon lamp was uniformly irradiated from the bottom of the vial using a rotary sample holder for light irradiation. Thereafter, carbon dioxide and acetaldehyde were quantified. Quantification was performed by gas chromatography (hydrogen flame ionization detector; FID) equipped with a methanizer.
On the other hand, for comparison, only WO 3 powder not mixed with CuBi 2 O 4 powder was used, and light irradiation was performed in the same manner as above to determine carbon dioxide and acetaldehyde.
The time course of the reaction is shown in FIG. FIG. 1 is a graph showing the catalytic activity of the photocatalyst. The vertical axis represents the amount of carbon dioxide generated by oxidation of acetaldehyde, and the horizontal axis represents the light irradiation time. ● is a plot for a pn junction type powder catalyst in which CuBi 2 O 4 powder and WO 3 powder are combined, and ▲ is a plot for WO 3 powder.
As can be seen from the results of FIG. 1, in the pn junction type powder catalyst, 18000 ppm of CO 2 was generated after 180 minutes, and it was found that complete oxidation could proceed. Further, the test of reintroducing acetaldehyde using the catalyst as it was was repeated 5 times, but the catalyst activity was not lowered at all and was very stable.
On the other hand, in the case of only WO 3 powder not mixed with CuBi 2 O 4 powder, about 9000 ppm of CO 2 was generated after 180 minutes, but no further CO 2 generation was observed and complete oxidation could not be performed.
From these results, the CuBi 2 O 4 semiconductor showed excellent catalytic activity, and even with the pn junction type powder catalyst in which the CuBi 2 O 4 powder and the WO 3 powder were mixed and brought into contact, the CuBi 2 O of Example 6 was used. It was found that toxic substances can be decomposed in the same manner as when the 4 electrodes and the WO 3 electrode are joined with a conductive wire.

実施例8
実施例7において、CuBi24粉末とWO3粉末とを質量比1対2で混練した後に、200℃で1時間加熱したこと以外は同様にして測定を行った。
その結果、加熱しなかった場合に比べて、初期炭酸ガス発生速度で約1.5倍の活性向上が観測された。このことから、加熱によってCuBi24粉末とWO3粉末との接触が良くなり、加熱しなかった場合よりも優れた触媒活性を示すことがわかった。
Example 8
In Example 7, CuBi 2 O 4 powder and WO 3 powder were kneaded at a mass ratio of 1: 2, and then measured in the same manner except that the mixture was heated at 200 ° C. for 1 hour.
As a result, an improvement in activity of about 1.5 times at the initial carbon dioxide gas generation rate was observed as compared with the case of not heating. From this, it was found that the contact between the CuBi 2 O 4 powder and the WO 3 powder was improved by heating, and the catalytic activity was superior to that when not heated.

図1は、光触媒の触媒活性を示すグラフである。FIG. 1 is a graph showing the catalytic activity of the photocatalyst.

Claims (7)

銅を含み、さらにビスマス、ニッケル、ケイ素、チタン、イットリウム、アルカリ土類金属、及びランタノイドからなる群から選択される少なくとも1つの元素Mを含む複合酸化物半導体の多孔質薄膜が導電性基板上に形成されている半導体素子であって、前記複合酸化物半導体がCuBi24、CuNi23、CuNiO2、CuSiO3、Cu3TiO4、CuYO2.5、CuBa23、CuCaO2、CuLaO2.5、又はCuMgO2であり、カソード光電流および/またはアノード光電流を示すことを特徴とする可視光応答性の半導体素子。 A porous thin film of a composite oxide semiconductor containing copper and further containing at least one element M selected from the group consisting of bismuth, nickel, silicon, titanium, yttrium, alkaline earth metal, and lanthanoid is formed on the conductive substrate. In the formed semiconductor device, the composite oxide semiconductor is CuBi 2 O 4 , CuNi 2 O 3 , CuNiO 2 , CuSiO 3 , Cu 3 TiO 4 , CuYO 2.5 , CuBa 2 O 3 , CuCaO 2 , CuLaO 2.5. Or a visible light-responsive semiconductor element, which is a CuMgO 2 and exhibits a cathode photocurrent and / or an anode photocurrent. カソード光電流およびアノード光電流の両方を示す半導体素子であって、電位によりアノードとカソードとが切り替えられることを特徴とする請求項1に記載の半導体素子。 2. The semiconductor element according to claim 1, wherein the semiconductor element exhibits both a cathode photocurrent and an anode photocurrent, wherein the anode and the cathode are switched by a potential. 前記複合酸化物半導体の前駆体の金属塩を溶媒に溶解した溶液を用いて湿式法で作製したことを特徴とする請求項1又は2に記載の半導体素子。 3. The semiconductor element according to claim 1, wherein the semiconductor element is manufactured by a wet method using a solution in which a metal salt of the precursor of the composite oxide semiconductor is dissolved in a solvent. 請求項1〜のいずれか1項に記載の半導体素子を用いてなる光電極。 Photoelectrode comprising a semiconductor device according to any one of claims 1-3. p型半導体とn型半導体とを組み合わせたことを特徴とする請求項記載の光電極。 5. The photoelectrode according to claim 4, wherein a p-type semiconductor and an n-type semiconductor are combined. 請求項又はに記載の光電極に光を照射し、カソード光電流を利用して半導体上で水を還元して水素を発生させる光エネルギー変換システム。 A light energy conversion system for generating hydrogen by irradiating light on the photoelectrode according to claim 4 or 5 and reducing water on a semiconductor using a cathode photocurrent. 請求項又はに記載の光電極に光を照射し、有害物質や有機物を酸化、還元又は分解する光エネルギー利用システム。
A light energy utilization system that irradiates light on the photoelectrode according to claim 4 or 5 to oxidize, reduce or decompose harmful substances and organic substances.
JP2007061037A 2006-03-10 2007-03-09 Visible light responsive semiconductor device and photoelectrode, and light energy conversion system using the same Expired - Fee Related JP5344731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061037A JP5344731B2 (en) 2006-03-10 2007-03-09 Visible light responsive semiconductor device and photoelectrode, and light energy conversion system using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006066523 2006-03-10
JP2006066523 2006-03-10
JP2007061037A JP5344731B2 (en) 2006-03-10 2007-03-09 Visible light responsive semiconductor device and photoelectrode, and light energy conversion system using the same

Publications (2)

Publication Number Publication Date
JP2007273463A JP2007273463A (en) 2007-10-18
JP5344731B2 true JP5344731B2 (en) 2013-11-20

Family

ID=38676021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061037A Expired - Fee Related JP5344731B2 (en) 2006-03-10 2007-03-09 Visible light responsive semiconductor device and photoelectrode, and light energy conversion system using the same

Country Status (1)

Country Link
JP (1) JP5344731B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161854A (en) * 2006-12-05 2008-07-17 Utsunomiya Univ Semiconductor particle and its manufacturing method
FR2996355B1 (en) * 2012-09-28 2016-04-29 Rhodia Operations MIXED OXIDES AND SULFIDES OF BISMUTH AND COPPER FOR PHOTOVOLTAIC APPLICATION
JP6044992B2 (en) * 2013-06-28 2016-12-14 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6044993B2 (en) * 2013-06-28 2016-12-14 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6286275B2 (en) * 2013-10-17 2018-02-28 中部電力株式会社 Thermoelectric conversion material
JP2014223629A (en) * 2014-08-27 2014-12-04 三菱化学株式会社 Electrode for photolytic water decomposition reaction using photocatalyst
JP6371854B2 (en) * 2014-09-29 2018-08-08 富士フイルム株式会社 Artificial photosynthesis module
JP6404144B2 (en) * 2015-02-26 2018-10-10 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6433815B2 (en) * 2015-02-26 2018-12-05 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
FR3050740B1 (en) * 2016-04-27 2021-01-29 Paris Sciences Lettres Quartier Latin METAL / METAL CHALCOGENIDE ELECTRODE WITH HIGH SPECIFIC SURFACE
CN108649201B (en) * 2018-05-08 2021-01-01 宁波大学 LaTi21O38·CoO·CuLaO2Preparation method of composite nanowire
CN109019685B (en) * 2018-09-12 2021-01-01 西南科技大学 Synthetic CuBi2O4Method for base colloid material
KR102685603B1 (en) * 2022-02-11 2024-07-17 강원대학교 산학협력단 Method for manufacturing photocatalyst combined with calcined oyster shells, photocatalyst thereof, and method for removing pollutants using the same
CN114759103A (en) * 2022-03-08 2022-07-15 武汉锐科光纤激光技术股份有限公司 Photoelectric detector and preparation method thereof
CN115304100A (en) * 2022-08-29 2022-11-08 徐州联禾升钢结构工程有限公司 Metal anticorrosion protective material and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4029155B2 (en) * 2003-07-25 2008-01-09 独立行政法人産業技術総合研究所 Visible-light-responsive membranous porous semiconductor photoelectrode

Also Published As

Publication number Publication date
JP2007273463A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5344731B2 (en) Visible light responsive semiconductor device and photoelectrode, and light energy conversion system using the same
Miyoshi et al. Water splitting on rutile TiO2‐based photocatalysts
JP4997454B2 (en) Semiconductor electrode and energy conversion system using the same
Wang et al. Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors
van de Krol et al. Solar hydrogen production with nanostructured metal oxides
Szaniawska et al. Enhanced photoelectrochemical CO2-reduction system based on mixed Cu2O–nonstoichiometric TiO2 photocathode
Hirayama et al. Solar-driven photoelectrochemical water oxidation over an n-type lead–titanium oxyfluoride anode
JP6875009B2 (en) Catalyst and its use
Yamakata et al. Core–shell double doping of Zn and Ca on β-Ga2O3 photocatalysts for remarkable water splitting
CN107075696A (en) Prepared by the catalyst with P N knots and plasma material by the photocatalysis hydrogen of water
JPWO2006082801A1 (en) Gas production method, acidic water and alkaline water production method, and production apparatus thereof
JP6355083B2 (en) Photocatalyst composition and method for producing the same
Bellardita et al. (Photo) electrocatalytic versus heterogeneous photocatalytic carbon dioxide reduction
JP4000374B2 (en) Semiconductor metal oxide photocatalyst and method for decomposing hazardous chemicals using the same
US20190017182A1 (en) Subnanometer catalytic clusters for water splitting, method for splitting water using subnanometer catalyst clusters
JPWO2019181392A1 (en) Photocatalyst for water decomposition, electrodes and water decomposition equipment
de Almeida et al. Contribution of CuxO distribution, shape and ratio on TiO2 nanotubes to improve methanol production from CO2 photoelectroreduction
JP2015129347A (en) Electrode catalyst for water electrolysis and water electrolyzer using the same
JP6569495B2 (en) Semiconductor electrode, light energy conversion device, and method of manufacturing semiconductor electrode
JP2019039048A (en) Photochemical electrode, manufacturing method therefor, and photoelectrochemical reaction device
Sitaaraman et al. Synthesis of heterojunction tungsten oxide (WO3) and Bismuth vanadate (BiVO4) photoanodes by spin coating method for solar water splitting applications
JP2015131300A (en) Photocatalyst for photolytic water decomposition reaction, and method for producing the photocatalyst
Clabel H et al. Potential application of perovskite structure for water treatment: effects of band gap, band edges, and lifetime of charge carrier for photocatalysis
Tikoo et al. Mechanistic insights into enhanced photocatalytic H 2 O 2 production induced by a Z-scheme heterojunction of copper bismuth oxide and molybdenum sulfide
JP5675224B2 (en) Visible light water splitting catalyst and photoelectrode manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees