JP2015129347A - Electrode catalyst for water electrolysis and water electrolyzer using the same - Google Patents

Electrode catalyst for water electrolysis and water electrolyzer using the same Download PDF

Info

Publication number
JP2015129347A
JP2015129347A JP2014246942A JP2014246942A JP2015129347A JP 2015129347 A JP2015129347 A JP 2015129347A JP 2014246942 A JP2014246942 A JP 2014246942A JP 2014246942 A JP2014246942 A JP 2014246942A JP 2015129347 A JP2015129347 A JP 2015129347A
Authority
JP
Japan
Prior art keywords
catalyst
water electrolysis
oxide
electrode catalyst
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014246942A
Other languages
Japanese (ja)
Inventor
宜裕 小澤
Yoshihiro Kozawa
宜裕 小澤
羽藤 一仁
Kazuhito Hado
一仁 羽藤
健一郎 太田
Kenichiro Ota
健一郎 太田
顕光 石原
Akimitsu Ishihara
顕光 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Yokohama National University NUC
Original Assignee
Panasonic Corp
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Yokohama National University NUC filed Critical Panasonic Corp
Priority to JP2014246942A priority Critical patent/JP2015129347A/en
Publication of JP2015129347A publication Critical patent/JP2015129347A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode catalyst for water electrolysis which is stable even under a high potential and is capable of exhibiting sufficient catalytic activity even if it contains a reduced amount of noble metal or no noble metal.SOLUTION: The electrode catalyst for water electrolysis of the present invention contains: a carrier containing an oxide which contains at least one element selected from the group consisting of Sn, Sb, Nb, Ta, and Ti and has electron conductivity; and an oxide catalyst which is carried on the carrier, contains at least one element selected from the group consisting of group 4 elements and group 5 elements, and has an oxygen defect.

Description

本発明は、水電解用電極触媒と、この水電解用電極触媒を用いた水電解装置とに関する。   The present invention relates to an electrode catalyst for water electrolysis and a water electrolysis apparatus using the electrode catalyst for water electrolysis.

高電位下で使用される電気化学デバイスとしては、例えば、水電解装置が挙げられる。   Examples of the electrochemical device used under a high potential include a water electrolysis apparatus.

例えば固体高分子形水電解装置では、下記式(1)及び(2)に示す反応により、水から水素と酸素とを生成することが可能である。この反応には、理論的に標準状態(25℃、1気圧)で1.23V以上の電圧が必要となる。
2O→2H++2e-+1/2O2↑ …(1)
2H++2e-→H2↑ …(2)
For example, in a polymer electrolyte water electrolysis apparatus, it is possible to generate hydrogen and oxygen from water by the reactions shown in the following formulas (1) and (2). This reaction theoretically requires a voltage of 1.23 V or higher under standard conditions (25 ° C., 1 atm).
H 2 O → 2H + + 2e + 1 / 2O 2 ↑ (1)
2H + + 2e → H 2 ↑ (2)

固体高分子形水電解装置では、一般に、アノードには、広い電位範囲で安定であり、かつアノードの電気化学反応に対して高い触媒能を持つ白金(Pt)及び酸化イリジウム(IrO2)等が触媒として用いられており、カソードには白金等が触媒として用いられている。 In solid polymer water electrolyzers, in general, the anode contains platinum (Pt), iridium oxide (IrO 2 ), etc. that are stable in a wide potential range and have high catalytic ability for the electrochemical reaction of the anode. It is used as a catalyst, and platinum or the like is used as a catalyst for the cathode.

しかしながら、白金やイリジウムといった貴金属は、資源量が限られており、かつ高価であることから、従来、貴金属の使用量を低減する方法及び貴金属の代替となる触媒の開発が行われてきた。   However, since noble metals such as platinum and iridium have limited resources and are expensive, conventionally, methods for reducing the amount of noble metal used and catalysts that replace noble metals have been developed.

特許文献1には、貴金属触媒の代替として、非貴金属の金属酸化物を電極触媒として用いることが開示されている。具体的には、酸素欠陥を設けたZrO2、Ta25、Nb25及びTiO2などのうち少なくとも1つの遷移金属酸化物を主触媒として含み、かつ金を助触媒として含む電極触媒が開示されている。この電極触媒は、酸性電解質中でも安定であり、かつ助触媒が設けられることで高活性を実現している。また、これらの触媒をカーボン、酸化イリジウム及び酸化タングステンなどの電子伝導性担体に担持することも開示されている。 Patent Document 1 discloses using a metal oxide of a non-noble metal as an electrode catalyst as an alternative to a noble metal catalyst. Specifically, an electrode catalyst containing at least one transition metal oxide as a main catalyst among ZrO 2 , Ta 2 O 5 , Nb 2 O 5, TiO 2 and the like provided with oxygen defects and gold as a promoter. Is disclosed. This electrode catalyst is stable even in an acidic electrolyte, and realizes high activity by providing a promoter. It is also disclosed that these catalysts are supported on an electron conductive carrier such as carbon, iridium oxide and tungsten oxide.

また、特許文献2には、酸化イリジウムを、高いBET表面積を有する無機酸化物上へ担持した水電解用の触媒が開示されている。具体的には、チタニア(TiO2)、シリカ(SiO2)、アルミナ(Al23)などの高いBET比表面積をもつ無機酸化物と、酸化イリジウムとを含む触媒が開示されている。前記無機酸化物は、触媒の全質量に対して、20質量%未満の量で存在している。特許文献2には、この触媒が酸化イリジウムだけの場合よりも高い触媒活性を示すことが開示されている。 Patent Document 2 discloses a catalyst for water electrolysis in which iridium oxide is supported on an inorganic oxide having a high BET surface area. Specifically, a catalyst containing an inorganic oxide having a high BET specific surface area such as titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), and iridium oxide is disclosed. The inorganic oxide is present in an amount of less than 20% by mass with respect to the total mass of the catalyst. Patent Document 2 discloses that this catalyst exhibits a higher catalytic activity than that of iridium oxide alone.

国際公開第2006/019128号International Publication No. 2006/019128 特表2007−514520号公報Special table 2007-514520 gazette

高電位下(1.23V以上の水電解条件下)でも安定な水電解用電極触媒を検討する上で、触媒には、高電位下での安定性と各電気化学反応に対する触媒活性とが求められる。白金及び酸化イリジウムなどの貴金属は、水電解の電気化学反応に対して触媒活性を持つが、資源量に限りがあり高価である。したがって、触媒としては、貴金属の使用量が低減されたもの、あるいは非貴金属のものが望ましい。また、触媒を担持する担体としては、高電位下で安定であること、及び、反応に寄与する電子が担体中を移動するために高い電子伝導性を有すること、が求められる。さらに、触媒の場合と同様の理由から、担体にも、貴金属元素を含まないことが望まれる。   In studying an electrocatalyst for water electrolysis that is stable even under high potential (water electrolysis conditions of 1.23 V or more), the catalyst is required to have stability under high potential and catalytic activity for each electrochemical reaction. It is done. Precious metals such as platinum and iridium oxide have catalytic activity for electrochemical reaction of water electrolysis, but are limited in resources and expensive. Therefore, the catalyst is preferably a catalyst with a reduced amount of noble metal used or a non-noble metal. Further, the carrier supporting the catalyst is required to be stable at a high potential and to have high electron conductivity because electrons contributing to the reaction move in the carrier. Furthermore, for the same reason as in the case of the catalyst, it is desired that the support does not contain a noble metal element.

特許文献1に開示された触媒は、電子伝導性担体として、高電位下では反応によりCO2となって溶けてしまうカーボンや、高価な酸化イリジウムなどを用いており、水電解条件下でも安定な水電解用電極触媒を検討する上では課題が残っている。 The catalyst disclosed in Patent Document 1 uses, as an electron conductive carrier, carbon that dissolves as CO 2 by reaction under high potential, expensive iridium oxide, and the like, and is stable even under water electrolysis conditions. Problems remain in examining the electrocatalyst for water electrolysis.

特許文献2に開示された触媒は、無機酸化物からなる担体上に、触媒活性を有する酸化イリジウムが担持された構成を有する。この構成を有する触媒では、担体である無機酸化物が電子伝導性を有さないので、触媒全体の電子伝導性を酸化イリジウムが担うことになる。したがって、電子伝導性を確保するために、無機酸化物の量を20質量%未満に抑えなければならず、その結果、高価な酸化イリジウムの使用量を増加させなければならない。   The catalyst disclosed in Patent Document 2 has a configuration in which iridium oxide having catalytic activity is supported on a support made of an inorganic oxide. In the catalyst having this configuration, since the inorganic oxide as a carrier does not have electronic conductivity, iridium oxide bears the electronic conductivity of the entire catalyst. Therefore, in order to ensure electronic conductivity, the amount of inorganic oxide must be suppressed to less than 20% by mass, and as a result, the amount of expensive iridium oxide used must be increased.

そこで、本発明は、高電位下でも安定であり、さらに、貴金属の量が低減される、あるいは貴金属が含まれなくても十分な触媒活性を示すことが可能な水電解用電極触媒を提供することを目的とする。   Therefore, the present invention provides an electrode catalyst for water electrolysis that is stable even at a high potential and that can exhibit sufficient catalytic activity even when the amount of noble metal is reduced or no noble metal is contained. For the purpose.

本発明の一態様である水電解用電極触媒は、
Sn、Sb、Nb、Ta及びTiからなる群から選ばれる少なくともいずれか1種の元素を含み、かつ電子伝導性を有する酸化物を含む担体と、
前記担体に担持された、4族元素及び5族元素からなる群から選ばれる少なくともいずれか1種の元素を含み、かつ酸素欠陥を有する酸化物触媒と、
を含む。
The electrocatalyst for water electrolysis which is one embodiment of the present invention,
A support containing an oxide having at least one element selected from the group consisting of Sn, Sb, Nb, Ta and Ti and having an electron conductivity;
An oxide catalyst having at least one element selected from the group consisting of Group 4 elements and Group 5 elements supported on the carrier and having oxygen defects;
including.

本発明の一態様である水電解用電極触媒において、担体に含まれる酸化物は、非貴金属酸化物でありながら比較的高い表面積と電子伝導性とを有することが可能であり、かつ高電位でも安定である。さらに、その担体に担持される触媒は、4族元素及び5族元素からなる群から選ばれる少なくともいずれか1種の元素を含む酸化物に反応の活性点となる酸素欠陥が設けられた酸化物触媒であり、高電位下で安定でありながら、水の酸化反応に対して十分な活性を示す。したがって、前記水電解用電極触媒は、高電位下でも安定であり、さらに、貴金属の量が低減される、あるいは貴金属が含まれなくても十分な触媒活性を示すことが可能である。   In the electrode catalyst for water electrolysis that is one embodiment of the present invention, the oxide contained in the support can have a relatively high surface area and electron conductivity while being a non-noble metal oxide, and even at a high potential. It is stable. Further, the catalyst supported on the carrier is an oxide in which an oxygen defect serving as an active site of reaction is provided in an oxide containing at least one element selected from the group consisting of Group 4 elements and Group 5 elements. It is a catalyst and exhibits a sufficient activity for water oxidation reaction while being stable at a high potential. Therefore, the electrode catalyst for water electrolysis is stable even at a high potential, and can further exhibit sufficient catalytic activity even if the amount of noble metal is reduced or no noble metal is contained.

本発明の実施形態2に係る水電解装置の一構成例を示す概略断面図Schematic sectional view showing a configuration example of a water electrolysis apparatus according to Embodiment 2 of the present invention 実施例1〜4の水電解用電極触媒粉末、及び、実施例1〜4の水電解用電極触媒粉末で担体として用いられたSbドープ酸化スズ(ATO)のX線回折パターンX-ray diffraction patterns of Sb-doped tin oxide (ATO) used as a support in the electrode catalyst powder for water electrolysis of Examples 1 to 4 and the electrode catalyst powder for water electrolysis of Examples 1 to 4 実施例6〜8の水電解用電極触媒粉末、及び、実施例6〜8の水電解用電極触媒粉末で担体として用いられたSbドープ酸化スズ(ATO)のX線回折パターンX-ray diffraction patterns of Sb-doped tin oxide (ATO) used as a support in the electrocatalyst powder for water electrolysis of Examples 6 to 8 and the electrocatalyst powder for water electrolysis of Examples 6 to 8

本発明の第1の態様は、
Sn、Sb、Nb、Ta及びTiからなる群から選ばれる少なくともいずれか1種の元素を含み、かつ電子伝導性を有する酸化物を含む担体と、
前記担体に担持された、4族元素及び5族元素からなる群から選ばれる少なくともいずれか1種の元素を含み、かつ酸素欠陥を有する酸化物触媒と、
を含む、水電解用電極触媒を提供する。
The first aspect of the present invention is:
A support containing an oxide having at least one element selected from the group consisting of Sn, Sb, Nb, Ta and Ti and having an electron conductivity;
An oxide catalyst having at least one element selected from the group consisting of Group 4 elements and Group 5 elements supported on the carrier and having oxygen defects;
An electrode catalyst for water electrolysis is provided.

第1の態様に係る水電解用電極触媒では、担体に含まれる酸化物は、非貴金属酸化物でありながら比較的高い表面積と電子伝導性とを有することが可能であり、かつ高電位でも安定である。さらに、その担体に担持される触媒は、4族元素及び5族元素からなる群から選ばれる少なくともいずれか1種の元素を含む酸化物に反応の活性点となる酸素欠陥が設けられた酸化物触媒であり、高電位下で安定でありながら、水の酸化反応に対して十分な活性を示す。したがって、第1の態様に係る水電解用電極触媒は、高電位下でも安定であり、さらに、貴金属の量が低減される、あるいは貴金属が含まれなくても十分な触媒活性を示すことが可能である。   In the electrode catalyst for water electrolysis according to the first aspect, the oxide contained in the support can have a relatively high surface area and electronic conductivity while being a non-noble metal oxide, and is stable even at a high potential. It is. Further, the catalyst supported on the carrier is an oxide in which an oxygen defect serving as an active site of reaction is provided in an oxide containing at least one element selected from the group consisting of Group 4 elements and Group 5 elements. It is a catalyst and exhibits a sufficient activity for water oxidation reaction while being stable at a high potential. Therefore, the electrode catalyst for water electrolysis according to the first aspect is stable even at a high potential, and can further exhibit a sufficient catalytic activity even when the amount of noble metal is reduced or no noble metal is contained. It is.

本発明の第2の態様は、第1の態様において、
前記水電解用電極触媒における前記酸化物触媒の触媒比率(前記酸化物触媒の重量/(前記酸化物触媒の重量+前記担体の重量))が、0wt%を超え、かつ42wt%以下である、
水電解用電極触媒を提供する。
According to a second aspect of the present invention, in the first aspect,
The catalyst ratio of the oxide catalyst in the electrode catalyst for water electrolysis (weight of the oxide catalyst / (weight of the oxide catalyst + weight of the support)) is more than 0 wt% and not more than 42 wt%.
An electrode catalyst for water electrolysis is provided.

触媒比率が42wt%以下である場合、触媒同士の凝集による表面積の低下が軽減され、かつ電子伝導性に乏しい触媒の担持量が少なくなることで、担体同士、また集電電極との電気的接触点が増え、より反応で生じた電子が移動しやすくなり、高い電子伝導性を実現できる。これにより、第2の態様に係る水電解用電極触媒は、高電位下での安定性及び高い触媒活性をより確実に実現できる。   When the catalyst ratio is 42 wt% or less, the reduction of the surface area due to the aggregation of the catalysts is reduced, and the amount of the catalyst with poor electron conductivity is reduced, so that electrical contact between the carriers and the collecting electrode is achieved. The number of points increases, electrons generated by the reaction are more easily moved, and high electron conductivity can be realized. Thereby, the electrode catalyst for water electrolysis which concerns on a 2nd aspect can implement | achieve the stability and high catalyst activity under high potential more reliably.

本発明の第3の態様は、第1又は第2の態様において、
前記担体は、Snを含みかつ電子伝導性を有する酸化物を含む、
水電解用電極触媒を提供する。
According to a third aspect of the present invention, in the first or second aspect,
The carrier includes Sn and an oxide having electronic conductivity.
An electrode catalyst for water electrolysis is provided.

Snを含みかつ電子伝導性を有する酸化物を含む担体は、酸化物触媒との界面において酸素欠陥が生じやすい。したがって、第3の態様に係る水電解用電極触媒は、より高い電子伝導性を実現できる。これにより、第3の態様に係る水電解用電極触媒は、高電位下での安定性及び高い触媒活性をより確実に実現できる。   A carrier containing Sn and an oxide having electron conductivity is likely to have oxygen defects at the interface with the oxide catalyst. Therefore, the electrode catalyst for water electrolysis according to the third aspect can realize higher electron conductivity. Thereby, the electrode catalyst for water electrolysis which concerns on a 3rd aspect can implement | achieve the stability and high catalyst activity under high potential more reliably.

本発明の第4の態様は、第3の態様において、
前記担体は、SnO2にSb、Nb及びTaからなる群から選ばれる少なくともいずれか1種の元素をドープすることで得られた酸化物を含む、
水電解用電極触媒を提供する。
According to a fourth aspect of the present invention, in the third aspect,
The carrier includes an oxide obtained by doping SnO 2 with at least one element selected from the group consisting of Sb, Nb and Ta.
An electrode catalyst for water electrolysis is provided.

SnO2にSb、Nb及びTaからなる群から選ばれる少なくともいずれか1種の元素をドープすることで得られた酸化物は、安定した酸素欠陥を保つことができる。したがって、担体と酸化物触媒との界面で酸素の拡散が起こり、電気化学反応に伴う酸化物触媒の酸素欠陥量低下が抑制されるので、酸化物触媒が高い触媒活性を長期間維持することが可能となる。これにより、第4の態様に係る水電解用電極触媒は、高電位下での安定性及び高い触媒活性をより確実に実現できる。 An oxide obtained by doping SnO 2 with at least one element selected from the group consisting of Sb, Nb, and Ta can maintain stable oxygen defects. Therefore, oxygen diffusion occurs at the interface between the support and the oxide catalyst, and the decrease in the amount of oxygen defects in the oxide catalyst due to the electrochemical reaction is suppressed, so that the oxide catalyst can maintain high catalytic activity for a long period of time. It becomes possible. Thereby, the electrode catalyst for water electrolysis which concerns on a 4th aspect can implement | achieve stability and high catalyst activity under high potential more reliably.

本発明の第5の態様は、第1〜第4の態様のいずれか1つの態様において、
前記酸化物触媒が、N及びCからなる群から選ばれる少なくともいずれか1種の元素をさらに含む、
水電解用電極触媒を提供する。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects,
The oxide catalyst further comprises at least one element selected from the group consisting of N and C;
An electrode catalyst for water electrolysis is provided.

第5の態様に係る水電解用電極触媒には、例えば、酸化物触媒の酸素の一部が、N(窒素)、C(炭素)又はその両方で置換される構成例が挙げられる。この構成によれば、酸化物触媒は、2価の酸素に対して3価の窒素又は4価の炭素が置換した分、自由電子が増えるので、触媒自体の電子伝導性が良くなる。また、第5の態様に係る水電解用電極触媒の他の構成例として、炭素、又は、炭素の一部が窒素で置換された物質が、酸化物触媒の表面の少なくとも一部を覆っている構成も挙げられる。この構成例では、炭素自体、又は、炭素の一部が窒素で置換された物質自体が導電性を有しているので、これらが、触媒が表面反応する際に電子伝導パスとなる。これにより、触媒自体の電子伝導性が向上する。   Examples of the electrode catalyst for water electrolysis according to the fifth aspect include a configuration example in which part of oxygen in the oxide catalyst is substituted with N (nitrogen), C (carbon), or both. According to this configuration, the oxide catalyst has an increased amount of free electrons as the trivalent nitrogen or tetravalent carbon is substituted for the divalent oxygen, so that the electron conductivity of the catalyst itself is improved. Further, as another configuration example of the electrode catalyst for water electrolysis according to the fifth aspect, carbon or a substance in which a part of carbon is substituted with nitrogen covers at least a part of the surface of the oxide catalyst. A configuration is also mentioned. In this configuration example, carbon itself or a substance in which a part of carbon is substituted with nitrogen has conductivity, so that these become an electron conduction path when the catalyst undergoes a surface reaction. Thereby, the electronic conductivity of the catalyst itself is improved.

本発明の第6の態様は、第1〜第5の態様のいずれか1つの態様において、
前記4族元素がTi及びZrである、
水電解用電極触媒を提供する。
According to a sixth aspect of the present invention, in any one of the first to fifth aspects,
The Group 4 elements are Ti and Zr;
An electrode catalyst for water electrolysis is provided.

Ti及びZrの酸化物は酸性電解液中でも安定であり、かつ酸素欠陥が設けられた当該酸化物は、水の酸化反応に対し活性を有している。したがって、第6の態様に係る水電解用電極触媒によれば、より高い触媒活性を実現することができる。   The oxides of Ti and Zr are stable even in an acidic electrolyte, and the oxides provided with oxygen defects have activity for water oxidation reaction. Therefore, according to the electrode catalyst for water electrolysis according to the sixth aspect, higher catalytic activity can be realized.

本発明の第7の態様は、第1〜第6の態様のいずれか1つの態様において、
前記5族元素がNb及びTaである、
水電解用電極触媒を提供する。
According to a seventh aspect of the present invention, in any one of the first to sixth aspects,
The Group 5 elements are Nb and Ta,
An electrode catalyst for water electrolysis is provided.

Nb及びTaの酸化物は酸性電解液中でも安定であり、かつ酸素欠陥が設けられた当該酸化物は、水の酸化反応に対し活性を有している。したがって、第7の態様に係る水電解用電極触媒によれば、より高い触媒活性を実現することができる。   The oxides of Nb and Ta are stable even in an acidic electrolyte, and the oxides provided with oxygen defects have activity for water oxidation reaction. Therefore, according to the electrode catalyst for water electrolysis according to the seventh aspect, higher catalytic activity can be realized.

本発明の第8の態様は、第1〜第7の態様のいずれか1つの態様において、
Pt、Ir、Ni及びCoからなる群から選ばれる少なくともいずれか1種の元素を含む助触媒をさらに含む、
水電解用電極触媒を提供する。
According to an eighth aspect of the present invention, in any one of the first to seventh aspects,
And further comprising a promoter containing at least one element selected from the group consisting of Pt, Ir, Ni and Co.
An electrode catalyst for water electrolysis is provided.

Pt、Ir、Ni及びCoからなる群から選ばれる少なくともいずれか1種の元素を含む物質は、水の酸化反応に対し高い活性を有する。したがって、第8の態様に係る水電解用電極触媒によれば、より高い触媒活性を実現することができる。   A substance containing at least one element selected from the group consisting of Pt, Ir, Ni and Co has a high activity for water oxidation reaction. Therefore, according to the electrode catalyst for water electrolysis according to the eighth aspect, higher catalytic activity can be realized.

本発明の第9の態様は、
第1〜第8の態様のいずれか1つの態様の水電解用電極触媒を含むアノードと、
カソードと、
を備えた水電解装置を提供する。
The ninth aspect of the present invention provides
An anode containing the electrocatalyst for water electrolysis according to any one of the first to eighth aspects;
A cathode,
A water electrolysis apparatus comprising:

第9の態様に係る水電解装置は、水の酸化反応に対して触媒活性を有する第1〜第8の態様のいずれか1つの態様の水電解用電極触媒をアノード触媒として含んでいる。したがって、第9の態様に係る水電解装置によれば、水電解装置及びそれを含むシステムの効率向上と共に、貴金属の量の低減あるいは貴金属が用いられないことによる低コスト化を図ることができる。   The water electrolysis apparatus according to the ninth aspect includes the electrode catalyst for water electrolysis according to any one of the first to eighth aspects having catalytic activity for water oxidation reaction as an anode catalyst. Therefore, the water electrolysis apparatus according to the ninth aspect can improve the efficiency of the water electrolysis apparatus and the system including the water electrolysis apparatus, and can reduce the amount of noble metal or reduce the cost by not using the noble metal.

以下、本発明の実施形態を、図面を参照しながら詳細に説明する。なお、以下の実施形態は一例であり、本発明は以下の実施の形態に限定されない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiment is an example, and the present invention is not limited to the following embodiment.

(実施形態1)
本発明の水電解用電極触媒の実施形態について説明する。本実施形態に係る水電解用電極触媒は、担体と、前記担体上に担持された酸化物触媒とを含む。前記担体は、Sn、Sb、Nb、Ta及びTiからなる群から選ばれる少なくともいずれか1種の元素を含み、かつ電子伝導性を有する酸化物(以下、電子伝導性酸化物と記載することがある。)を含む。電子伝導性酸化物は、Snを含む酸化物であることが望ましい。前記酸化物触媒は、4族元素及び5族元素からなる群から選ばれる少なくともいずれか1種の元素を含み、かつ、酸素欠陥を有する構成を有する。
(Embodiment 1)
An embodiment of the electrode catalyst for water electrolysis of the present invention will be described. The electrode catalyst for water electrolysis according to the present embodiment includes a support and an oxide catalyst supported on the support. The carrier includes an oxide having at least one element selected from the group consisting of Sn, Sb, Nb, Ta, and Ti and having electron conductivity (hereinafter referred to as electron conductive oxide). Yes.) The electron conductive oxide is desirably an oxide containing Sn. The oxide catalyst includes at least one element selected from the group consisting of Group 4 elements and Group 5 elements, and has an oxygen defect.

まず、本実施形態の水電解用電極触媒に含まれる担体について説明する。   First, the support | carrier contained in the electrode catalyst for water electrolysis of this embodiment is demonstrated.

触媒を担持する担体は、例えば粉末状である。以下、担体が粉末である場合を例に挙げて、本実施形態の担体について説明する。   The carrier supporting the catalyst is, for example, in the form of powder. Hereinafter, the carrier of this embodiment will be described by taking the case where the carrier is a powder as an example.

担体粉末は、触媒上での電気化学反応にかかる電子の移動を担うため、担体自体が電子伝導性を有する必要がある。特に触媒自体の電子伝導性が乏しい場合は、担体が主な電子移動パスとなるため、担体の電子伝導度が重要となる。担体の電子伝導度を高くする方法として、主に、担体に含まれる酸化物に酸素欠陥を積極的に導入する方法と、他元素をドープする方法とがある。   Since the carrier powder is responsible for the movement of electrons involved in the electrochemical reaction on the catalyst, the carrier itself needs to have electron conductivity. In particular, when the catalyst itself has poor electronic conductivity, the carrier becomes the main electron transfer path, so the electron conductivity of the carrier is important. As a method for increasing the electron conductivity of the carrier, there are mainly a method of positively introducing oxygen defects into an oxide contained in the carrier and a method of doping with other elements.

酸素欠陥を積極的に導入することで、金属元素の電子が余り、その電子がキャリア電子となって電子伝導性を高めることができる。例えば担体に酸化スズ(SnO2)が含まれる場合、酸素が欠損することで2つの電子が余ることになる。 By positively introducing oxygen vacancies, the electrons of the metal element are surplus, and the electrons become carrier electrons, thereby improving the electron conductivity. For example, when tin oxide (SnO 2 ) is contained in the carrier, two electrons are left due to oxygen deficiency.

また、価数の異なる他元素をドープすることで、キャリア電子を増やし、電子伝導性を高くすることも可能である。例えば、担体に4価の元素を含む酸化物(例えば酸化スズ(SnO2))が含まれる場合、4価の元素を含む酸化物に5価の元素(Sb、Nb、Ta)の少なくともいずれか1種の元素をドープすることにより、当該元素によって4価の元素が置換される。したがって、一つのキャリア電子が注入されることになるため、得られる酸化物は電子伝導性を有する。本実施形態の担体に含まれる電子伝導性酸化物が4価の元素を含む酸化物である場合、4価の元素を含む酸化物にドープされる5価の元素の含有量は、4価の元素に対して0.1〜25at%が好ましく、更に好ましくは1〜15at%である。後述するとおり、電子伝導度を高める手段として他元素ドープを利用した場合、得られた酸化物は安定した酸素欠陥を保つことができるので、担体と酸化物触媒との界面で酸素の拡散が起こり、酸化物触媒は高い触媒活性を長期間維持することが可能である。したがって、電子伝導性酸化物は、他元素のドープにより電子伝導性が実現されたものが望ましい。 Further, by doping with other elements having different valences, it is possible to increase carrier electrons and increase electron conductivity. For example, when the support contains an oxide containing a tetravalent element (eg, tin oxide (SnO 2 )), the oxide containing a tetravalent element is at least one of pentavalent elements (Sb, Nb, Ta). By doping one element, a tetravalent element is replaced by the element. Therefore, since one carrier electron is injected, the obtained oxide has electron conductivity. When the electron conductive oxide contained in the carrier of the present embodiment is an oxide containing a tetravalent element, the content of the pentavalent element doped in the oxide containing the tetravalent element is 0.1 to 25 at% is preferable with respect to the element, and more preferably 1 to 15 at%. As will be described later, when other element doping is used as a means for increasing the electronic conductivity, the obtained oxide can maintain stable oxygen defects, so that oxygen diffusion occurs at the interface between the support and the oxide catalyst. The oxide catalyst can maintain high catalytic activity for a long period of time. Therefore, it is desirable that the electron conductive oxide has electron conductivity realized by doping with other elements.

担体の電子伝導度は、担体粉末をハンドプレス機などにより押し固めてペレットとし、四探針法などで測定することができる。担体の電子伝導度は、0.01Scm-1以上が好ましく、0.1Scm-1以上がさらに好ましい。担体の電子伝導度は、例えば10Scm-1以下である。 The electron conductivity of the carrier can be measured by a four-probe method or the like by pressing the carrier powder into a pellet by pressing with a hand press or the like. Electronic conductivity of the carrier is preferably 0.01 Scm -1 or more, 0.1Scm -1 or more is more preferable. The electron conductivity of the carrier is, for example, 10 Scm −1 or less.

担体粉末の表面積については、反応面積の観点から、触媒を担持可能な面積が大きいほうが好ましい。担体粉末のBET比表面積は、10m2/g以上が好ましく、100m2/g以上がさらに好ましい。担体粉末のBET比表面積は、例えば500m2/g以下である。 Regarding the surface area of the carrier powder, it is preferable that the area capable of supporting the catalyst is large from the viewpoint of the reaction area. The BET specific surface area of the carrier powder is preferably 10 m 2 / g or more, more preferably 100 m 2 / g or more. The BET specific surface area of the carrier powder is, for example, 500 m 2 / g or less.

なお、担体粉末の形状は特に制限されず、球状、球同士が融着したアグリゲート状、角状、柱状、及び針状等の粉末を用いることが可能である。   The shape of the carrier powder is not particularly limited, and it is possible to use a spherical powder, an aggregate shape in which spheres are fused, a square shape, a column shape, a needle shape, or the like.

本実施形態における担体粉末は、前記電子伝導性酸化物を含んでいればよく、望ましくは前記電子伝導性酸化物を20質量%以上含んでいることであり、より望ましくは50質量%以上含んでいることである。本実施形態における担体粉末は、前記電子伝導性酸化物からなるものであってもよい。また、前記電子伝導性酸化物で、母材となる物質が被覆されていてもよい。例えばSiO2やAl23等からなる母材が、Sn、Sb、Nb、Ta及びTiからなる群から選ばれる少なくともいずれか1種の元素を含み、かつ電子伝導性を有する酸化物からなる電子伝導層で被覆されていてもよい。 The carrier powder in the present embodiment only needs to contain the electron conductive oxide, desirably contains 20% by mass or more of the electron conductive oxide, and more desirably contains 50% by mass or more. It is that you are. The carrier powder in the present embodiment may be made of the electron conductive oxide. Further, the electron conductive oxide may be coated with a substance serving as a base material. For example, the base material made of SiO 2 , Al 2 O 3 or the like contains an oxide having at least one element selected from the group consisting of Sn, Sb, Nb, Ta, and Ti and having electron conductivity. It may be covered with an electron conductive layer.

次に、担体に担持される酸化物触媒について説明する。   Next, the oxide catalyst supported on the carrier will be described.

本実施形態における酸化物触媒は、上記のとおり、4族元素及び5族元素からなる群から選ばれる少なくともいずれか1種の元素を含み、かつ、酸素欠陥を有する構成を有する。この酸化物触媒では、含まれる酸素欠陥が反応の活性点として働くため、電気化学反応、特に水の酸化反応に対し高活性となる。ただし、酸素欠陥量が多すぎると構造変化を誘発するため、酸化物触媒における酸素欠陥は1〜10at%が好ましい。なお、酸素欠陥量は、不活性ガス融解赤外線吸収法による元素分析により算出することができ、これにより、酸素欠陥の有無も判断することができる。   As described above, the oxide catalyst in the present embodiment includes at least one element selected from the group consisting of Group 4 elements and Group 5 elements, and has an oxygen defect. In this oxide catalyst, since the oxygen defect contained acts as an active site of the reaction, it becomes highly active for electrochemical reaction, particularly water oxidation reaction. However, since the structural change is induced when the amount of oxygen defects is too large, the oxygen defects in the oxide catalyst are preferably 1 to 10 at%. Note that the amount of oxygen defects can be calculated by elemental analysis using an inert gas melting infrared absorption method, whereby the presence or absence of oxygen defects can also be determined.

また、触媒は、例えば水電解装置におけるアノード等における、高電位及び酸化雰囲気での電気化学反応に伴って、酸素欠陥量が減少し、触媒活性が低下してしまうことがある。しかし、本実施形態の水電解用電極触媒では、他元素ドープにより安定した酸素欠陥を保つことができる電子伝導性酸化物を含む担体を用いることが可能であり、当該担体上に酸素欠陥を有する酸化物触媒を担持させることができる。このような構成によれば、担体と酸化物触媒との界面で酸素の拡散が起こり、電気化学反応に伴う触媒の酸素欠陥量低下が抑制される。このように、本実施形態における酸化物触媒は、高い触媒活性を長期間維持することが可能である。   In addition, the amount of oxygen defects may decrease and the catalyst activity may decrease with the electrochemical reaction at a high potential and in an oxidizing atmosphere at an anode or the like in a water electrolysis apparatus, for example. However, in the electrode catalyst for water electrolysis of the present embodiment, it is possible to use a carrier containing an electron conductive oxide that can maintain stable oxygen defects by doping with other elements, and has oxygen defects on the carrier. An oxide catalyst can be supported. According to such a configuration, oxygen diffusion occurs at the interface between the support and the oxide catalyst, and a reduction in the amount of oxygen defects in the catalyst due to the electrochemical reaction is suppressed. Thus, the oxide catalyst in the present embodiment can maintain high catalytic activity for a long period of time.

本実施形態における酸化物触媒は、担体上に、有機金属化合物由来の触媒の前躯体を担持させ、これを熱処理することによって作製できる。酸化物触媒の前駆体の熱処理において、当該前駆体は、担体である酸化物の表面の酸素を奪いながら酸化物(酸化物触媒)となる。したがって、酸化物触媒と担体との界面において酸素欠陥が生じる。この酸化物触媒と担体との界面における酸素欠陥の存在により、本実施形態の水電解用電極触媒は高い電子伝導度を実現できる。本実施形態の水電解用電極触媒は、例えば、還元されやすく、酸素が抜けやすい酸化スズを含む担体を用いることができる。したがって、本実施形態の水電解用電極触媒によれば、酸化物触媒と担体との界面における酸素欠陥を生じやすくすることが可能であり、その結果高い電子伝導度が得られる。さらに、担体に含まれる電子伝導性酸化物は、熱処理後に真空雰囲気、又は、水素もしくはアンモニアなどの還元雰囲気で100〜300℃で再熱処理される等により、その表面がわずかに還元されて、表面導電性を向上させることができる。これにより、本実施形態の水電解用電極触媒は、触媒能のさらなる向上が可能となる。この場合、水電解用電極触媒の焼結、表面積の低下を伴う高温熱処理は必要とされない。   The oxide catalyst in the present embodiment can be produced by supporting a precursor of an organometallic compound-derived catalyst on a support and heat-treating it. In the heat treatment of the precursor of the oxide catalyst, the precursor becomes an oxide (oxide catalyst) while depriving oxygen on the surface of the oxide as a support. Therefore, oxygen defects occur at the interface between the oxide catalyst and the support. Due to the presence of oxygen vacancies at the interface between the oxide catalyst and the support, the electrode catalyst for water electrolysis of the present embodiment can realize high electronic conductivity. For the electrode catalyst for water electrolysis of the present embodiment, for example, a support containing tin oxide that is easily reduced and oxygen is easily released can be used. Therefore, according to the electrode catalyst for water electrolysis of the present embodiment, it is possible to easily generate oxygen defects at the interface between the oxide catalyst and the carrier, and as a result, high electron conductivity can be obtained. Further, the surface of the electron conductive oxide contained in the carrier is slightly reduced by re-heat treatment at 100 to 300 ° C. in a vacuum atmosphere or a reducing atmosphere such as hydrogen or ammonia after the heat treatment. The conductivity can be improved. Thereby, the electrode catalyst for water electrolysis of this embodiment can further improve the catalytic ability. In this case, sintering of the electrode catalyst for water electrolysis and high temperature heat treatment accompanied by a decrease in surface area are not required.

また、本実施形態における酸化物触媒は、窒素、炭素、又は、窒素及び炭素の両方の元素をさらに含んでいてもよい。例えば、酸化物触媒の酸素の一部が、窒素、炭素又はその両方で置換されていていてもよいし、酸化物触媒の表面の少なくとも一部が、炭素又は炭素の一部が窒素で置換された物質で被覆されていてもよい。特に、触媒表面において酸素の一部が窒素で置換されていること、又は、炭素もしくは炭素の一部が窒素で置換された物質を触媒表面近傍に含むことにより、触媒表面での電子伝導性が向上し、触媒表面における電子授受が速やかに行われる。   Further, the oxide catalyst in the present embodiment may further contain nitrogen, carbon, or both elements of nitrogen and carbon. For example, a part of oxygen of the oxide catalyst may be substituted with nitrogen, carbon, or both, or at least a part of the surface of the oxide catalyst is substituted with nitrogen. It may be coated with a different material. In particular, the electron conductivity on the catalyst surface is improved by including a part of oxygen substituted on the catalyst surface with nitrogen, or containing carbon or a substance in which a part of carbon is substituted with nitrogen in the vicinity of the catalyst surface. The electron transfer on the catalyst surface is promptly performed.

酸化物触媒の酸素の一部を窒素で置換する方法としては、酸化物触媒を窒素気流中又はアンモニア気流中で熱処理する方法、加熱分解によりアンモニアが発生する尿素、メラミン、ピラジン、プリン、ビピリジン、アセトアニリド又はピペラジンを酸化物触媒と予め混合し熱処理する方法等が挙げられる。酸化物触媒の表面近傍に炭素又は炭素の一部が窒素で置換された物質を含有させる方法としては、遷移金属炭化物又は遷移金属炭窒化物を酸素を含む混合気体中で加熱して、酸化物触媒上に微細炭素を析出させる方法、適切な炭素源を用いて、化学気相堆積法により酸化物触媒上に炭素を析出させる方法、有機物を水
熱合成等で分解させて酸化物触媒上に炭素を析出させる方法等を用いることができる。
As a method of substituting part of oxygen of the oxide catalyst with nitrogen, a method of heat-treating the oxide catalyst in a nitrogen stream or an ammonia stream, urea, melamine, pyrazine, purine, bipyridine, in which ammonia is generated by thermal decomposition, Examples thereof include a method in which acetanilide or piperazine is premixed with an oxide catalyst and heat-treated. As a method for containing a substance in which carbon or a part of carbon is substituted with nitrogen in the vicinity of the surface of the oxide catalyst, a transition metal carbide or transition metal carbonitride is heated in a mixed gas containing oxygen, and the oxide A method of depositing fine carbon on the catalyst, a method of depositing carbon on the oxide catalyst by a chemical vapor deposition method using an appropriate carbon source, an organic substance is decomposed by hydrothermal synthesis, etc. A method of depositing carbon or the like can be used.

酸化物触媒は、担体に担持されていればよく、担持される形態は特には限定されない。例えば、担体粉末の表面上に酸化物触媒の粒子が担持されていてもよいし、担体粉末の表面の少なくとも一部を被覆するように酸化物触媒からなる被膜が島状に形成されていてもよい。担体粉末の表面全体が酸化物触媒からなる被膜で覆われていてもよい。   The oxide catalyst only needs to be supported on a carrier, and the supported form is not particularly limited. For example, oxide catalyst particles may be supported on the surface of the carrier powder, or a film made of an oxide catalyst may be formed in an island shape so as to cover at least a part of the surface of the carrier powder. Good. The entire surface of the carrier powder may be covered with a film made of an oxide catalyst.

酸化物触媒は、反応面積の観点からより微細な粉末であることが望ましい。酸化物触媒は、例えば、粒径100nm以下のナノ粒子であることが好ましく、粒径50nm以下のナノ粒子であることがさらに好ましい。酸化物触媒の粒径は、例えば1nm以上である。   The oxide catalyst is desirably a finer powder from the viewpoint of the reaction area. For example, the oxide catalyst is preferably nanoparticles having a particle size of 100 nm or less, and more preferably nanoparticles having a particle size of 50 nm or less. The particle size of the oxide catalyst is, for example, 1 nm or more.

酸化物触媒に第4族元素が含まれる場合、その第4族元素はTi及び/又はZrであることが好ましい。また、酸化物触媒に第5族元素が含まれる場合、その5族元素はNb及び/又はTaであることが望ましい。これらの元素を含む酸化物は、酸性電解液中でも安定であり、かつ酸素欠陥が設けられた当該酸化物は、酸素還元反応及び水の酸化反応に対し活性を有している。したがって、より高い触媒活性の実現が可能となる。   When a Group 4 element is included in the oxide catalyst, the Group 4 element is preferably Ti and / or Zr. In addition, when a Group 5 element is included in the oxide catalyst, the Group 5 element is preferably Nb and / or Ta. The oxide containing these elements is stable even in an acidic electrolyte, and the oxide provided with an oxygen defect has activity for an oxygen reduction reaction and a water oxidation reaction. Therefore, higher catalytic activity can be realized.

本実施形態の水電解用電極触媒における酸化物触媒の触媒比率(酸化物触媒の重量/(酸化物触媒の重量+担体の重量))は、0wt%を超え、かつ42wt%以下であることが望ましく、32wt%以下であることがより望ましく、23wt%以下が特に望ましく、12wt%以下がより一層望ましい。触媒比率が42wt%以下(望ましくは32wt%以下)の場合、触媒同士の凝集による表面積の低下が軽減され、かつ電子伝導性に乏しい触媒の担持量が少なくなることで、担体同士、また集電電極との電気的接触点が増え、より反応で生じた電子が移動しやすくなり、高い電子伝導性を実現できる。したがって、触媒比率を上記の範囲とすることにより、高電位下での安定性及び高い触媒活性をより確実に実現できる水電解用電極触媒の提供が可能となる。   The catalyst ratio of the oxide catalyst in the electrode catalyst for water electrolysis of the present embodiment (weight of oxide catalyst / (weight of oxide catalyst + weight of support)) is more than 0 wt% and not more than 42 wt%. Desirably, 32 wt% or less is more desirable, 23 wt% or less is particularly desirable, and 12 wt% or less is even more desirable. When the catalyst ratio is 42 wt% or less (desirably 32 wt% or less), the reduction in the surface area due to aggregation of the catalysts is reduced, and the amount of the catalyst with poor electron conductivity is reduced, so that the carriers and current collectors are collected. The number of electrical contact points with the electrode is increased, electrons generated by the reaction are more easily moved, and high electron conductivity can be realized. Therefore, by setting the catalyst ratio within the above range, it is possible to provide an electrode catalyst for water electrolysis that can more reliably realize stability under high potential and high catalytic activity.

本実施形態の水電解用電極触媒において、主触媒として含まれる触媒は前記酸化物触媒であるが、Pt、Ir、Ni及びCoからなる群から選ばれる少なくともいずれか1種の元素を含む助触媒がさらに含まれていてもよい。なお、本実施形態の水電解用電極触媒においては、Pt等の貴金属は、主触媒としてではなくあくまでも助触媒として含まれるので、水電解用電極触媒全体としてみた場合には、貴金属を主触媒として用いている従来の水電解用電極触媒と比較して、高い触媒活性を有しつつ貴金属の使用量を大幅に低減することができる。   In the electrode catalyst for water electrolysis of the present embodiment, the catalyst included as the main catalyst is the oxide catalyst, but the promoter includes at least one element selected from the group consisting of Pt, Ir, Ni and Co. May further be included. In the water electrolysis electrode catalyst of the present embodiment, noble metals such as Pt are included not only as a main catalyst but as a cocatalyst. Therefore, when viewed as a whole water electrolysis electrode catalyst, the noble metal is used as a main catalyst. Compared with the conventional electrode catalyst for water electrolysis that is used, the amount of noble metal used can be greatly reduced while having high catalytic activity.

また、本実施形態の水電解用電極触媒は、担体及び主触媒ともに酸化物で構成されているので、水電解条件下(1.23V以上)でも電解液中で安定である。   Moreover, since the electrode catalyst for water electrolysis of this embodiment is composed of an oxide for both the carrier and the main catalyst, it is stable in the electrolyte even under water electrolysis conditions (1.23 V or more).

(実施形態2)
本発明の水電解装置の実施形態について説明する。図1は、本実施形態の水電解装置の一構成例である、固体高分子形水電解装置100を示す。
(Embodiment 2)
An embodiment of the water electrolysis apparatus of the present invention will be described. FIG. 1 shows a solid polymer water electrolysis apparatus 100 which is an example of the configuration of the water electrolysis apparatus of the present embodiment.

図1に示す水電解装置100は、カソードと、アノードと、前記カソードと前記アノードとの間に配置された固体高分子電解質膜(電解質層)110とを備えている。カソードは、固体高分子電解質膜110の一方の面上に配置されたカソード触媒層120と、カソード触媒層120上に配置された給電体140−1とによって構成されている。アノードは、固体高分子電解質膜110の他方の面上に配置されたアノード触媒層130と、アノード触媒層130上に配置された給電体140−2とによって構成されている。前記カソード、固体高分子電解質膜110及び前記アノードの積層体は、流体流路160−1が設けられたセパレータ150−1と、流体流路160−2が設けられたセパレータ150−2とによって挟持されている。図中、170はガスケットを示している。   A water electrolysis apparatus 100 shown in FIG. 1 includes a cathode, an anode, and a solid polymer electrolyte membrane (electrolyte layer) 110 disposed between the cathode and the anode. The cathode includes a cathode catalyst layer 120 disposed on one surface of the solid polymer electrolyte membrane 110 and a power supply body 140-1 disposed on the cathode catalyst layer 120. The anode is composed of an anode catalyst layer 130 disposed on the other surface of the solid polymer electrolyte membrane 110 and a power feeder 140-2 disposed on the anode catalyst layer 130. The laminate of the cathode, the solid polymer electrolyte membrane 110, and the anode is sandwiched between a separator 150-1 provided with a fluid channel 160-1 and a separator 150-2 provided with a fluid channel 160-2. Has been. In the figure, 170 indicates a gasket.

カソード触媒層120には、例えば白金等の、固体高分子形水電解装置のカソード触媒として公知の触媒を用いることができる。   For the cathode catalyst layer 120, a known catalyst such as platinum can be used as the cathode catalyst of the solid polymer water electrolysis apparatus.

アノード触媒層130には、固体高分子形水電解装置のアノード触媒として従来使用されている触媒(例えば、白金や酸化イリジウム等の貴金属触媒)に代わり、実施形態1で説明した水電解用電極触媒が用いられる。   The anode catalyst layer 130 is an electrode catalyst for water electrolysis described in Embodiment 1 instead of a catalyst conventionally used as an anode catalyst of a solid polymer water electrolysis apparatus (for example, a noble metal catalyst such as platinum or iridium oxide). Is used.

アノード側の流体流路160−2から水が供給されて、アノード触媒層130上で、上記反応式(1)に示す水の酸化反応が起こり、酸素及び水素イオンが発生する。カソード触媒層120上では、固体高分子電解質膜110を介してアノード側から水素イオンが供給されて、上記反応式(2)に示す反応により水素が発生する。このように、水電解装置100では、水から水素と酸素とを生成することが可能である。   Water is supplied from the anode-side fluid flow path 160-2, and the water oxidation reaction shown in the above reaction formula (1) occurs on the anode catalyst layer 130 to generate oxygen and hydrogen ions. On the cathode catalyst layer 120, hydrogen ions are supplied from the anode side through the solid polymer electrolyte membrane 110, and hydrogen is generated by the reaction shown in the above reaction formula (2). As described above, the water electrolysis apparatus 100 can generate hydrogen and oxygen from water.

本実施形態の水電解装置100は、アノード触媒として実施形態1の水電解用電極触媒を用いているので、水電解装置及びそれを含むシステムの効率向上と共に、低コスト化を図ることができる。   Since the water electrolysis apparatus 100 according to the present embodiment uses the water electrolysis electrode catalyst according to the first embodiment as an anode catalyst, the efficiency of the water electrolysis apparatus and a system including the water electrolysis apparatus can be improved and the cost can be reduced.

なお、アノード触媒層130以外の構成要素には、公知の固体高分子形水電解装置に用いられている、対応する公知の構成要素を用いることが可能であるため、ここでは詳細な説明を省略する。   The constituent elements other than the anode catalyst layer 130 may be the corresponding known constituent elements used in the known solid polymer water electrolysis apparatus, and thus detailed description thereof is omitted here. To do.

なお、ここでは固体高分子形水電解装置を例に挙げて説明したが、本実施形態の水電解装置はこれに限定されず、水を電解する様々なタイプの装置に適用できる。   Here, the solid polymer type water electrolysis device has been described as an example, but the water electrolysis device of the present embodiment is not limited to this, and can be applied to various types of devices for electrolyzing water.

[水電解用電極触媒用の担体の作製方法]
塩化スズ二水和物(SnCl2・2H2O)と、塩化アンチモン(SbCl3)、塩化ニオブ(NbCl5)又は塩化タンタル(TaCl5)とを、溶媒(エタノール)中に溶かした。得られた溶液を低温に保ちながら、当該溶液に希アンモニア水を加えた後、これをろ過した。得られたろ過物を100℃で乾燥させた。乾燥後、900℃で大気熱処理し、SnO2にSbがドープされた酸化物(Sbドープ酸化スズ(以降、ATOと記載する。))と、SnO2にNbがドープされた酸化物(Nbドープ酸化スズ(以降、NTOと記載する。))と、SnO2にTaがドープされた酸化物(Taドープ酸化スズ(以降、TTOと記載する。))とを作製した。実施例で作製した担体では、SnO2に対してドーパント元素の酸化物のモル比率を5mol%とした。なお、比較例1で用いられたSnO2からなる担体は、塩化スズ二水和物のみを用い、同様の熱処理を行い作製された。
[Method for producing carrier for electrode catalyst for water electrolysis]
Tin chloride dihydrate (SnCl 2 .2H 2 O) and antimony chloride (SbCl 3 ), niobium chloride (NbCl 5 ) or tantalum chloride (TaCl 5 ) were dissolved in a solvent (ethanol). While maintaining the resulting solution at a low temperature, diluted aqueous ammonia was added to the solution, and then this was filtered. The obtained filtrate was dried at 100 ° C. After drying, it is subjected to atmospheric heat treatment at 900 ° C., and an oxide in which SnO 2 is doped with Sb (Sb-doped tin oxide (hereinafter referred to as ATO)) and an oxide in which SnO 2 is doped with Nb (Nb-doped) Tin oxide (hereinafter referred to as NTO) and an oxide in which Ta was doped with SnO 2 (Ta-doped tin oxide (hereinafter referred to as TTO)) were prepared. In the carrier produced in the example, the molar ratio of the oxide of the dopant element to SnO 2 was 5 mol%. The carrier made of SnO 2 used in Comparative Example 1 was prepared by using the same heat treatment using only tin chloride dihydrate.

[水電解用電極触媒の作製方法]
有機ジルコニウム化合物であるジルコニウムテトラプロポキシド、又は、有機タンタル化合物であるタンタルエトキシドを出発物質として用いて、これを大気中で熱分解することにより、Zrを含みかつ酸素欠陥を有する酸化物触媒(ZrO2-x触媒)、又は、Taを含みかつ酸素欠陥を有する酸化物触媒(Ta25-x触媒)を作製した。具体的な方法は、以下のとおりである。
[Method for producing electrode catalyst for water electrolysis]
An oxide catalyst containing Zr and having an oxygen defect is obtained by thermally decomposing it in the atmosphere using zirconium tetrapropoxide as an organic zirconium compound or tantalum ethoxide as an organic tantalum compound as a starting material ( ZrO 2-x catalyst) or an oxide catalyst containing Ta and having oxygen defects (Ta 2 O 5-x catalyst) was prepared. The specific method is as follows.

三角フラスコに入れた1−メチル−2−ピロリドン200mLに対して、ジルコニウムテトラプロポキシド又はタンタルエトキシドを600mg溶解させ、12h以上スターラーで攪拌した。その後、フタロシアニン溶液に、担体としてATO、NTO又はTTOを、ジルコニウムテトラプロポキシド又はタンタルエトキシドの酸化処理後に得られると考えられる酸化物重量に対して任意の比率になるように混合し、再びスターラーで12h以上攪拌した。エバポレータで85℃に保持しながら溶媒を除去した後、真空乾燥器で85℃に保持しながら12h以上真空乾燥を施した。乾燥後、回収物をメノウ乳鉢により粉砕し、水電解用電極触媒の出発物質粉末を得た。   600 mg of zirconium tetrapropoxide or tantalum ethoxide was dissolved in 200 mL of 1-methyl-2-pyrrolidone placed in an Erlenmeyer flask and stirred with a stirrer for 12 hours or more. Thereafter, ATO, NTO or TTO as a carrier is mixed with the phthalocyanine solution so as to have an arbitrary ratio with respect to the oxide weight which is considered to be obtained after the oxidation treatment of zirconium tetrapropoxide or tantalum ethoxide. And stirred for 12 hours or longer. After removing the solvent while maintaining at 85 ° C. with an evaporator, vacuum drying was performed for 12 hours or more while maintaining at 85 ° C. with a vacuum dryer. After drying, the recovered material was pulverized with an agate mortar to obtain a starting material powder for an electrode catalyst for water electrolysis.

上記出発物質粉末をアルミナボートに載せた後、マッフル炉にて所定の温度(550〜700℃)で1hの大気熱処理を施すことで、水電解用電極触媒粉末を得た。   After placing the starting material powder on an alumina boat, an air catalyst for water electrolysis was obtained by subjecting the muffle furnace to atmospheric heat treatment at a predetermined temperature (550 to 700 ° C.) for 1 h.

(実施例1)
担体としてATOを用い、水電解用電極触媒(酸化物触媒+担体)に対するZrO2-x触媒の重量比率を58wt%とした出発物質粉末を、前記[水電解用電極触媒の作製方法]で説明した方法を用いて作製した。実施例1では、550℃で1hの大気熱処理によって、ZrO2-x/ATO水電解用電極触媒粉末を作製した。
Example 1
The starting material powder using ATO as the carrier and the weight ratio of the ZrO 2-x catalyst to the water electrocatalyst electrode catalyst (oxide catalyst + carrier) of 58 wt% is described in [Method for producing electrode catalyst for water electrolysis]. It was produced using the method described above. In Example 1, an electrode catalyst powder for ZrO 2-x / ATO water electrolysis was produced by atmospheric heat treatment at 550 ° C. for 1 h.

(実施例2)
熱処理温度を600℃とした以外は、実施例1と同じ方法でZrO2-x/ATO水電解用電極触媒粉末を作製した。
(Example 2)
A ZrO 2-x / ATO water electrolysis electrode catalyst powder was prepared in the same manner as in Example 1 except that the heat treatment temperature was 600 ° C.

(実施例3)
熱処理温度を650℃とした以外は、実施例1と同じ方法でZrO2-x/ATO水電解用電極触媒粉末を作製した。
(Example 3)
An electrode catalyst powder for ZrO 2-x / ATO water electrolysis was prepared in the same manner as in Example 1 except that the heat treatment temperature was 650 ° C.

(実施例4)
熱処理温度を700℃とした以外は、実施例1と同じ方法でZrO2-x/ATO水電解用電極触媒粉末を作製した。
Example 4
An electrode catalyst powder for ZrO 2-x / ATO water electrolysis was prepared in the same manner as in Example 1 except that the heat treatment temperature was 700 ° C.

(実施例5)
担体としてATOを用い、水電解用電極触媒(酸化物触媒+担体)に対するZrO2-x触媒の重量比率を42wt%とした出発物質粉末を、前記[水電解用電極触媒の作製方法]で説明した方法を用いて作製した。実施例5では、700℃で1hの大気熱処理によって、ZrO2-x/ATO水電解用電極触媒粉末を作製した。
(Example 5)
The starting material powder using ATO as the carrier and the weight ratio of the ZrO 2-x catalyst to the electrode catalyst for water electrolysis (oxide catalyst + carrier) being 42 wt% is explained in the above [Method for producing electrode catalyst for water electrolysis]. It was produced using the method described above. In Example 5, an electrode catalyst powder for ZrO 2-x / ATO water electrolysis was produced by atmospheric heat treatment at 700 ° C. for 1 h.

(実施例6)
担体としてATOを用い、水電解用電極触媒(酸化物触媒+担体)に対するZrO2-x触媒の重量比率を32wt%とした出発物質粉末を、前記[水電解用電極触媒の作製方法]で説明した方法を用いて作製した。実施例6では、700℃で1hの大気熱処理によって、ZrO2-x/ATO水電解用電極触媒粉末を作製した。
(Example 6)
The starting material powder using ATO as the carrier and the weight ratio of the ZrO 2-x catalyst to the electrocatalyst for water electrolysis (oxide catalyst + carrier) being 32 wt% is described in [Method for producing electrode catalyst for water electrolysis]. It was produced using the method described above. In Example 6, an electrode catalyst powder for ZrO 2-x / ATO water electrolysis was produced by atmospheric heat treatment at 700 ° C. for 1 h.

(実施例7)
担体としてATOを用い、水電解用電極触媒(酸化物触媒+担体)に対するZrO2-x触媒の重量比率を23wt%とした出発物質粉末を、前記[水電解用電極触媒の作製方法]で説明した方法を用いて作製した。実施例7では、700℃で1hの大気熱処理によって、ZrO2-x/ATO水電解用電極触媒粉末を作製した。
(Example 7)
The starting material powder using ATO as the carrier and the weight ratio of the ZrO 2-x catalyst to the water electrocatalyst electrode catalyst (oxide catalyst + carrier) being 23 wt% is described in [Method for producing electrode catalyst for water electrolysis]. It was produced using the method described above. In Example 7, an electrode catalyst powder for ZrO 2-x / ATO water electrolysis was produced by atmospheric heat treatment at 700 ° C. for 1 h.

(実施例8)
担体としてATOを用い、水電解用電極触媒(酸化物触媒+担体)に対するZrO2-x触媒の重量比率を12wt%とした出発物質粉末を、前記[水電解用電極触媒の作製方法]で説明した方法を用いて作製した。実施例8では、700℃で1hの大気熱処理によって、ZrO2-x/ATO水電解用電極触媒粉末を作製した。
(Example 8)
The starting material powder using ATO as the carrier and the weight ratio of the ZrO 2-x catalyst to the electrode catalyst for water electrolysis (oxide catalyst + carrier) being 12 wt% is explained in the above [Method for producing electrode catalyst for water electrolysis]. It was produced using the method described above. In Example 8, an electrode catalyst powder for ZrO 2-x / ATO water electrolysis was produced by atmospheric heat treatment at 700 ° C. for 1 h.

(実施例9)
担体としてNTOを用い、水電解用電極触媒(酸化物触媒+担体)に対するZrO2-x触媒の重量比率を12wt%とした出発物質粉末を、前記[水電解用電極触媒の作製方法]で説明した方法を用いて作製した。実施例9では、700℃で1hの大気熱処理によって、ZrO2-x/NTO水電解用電極触媒粉末を作製した。
Example 9
The starting material powder using NTO as the carrier and the weight ratio of the ZrO 2-x catalyst to the water electrocatalyst electrode catalyst (oxide catalyst + carrier) being 12 wt% is described in [Method for producing electrode catalyst for water electrolysis]. It was produced using the method described above. In Example 9, an electrode catalyst powder for ZrO 2-x / NTO water electrolysis was prepared by atmospheric heat treatment at 700 ° C. for 1 h.

(実施例10)
担体としてTTOを用い、水電解用電極触媒(酸化物触媒+担体)に対するZrO2-x触媒の重量比率を12wt%とした出発物質粉末を、前記[水電解用電極触媒の作製方法]で説明した方法を用いて作製した。実施例10では、700℃で1hの大気熱処理によって、ZrO2-x/TTO水電解用電極触媒粉末を作製した。
(Example 10)
The starting material powder using TTO as the carrier and the weight ratio of the ZrO 2-x catalyst to the electrode catalyst for water electrolysis (oxide catalyst + carrier) being 12 wt% is explained in the above [Method for producing electrode catalyst for water electrolysis]. It was produced using the method described above. In Example 10, an electrode catalyst powder for ZrO 2-x / TTO water electrolysis was produced by atmospheric heat treatment at 700 ° C. for 1 h.

(実施例11)
担体としてNTOを用い、水電解用電極触媒(酸化物触媒+担体)に対するTa25-x触媒の重量比率を12wt%とした出発物質粉末を、前記[水電解用電極触媒の作製方法]で説明した方法を用いて作製した。実施例11では、700℃で1hの大気熱処理によって、Ta25-x/NTO水電解用電極触媒粉末を作製した。
(Example 11)
Starting material powder using NTO as a support and having a weight ratio of Ta 2 O 5-x catalyst to an electrode catalyst for water electrolysis (oxide catalyst + support) of 12 wt% is described in [Method for preparing electrode catalyst for water electrolysis]. It was produced using the method described in 1. In Example 11, an electrode catalyst powder for Ta 2 O 5-x / NTO water electrolysis was prepared by atmospheric heat treatment at 700 ° C. for 1 h.

(実施例12)
担体としてNTOを用い、水電解用電極触媒(酸化物触媒+担体)に対するZrO2-x触媒の重量比率を12wt%とした出発物質粉末を、前記[水電解用電極触媒の作製方法]で説明した方法を用いて作製した。実施例12では、700℃で1hの大気熱処理後に、さらに1%水素雰囲気にて200℃で1hの還元熱処理を施して、ZrO2-x/NTO水電解用電極触媒粉末を作製した。
(Example 12)
The starting material powder using NTO as the carrier and the weight ratio of the ZrO 2-x catalyst to the water electrocatalyst electrode catalyst (oxide catalyst + carrier) being 12 wt% is described in [Method for producing electrode catalyst for water electrolysis]. It was produced using the method described above. In Example 12, after an atmospheric heat treatment at 700 ° C. for 1 h, a reduction heat treatment was further performed at 200 ° C. for 1 h in a 1% hydrogen atmosphere to produce an electrode catalyst powder for ZrO 2-x / NTO water electrolysis.

(実施例13)
担体としてNTOを用い、水電解用電極触媒(酸化物触媒+担体)に対するZrO2-x触媒の重量比率を12wt%とした出発物質粉末を、前記[水電解用電極触媒の作製方法]で説明した方法を用いて作製した。実施例13では、700℃で1hの大気熱処理後、得られた物質をIrO2コロイド溶液中に分散させて、その後に500℃で1hの大気熱処理を施すことにより、1wt%のIrO2を担持させたZrO2-x/NTO水電解用電極触媒粉末を作製した。
(Example 13)
The starting material powder using NTO as the carrier and the weight ratio of the ZrO 2-x catalyst to the water electrocatalyst electrode catalyst (oxide catalyst + carrier) being 12 wt% is described in [Method for producing electrode catalyst for water electrolysis]. It was produced using the method described above. In Example 13, after carrying out atmospheric heat treatment at 700 ° C. for 1 h, the obtained substance was dispersed in an IrO 2 colloidal solution and then subjected to atmospheric heat treatment at 500 ° C. for 1 h, thereby supporting 1 wt% of IrO 2 . An electrode catalyst powder for ZrO 2-x / NTO water electrolysis was produced.

(比較例1)
担体としてSnO2を用い、水電解用電極触媒(酸化物触媒+担体)に対するZrO2-x触媒の重量比率を58wt%とした出発物質粉末を、前記[水電解用電極触媒の作製方法]で説明した方法を用いて作製した。比較例1では、550℃で1hの大気熱処理によって、ZrO2-x/SnO2水電解用電極触媒粉末を作製した。
(Comparative Example 1)
Starting material powder using SnO 2 as a support and the weight ratio of the ZrO 2-x catalyst to the electrocatalyst for water electrolysis (oxide catalyst + support) of 58 wt% was obtained in the above-mentioned [Method for preparing electrocatalyst for water electrolysis]. Prepared using the method described. In Comparative Example 1, an electrode catalyst powder for ZrO 2-x / SnO 2 water electrolysis was produced by atmospheric heat treatment at 550 ° C. for 1 h.

実施例及び比較例で得られた水電解用電極触媒の評価を、以下のとおり行った。   Evaluation of the electrocatalyst for water electrolysis obtained in Examples and Comparative Examples was performed as follows.

[酸素欠陥量の測定]
実施例1〜13及び比較例1の水電解用電極触媒について、不活性ガス融解赤外線吸収法による元素分析により酸素欠陥量を測定したところ、いずれも5〜7at%程度であった。
[Measurement of oxygen defects]
About the electrode catalyst for water electrolysis of Examples 1-13 and the comparative example 1, when the amount of oxygen defects was measured by the elemental analysis by an inert gas fusion infrared absorption method, all were about 5-7 at%.

[X線回折による組成分析]
実施例1〜4及び6〜8の水電解用電極触媒粉末について、粉末X線回折測定を行った。測定には、CuKα線を用いた。実施例1〜4及び6〜8のX線回折パターンを図2及び図3に示す。実施例1〜4及び6〜8の全ての水電解用電極触媒粉末において、担体由来のATOのピーク(ICDDPDF01−075−8093)と酸化物触媒由来の正方晶ZrO2(t−ZrO2:ICDD−PDF01−072−7115)のピークが確認できた。さらに、実施例1〜4及び6〜8全ての水電解用電極触媒粉末において、担体の分解がなく、かつ出発物質は大気熱処理温度550℃からt−ZrO2として結晶化していることを確認した。また、酸化物触媒の比率に応じて、t−ZrO2のピーク強度が変化していることも確認した。
[Composition analysis by X-ray diffraction]
The electrode catalyst powder for water electrolysis of Examples 1 to 4 and 6 to 8 was subjected to powder X-ray diffraction measurement. CuKα rays were used for the measurement. The X-ray diffraction patterns of Examples 1 to 4 and 6 to 8 are shown in FIGS. In all the electrocatalyst powders for water electrolysis of Examples 1 to 4 and 6 to 8, the peak of ATO derived from the support (ICDDPDF01-075-8093) and the tetragonal ZrO 2 derived from the oxide catalyst (t-ZrO 2 : ICDD) -PDF01-072-7115) was confirmed. Furthermore, in all the electrocatalyst powders for water electrolysis of Examples 1 to 4 and 6 to 8, it was confirmed that there was no decomposition of the support and that the starting material was crystallized from the atmospheric heat treatment temperature of 550 ° C. to t-ZrO 2 . . It was also confirmed that the peak intensity of t-ZrO 2 was changed according to the ratio of the oxide catalyst.

[活性評価のための電気化学測定]
(触媒インク及び作用極の作製)
実施例又は比較例で得られた水電解用電極触媒粉末10mgに、2−プロパノールと蒸留水とを各1mLずつ加えた混合溶媒及び5wt%のペルフルオロスルホン酸イオノマーを加えて超音波分散し、これを触媒インクとした。次に、φ6mmとした集電電極上に、担持量が1.5mgcm-2となるように、触媒インクの塗布及び乾燥を繰り返したものを作用極とした。
[Electrochemical measurement for activity evaluation]
(Preparation of catalyst ink and working electrode)
To 10 mg of the electrocatalyst powder for water electrolysis obtained in the examples or comparative examples, a mixed solvent obtained by adding 1 mL each of 2-propanol and distilled water and 5 wt% perfluorosulfonic acid ionomer were added and ultrasonically dispersed. Was used as a catalyst ink. Next, the working electrode was obtained by repeatedly applying and drying the catalyst ink so that the supported amount was 1.5 mgcm −2 on the current collecting electrode having a diameter of 6 mm.

(電気化学測定)
電気化学測定は、三電極式セルを用いて行った。上記方法で作製された作用極を用い、対極には白金網を用い、参照極には銀・塩化銀(Ag/AgCl、3MNaCl)電極を用いた。以下、電位は、銀・塩化銀電極(Ag/AgCl)基準とする。溶液には、アルゴンバブリングにより酸素を脱気した0.1Mの硫酸溶液を用い、室温下で測定を行った。電気化学測定には、走査範囲0.4〜1.0V、走査速度50mVs-1でサイクリックボルタモグラムを40サイクル測定した後、活性評価として走査範囲0.8V〜1.8V、走査速度5mVs-1でサイクリックボルタムグラムを7サイクル測定し、7サイクル目の1.8Vでの電流密度を活性評価に用いた。
(Electrochemical measurement)
Electrochemical measurement was performed using a three-electrode cell. The working electrode produced by the above method was used, a platinum net was used for the counter electrode, and a silver / silver chloride (Ag / AgCl, 3M NaCl) electrode was used for the reference electrode. Hereinafter, the potential is based on a silver / silver chloride electrode (Ag / AgCl). As the solution, a 0.1 M sulfuric acid solution degassed by argon bubbling was used, and the measurement was performed at room temperature. The electrochemical measurement, scanning range 0.4~1.0V, after the cyclic voltammograms were 40 cycles measured at a scan rate 50 mVs -1, scan range 0.8V~1.8V as activity evaluation, a scanning rate of 5MVs -1 The cyclic voltamgram was measured for 7 cycles, and the current density at 1.8 V in the 7th cycle was used for activity evaluation.

(活性評価結果)
表1に実施例1〜4及び比較例1の水電解用電極触媒の活性評結果を、表2に実施例4〜8の水電解用電極触媒の活性評結果を、表3に実施例8〜13の水電解用電極触媒の活性評結果を、それぞれ示す。なお、表1〜表3には、各実施例及び比較例の水電解用電極触媒の構成、触媒比率(wt%)、触媒比率(at%)及び水電解用電極触媒作製時の熱処理温度も示されている。ここで、触媒比率(at%)は、触媒元素の原子数/(触媒元素の原子数+Snの原子数)×100で算出している。
(Activity evaluation result)
Table 1 shows the activity evaluation results of the water electrolysis electrode catalysts of Examples 1 to 4 and Comparative Example 1, Table 2 shows the activity evaluation results of the water electrolysis electrode catalysts of Examples 4 to 8, and Table 3 shows the activity evaluation results of Example 8. The activity evaluation result of the electrode catalyst for water electrolysis of -13 is shown, respectively. In Tables 1 to 3, the configurations of the electrocatalysts for water electrolysis of each Example and Comparative Example, the catalyst ratio (wt%), the catalyst ratio (at%), and the heat treatment temperature when preparing the electrocatalyst for water electrolysis are also shown. It is shown. Here, the catalyst ratio (at%) is calculated by the number of catalyst element atoms / (the number of catalyst element atoms + the number of Sn atoms) × 100.

表1から明らかなように、水電解用電極触媒作製時の熱処理温度がより高い水電解用電極触媒の方がより高い活性を有していた。これは熱処理温度による触媒の結晶性が活性へ影響を与えていると考えられる。また、表1〜表3に示すように、全ての実施例の水電解用電極触媒が、担体が本発明の要件を満たさない比較例1の水電解用電極触媒よりも高い活性が得られた。これは、担体の電子伝導性によるものであると考えられる。他元素がドープされていない酸化スズは、酸素欠陥がわずかしかなく電子伝導性が低いので、反応で生じた電子の電子伝導パスとして不十分だからである。   As is apparent from Table 1, the water electrolysis electrode catalyst having a higher heat treatment temperature during the production of the water electrolysis electrode catalyst had higher activity. This is considered that the crystallinity of the catalyst due to the heat treatment temperature affects the activity. Moreover, as shown in Tables 1 to 3, the water electrolysis electrode catalysts of all Examples had higher activity than the water electrolysis electrode catalyst of Comparative Example 1 in which the carrier did not satisfy the requirements of the present invention. . This is considered to be due to the electron conductivity of the carrier. This is because tin oxide that is not doped with other elements has few oxygen defects and low electron conductivity, so that it is insufficient as an electron conduction path for electrons generated in the reaction.

表2から明らかなように、触媒比率(触媒担持量)が42wt%以下の場合に、高い活性を有していており、これは触媒同士の凝集による表面積の低下が軽減されたためと、電子伝導性に乏しい触媒の担持量が少なくなることで、担体同士、また集電電極との電気的接触点が増え、より反応で生じた電子が移動しやすくなったためである。   As is apparent from Table 2, when the catalyst ratio (catalyst loading) is 42 wt% or less, the catalyst has a high activity, and this is because the decrease in the surface area due to the aggregation of the catalysts is reduced. This is because the amount of the catalyst loaded with poor properties is reduced, so that the number of electrical contact points between the carriers and the collecting electrode is increased, and electrons generated by the reaction are more easily moved.

また、表3に示すとおり、実施例8〜10の比較によれば、担体にNTOを用いた場合の活性が最も高く、次にATO、その次にTTOの順であった。また、実施例9と実施例11との比較によれば、触媒としてはTa25-xよりもZrO2-xの方が活性が高かった。また、還元処理を施した実施例12の水電解用電極触媒は、還元処理を施さなかった実施例9の水電解用電極触媒よりも活性が大きく向上した。さらに、実施例13の結果から、助触媒としてIrO2を加えることで更に活性が向上することも確認した。 Moreover, as shown in Table 3, according to the comparison of Examples 8 to 10, the activity was highest when NTO was used as the carrier, followed by ATO and then TTO. Further, according to a comparison between Example 9 and Example 11, the activity of ZrO 2-x was higher than that of Ta 2 O 5-x as a catalyst. Moreover, the activity of the electrode catalyst for water electrolysis of Example 12 subjected to the reduction treatment was greatly improved as compared with the electrode catalyst for water electrolysis of Example 9 that was not subjected to the reduction treatment. Furthermore, from the results of Example 13, it was confirmed that the activity was further improved by adding IrO 2 as a promoter.

以上の結果より、本発明の水電解用電極触媒の優位性が実証された。   From the above results, the superiority of the electrode catalyst for water electrolysis of the present invention was demonstrated.

Figure 2015129347
Figure 2015129347

Figure 2015129347
Figure 2015129347

Figure 2015129347
Figure 2015129347

[水電解試験]
実施例12及び比較例1の水電解用電極触媒について、水電解試験を行った。水電解試験では、実施形態2で説明した、図1に示す構成を有する水電解装置100を使用した。固体高分子電解質膜110には、Nafion112(登録商標、デュポン社製)を用いた。カソード触媒層120には20wt%白金担持カーボン(Pt/C)を用い、アノード触媒層130には、評価対象である実施例11の水電解用電極触媒又は比較例1の水電解用電極触媒を用いた。セパレータ150−1及び150−2にはチタン(Ti)表面に金を被覆したものを用いた。また、給電体140−1及び140−2には、金が表面被覆されたチタン製メッシュを用いた。ガスケット170にはゴムパッキンを用いた。アノード(アノード側の流体流路160−2)に純水を供給して電流−電圧曲線を測定した。得られた結果における2.0Vでの電流密度を表4に示す。表4の結果から明らかなように、本発明にかかる水電解用電極触媒を用いることにより、水電解装置としての性能が大きく向上した。また、本発明にかかる水電解用電極触媒は、2Vという高電位でも触媒活性を有していることもわかった。
[Water electrolysis test]
A water electrolysis test was performed on the electrode catalyst for water electrolysis of Example 12 and Comparative Example 1. In the water electrolysis test, the water electrolysis apparatus 100 having the configuration shown in FIG. For the solid polymer electrolyte membrane 110, Nafion 112 (registered trademark, manufactured by DuPont) was used. The cathode catalyst layer 120 is made of 20 wt% platinum-supported carbon (Pt / C), and the anode catalyst layer 130 is the electrode catalyst for water electrolysis of Example 11 or the electrode catalyst for water electrolysis of Comparative Example 1 that is the object of evaluation. Using. As separators 150-1 and 150-2, a titanium (Ti) surface coated with gold was used. In addition, titanium meshes whose surfaces were coated with gold were used for the power feeding bodies 140-1 and 140-2. A rubber packing was used for the gasket 170. Pure water was supplied to the anode (anode-side fluid flow path 160-2), and a current-voltage curve was measured. Table 4 shows the current density at 2.0 V in the obtained results. As is clear from the results in Table 4, the performance as a water electrolysis apparatus was greatly improved by using the water electrolysis electrode catalyst according to the present invention. It was also found that the electrocatalyst for water electrolysis according to the present invention has catalytic activity even at a high potential of 2V.

Figure 2015129347
Figure 2015129347

[耐久性試験]
実施例12の水電解用電極触媒について、水電解試験と同様の装置を用いて耐久性試験を行った。電流密度を0.5Acm-2とし、定電流測定を1000時間行った。初期特性(1時間後)と1000時間後の特性とを比較した結果を表5に示す。表5の結果から明らかなように、1000時間後も大きな触媒性能の低下はなく、高電位、酸化雰囲気下における触媒活性の安定性はとても高いことがわかる。
[Durability test]
About the electrode catalyst for water electrolysis of Example 12, the durability test was done using the apparatus similar to a water electrolysis test. The current density was 0.5 Acm −2 and constant current measurement was performed for 1000 hours. Table 5 shows the result of comparing the initial characteristics (after 1 hour) and the characteristics after 1000 hours. As is apparent from the results in Table 5, it can be seen that even after 1000 hours, there is no significant decrease in the catalyst performance, and the stability of the catalyst activity under a high potential and oxidizing atmosphere is very high.

Figure 2015129347
Figure 2015129347

本発明にかかる水電解用電極触媒は、高電位下において安定性を有し、かつ高活性である。特に、水電解装置などのエネルギーデバイスにおいては、従来の貴金属を含む水電解用電極触媒の代替となることでコストの大きな低減につながり、社会への普及を推し進める可能性がある点で有用である。   The electrode catalyst for water electrolysis according to the present invention has stability and high activity under a high potential. Especially in energy devices such as water electrolysis devices, it is useful in that it can lead to a significant reduction in costs by replacing a conventional electrocatalyst for water electrolysis that contains precious metals, and may promote the spread to society. .

100 水電解装置
110 固体高分子電解質膜
120 カソード触媒層
130 アノード触媒層
140−1,140−2 給電体
150−1,150−2 セパレータ
160−1、160−2 流体流路
170 ガスケット
DESCRIPTION OF SYMBOLS 100 Water electrolysis apparatus 110 Solid polymer electrolyte membrane 120 Cathode catalyst layer 130 Anode catalyst layer 140-1, 140-2 Feed body 150-1, 150-2 Separator 160-1, 160-2 Fluid flow path 170 Gasket

Claims (9)

Sn、Sb、Nb、Ta及びTiからなる群から選ばれる少なくともいずれか1種の元素を含み、かつ電子伝導性を有する酸化物を含む担体と、
前記担体に担持された、4族元素及び5族元素からなる群から選ばれる少なくともいずれか1種の元素を含み、かつ酸素欠陥を有する酸化物触媒と、
を含む、水電解用電極触媒。
A support containing an oxide having at least one element selected from the group consisting of Sn, Sb, Nb, Ta and Ti and having an electron conductivity;
An oxide catalyst having at least one element selected from the group consisting of Group 4 elements and Group 5 elements supported on the carrier and having oxygen defects;
An electrode catalyst for water electrolysis, comprising:
前記水電解用電極触媒における前記酸化物触媒の触媒比率(前記酸化物触媒の重量/(前記酸化物触媒の重量+前記担体の重量))が、0wt%を超え、かつ42wt%以下である、
請求項1に記載の水電解用電極触媒。
The catalyst ratio of the oxide catalyst in the electrode catalyst for water electrolysis (weight of the oxide catalyst / (weight of the oxide catalyst + weight of the support)) is more than 0 wt% and not more than 42 wt%.
The electrode catalyst for water electrolysis according to claim 1.
前記担体は、Snを含みかつ電子伝導性を有する酸化物を含む、
請求項1又は2に記載の水電解用電極触媒。
The carrier includes Sn and an oxide having electronic conductivity.
The electrode catalyst for water electrolysis according to claim 1 or 2.
前記担体は、SnO2にSb、Nb及びTaからなる群から選ばれる少なくともいずれか1種の元素をドープすることで得られた酸化物を含む、
請求項3に記載の水電解用電極触媒。
The carrier includes an oxide obtained by doping SnO 2 with at least one element selected from the group consisting of Sb, Nb and Ta.
The electrode catalyst for water electrolysis according to claim 3.
前記酸化物触媒が、N及びCからなる群から選ばれる少なくともいずれか1種の元素をさらに含む、
請求項1〜4のいずれか1項に記載の水電解用電極触媒。
The oxide catalyst further comprises at least one element selected from the group consisting of N and C;
The electrode catalyst for water electrolysis according to any one of claims 1 to 4.
前記4族元素がTi及びZrである、
請求項1〜5のいずれか1項に記載の水電解用電極触媒。
The Group 4 elements are Ti and Zr;
The electrode catalyst for water electrolysis according to any one of claims 1 to 5.
前記5族元素がNb及びTaである、
請求項1〜6のいずれか1項に記載の水電解用電極触媒。
The Group 5 elements are Nb and Ta,
The electrode catalyst for water electrolysis according to any one of claims 1 to 6.
Pt、Ir、Ni及びCoからなる群から選ばれる少なくともいずれか1種の元素を含む助触媒をさらに含む、
請求項1〜7のいずれか1項に記載の水電解用電極触媒。
And further comprising a promoter containing at least one element selected from the group consisting of Pt, Ir, Ni and Co.
The electrode catalyst for water electrolysis according to any one of claims 1 to 7.
請求項1〜8のいずれか1項に記載の水電解用電極触媒を含むアノードと、
カソードと、
を備えた水電解装置。
An anode comprising the electrocatalyst for water electrolysis according to any one of claims 1 to 8,
A cathode,
Water electrolyzer with
JP2014246942A 2013-12-06 2014-12-05 Electrode catalyst for water electrolysis and water electrolyzer using the same Pending JP2015129347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014246942A JP2015129347A (en) 2013-12-06 2014-12-05 Electrode catalyst for water electrolysis and water electrolyzer using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013252637 2013-12-06
JP2013252637 2013-12-06
JP2014246942A JP2015129347A (en) 2013-12-06 2014-12-05 Electrode catalyst for water electrolysis and water electrolyzer using the same

Publications (1)

Publication Number Publication Date
JP2015129347A true JP2015129347A (en) 2015-07-16

Family

ID=53273163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014246942A Pending JP2015129347A (en) 2013-12-06 2014-12-05 Electrode catalyst for water electrolysis and water electrolyzer using the same

Country Status (2)

Country Link
JP (1) JP2015129347A (en)
WO (1) WO2015083383A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017202462A (en) * 2016-05-12 2017-11-16 昭和電工株式会社 Oxygen reduction catalyst and method for producing the same
KR20190034851A (en) * 2017-09-25 2019-04-03 주식회사 엘지화학 Catalyst composition of electrode for electrolysis, method for preparing the same and method for preparing electrode for electrolysis using the same
WO2019117199A1 (en) * 2017-12-14 2019-06-20 国立研究開発法人理化学研究所 Manganese oxide for water decomposition catalysts, manganese oxide-carbon mixture, manganese oxide composite electrode material, and respective methods for producing these materials
WO2019233247A1 (en) * 2018-06-05 2019-12-12 苏州庚泽新材料科技有限公司 Active material containing sn-sb-transition metal element, preparation method thereof, and ozone-generating electrode containing the active material
JP2020122172A (en) * 2019-01-29 2020-08-13 国立研究開発法人理化学研究所 Water electrolysis laminate and water electrolysis apparatus using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3333127B1 (en) 2015-08-04 2021-01-20 Mitsui Mining and Smelting Co., Ltd. Electrode catalyst for fuel cells comprising tin oxide, membrane electrode assembly, and solid polymer fuel cell
JP6886655B2 (en) * 2017-06-28 2021-06-16 国立大学法人九州大学 A metal complex and a fuel cell or solar cell to which the metal complex is applied.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500745B2 (en) * 2005-08-03 2010-07-14 ペルメレック電極株式会社 Method for producing electrode for electrolysis
JP5365231B2 (en) * 2009-02-06 2013-12-11 日産自動車株式会社 Method for producing conductive oxide carrier
JP2012017490A (en) * 2010-07-06 2012-01-26 Sumitomo Chemical Co Ltd Electrode catalyst
JP2013023728A (en) * 2011-07-20 2013-02-04 Sharp Corp Electrolytic cell, and device and method for producing gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017202462A (en) * 2016-05-12 2017-11-16 昭和電工株式会社 Oxygen reduction catalyst and method for producing the same
KR20190034851A (en) * 2017-09-25 2019-04-03 주식회사 엘지화학 Catalyst composition of electrode for electrolysis, method for preparing the same and method for preparing electrode for electrolysis using the same
KR102320011B1 (en) * 2017-09-25 2021-11-02 주식회사 엘지화학 Catalyst composition of electrode for electrolysis, method for preparing the same and method for preparing electrode for electrolysis using the same
WO2019117199A1 (en) * 2017-12-14 2019-06-20 国立研究開発法人理化学研究所 Manganese oxide for water decomposition catalysts, manganese oxide-carbon mixture, manganese oxide composite electrode material, and respective methods for producing these materials
WO2019233247A1 (en) * 2018-06-05 2019-12-12 苏州庚泽新材料科技有限公司 Active material containing sn-sb-transition metal element, preparation method thereof, and ozone-generating electrode containing the active material
JP2020122172A (en) * 2019-01-29 2020-08-13 国立研究開発法人理化学研究所 Water electrolysis laminate and water electrolysis apparatus using the same

Also Published As

Publication number Publication date
WO2015083383A1 (en) 2015-06-11

Similar Documents

Publication Publication Date Title
Wu et al. Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting
Tian et al. Study of the active sites in porous nickel oxide nanosheets by manganese modulation for enhanced oxygen evolution catalysis
Bera et al. Density of states, carrier concentration, and flat band potential derived from electrochemical impedance measurements of N-doped carbon and their influence on electrocatalysis of oxygen reduction reaction
Zhang et al. Boosting overall water splitting via FeOOH nanoflake-decorated PrBa0. 5Sr0. 5Co2O5+ δ nanorods
Mamaca et al. Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction
Audichon et al. Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile
US7976989B2 (en) Precious metal oxide catalyst for water electrolysis
WO2015083383A1 (en) Electrode catalyst for water electrolysis, and water electrolysis device using the same
Lee et al. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions
Shan et al. NanoCOT: low-cost nanostructured electrode containing carbon, oxygen, and titanium for efficient oxygen evolution reaction
Hou et al. Graphene dots embedded phosphide nanosheet-assembled tubular arrays for efficient and stable overall water splitting
Ghoshal et al. ZIF 67 based highly active electrocatalysts as oxygen electrodes in water electrolyzer
EP2608297A1 (en) Precious metal oxide catalyst for water electrolysis
JP6372695B2 (en) Conductive particles, carrier material using the same, fuel cell device and water electrolysis device
CN106132535A (en) Oxygen reduction catalyst and manufacture method thereof
JPWO2019117199A1 (en) Manganese oxide for water splitting catalyst, manganese oxide-carbon mixture, manganese oxide composite electrode material and method for producing them
Christy et al. Optimizing the surface characteristics of La0. 6Sr0. 4CoO3− δ perovskite oxide by rapid flash sintering technology for easy fabrication and fast reaction kinetics in alkaline medium
Lv et al. Synthesis and activities of IrO2/Ti1− xWxO2 electrocatalyst for oxygen evolution in solid polymer electrolyte water electrolyzer
Liu et al. Valence regulation of Ru/Mo2C heterojunction for efficient acidic overall water splitting
JPWO2011049173A1 (en) Direct liquid fuel cell catalyst and fuel cell using the catalyst
TW201111039A (en) Catalyst, method for producing the same, and use thereof
Wang et al. Characterization and electrocatalytic properties of electrospun Pt‐IrO2 nanofiber catalysts for oxygen evolution reaction
JP5539892B2 (en) Catalyst, method for producing the same and use thereof
EP2218503A1 (en) Electrode catalyst and oxygen reduction electrode for positive electrode using the electrode catalyst
Li et al. Trace Bimetallic Iron/Manganese Co-Doped N-Ketjenblack Carbon Electrocatalyst for Robust Oxygen Reduction Reaction