JP5344280B2 - Electrophotographic image forming apparatus - Google Patents

Electrophotographic image forming apparatus Download PDF

Info

Publication number
JP5344280B2
JP5344280B2 JP2008215636A JP2008215636A JP5344280B2 JP 5344280 B2 JP5344280 B2 JP 5344280B2 JP 2008215636 A JP2008215636 A JP 2008215636A JP 2008215636 A JP2008215636 A JP 2008215636A JP 5344280 B2 JP5344280 B2 JP 5344280B2
Authority
JP
Japan
Prior art keywords
light
photoconductor
image forming
amount
light irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008215636A
Other languages
Japanese (ja)
Other versions
JP2010049190A (en
Inventor
橋 大 介 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008215636A priority Critical patent/JP5344280B2/en
Publication of JP2010049190A publication Critical patent/JP2010049190A/en
Application granted granted Critical
Publication of JP5344280B2 publication Critical patent/JP5344280B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To automatically release electrostatic fatigue of a photoreceptor, to automatically reduce VL and VR increase, and to suppress the electrostatic fatigue more effectively than ever. <P>SOLUTION: In an image forming apparatus having the photoreceptor 12 and an optical antistatic device 17, optical quantity of 10 W/m<SP>2</SP>is radiated from the optical antistatic device to the photoreceptor. At this optical quantity, a reduction speed absolute value B or C of VL or VR when charging is not performed, the photoreceptor is driven at the photoreceptor speed, and light is radiated from the optical antistatic device to the photoreceptor is equal to or larger than increase speed absolute value A of VL or VR when the photoreceptor is driven, charging is performed, electricity is removed in an existing image forming condition where the photoreceptor speed is 630 mm/s, photoreceptor charging potential for image forming is -800 V, and antistatic light quantity after image forming is 1 W/m<SP>2</SP>. In this condition, continuous repetition of image forming increases residual potential in the photoreceptor. Alternatively, an image is formed in the existing image forming condition, and the electricity of the photoreceptor is removed at a predetermined timing and at photoirradiation mode light quantity of 30 W/m<SP>2</SP>. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、帯電した感光体に画像光を露光して静電潜像を形成し、これを現像してトナー像として用紙に転写する、いわゆる電子写真方式の画像形成装置に関し、特に、これに限定する意図ではないが、電荷発生材料としてチタニルフタロシアニンを含有する感光体の、VL(感光体を露光しベタ画像を形成する際のベタ画像部の感光体表面電位),VR(除電後の感光体表面残留電位)の上昇を防止する技術に関する。本発明の画像形成装置は、例えばプリンタ,複写機およびファクシミリに用いることができる。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called electrophotographic image forming apparatus in which image light is exposed to a charged photoreceptor to form an electrostatic latent image, which is developed and transferred to a sheet as a toner image. Although not intended to be limited, VL (photoconductor surface potential of a solid image portion when a photoconductor is exposed to form a solid image), VR (photosensitive after static elimination) of a photoconductor containing titanyl phthalocyanine as a charge generation material. The present invention relates to a technique for preventing an increase in body surface residual potential). The image forming apparatus of the present invention can be used in, for example, a printer, a copying machine, and a facsimile.

特開2004−286887号公報JP 2004-286887 A 特開2007−233116号公報JP 2007-233116 A 特開2007−233348号公報JP 2007-233348 A 特開2008−122740号公報。Japanese Patent Application Laid-Open No. 2008-122740.

電子写真式画像形成において感光体は繰り返し使用により疲労しVLが上昇して濃度低下,地汚れなどの異常画像を生じるようになる。高感度の感光体であるほどこの傾向が強く、電荷発生材料を含む高感度有機半導体において顕著である。電荷発生材料には例えばフタロシアニン類があり、チタニルフタロシアニンがよく用いられる(特許文献1〜4)。   In electrophotographic image formation, the photoreceptor is fatigued by repeated use, and VL rises, resulting in abnormal images such as density reduction and background smearing. The higher the sensitivity of the photoconductor, the stronger the tendency, and this is remarkable in the high-sensitivity organic semiconductor including the charge generation material. Examples of the charge generation material include phthalocyanines, and titanyl phthalocyanine is often used (Patent Documents 1 to 4).

電子写真式画像形成装置に用いられる電子写真感光体は、一般的には、導電性支持体上に直接または中間層を介して電荷発生層を形成し、その上に電荷輸送層を設けた所謂、機能分離型積層感光体が主流である。更には、機械的もしくは化学的耐久性向上のため必要に応じて感光体最表面に表面保護層を形成する。この機能分離型積層感光体において、表面が帯電された感光体が露光されたとき、光は電荷輸送層を透過し、電荷発生層中の電荷発生材料に吸収される。電荷発生材料はこの光を吸収して電荷担体を発生する。発生した電荷担体は電荷輸送層に注入され帯電によって生じている電界に沿って電荷輸送層を移動して感光体の表面電荷を中和する。その結果感光体の表面に静電潜像が形成される。しかし、電荷担体が電荷輸送層を移動する過程において電荷輸送層のバルクに生成したトラップに電荷担体が捕獲されると、感光体表面電荷を中和できないだけでなく電界強度を弱めることになる。つまり感光体露光部において表面の電荷を中和しにくくなるため、VL,VRが上昇してしまう。   In general, an electrophotographic photoreceptor used in an electrophotographic image forming apparatus is a so-called so-called electrophotographic photosensitive member in which a charge generation layer is formed directly or via an intermediate layer on a conductive support and a charge transport layer is provided thereon. The function-separated type laminated photoconductor is the mainstream. Furthermore, a surface protective layer is formed on the outermost surface of the photoreceptor as necessary to improve mechanical or chemical durability. In this function-separated laminated photoconductor, when a photoconductor whose surface is charged is exposed, light passes through the charge transport layer and is absorbed by the charge generation material in the charge generation layer. The charge generating material absorbs this light and generates charge carriers. The generated charge carriers are injected into the charge transport layer and move along the electric field generated by charging to neutralize the surface charge of the photoreceptor. As a result, an electrostatic latent image is formed on the surface of the photoreceptor. However, if the charge carriers are trapped in the trap generated in the bulk of the charge transport layer in the process of moving the charge carriers in the charge transport layer, not only can the surface charge of the photoreceptor be neutralized, but also the electric field strength is weakened. That is, it becomes difficult to neutralize the charge on the surface in the photosensitive member exposure portion, and thus VL and VR increase.

VL,VRが上昇すると、静電潜像を現像するために現像装置と感光体の間に印加される現像バイアスとVLの電位差である現像ポテンシャルが小さくなるため画像濃度の低下を引き起こしてしまう。このような現像ポテンシャルの低下に対して、VLの上昇量を検知して、その上昇量を現像バイアスおよび感光体帯電電位に上乗せし現像ポテンシャルを一定に制御する技術が用いられている。   When VL and VR rise, the developing potential, which is the potential difference between the developing bias applied between the developing device and the photosensitive member for developing the electrostatic latent image, becomes smaller, and the image density is lowered. For such a decrease in the development potential, a technique is used in which the increase amount of VL is detected, and the increase amount is added to the development bias and the photosensitive member charging potential to control the development potential to be constant.

VLが上昇すると現像バイアスだけでなく帯電電位にもVL上昇量を上乗せするのは、現像バイアスのみを高くすると帯電電位と現像バイアスの差が小さくなり、感光体非露光部への現像が起こりやすくなりかぶり濃度が高くなってしまうからであるが、感光体帯電電位を高くすると電界強度が強くなりすぎることによる絶縁破壊が危惧されるため感光体帯電電位を高くするには限界がある。よってVL上昇量を現像バイアスと帯電電位に上乗せする制御では、VL上昇量の限界値は帯電電位の限界値によってきまるため、VL上昇量が限界値を上回る場合は適切な制御を行うことができない。   When VL rises, the VL rise amount is added to the charging potential as well as the developing bias. When only the developing bias is increased, the difference between the charging potential and the developing bias becomes small, and development to the non-exposed portion of the photoreceptor is likely to occur. This is because the fog density increases, but there is a limit in increasing the photosensitive member charging potential because there is a risk of dielectric breakdown due to the fact that the electric field strength becomes too strong when the photosensitive member charging potential is increased. Therefore, in the control in which the VL increase amount is added to the development bias and the charging potential, the limit value of the VL increase amount depends on the limit value of the charging potential. Therefore, when the VL increase amount exceeds the limit value, appropriate control cannot be performed. .

そこで特許文献3は、感光体における導電性支持体と電荷発生層の間に配置される中間層に、書き込み光を吸収する金属酸化物であるルチル型酸化チタンを含有させ、中間層で光キャリア発生させることでVL上昇を抑制する。また、特許文献1は、感光体表層の保護層の樹脂中に2種以上のフィラーを含有させ、そのうちの一種を平均粒径50nm以下のダイヤモンド状カーボンもしくは非晶質カーボン微粒子とすることにより、VL上昇を抑制する。   Therefore, in Patent Document 3, an intermediate layer disposed between a conductive support and a charge generation layer in a photoreceptor contains rutile titanium oxide, which is a metal oxide that absorbs writing light, and an optical carrier is used in the intermediate layer. The VL rise is suppressed by generating. Patent Document 1 includes two or more fillers in the protective layer resin of the photoreceptor surface layer, and one of them is diamond-like carbon or amorphous carbon fine particles having an average particle size of 50 nm or less. Suppresses VL rise.

感光体の処方や構成を変えることによりVL上昇を低減する技術が様々開示されているが、感光体の静電疲労は感光体処方、あるいはプロセス条件によって大きく異なるものであり、感光体の開発側から考えると、プロセス条件ごとに対応を迫られることになる。   Various techniques for reducing the increase in VL by changing the prescription and configuration of the photoconductor are disclosed, but the electrostatic fatigue of the photoconductor varies greatly depending on the photoconductor prescription or process conditions. From this point of view, it is necessary to deal with each process condition.

本発明は、画像形成装置において感光体の静電疲労を自動的に解放すること、具体的には、自動的にVL,VR上昇を低減すること、を目的とする。換言すると従来よりも、静電疲労を効果的に抑制することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to automatically release electrostatic fatigue of a photoreceptor in an image forming apparatus, and specifically to reduce VL and VR rise automatically. In other words, the object is to more effectively suppress electrostatic fatigue than in the past.

本発明者は、感光体の改良ばかりではなく、画像形成装置本体での自動制御でVL上昇を低減すること目指して実験を重ね、その過程で、感光体に強いエネルギーを与えることにより、上昇したVLを初期状態に戻すことに成功した。感光体に強いエネルギーを与えると、VL上昇の原因となっている電荷輸送層中にトラップされた電位担体が該光エネルギーに反応して、電荷担体を解放し、VL上昇を抑制する。そこで本発明の画像形成装置を次のように構成した。   The present inventor repeated experiments aiming to reduce the increase in VL by automatic control in the main body of the image forming apparatus as well as the improvement of the photoreceptor, and in the process, increased by giving strong energy to the photoreceptor. The VL was successfully returned to the initial state. When strong energy is applied to the photoconductor, the potential carriers trapped in the charge transport layer causing the increase in VL react with the light energy to release the charge carriers and suppress the increase in VL. Therefore, the image forming apparatus of the present invention is configured as follows.

(1)感光体(12)と、光照射により感光体表面の残留電荷を除電する光除電装置(17)を備える電子写真式画像形成装置において、
作像の繰返しが連続すると前記感光体(12)に残留電位上昇を生じる、感光体速度(630mm/sec),作像用感光体帯電電位(-800V)および作像後除電光量(1W/m2)でなる、既定の作像条件で、前記感光体(12)を駆動し帯電し前記光除電装置(17)で除電する場合の、VL又はVRの上昇速度絶対値Aに対して、帯電は行わずに前記感光体(12)を前記感光体速度(630mm/sec)で駆動し前記光除電装置(17)から光を前記感光体(12)に照射した場合のVL又はVRの低下速度絶対値B又はCが、等しいか大きくなり作像の繰返しが連続する間VLの上昇がない一定の光量(10W/m2)を、前記光除電装置(17)から感光体(12)に照射することを特徴とする、電子写真式画像形成装置:
VL:前記感光体を露光しベタ画像を形成する際のベタ画像部の感光体表面電位
VR:除電後の感光体表面残留電位。
(1) In an electrophotographic image forming apparatus comprising a photoconductor (12) and a photostatic device (17) that neutralizes residual charges on the surface of the photoconductor by light irradiation.
When the image formation is repeated, a residual potential rises on the photoconductor (12), the photoconductor speed (630mm / sec), the photoconductor charge potential for image formation (-800V), and the static charge after image formation (1W / m 2 ) When the photosensitive member (12) is driven and charged under the predetermined image forming conditions, and the static eliminator (17) is used for static elimination, charging is performed with respect to the absolute increase rate A of VL or VR. VL or VR decrease rate when the photosensitive member (12) is driven at the photosensitive member speed (630 mm / sec) without irradiating and the photosensitive member (12) is irradiated with light from the light neutralizing device (17). absolute value B or C, equal to or greater-than imaging of repetition is constant no increase between VL successive quantity (10 W / m 2), the photosensitive member from said optical discharging device (17) (12) Electrophotographic image forming apparatus characterized by irradiating:
VL: Photoconductor surface potential of a solid image portion when the photoconductor is exposed to form a solid image VR: Photoconductor surface residual potential after static elimination.

なお、括弧内には、図面に示し後述する実施態様の対応要素又は対応事項の記号を、例示として参考までに付記した。以下も同様である。   In the parentheses, symbols for corresponding elements or corresponding matters in the embodiments shown in the drawings and described later are added for reference. The same applies to the following.

すなわち前記光除電装置(17)によって、感光体(12)の繰り返し使用によりトラップされた電荷担体が増大し、感光体(12)の残留電位が高くなりVL,VRが上昇するという問題に対して、感光体(12)に光エネルギーを与えることによりトラップされた電荷担体を解放し、感光体(12)の長期使用によるVL,VR上昇を抑制する。除電光によって継続的に感光体(12)にエネルギーを与え、しかも、VL,VRが上昇しない範囲の光量を光除電装置(17)が感光体(12)に与えるので、感光体(12)の長期使用によるVL,VR上昇に起因する画像品質の劣化を生じない。   That is, the photocharger (17) increases the charge carriers trapped by repeated use of the photoconductor (12), increasing the residual potential of the photoconductor (12) and increasing VL and VR. The trapped charge carriers are released by applying light energy to the photoconductor (12), and increase in VL and VR due to long-term use of the photoconductor (12) is suppressed. Energy is continuously given to the photosensitive member (12) by the static elimination light, and the light static elimination device (17) gives the photosensitive member (12) a light amount in a range where VL and VR do not rise. There is no deterioration in image quality due to increase in VL and VR due to long-term use.

(2)感光体(12)と、光照射により感光体表面の残留電荷を除電する照射光量が可変の光除電装置(17)を備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の積算時間が設定値(450sec)を超えた作像終了時に、該作像終了時の積算時間の間のVL上昇量ΔVL=∫Aを、既定の作像条件での前記光除電装置(17)の光量でのVL上昇速度A(図4)と前記終了時の積算時間に基づいて算出し、前記既定の作像条件での前記光除電装置(17)の光量(1W/m2)より大きい光照射モード光量(30W/m)でのVL低下速度絶対値B(図5)を用いて、光照射モード実行時間T=ΔVL/Bを算出し、前記感光体(12)を駆動し感光体(12)は帯電しないで、前記光除電装置(17)の光量を前記光照射モード光量(30W/m)として感光体(12)を除電し、前記時間Tが経過すると該除電を停止し、前記作像の積算時間を初期化する、ことを特徴とする電子写真式画像形成装置。
(2) In an electrophotographic image forming apparatus comprising: a photoconductor (12); and a photostatic discharger (17) having a variable irradiation light amount that discharges residual charges on the surface of the photoconductor by light irradiation.
When image formation is performed under predetermined image formation conditions, and when the image formation integration time exceeds the set value (450 sec), the VL increase amount ΔVL = ∫A during the image formation completion time is set to , Based on the VL rising speed A (FIG. 4) at the light quantity of the light neutralizing device (17) under the predetermined image forming conditions and the integrated time at the end, and calculating the light under the predetermined image forming conditions. using the light intensity of the discharger (17) (1W / m 2 ) VL decrease speed absolute value B of a larger light irradiation mode quantity (30W / m 2) (Fig. 5), the light irradiation mode execution time T = .DELTA.VL / B is calculated, the photoconductor (12) is driven, the photoconductor (12) is not charged, and the photoconductor (12) is set to the light irradiation mode light amount (30 W / m 2 ) as the light quantity of the light neutralization device (17). ), And when the time T has elapsed, the charge removal is stopped and the integrated time for image formation is initialized.

これによれば、除電光量を可変とし、所定のタイミングで、予測されるVL上昇量に応じて光量,時間を決定し光照射モードを実行し、VLを低下させるよう構成しているので、常に強い光量で光照射を行う場合よりも省エネ化を図ることができ、しかも、感光体(12)の長期使用によるVL上昇に起因する画像品質の劣化を生じない。   According to this, since the amount of static elimination light is variable, the light irradiation mode is executed at a predetermined timing according to the predicted VL increase amount, the light irradiation mode is executed, and the VL is always reduced. Energy saving can be achieved as compared with the case where light irradiation is performed with a strong light amount, and image quality deterioration due to increase in VL due to long-term use of the photoconductor (12) does not occur.

(3)感光体(12)と、光除電装置(17)以外に光除電装置(17)と同様に感光体(12)に光を照射する光照射装置(8)を少なくとも1つ備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の積算時間が設定値(450sec)を超えた作像終了時に、該作像終了時の積算時間の間のVL上昇量ΔVL=∫Aを、既定の作像条件での前記光除電装置(17)の光量(1W/m2)でのVL上昇速度A(図4)と前記終了時の積算時間に基づいて算出し、前記既定の作像条件での前記光除電装置の光量より大きい光照射モード光量(30W/m2)でのVL低下速度絶対値B(図5)を用いて、光照射モード実行時間T=ΔVL/Bを算出し、前記感光体(12)を駆動し感光体(12)は帯電しないで、前記光照射装置(8)の光量を前記光照射モード光量(30W/m2)として感光体(12)を除電し、前記時間Tが経過すると該除電を停止し、前記作像の積算時間を初期化する、ことを特徴とする電子写真式画像形成装置。
(3) An electrophotographic apparatus having at least one light irradiation device (8) for irradiating light to the photoconductor (12) in the same manner as the photostatic device (17), in addition to the photoconductor (12) and the photostatic device (17). In the image forming apparatus,
When image formation is performed under predetermined image formation conditions, and when the image formation integration time exceeds the set value (450 sec), the VL increase amount ΔVL = ∫A during the image formation completion time is set to The calculation is made based on the VL rising speed A (FIG. 4) at the light quantity (1 W / m 2 ) of the light neutralization device (17) under the predetermined image forming conditions and the integration time at the end, and the predetermined image formation is performed. The light irradiation mode execution time T = ΔVL / B is calculated using the absolute value B of the VL decrease speed B (FIG. 5) at a light irradiation mode light amount (30 W / m 2 ) that is larger than the light amount of the light neutralization device under the image conditions. Then, the photosensitive member (12) is driven and the photosensitive member (12) is not charged, and the amount of light of the light irradiation device (8) is set to the light irradiation mode amount of light (30 W / m 2 ). Then, when the time T elapses, the static elimination is stopped, and the integration time of the image formation is initialized.

これによれば、光除電装置(17)以外に光照射装置(8)を設け、所定のタイミングで、予測されるVL上昇量に応じて光量,時間を決定し光照射モードを実行しているので、光除電装置(17)の光量が可変でなくともVLを低下させることができ、しかも常に強い光量で光照射を行う場合よりも省エネ化を図ることができ、しかも、感光体(12)の長期使用によるVL上昇に起因する画像品質の劣化を生じない。。   According to this, the light irradiation device (8) is provided in addition to the light neutralization device (17), and the light irradiation mode is executed at a predetermined timing by determining the light amount and time according to the predicted VL increase amount. Therefore, VL can be reduced even if the amount of light of the light neutralizing device (17) is not variable, and more energy can be saved than when light irradiation is always performed with a strong amount of light, and the photoconductor (12). The image quality is not deteriorated due to the increase in VL due to long-term use. .

(4)感光体(12)と、照射光量が可変の光除電装置(17)と、光除電装置(17)以外に光除電装置(17)と同様に感光体(12)に光を照射する光照射装置(8)を少なくとも1つ備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の積算時間が設定値(450sec)を超えた作像終了時に、該作像終了時の積算時間の間のVL上昇量ΔVL=∫Aを、既定の作像条件での前記光除電装置(17)の光量(1W/m2)でのVL上昇速度A(図4)と前記終了時の積算時間に基づいて算出し、前記既定の作像条件での前記光除電装置(17)の光量(1W/m2)より大きい、前記光除電装置(17)の光量(30W/m2)と前記光照射装置の光量(30W/m2)の和でなる光照射モード光量(60W/m2)でのVL低下速度絶対値B(図11)を用いて、光照射モード実行時間T=ΔVL/Bを算出し、前記感光体(12)を駆動し感光体(12)は帯電しないで、前記光除電装置(17)と光照射装置(8)で前記光照射モード光量(60W/m2)の感光体除電をおこない、前記時間Tが経過すると該除電を停止し、前記作像の積算時間を初期化する、ことを特徴とする電子写真式画像形成装置。
(4) Except for the photoconductor (12), the photostatic device (17) having a variable irradiation light quantity, and the photostatic device (17), the photoconductor (12) is irradiated with light in the same manner as the photostatic device (17). In an electrophotographic image forming apparatus including at least one light irradiation device (8),
When image formation is performed under predetermined image formation conditions, and when the image formation integration time exceeds the set value (450 sec), the VL increase amount ΔVL = ∫A during the image formation completion time is set to The calculation is made based on the VL rising speed A (FIG. 4) at the light quantity (1 W / m 2 ) of the light neutralization device (17) under the predetermined image forming conditions and the integration time at the end, and the predetermined image formation is performed. the optical discharging device on the image condition (17) amount of (1W / m 2) greater than the light amount of the light irradiation device and light intensity (30 W / m 2) of said optical charge removing device (17) (30 W / m 2) The light irradiation mode execution time T = ΔVL / B is calculated using the absolute value B of the VL decrease rate B (FIG. 11) at the light irradiation mode light amount (60 W / m 2 ) that is the sum of the above, and the photoconductor (12). The photoconductor (12) is not charged and the photostatic discharge device (17) and the light irradiation device (8) are used to discharge the photoconductor with the light irradiation mode light amount (60 W / m 2 ), and the time T is When the time has elapsed, the static elimination is stopped and An electrophotographic image forming apparatus characterized by initializing an accumulated time.

これによれば、光照射モード時の光照射を、光除電装置(17)と光照射装置(8)の両方で行っているため、光除電装置(17)および光照射装置(8)それぞれの光量を小さくする、あるいは照射時間Tを短くすることができ、しかも、感光体(12)の長期使用によるVL上昇に起因する画像品質の劣化を生じない。   According to this, since the light irradiation in the light irradiation mode is performed by both the light neutralization device (17) and the light irradiation device (8), each of the light neutralization device (17) and the light irradiation device (8) The amount of light can be reduced or the irradiation time T can be shortened, and the image quality is not deteriorated due to the increase in VL due to the long-term use of the photoreceptor (12).

(5)感光体(12)と、感光体(12)の表面電位を検知する表面電位検知装置(9)と、検知した表面電位を記憶する表面電位記憶手段(69)と、照射光量が可変の光除電装置(17)を備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の枚数積算値が設定値(1000)を超えた作像終了時に、VLを検知して検出値VLsの、前記表面電位記憶手段(69)に記憶している感光体初期時点のVL検出値VLiに対する上昇量ΔVL=VLs−VLiを算出し、前記既定の作像条件での前記光除電装置(17)の光量(1W/m2)より大きい光照射モード光量(30W/m2)でのVL低下速度絶対値B(図5)を用いて、光照射モード実行時間T=ΔVL/Bを算出し、前記感光体(12)を駆動し感光体(12)は帯電しないで、前記光除電装置(17)で前記光照射モード光量(30W/m2)で感光体(12)を除電し、該時間Tが経過すると該除電を停止し、前記枚数積算値を初期化する、ことを特徴とする電子写真式画像形成装置。
(5) The photoconductor (12), the surface potential detector (9) for detecting the surface potential of the photoconductor (12), the surface potential storage means (69) for storing the detected surface potential, and the amount of irradiation light is variable. In the electrophotographic image forming apparatus comprising the photostatic discharge device (17) of
The surface potential storage means (69) detects the VL and detects the detected value VLs at the end of the image formation when the image formation is performed under predetermined image formation conditions and the integrated value of the number of image formation exceeds the set value (1000). The amount of increase ΔVL = VLs−VLi with respect to the VL detection value VLi at the initial time of the photosensitive member stored in the image is calculated, and from the light amount (1 W / m 2 ) of the photostatic device (17) under the predetermined image forming conditions. The light irradiation mode execution time T = ΔVL / B is calculated using the absolute value B of the VL decrease rate B (FIG. 5) at a large light irradiation mode light amount (30 W / m 2 ), and the photoconductor 12 is driven. The photoconductor (12) is not charged, the photostatic device (17) neutralizes the photoconductor (12) with the light irradiation mode light amount (30 W / m 2 ), and when the time T has elapsed, the static elimination is stopped. An electrophotographic image forming apparatus, wherein the integrated number of sheets is initialized.

これによれば、画像形成装置は所定のタイミングでVL上昇量を検知し、検知したVL上昇量に基づいて光照射モード実行時の光量,照射時間を決定しているので、適切な光量,照射時間で効率良くVLを低下させることができ、しかも、感光体の長期使用による感度低下に起因する画像品質の劣化を生じない。   According to this, the image forming apparatus detects the VL increase amount at a predetermined timing, and determines the light amount and the irradiation time when executing the light irradiation mode based on the detected VL increase amount. The VL can be efficiently reduced in time, and image quality deterioration due to a decrease in sensitivity due to long-term use of the photoreceptor does not occur.

(6)感光体(12)と、感光体(12)の表面電位を検知する表面電位検知装置(9)と、検知した表面電位を記憶する表面電位記憶手段(69)と、光除電装置(17)以外に光除電装置(17)と同様に感光体(12)に光を照射する光照射装置(8)を少なくとも1つ備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の枚数積算値が設定値(1000)を超えた作像終了時に、VLを検知して検出値VLsの、前記表面電位記憶手段(69)に記憶している感光体初期時点のVL検出値VLiに対する上昇量ΔVL=VLs−VLiを算出し、前記既定の作像条件での前記光除電装置(17)の光量(1W/m2)より大きい光照射モード光量(30W/m2)でのVL低下速度絶対値B(図5)を用いて、光照射モード実行時間T=ΔVL/Bを算出し、前記感光体(12)を駆動し感光体(12)は帯電しないで、前記光照射装置(8)で前記光照射モード光量(30W/m2)で感光体(12)を除電し、該時間Tが経過すると該除電を停止し、前記枚数積算値を初期化する、ことを特徴とする電子写真式画像形成装置。
(6) a photoreceptor (12), a surface potential detector (9) for detecting the surface potential of the photoreceptor (12), a surface potential storage means (69) for storing the detected surface potential, and a photostatic device ( In addition to 17), an electrophotographic image forming apparatus provided with at least one light irradiating device (8) for irradiating the photoreceptor (12) with light in the same manner as the photostatic device (17).
The surface potential storage means (69) detects the VL and detects the detected value VLs at the end of the image formation when the image formation is performed under predetermined image formation conditions and the integrated value of the number of image formation exceeds the set value (1000). The amount of increase ΔVL = VLs−VLi with respect to the VL detection value VLi at the initial time of the photosensitive member stored in the image is calculated, and from the light amount (1 W / m 2 ) of the photostatic device (17) under the predetermined image forming conditions. The light irradiation mode execution time T = ΔVL / B is calculated using the absolute value B of the VL decrease rate B (FIG. 5) at a large light irradiation mode light amount (30 W / m 2 ), and the photoconductor 12 is driven. The photosensitive member (12) is not charged, and the light irradiation device (8) discharges the photosensitive member (12) with the light irradiation mode light amount (30 W / m 2 ). An electrophotographic image forming apparatus, wherein the integrated number of sheets is initialized.

これによれば、光除電装置(17)以外に光除電装置(17)と同様に感光体(12)に光を照射する光照射装置(8)を備え、所定のタイミングでVL上昇量を検知し、検知したVL上昇量に基づいて光照射モード実行時の光量,照射時間を決定し、光照射モードを実行しているので、光除電装置(17)の光量が可変でなくとも適切な光量,照射時間で効率良くVLを低下させることができ、かつ、感光体(12)の長期使用による感度低下に起因する画像品質の劣化を防止することができる。   According to this, in addition to the light neutralization device (17), the light irradiation device (8) for irradiating the photosensitive member (12) with light is provided in the same manner as the light neutralization device (17), and the VL increase amount is detected at a predetermined timing. Since the light irradiation mode execution time is determined based on the detected VL increase amount and the light irradiation mode is executed, an appropriate light amount can be obtained even if the light removal device (17) light amount is not variable. , The VL can be efficiently reduced by the irradiation time, and the deterioration of the image quality due to the sensitivity reduction due to the long-term use of the photoconductor (12) can be prevented.

(7)感光体(12)と、感光体(12)の表面電位を検知する表面電位検知装置(9)と、検知した表面電位を記憶する表面電位記憶手段(69)と、照射光量が可変の光除電装置(17)と、光除電装置(17)以外に光除電装置(17)と同様に感光体(12)に光を照射する光照射装置(8)を少なくとも1つ備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の枚数積算値が設定値(1000)を超えた作像終了時に、VLを検知して検出値VLsの、前記表面電位記憶手段(69)に記憶している感光体初期時点のVL検出値VLiに対する上昇量ΔVL=VLs−VLiを算出し、前記既定の作像条件での前記光除電装置(17)の光量(1W/m2)より大きい、前記光除電装置(17)の光量(30W/m2)と前記光照射装置(8)の光量(30W/m2)の和でなる光照射モード光量(60W/m2)でのVL低下速度絶対値B(図11)を用いて、光照射モード実行時間T=ΔVL/Bを算出し、前記感光体(12)を駆動し感光体(12)は帯電しないで、前記光除電装置(17)と光照射装置(8)で前記光照射モード光量(60W/m2)の感光体除電をおこない、前記時間Tが経過すると該除電を停止し、前記枚数積算値を初期化する、ことを特徴とする電子写真式画像形成装置。
(7) Photoconductor (12), surface potential detector (9) for detecting the surface potential of the photoconductor (12), surface potential storage means (69) for storing the detected surface potential, and the amount of irradiation light is variable In addition to the photostatic discharger (17), the photostatic discharger (17) is an electrophotographic type equipped with at least one light irradiation device (8) for irradiating the photosensitive member (12) in the same manner as the photostatic discharger (17). In the image forming apparatus,
The surface potential storage means (69) detects the VL and detects the detected value VLs at the end of the image formation when the image formation is performed under predetermined image formation conditions and the integrated value of the number of image formation exceeds the set value (1000). The amount of increase ΔVL = VLs−VLi with respect to the VL detection value VLi at the initial time of the photosensitive member stored in the image is calculated, and from the light amount (1 W / m 2 ) of the photostatic device (17) under the predetermined image forming conditions. Large VL at the light irradiation mode light amount (60 W / m 2 ), which is the sum of the light amount (30 W / m 2 ) of the light neutralization device (17) and the light amount (30 W / m 2 ) of the light irradiation device (8) The light irradiation mode execution time T = ΔVL / B is calculated using the decrease speed absolute value B (FIG. 11), the photoconductor (12) is driven, and the photoconductor (12) is not charged. (17) and the light irradiation device (8) performs a photoreceptor static eliminating the irradiation mode quantity (60 W / m 2), said stops該除conductive when the time T has elapsed, initializing the number accumulated value, Electrophotographic image forming apparatus according to claim and.

これによれば、光照射モード時の光照射を、光除電装置(17)と光照射装置(8)の両方で行っているため、光除電装置(17)および光照射装置(8)それぞれの光量を小さくする、あるいは照射時間Tを短くすることができ、しかも、感光体(12)の長期使用による感度低下に起因する画像品質の劣化を防止することができる。   According to this, since the light irradiation in the light irradiation mode is performed by both the light neutralization device (17) and the light irradiation device (8), each of the light neutralization device (17) and the light irradiation device (8) The amount of light can be reduced, or the irradiation time T can be shortened, and the deterioration of the image quality due to the decrease in sensitivity due to long-term use of the photoreceptor (12) can be prevented.

(8)感光体(12)と、感光体(12)の表面電位を検知する表面電位検知装置(9)と、検知した表面電位を記憶する表面電位記憶手段(69)と、照射光量が可変の光除電装置(17)を備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の枚数積算値が設定値(1000)を超えた作像終了時に、VRを検知して検出値VRsの、前記表面電位記憶手段(69)に記憶している感光体初期時点のVR検出値VRiに対する上昇量ΔVR=VRs−VRiを算出し、前記既定の作像条件での前記光除電装置(17)の光量(1W/m2)より大きい光照射モード光量(30W/m2)でのVR低下速度絶対値Cを用いて、光照射モード実行時間T=ΔVR/Cを算出し、前記感光体(12)を駆動し感光体(12)は帯電しないで、前記光除電装置(17)で前記光照射モード光量(30W/m2)で感光体(12)を除電し、該時間Tが経過すると該除電を停止し、前記枚数積算値を初期化する、ことを特徴とする電子写真式画像形成装置。
請求項8
VLが上昇するのは、感光体の繰り返し使用等によりトラップされた電荷担体が増大し、感光体表面と電荷発生位置間の電界強度が低下することによる感度低下が原因であるため、このVL上昇分の電位は、VRの上昇分とほぼ等しくなる。VLを検知するには感光体表面を帯電させVLパターンの書込みを行う必要があるが、VRを検知するには感光体を除電するだけで良く簡便であるため、VLではなくVRを検知することで、感光体の感度低下をより簡単で即座に検知できる。
(8) The photoconductor (12), the surface potential detector (9) for detecting the surface potential of the photoconductor (12), the surface potential storage means (69) for storing the detected surface potential, and the amount of irradiation light is variable. In the electrophotographic image forming apparatus comprising the photostatic discharge device (17) of
The surface potential storage means (69) detects the VR and detects the detected value VRs at the end of the image formation when the image formation is performed under predetermined image formation conditions and the integrated number of images exceeds the set value (1000). The amount of increase ΔVR = VRs−VRi with respect to the VR detection value VRi at the initial time of the photosensitive member stored in the image is calculated, and the light amount (1 W / m 2 ) of the light neutralization device (17) under the predetermined image forming conditions is calculated. Using the VR decrease speed absolute value C at a large light irradiation mode light amount (30 W / m 2 ), the light irradiation mode execution time T = ΔVR / C is calculated, and the photoconductor (12) is driven to drive the photoconductor (12 ) Is not charged, the photostatic device (17) neutralizes the photoconductor (12) with the light irradiation mode light amount (30 W / m 2 ), and when the time T has elapsed, the static neutralization is stopped and the number of sheets is integrated. An electrophotographic image forming apparatus characterized by initializing a value.
Claim 8
The increase in VL is caused by a decrease in sensitivity due to an increase in the number of trapped charge carriers due to repeated use of the photoreceptor and a decrease in electric field strength between the photoreceptor surface and the charge generation position. The potential of the minute is approximately equal to the increase in VR. In order to detect VL, it is necessary to charge the surface of the photosensitive member and write a VL pattern. However, in order to detect VR, it is only necessary to remove the charge from the photosensitive member. Therefore, VR is detected instead of VL. Therefore, it is possible to detect a decrease in sensitivity of the photoconductor more easily and immediately.

本実施態様8によれば、実施態様5のVL検知ではなくVR検知しているので、感光体(12)を帯電させVLパターンの書込みを行うという動作の必要が無く、ダウンタイムを短くすることができ、実施態様5と同様に感光体の長期使用による感度低下に起因する画像品質の劣化を防止することができる。   According to the eighth embodiment, since the VR detection is performed instead of the VL detection in the fifth embodiment, there is no need to perform the operation of charging the photosensitive member (12) and writing the VL pattern, and the downtime is shortened. In the same manner as in the fifth embodiment, it is possible to prevent deterioration in image quality due to a decrease in sensitivity due to long-term use of the photoreceptor.

(9)感光体(12)と、感光体(12)の表面電位を検知する表面電位検知装置(9)と、検知した表面電位を記憶する表面電位記憶手段(69)と、光除電装置(17)以外に光除電装置(17)と同様に感光体(12)に光を照射する光照射装置(8)を少なくとも1つ備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の枚数積算値が設定値(1000)を超えた作像終了時に、VRを検知して検出値VRsの、前記表面電位記憶手段(69)に記憶している感光体初期時点のVR検出値VRiに対する上昇量ΔVR=VRs−VRiを算出し、前記既定の作像条件での前記光除電装置(17)の光量(1W/m2)より大きい光照射モード光量(30W/m2)でのVR低下速度絶対値Cを用いて、光照射モード実行時間T=ΔVR/Cを算出し、前記感光体(12)を駆動し感光体(12)は帯電しないで、前記光照射装置(8)で前記光照射モード光量(30W/m2)で感光体を除電し、該時間Tが経過すると該除電を停止し、前記枚数積算値を初期化する、ことを特徴とする電子写真式画像形成装置。
(9) Photoconductor (12), surface potential detector (9) for detecting the surface potential of the photoconductor (12), surface potential storage means (69) for storing the detected surface potential, and a photostatic device ( In addition to 17), an electrophotographic image forming apparatus provided with at least one light irradiating device (8) for irradiating the photoreceptor (12) with light in the same manner as the photostatic device (17).
The surface potential storage means (69) detects the VR and detects the detected value VRs at the end of the image formation when the image formation is performed under predetermined image formation conditions and the integrated number of images exceeds the set value (1000). The amount of increase ΔVR = VRs−VRi with respect to the VR detection value VRi at the initial time of the photosensitive member stored in the image is calculated, and the light amount (1 W / m 2 ) of the light neutralization device (17) under the predetermined image forming conditions is calculated. Using the VR decrease speed absolute value C at a large light irradiation mode light amount (30 W / m 2 ), the light irradiation mode execution time T = ΔVR / C is calculated, and the photoconductor (12) is driven to drive the photoconductor (12 ) Is not charged, and the light irradiation device (8) is used to discharge the photosensitive member with the light irradiation mode light amount (30 W / m 2 ), and when the time T has elapsed, the discharge is stopped and the integrated number of sheets is initialized. An electrophotographic image forming apparatus characterized by comprising:

これによれば、実施態様6のVLではなく、VRを検知しているので、感光体(12)を帯電させVLパターンの書込みを行うという動作の必要が無く、ダウンタイムを短くすることができ、かつ実施態様6と同様に、感光体(12)の長期使用による感度低下に起因する画像品質の劣化を防止することができる。   According to this, since the VR is detected instead of the VL of the sixth embodiment, there is no need for the operation of charging the photosensitive member (12) and writing the VL pattern, and the downtime can be shortened. In the same manner as in the sixth embodiment, it is possible to prevent the deterioration of the image quality due to the sensitivity reduction due to the long-term use of the photoreceptor (12).

(10)感光体(12)と、感光体(12)の表面電位を検知する表面電位検知装置(9)と、検知した表面電位を記憶する表面電位記憶手段(69)と、照射光量が可変の光除電装置(17)と、光除電装置(17)以外に光除電装置(17)と同様に感光体(12)に光を照射する光照射装置(8)を少なくとも1つ備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の枚数積算値が設定値(1000)を超えた作像終了時に、VRを検知して検出値VRsの、前記表面電位記憶手段(69)に記憶している感光体初期時点のVR検出値VRiに対する上昇量ΔVR=VRs−VRiを算出し、前記既定の作像条件での前記光除電装置(17)の光量(1W/m2)より大きい、前記光除電装置(17)の光量(30W/m2)と前記光照射装置(9)の光量(30W/m2)の和でなる光照射モード光量(60W/m2)でのVR低下速度絶対値Cを用いて、光照射モード実行時間T=ΔVR/Cを算出し、前記感光体(12)を駆動し感光体(12)は帯電しないで、前記光除電装置(17)と光照射装置(8)で前記光照射モード光量(60W/m2)の感光体除電をおこない、前記時間Tが経過すると該除電を停止し、前記枚数積算値を初期化する、ことを特徴とする電子写真式画像形成装置。
(10) The photoconductor (12), the surface potential detector (9) for detecting the surface potential of the photoconductor (12), the surface potential storage means (69) for storing the detected surface potential, and the amount of irradiation light is variable. In addition to the photostatic discharger (17), the photostatic discharger (17) is an electrophotographic type equipped with at least one light irradiation device (8) for irradiating the photosensitive member (12) in the same manner as the photostatic discharger (17). In the image forming apparatus,
The surface potential storage means (69) detects the VR and detects the detected value VRs at the end of the image formation when the image formation is performed under predetermined image formation conditions and the integrated number of images exceeds the set value (1000). The amount of increase ΔVR = VRs−VRi with respect to the VR detection value VRi at the initial time of the photosensitive member stored in the image is calculated, and the light amount (1 W / m 2 ) of the light neutralization device (17) under the predetermined image forming conditions is calculated. A large VR in the light irradiation mode light amount (60 W / m 2 ) which is the sum of the light amount (30 W / m 2 ) of the light neutralization device (17) and the light amount (30 W / m 2 ) of the light irradiation device (9). The light irradiation mode execution time T = ΔVR / C is calculated using the decrease speed absolute value C, the photoconductor (12) is driven, and the photoconductor (12) is not charged. performed photoreceptor neutralization of the light irradiation mode amount in the light irradiation device (8) (60W / m 2 ), to stop the該除conductive when the time T has elapsed, initializing the number accumulated value, that said Electrophotographic image forming apparatus.

これによれば、実施態様7のVLではなく、VRを検知しているので、感光体(12)を帯電させVLパターンの書込みを行うという動作の必要が無く、ダウンタイムを短くすることができ、かつ実施態様7と同様に感光体(12)の長期使用によるVR上昇に起因する画像品質の劣化を防止することができる。   According to this, since the VR is detected instead of the VL of the seventh embodiment, there is no need for the operation of charging the photoreceptor 12 and writing the VL pattern, and the downtime can be shortened. In the same manner as in the seventh embodiment, it is possible to prevent the image quality from being deteriorated due to the increase in VR due to the long-term use of the photoreceptor (12).

(11)前記感光体(12)は、電荷発生材料を含有する有機感光体である、上記(1)乃至(10)のいずれか1つに記載の電子写真式画像形成装置。   (11) The electrophotographic image forming apparatus according to any one of (1) to (10), wherein the photoconductor (12) is an organic photoconductor containing a charge generating material.

(12)前記感光体(12)は、電荷発生材料としてフタロシアニン類を含有する有機感光体である、上記(1)乃至(10)のいずれか1つに記載の電子写真式画像形成装置。   (12) The electrophotographic image forming apparatus according to any one of (1) to (10), wherein the photoreceptor (12) is an organic photoreceptor containing a phthalocyanine as a charge generation material.

(13)前記感光体(12)は、電荷発生材料としてチタニルフタロシアニンを含有する有機感光体である、上記(1)乃至(10)のいずれか1つに記載の電子写真式画像形成装置。   (13) The electrophotographic image forming apparatus according to any one of (1) to (10), wherein the photoreceptor (12) is an organic photoreceptor containing titanyl phthalocyanine as a charge generation material.

(14)前記既定の作像条件は、作像用感光体帯電電位:−800V、作像後除電光量:1W/m、を含む、上記(1)〜(13)のいずれか1つに記載の、電子写真式画像形成装置。 (14) The predetermined image forming condition includes any one of the above (1) to (13), including the image forming photoconductor charging potential: −800 V, and the post-image forming light removal amount: 1 W / m 2 . The electrophotographic image forming apparatus described.

(15)前記既定の作像条件は、感光体移動速度:630mm/secを含む上記(14)に記載の電子写真式画像形成装置。   (15) The electrophotographic image forming apparatus according to (14), wherein the predetermined image forming condition includes a photosensitive member moving speed: 630 mm / sec.

本発明の他の目的および特徴は、以下の、図面を参照した実施態様の説明より明らかになろう。   Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

図1に、本発明を実施する画像形成装置を示す。この画像形成装置は、レーザプリンタ10,原稿スキャナ30,自動原稿給送装置(ADF)41および給紙バンク43を備える複写機である。レーザプリンタ10には、ドラム状の感光体12がある。この感光体12の表面には、電荷発生材料としてチタニルフタロシアニンを含む、レーザ光に対して高感度の有機半導体層がある。感光体12の電荷輸送層の膜厚は38μmであって、電荷発生層はY型チタニルフタロシアニンとポリビニルブチラールからなる0.3μmの層であり、最高感度の波長は780nmである。感光体12の線速は630mm/sec,直径100mmである。   FIG. 1 shows an image forming apparatus for carrying out the present invention. This image forming apparatus is a copying machine including a laser printer 10, a document scanner 30, an automatic document feeder (ADF) 41, and a paper feed bank 43. The laser printer 10 includes a drum-shaped photoconductor 12. On the surface of the photoconductor 12, there is an organic semiconductor layer that is highly sensitive to laser light and contains titanyl phthalocyanine as a charge generation material. The thickness of the charge transport layer of the photoreceptor 12 is 38 μm, the charge generation layer is a 0.3 μm layer made of Y-type titanyl phthalocyanine and polyvinyl butyral, and the wavelength of the highest sensitivity is 780 nm. The linear velocity of the photoreceptor 12 is 630 mm / sec and the diameter is 100 mm.

感光体12のまわりには、帯電装置13,現像装置14,転写・搬送装置15,クリーニング装置16,光除電装置17などが配置されている。   Around the photosensitive member 12, a charging device 13, a developing device 14, a transfer / conveying device 15, a cleaning device 16, a light neutralizing device 17, and the like are arranged.

光除電装置17は、光エネルギーのピークの波長が680nmのLED(発光ダイオード)で構成されており、感光体12の表面の移動方向に関して、帯電装置13の上流側で、クリーニング装置16がクリーニングした感光体表面を、光照射により除電する除電装置で、感光体12表面と光除電装置17先端面の間の距離は、13mmである。この光除電装置17の光量は、以下の実施態様ごとに設定又は変更した。   The light neutralizing device 17 is composed of an LED (light emitting diode) having a light energy peak wavelength of 680 nm, and the cleaning device 16 performs cleaning on the upstream side of the charging device 13 with respect to the moving direction of the surface of the photoreceptor 12. In the static eliminator that neutralizes the surface of the photoconductor by light irradiation, the distance between the surface of the photoconductor 12 and the front end surface of the photostatic device 17 is 13 mm. The light quantity of the light neutralizing device 17 was set or changed for each of the following embodiments.

クリーニング装置16は、クリーニングブラシとクリーニングブレードを備え、それぞれが感光体12に当接してクリーニングを行う。クリーニング装置16の上部には、レーザ書込み装置18がある。レーザ書込み装置18は、光エネルギーのピーク波長が780nmのレーザダイオードである光源20,走査用の回転多面鏡21,ポリゴンモータ22,fθレンズ等の走査光学系23などを備える。クリーニング装置16の図中左側には、定着装置25がある。定着装置25には、ヒータを内蔵する定着ローラ26と、その定着ローラ26に下方から押し当てる加圧ローラ27がある。   The cleaning device 16 includes a cleaning brush and a cleaning blade, and each performs contact with the photoreceptor 12 to perform cleaning. Above the cleaning device 16 is a laser writing device 18. The laser writing device 18 includes a light source 20 that is a laser diode having a peak wavelength of light energy of 780 nm, a scanning rotary polygon mirror 21, a polygon motor 22, a scanning optical system 23 such as an fθ lens, and the like. On the left side of the cleaning device 16 in the figure, there is a fixing device 25. The fixing device 25 includes a fixing roller 26 incorporating a heater and a pressure roller 27 that presses against the fixing roller 26 from below.

レーザプリンタ10の上部には、原稿スキャナ30がある。原稿スキャナ30には、光源31,複数のミラー32,結像レンズ33,イメージセンサ(CCD)34等がある。   A document scanner 30 is located above the laser printer 10. The document scanner 30 includes a light source 31, a plurality of mirrors 32, an imaging lens 33, an image sensor (CCD) 34, and the like.

図2には、図1に示す現像装置14を拡大して示す。現像剤はブラシローラ53でされ、現像剤中のトナーが現像ローラ51から感光体12に移る。   FIG. 2 shows an enlargement of the developing device 14 shown in FIG. The developer is applied by the brush roller 53, and the toner in the developer moves from the developing roller 51 to the photoconductor 12.

図3に、図1に示す画像形成機構の制御系の概略構成を示す。まず、作像制御手段であるCPU60,RAM61,ROM62,EEPROM67,不揮発メモリ69,入出力ポートバッファアンプ63,64等からなるマイクロコンピュータを用いた制御部が設けられており、作像制御手段であるCPU60が原稿スキャナ30のマイクロコンピュータとシリアル通信することにより、CPU60は原稿スキャナ30を制御する。原稿スキャナ30のマイクロコンピュータは、CPU60の指示に応じて、原稿読取りを行う。   FIG. 3 shows a schematic configuration of a control system of the image forming mechanism shown in FIG. First, a control unit using a microcomputer including CPU 60, RAM 61, ROM 62, EEPROM 67, nonvolatile memory 69, input / output port buffer amplifiers 63, 64, and the like, which are image forming control means, is provided and is an image forming control means. The CPU 60 controls the document scanner 30 by serial communication with the microcomputer of the document scanner 30. The microcomputer of the document scanner 30 reads the document in accordance with an instruction from the CPU 60.

なお、感光体12の回転に同期して、その微小角度の回転につき1パルスの同期パルスをパルス発生器65が発生し、CPU60は、同期パルス発生器65が発生するパルスのカウント値に基づいて、転写紙の給紙制御,露光制御および画像形成処理(特にタイミング制御)を行なう。CPU60は、1パルスの到来毎に割込処理を実行して到来パルス数をカウントアップし、カウント値をタイミングテ−ブル(カウント値対イベントの関係をメモリしたテ−ブル)のカウント値と対比して、テ−ブルの1つのカウント値に合致していると、該カウント値に宛てられているイベント(画像形成要素のオン/オフ)を実行する。   In synchronization with the rotation of the photosensitive member 12, the pulse generator 65 generates one synchronization pulse per minute rotation, and the CPU 60 is based on the count value of the pulses generated by the synchronization pulse generator 65. Then, transfer sheet feeding control, exposure control, and image forming processing (particularly timing control) are performed. The CPU 60 executes an interrupt process every time one pulse arrives, counts up the number of incoming pulses, and compares the count value with the count value of the timing table (the table storing the relationship between the count value and the event). If the count value matches one count value of the table, an event (image forming element on / off) addressed to the count value is executed.

本複写機において、操作者は、コピーをとるときに、ADF41の原稿台上に原稿をセットする。あるいは、ADF41を開いて原稿スキャナ30のコンタクトガラス40上に原稿をセットした後、ADF41を閉じて原稿を押える。そして、図示しないスタートスイッチを押す。すると、CPU60が原稿スキャナ30に原稿画像の読取りを指示し、これに応じて原稿スキャナ30が、ADF41に原稿がセットされている場合にはADF41を駆動して原稿をコンタクトガラス40に向けて移送し、シートスルー方式で原稿画像を読取り、ADF41の排紙トレイに送り出す。コンタクトガラス32上に原稿がセットされていた場合には直ちに、原稿スキャナ30がキャリッジの駆動を開始する。そして、第1キャリッジ及び第2キャリッジが走行し、第1キャリッジの光源から発せられる光が原稿面で反射した後、第2キャリッジ向かう。更に、第2キャリッジのミラーで反射してから結像レンズ33を経由してイメージセンサ34に至り、イメージセンサ34が画像情報として読み取る。   In this copying machine, the operator sets a document on the document table of the ADF 41 when making a copy. Alternatively, the ADF 41 is opened and a document is set on the contact glass 40 of the document scanner 30, and then the ADF 41 is closed and the document is pressed. Then, a start switch (not shown) is pressed. Then, the CPU 60 instructs the document scanner 30 to read the document image. In response to this, the document scanner 30 drives the ADF 41 and transfers the document toward the contact glass 40 when the document is set on the ADF 41. Then, the original image is read by the sheet through method and sent out to the paper output tray of the ADF 41. When a document is set on the contact glass 32, the document scanner 30 immediately starts driving the carriage. Then, the first carriage and the second carriage travel, and the light emitted from the light source of the first carriage is reflected by the document surface and then travels toward the second carriage. Further, after being reflected by the mirror of the second carriage, it reaches the image sensor 34 via the imaging lens 33, and the image sensor 34 reads it as image information.

CPU60のイベントコマンドに応じて、プリンタ10は、感光体12を回転駆動し給紙バンク43の1つのトレイ44から給紙ローラ45で転写紙を繰り出し、搬送ローラを介してレジストローラ48に送り込む。以降もCPU60のイベントコマンドに応じて、帯電器13で感光体12を荷電し、スキャナ30が読取った画像データに基づいて変調したレーザ光を感光体表面に照射し、これによって生成した静電潜像を現像装置14でトナー像に現像する。このトナー像の原稿始端相当位置に転写紙の先端が重ねるタイミングでレジストローラ48を駆動して転写紙を感光体12に送り込む。転写・搬送装置15が、感光体12のトナー像を転写紙に転写して定着器25に送り込む。定着器25が、転写紙を過熱加圧して転写紙上のトナー像を転写紙に固定する。定着を終えた転写紙は機外に送出される。   In response to the event command of the CPU 60, the printer 10 rotates the photosensitive member 12, feeds the transfer paper from one tray 44 of the paper feed bank 43 by the paper feed roller 45, and sends it to the registration roller 48 through the transport roller. Thereafter, in accordance with the event command of the CPU 60, the photosensitive member 12 is charged by the charger 13, and the surface of the photosensitive member is irradiated with laser light modulated based on the image data read by the scanner 30, and the electrostatic latent image generated thereby is generated. The image is developed into a toner image by the developing device 14. The registration roller 48 is driven at the timing when the leading edge of the transfer paper overlaps the position corresponding to the start edge of the original of the toner image, and the transfer paper is fed to the photoreceptor 12. The transfer / conveyance device 15 transfers the toner image on the photoconductor 12 onto transfer paper and sends it to the fixing device 25. The fixing device 25 heats and presses the transfer paper to fix the toner image on the transfer paper to the transfer paper. After the fixing, the transfer paper is sent out of the machine.

以上に示す構成において従来は、感光体12の線速:630mm/sec,感光体帯電電位:−800Vおよび光除電装置17の光量:1.0W/mである既定の作像条件でプリント(作像)するが、光除電装置17の光量が1W/mであったので、感光体12の繰り返し使用により、感光体12の電荷輸送層中に電荷担体がトラップされ、VLが上昇するという問題があった。本発明者は、このVLが上昇した感光体に光を照射し続けるとVLが低下することを見出した。光除電装置17にて光量20W/mの光を照射すると、VLが上昇しないという結果を得た。あるエネルギーの光を感光体に照射することによりVL上昇を防ぎ感光体の長期使用による感度低下に起因する画像品質の劣化を防止することが分かった。 Conventionally, in the configuration described above, printing is performed under predetermined image forming conditions in which the linear velocity of the photosensitive member 12 is 630 mm / sec, the photosensitive member charging potential is −800 V, and the light amount of the photostatic device 17 is 1.0 W / m 2 ( However, since the light quantity of the photostatic device 17 is 1 W / m 2 , the charge carrier is trapped in the charge transport layer of the photoconductor 12 and the VL rises due to repeated use of the photoconductor 12. There was a problem. The present inventor has found that VL decreases when light is continuously applied to the photoconductor having the increased VL. When light with a light amount of 20 W / m 2 was irradiated by the light neutralizing device 17, the result that VL did not increase was obtained. It has been found that irradiating the photoconductor with a certain energy prevents the increase in VL and prevents the deterioration of the image quality due to the decrease in sensitivity due to long-term use of the photoconductor.

なお、VLは、感光体12を露光しベタ画像を形成する際のベタ画像部の感光体表面電位であり、該電位は、電位センサ9を用いてを検出する。後述のVRは、除電後の感光体表面残留電位であり、該電位は電位センサ9を用いて検出する。   Note that VL is a photoreceptor surface potential of a solid image portion when the photoreceptor 12 is exposed to form a solid image, and the potential is detected using the potential sensor 9. VR, which will be described later, is a photoreceptor surface residual potential after static elimination, and this potential is detected using the potential sensor 9.

−実施態様1−
本発明の実施態様1は、上述の複写機の光除電装置17の光量を10W/mとしたものである。その理由を以下に示す。温度:23℃、湿度:50%のもと、既定の作像条件で帯電および除電を連続して行った際の、単位時間あたりのVL上昇量すなわちVL上昇速度を測定したところ、図4に示すとおり、
(6.5−4.3)/(1500−1000)=0.0044 (V/sec)
でVLが上昇することがわかった。これがVL上昇速度Aである。
Embodiment 1
In the first embodiment of the present invention, the light quantity of the light neutralizing device 17 of the copying machine described above is 10 W / m 2 . The reason is as follows. When the VL increase amount per unit time, ie, the VL increase rate, was measured under the conditions of temperature: 23 ° C. and humidity: 50% under continuous image forming conditions, the VL increase rate per unit time was measured. As shown
(6.5-4.3) / (1500-1000) = 0.0044 (V / sec)
It was found that VL increased. This is the VL increase speed A.

前記既定の作像条件は、前述の通り、感光体12の線速:630mm/sec,感光体帯電電位:−800Vおよび光除電装置17の光量:1.0W/mである。また、以下の連続印刷(連続プリント,連続作像)は、A4横版のリピート印刷であり、該連続印刷の期間、感光体の帯電および露光除電は間断なく、連続して行うものである。 The predetermined image forming conditions are, as described above, the linear velocity of the photosensitive member 12: 630 mm / sec, the photosensitive member charging potential: −800 V, and the light amount of the photostatic device 17: 1.0 W / m 2 . In addition, the following continuous printing (continuous printing, continuous image formation) is A4 horizontal plate repeat printing, and during the continuous printing period, the charging of the photosensitive member and the exposure static elimination are performed continuously without interruption.

次に、VLが上昇した感光体12を用いて、帯電を行わずに、温度:23℃湿度:50%の環境下で感光体12を回転駆動し、回転する感光体12に光除電装置17により光を照射し続けた場合の、光除電装置の光量毎の、光照射時間とVLの関係を測定したところ、図5に示すとおり、光量が大きい程VLの低下量が大きいことがわかった。この光除電装置17の光量毎の、単位時間あたりのVL低下量すなわちVL低下速度の絶対値がBである。図6は、光量とVL低下速度絶対値Bの関係を表したグラフであり、このグラフより
B≧A ・・・(1)
を満たす光量は約8.6W/m以上であることがわかる。この結果より、実施態様1では、光除電装置17の光量を10W/mに設定(固定)した。
Next, using the photoconductor 12 having an increased VL, the photoconductor 12 is rotationally driven in an environment of temperature: 23 ° C. and humidity: 50% without charging, and the photostatic device 17 is applied to the rotating photoconductor 12. As a result of measuring the relationship between light irradiation time and VL for each light quantity of the light static elimination device when light was continuously irradiated by the above, it was found that the amount of decrease in VL was larger as the light quantity was larger, as shown in FIG. . The absolute value of the VL decrease amount per unit time, that is, the VL decrease speed, is B for each light quantity of the light static eliminating device 17. FIG. 6 is a graph showing the relationship between the light amount and the absolute value B of the VL reduction speed. From this graph, B ≧ A (1)
It turns out that the light quantity which satisfy | fills about 8.6 W / m < 2 > or more. From this result, in Embodiment 1, the light quantity of the light neutralizing device 17 was set (fixed) to 10 W / m 2 .

すなわち実施態様1は、感光体12を線速630mm/secで回転駆動し、感光体帯電電位:−800V、光除電装置17の光量:10W/mという条件でプリント(作像)を行う。 That is, in the first embodiment, the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec, and printing (image formation) is performed on the condition that the photosensitive member charging potential is −800 V and the light neutralizing device 17 has a light amount of 10 W / m 2 .

これにより、図7に示すように、感光体12の長期使用においてもVL上昇を抑制することができる。なお、図7は光除電装置17の光量が1.0W/mである比較例1(従来例)と、光量5W/mの比較例2と、実施態様1について、温度:23℃、湿度:50%、感光体帯電電位:−800V、書込み光量:110μW、書込みパターン:黒ベタ、転写電流:130μAという条件で印刷を行った場合の、感光体回転時間とVL上昇量を比較したグラフである。実施態様1ではVL上昇が解消されている。 As a result, as shown in FIG. 7, the increase in VL can be suppressed even during long-term use of the photoconductor 12. Note that FIG. 7 is a comparative example the amount of light discharger 17 is 1.0 W / m 2 1 (the conventional example), and Comparative Example 2 the amount of light 5W / m 2, the embodiment 1, temperature: 23 ° C., Graph comparing photoreceptor rotation time and VL increase when printing is performed under the conditions of humidity: 50%, photosensitive member charging potential: -800 V, writing light quantity: 110 μW, writing pattern: black solid, transfer current: 130 μA It is. In the first embodiment, the increase in VL is eliminated.

−実施態様2−
この実施態様2は、上述の複写機で、前記既定の作像条件で作像(プリント)を行うものである。すなわち、感光体12を線速630mm/secで回転駆動し、感光体帯電電位:−800V,光除電装置17の光量:1.0W/mという条件で、感光体12の帯電および除電を連続して行う。加えて、光除電装置17の光量を可変とし、感光体駆動モータの積算回転時間が450secを超えたプリント終了時に、光照射モードを実行する。
Embodiment 2
In the second embodiment, the above-described copying machine performs image formation (printing) under the predetermined image forming conditions. That is, the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec, and the charging and discharging of the photosensitive member 12 are continuously performed under the conditions of the photosensitive member charging potential: −800 V and the light neutralizing device 17 light amount: 1.0 W / m 2. And do it. In addition, the amount of light of the light neutralizing device 17 is made variable, and the light irradiation mode is executed at the end of printing when the accumulated rotation time of the photosensitive member driving motor exceeds 450 seconds.

光照射モードとは、帯電や書込み,現像,転写等を行わずに、感光体12と光除電装置17のみを駆動させる除電モードであり、光照射モード実行中は光除電装置17の光量を大に変更し、感光体12に光を照射し続ける。なお、積算回転時間は光照射モード実行後にリセットする。   The light irradiation mode is a static elimination mode in which only the photosensitive member 12 and the light static elimination device 17 are driven without performing charging, writing, development, transfer, and the like. During execution of the light irradiation mode, the light neutralization device 17 has a large amount of light. The photoconductor 12 is continuously irradiated with light. The accumulated rotation time is reset after execution of the light irradiation mode.

光照射モード実行直前のVL上昇量ΔVL=∫A(積算回転時間が450secを超えたプリント終了時の、該プリント期間のVL上昇量)は、VL上昇速度A(図4)の、該プリント期間分の積分にて算出し、光照射モード実行時間Tは、以下に示す(2)式によって算出する。なお、(2)式中のBは、実施態様1のBと同様、図5に示す単位時間あたりのVL低下速度の絶対値である。本実施態様2においては、光照射モード実行時の光量を30W/mとした。よって図5より、本実施態様2におけるVL低下速度絶対値Bは、0.016となっている。
T=ΔVL/B ・・・(2)
すなわち実施態様2は、感光体12の線速:630mm/sec,感光体帯電電位:−800V、光除電装置17の光量:1.0W/mという既定の作像条件でプリント(作像)を行う。CPU60が、このようなプリントの積算時間が450secを超えたプリント終了時に、光照射モードを実行する。すなわち、プリント終了時の積算時間の間のVL上昇量ΔVL=∫Aを、既定の作像条件での光除電装置17の光量:1.0W/mでのVL上昇速度A(図4)とプリント終了時の積算時間に基づいて算出し、光照射モード実行時の光除電装置17の光量:30W/mでのVL低下速度絶対値B(図5)を用いて、光照射モード実行時間T=ΔVL/Bを算出して、感光体12を既定の作像条件の線速630mm/secで回転駆動し、感光体12は帯電しないで、光除電装置17の光量:30W/mという条件で感光体12を除電し、該時間Tが経過すると該除電を停止し、前記プリントの積算時間を初期化(0にリセット)する。
VL increase amount ΔVL = ∫A immediately before execution of the light irradiation mode (VL increase amount in the print period when the accumulated rotation time exceeds 450 seconds) is the print period of the VL increase speed A (FIG. 4). The light irradiation mode execution time T is calculated by the following equation (2). Note that B in the formula (2) is the absolute value of the VL decrease rate per unit time shown in FIG. In the second embodiment, the light amount when the light irradiation mode is executed is set to 30 W / m 2 . Therefore, from FIG. 5, the VL decrease speed absolute value B in the second embodiment is 0.016.
T = ΔVL / B (2)
That is, in the second embodiment, printing (imaging) is performed under predetermined imaging conditions of the linear velocity of the photosensitive member 12: 630 mm / sec, the photosensitive member charging potential: −800 V, and the light amount of the photostatic device 17: 1.0 W / m 2. I do. The CPU 60 executes the light irradiation mode at the end of printing when the accumulated time of such printing exceeds 450 seconds. That is, the amount of VL increase ΔVL = ∫A during the integration time at the end of printing is expressed as VL increase rate A when the light neutralizing device 17 has a light amount of 1.0 W / m 2 under a predetermined image forming condition (FIG. 4). And the light irradiation mode execution using the absolute value B (FIG. 5) of the VL decrease speed at 30 W / m 2 when the light irradiation mode is executed. Time T = ΔVL / B is calculated, and the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec, which is a predetermined image forming condition. The photosensitive member 12 is not charged, and the light quantity of the photostatic device 17 is 30 W / m 2. When the time T has elapsed, the charge removal is stopped and the print integration time is initialized (reset to 0).

なお、上記光照射モードでも感光体12を既定の作像条件の線速630mm/secで回転駆動するが、必ずしも既定の作像条件の線速630mm/secと同一とする必要はなく、既定の作像条件の線速630mm/secよりも低速あるいは高速にすることもできる。以下の実施態様3〜10のいずれにおいても同様である。   In the light irradiation mode, the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec, which is a predetermined imaging condition. However, it is not necessarily the same as the linear speed of 630 mm / sec, which is a predetermined imaging condition. It can also be set at a lower speed or a higher speed than the linear speed of 630 mm / sec in the image forming conditions. The same applies to any of Embodiments 3 to 10 below.

このような構成としたことにより、図8に示すように、VLの上昇が抑制される。なお図8は、本実施態様2における、温度:23℃、湿度:50%、感光体帯電電位:−800V、書込み光量:110μW、書込みパターン:黒ベタ、転写電流:130μAという条件で印刷を行った場合の、感光体回転時間とVL上昇量の関係を表したグラフである。   By adopting such a configuration, as shown in FIG. 8, an increase in VL is suppressed. In FIG. 8, printing is performed under the conditions of temperature: 23 ° C., humidity: 50%, photoconductor charging potential: −800 V, writing light quantity: 110 μW, writing pattern: black solid, transfer current: 130 μA in the second embodiment. 6 is a graph showing the relationship between the photosensitive member rotation time and the VL increase amount.

なお、上記光照射モードでも感光体12を既定の作像条件の線速630mm/secで回転駆動するが、必ずしも既定の作像条件の線速630mm/secと同一とする必要はなく、既定の作像条件の線速630mm/secよりも低速あるいは高速にすることもできる。また、光照射モード実行時間Tに対応して、Tが大きいと低速に、小さいと高速に、感光体12の線速を変更してVLの上昇抑止を更に効果的にすることもできる。これらは、以下の実施態様3〜10のいずれにおいても同様である。   In the light irradiation mode, the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec, which is a predetermined imaging condition. However, it is not necessarily the same as the linear speed of 630 mm / sec, which is a predetermined imaging condition. It can also be set at a lower speed or a higher speed than the linear speed of 630 mm / sec in the image forming conditions. Corresponding to the light irradiation mode execution time T, the linear velocity of the photoconductor 12 can be changed to be more effective when T is large and at a low speed, and when the T is small, the increase in VL can be further effectively suppressed. These are the same in any of Embodiments 3 to 10 below.

−実施態様3−
この実施態様3も、既定の作像条件で作像(プリント)を行う。すなわち、感光体12を線速630mm/secで回転駆動し、感光体帯電電位:−800V,光除電装置17の光量:1.0W/mという条件で、感光体12の帯電および除電を連続して行う。感光体駆動モータの積算回転時間が450secを超えたプリント終了時に、光照射モードを実行する。
Embodiment 3
In Embodiment 3, image formation (printing) is also performed under predetermined image formation conditions. That is, the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec, and the charging and discharging of the photosensitive member 12 are continuously performed under the conditions of the photosensitive member charging potential: −800 V and the light neutralizing device 17 light amount: 1.0 W / m 2. And do it. When the accumulated rotation time of the photosensitive member drive motor exceeds 450 seconds, the light irradiation mode is executed.

この実施態様3は、実施態様2において光除電装置17の光量を可変とする代わりに、図9に示すように、感光体12回転方向における現像装置14と転写・搬送装置15の間に光照射装置8を備え、光照射モード実行時に、光除電装置17の代わりにこの光照射装置8によって光照射を行うことによって、光除電装置17の光量を可変としなくても、光照射によるVL低下を達成する。光照射装置8を発光付勢するドライバは、図3に示すI/O&バッファ64に接続され、該I/O&バッファ64を介してCPU60によってオン/オフ制御される。光照射装置8も、光除電装置17と同様に、光エネルギーのピークの波長が680nmのLEDで構成されている。   In the third embodiment, instead of changing the light amount of the light neutralizing device 17 in the second embodiment, as shown in FIG. 9, light irradiation is performed between the developing device 14 and the transfer / conveying device 15 in the rotation direction of the photosensitive member 12. When the light irradiation mode is executed, light irradiation is performed by the light irradiation device 8 instead of the light neutralization device 17, thereby reducing the VL due to light irradiation even if the light amount of the light neutralization device 17 is not variable. Achieve. The driver for energizing the light irradiation device 8 is connected to the I / O & buffer 64 shown in FIG. 3, and is turned on / off by the CPU 60 via the I / O & buffer 64. The light irradiation device 8 is also composed of an LED having a peak wavelength of light energy of 680 nm, like the light neutralization device 17.

光照射モード実行時間Tは、実施態様2と同様に(2)式で算出する。光照射装置8の光量およびVLB低下速度絶対値Bは、実施態様2と同様、30W/m、0.016となっている。 The light irradiation mode execution time T is calculated by the equation (2) as in the second embodiment. The amount of light and the VLB decrease speed absolute value B of the light irradiation device 8 are 30 W / m 2 and 0.016, as in the second embodiment.

すなわち実施態様3は、感光体12の線速:630mm/sec,感光体帯電電位:−800V、光除電装置17の光量:1.0W/mという既定の作像条件でプリント(作像)を行う。このようなプリントの積算時間が450secを超えたプリント終了時に、CPU60が、光照射モードを実行する。すなわち、CPU60は、プリント終了時の積算時間の間のVL上昇量ΔVL=∫Aを、既定の作像条件での光除電装置17の光量:1.0W/mでのVL上昇速度A(図4)とプリント終了時の積算時間に基づいて算出し、光照射モード実行時の光照射装置8の光量:30W/mでのVL低下速度絶対値B(図5)を用いて、光照射モード実行時間T=ΔVL/Bを算出して、感光体12を既定の作像条件の線速630mm/secで回転駆動し、感光体12は帯電しないで、光除電装置17は点灯しないで、光照射装置8の光量:30W/mという条件で感光体12を除電し、該時間Tが経過すると該除電を停止し、前記プリントの積算時間を初期化(0にリセット)する。 That is, in the third embodiment, printing (imaging) is performed under predetermined imaging conditions of the linear velocity of the photosensitive member 12: 630 mm / sec, the photosensitive member charging potential: −800 V, and the light amount of the photostatic discharger 17: 1.0 W / m 2. I do. When the print integration time exceeds 450 seconds, the CPU 60 executes the light irradiation mode. That is, the CPU 60 sets the VL increase amount ΔVL = ∫A during the integration time at the end of printing to the VL increase rate A (when the predetermined amount of light is 17 W / m 2 ). 4) and the integrated time at the end of printing, and using the light intensity of the light irradiation device 8 when the light irradiation mode is executed: VL decrease speed absolute value B (FIG. 5) at 30 W / m 2 The irradiation mode execution time T = ΔVL / B is calculated, and the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec, which is a predetermined imaging condition. The photosensitive member 12 is not charged, and the light neutralizing device 17 is not turned on. The photoconductor 12 is neutralized under the condition that the light intensity of the light irradiation device 8 is 30 W / m 2. When the time T elapses, the neutralization is stopped and the print integration time is initialized (reset to 0).

このような構成としたことにより、図10に示すように、実施態様2と同様にVLの上昇を抑制することができる。なお、図10は本実施態様3における、温度:23℃、湿度:50%、感光体帯電電位:−800V、書込み光量:110μW、書込みパターン:黒ベタ、転写電流:130μAという条件で印刷を行った場合の感光体回転時間とVL上昇量の関係を表したグラフである。光照射装置を複数個備えることによって、VLを低下させるのに必要な時間を短くし、ダウンタイムを短縮することも可能である。   By adopting such a configuration, as shown in FIG. 10, the increase in VL can be suppressed as in the second embodiment. In FIG. 10, printing is performed under the conditions of temperature: 23 ° C., humidity: 50%, photosensitive member charging potential: −800 V, writing light quantity: 110 μW, writing pattern: black solid, transfer current: 130 μA in the third embodiment. 5 is a graph showing the relationship between the photosensitive member rotation time and the VL increase amount. By providing a plurality of light irradiation devices, it is possible to shorten the time required to lower the VL and shorten the downtime.

−実施態様4−
この実施態様4も、作像(プリント)時には、感光体12を線速630mm/secで回転駆動し、感光体帯電電位:−800V,光除電装置17の光量:1.0W/mという条件で、感光体12の帯電および除電を連続して行う。すなわち既定の作像条件でプリントする。感光体駆動モータの積算回転時間が450secを超えたプリント終了時に、光照射モードを実行する構成とした。
Embodiment 4
In Embodiment 4 as well, at the time of image formation (printing), the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec, the photosensitive member charging potential is −800 V, and the light amount of the light neutralizing device 17 is 1.0 W / m 2. Thus, the charging and discharging of the photoconductor 12 are continuously performed. That is, printing is performed under predetermined image forming conditions. The light irradiation mode is executed at the end of printing when the accumulated rotation time of the photosensitive member driving motor exceeds 450 seconds.

この実施態様4は、光照射装置8を備える実施態様3においてさらに、光除電装置17の光量を可変とし、光照射モード実行時には、光除電装置17と光照射装置8によって光照射を行う。光照射モード実行時間は、実施態様2と同様に(2)式の算出をおこなう。Bの値は、図5と同様にして測定した、図11に示す、光除電装置17と光照射装置8の光量の和毎の光照射時間とVLの関係を測定した結果から導き出す。本実施態様4においては、光除電装置17の光量:30W/m、光照射装置8の光量:30W/mとした。よって図11より、本実施態様4におけるVL低下速度絶対値Bは0.0345となっている。Bの値が実施態様2,3の実施態様と比較して2倍程度であるため、光照射モード実行時間Tは、実施態様2,3の実施態様と比較して1/2程度で済む。 In the fourth embodiment, in addition to the third embodiment including the light irradiation device 8, the light amount of the light neutralization device 17 is variable, and the light neutralization device 17 and the light irradiation device 8 perform light irradiation when the light irradiation mode is executed. The light irradiation mode execution time is calculated by the expression (2) as in the second embodiment. The value of B is derived from the result of measuring the relationship between VL and the light irradiation time for each sum of the light amounts of the light neutralizing device 17 and the light irradiation device 8 shown in FIG. In the fourth embodiment, the light quantity of the light static elimination device 17 is 30 W / m 2 , and the light quantity of the light irradiation device 8 is 30 W / m 2 . Therefore, from FIG. 11, the VL decrease speed absolute value B in Embodiment 4 is 0.0345. Since the value of B is about twice as long as that in the second and third embodiments, the light irradiation mode execution time T can be about ½ that in the second and third embodiments.

すなわち実施態様4は、感光体12の線速:630mm/sec,感光体帯電電位:−800V、光除電装置17の光量:1.0W/mという既定の作像条件でプリント(作像)を行う。このようなプリントの積算時間が450secを超えたプリント終了時に、CPU60が、光照射モードを実行する。すなわちCPU60は、プリント終了時の積算時間の間のVL上昇量ΔVL=∫Aを、既定の作像条件での光除電装置17の光量:1.0W/mでのVL上昇速度A(図4)とプリント終了時の積算時間に基づいて算出し、光照射モード実行時の光除電装置17の光量:30W/mと光照射装置8の光量:30W/mとの和60W/mでのVL低下速度絶対値B(図11)を用いて、光照射モード実行時間T=ΔVL/Bを算出して、感光体12を既定の作像条件の線速630mm/secで回転駆動し、感光体12は帯電しないで、光除電装置17および光照射装置8の光量和:60W/mという条件で感光体12を除電し、該時間Tが経過すると該除電を停止し、前記プリントの積算時間を初期化(0にリセット)する。 That is, in the fourth embodiment, printing (imaging) is performed under predetermined imaging conditions such as the linear velocity of the photosensitive member 12: 630 mm / sec, the photosensitive member charging potential: −800 V, and the light amount of the photostatic discharger 17: 1.0 W / m 2. I do. When the print integration time exceeds 450 seconds, the CPU 60 executes the light irradiation mode. In other words, the CPU 60 sets the VL increase amount ΔVL = ∫A during the integration time at the end of printing to the VL increase rate A at the light quantity of the light static elimination device 17 under a predetermined image forming condition: 1.0 W / m 2 (FIG. 4) and the accumulated time at the end of printing, and the sum of the light amount of the light neutralization device 17 at the time of execution of the light irradiation mode: 30 W / m 2 and the light amount of the light irradiation device 8: 30 W / m 2 is 60 W / m. 2 is used to calculate the light irradiation mode execution time T = ΔVL / B, and the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec as a predetermined image forming condition. The photoconductor 12 is not charged, and the photoconductor 12 is neutralized under the condition of the sum of the light amounts of the light neutralization device 17 and the light irradiation device 8: 60 W / m 2. When the time T has elapsed, the neutralization is stopped, The print integration time is initialized (reset to 0).

このような構成としたことにより、図12に示すように、実施態様2,3と同様の効果をより短いダウンタイムで実現できる。なお、図12は、本実施態様4における、温度:23℃、湿度:50%、感光体帯電電位:−800V、書込み光量:110μW、書込みパターン:黒ベタ、転写電流:130μAという条件で印刷を行った場合の感光体回転時間とVL上昇量の関係を表したグラフである。   By adopting such a configuration, as shown in FIG. 12, the same effects as those of Embodiments 2 and 3 can be realized with a shorter downtime. In FIG. 12, printing is performed under the conditions of temperature: 23 ° C., humidity: 50%, photosensitive member charging potential: −800 V, writing light quantity: 110 μW, writing pattern: black solid, transfer current: 130 μA in the fourth embodiment. 6 is a graph showing the relationship between the photosensitive member rotation time and the VL increase amount when performed.

−実施態様5−
この実施態様5も、作像(プリント)時には、感光体12を線速630mm/secで回転駆動し、感光体帯電電位:−800V,光除電装置17の光量:1.0W/mという条件で、感光体12の帯電および除電を連続して行う。すなわち既定の作像条件でプリントする。
Embodiment 5
In Embodiment 5 as well, at the time of image formation (printing), the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec, the photosensitive member charging potential is -800 V, and the light amount of the light neutralizing device 17 is 1.0 W / m 2. Thus, the charging and discharging of the photoconductor 12 are continuously performed. That is, printing is performed under predetermined image forming conditions.

実施態様5は、光除電装置17の光量を可変とした。CPU60は、感光体初期のVLを不揮発メモリ69に記憶する機能を備え、マシン設置時や出荷時、感光体交換時等に、この感光体初期のVLを検知し記憶する「初期値設定モード」を実行することにより感光体初期のVLを、不揮発メモリ69に記憶する。   In the fifth embodiment, the light amount of the light neutralizing device 17 is variable. The CPU 60 has a function of storing the initial VL of the photoconductor in the nonvolatile memory 69, and detects and stores the initial VL of the photoconductor when the machine is installed, shipped, or when the photoconductor is replaced. To store the initial VL of the photosensitive member in the nonvolatile memory 69.

該「初期値設定モード」では、感光体12に対して、帯電とVL検出パターンの書込みを行い、VLを検知し不揮発メモリ69に記憶する。VLパターンは感光体周方向長さ40mm、幅30mmの長方形ベタパターンであり、電位センサ9の位置に対応する感光体長手方向中央部に作成する。このVLパターンはさらに、積算1000プリントを超えたプリント終了時および電源投入時にも作成し、VLを検知する。なお、VL検知後は積算1000プリントをカウントするカウンタはリセットされる。   In the “initial value setting mode”, charging and writing of a VL detection pattern are performed on the photosensitive member 12, and VL is detected and stored in the nonvolatile memory 69. The VL pattern is a rectangular solid pattern having a length of 40 mm in the circumferential direction of the photoconductor and a width of 30 mm, and is created at the center in the photoconductor longitudinal direction corresponding to the position of the potential sensor 9. This VL pattern is also created at the end of printing that exceeds 1000 prints and when the power is turned on, and detects the VL. Note that the counter that counts 1000 accumulated prints is reset after VL detection.

この検知したVLが、記憶された感光体初期のVL(不揮発メモリのデータ)よりも高かった場合、その差ΔVLに応じた時間T=ΔVL/Bの光照射モードを実行する。このΔVLは、実施態様2〜4のΔVL=∫Aに対応するものである。Bは、実施態様1のBと同様、図5に示す単位時間あたりのVL低下速度絶対値である。ここでの光照射モードも、帯電や書込み、現像、転写等を行わずに、感光体12と光除電装置17のみを駆動させるモードであり、光照射モード実行時は、光除電装置17の光量を大に変更し、感光体12に光を照射し続ける。この光照射モードの実行時間Tも(2)式に基づいて算出する。本実施態様においては、光照射モード実行時の、光除電装置17の光量を30W/mとした。よって図5より、本実施態様におけるBの値は0.016となっている。 When the detected VL is higher than the stored initial VL (nonvolatile memory data), the light irradiation mode of time T = ΔVL / B corresponding to the difference ΔVL is executed. This ΔVL corresponds to ΔVL = ∫A in the embodiments 2 to 4. B is the absolute value of the VL decrease rate per unit time shown in FIG. The light irradiation mode here is also a mode in which only the photosensitive member 12 and the light neutralization device 17 are driven without performing charging, writing, development, transfer, and the like. Is changed to a large value, and the photoconductor 12 is continuously irradiated with light. The execution time T of this light irradiation mode is also calculated based on the equation (2). In the present embodiment, the light quantity of the light neutralizing device 17 when executing the light irradiation mode is set to 30 W / m 2 . Therefore, from FIG. 5, the value of B in this embodiment is 0.016.

すなわち実施態様5では、マシン設置時や出荷時、感光体交換時等の初期時点にCPU60が、感光体12に対して、帯電とVL検出パターンの書込みを行い、VLを検知し不揮発メモリ69に記憶する。このVLをVLiと表す。そしてプリント枚数積算値を初期化(0にリセット)する。その後CPU60は、プリント(作像)のたびにプリント枚数積算値をカウントアップし、該積算値が1000を超えたプリント終了時(終了直後)および電源投入時(投入直後)に、上記初期時点のときと同様に、帯電とVL検出パターンの書込みを行い、VLを検知する。このVLをVLsと表す。そしてΔVL=VLs−VLiを算出し、ΔVLが正かつ設定値以上であると、光照射モード実行時の光除電装置17の光量:30W/mでのVL低下速度絶対値B(図5)を用いて、光照射モード実行時間T=ΔVL/Bを算出して、感光体12を、既定の作像条件の線速630mm/secで回転駆動し、感光体12は帯電しないで、光除電装置17の光量:30W/mという条件で感光体12を除電し、該時間Tが経過すると該除電を停止し、前記プリント枚数積算値を初期化(0にリセット)する。以降も、プリント(作像)のたびにプリント枚数積算値をカウントアップし、該積算値が1000を超えたプリント終了時(終了直後)および電源投入時(投入直後)に、上記光照射モードを実行する。 That is, in the fifth embodiment, the CPU 60 performs charging and writing of the VL detection pattern to the photoconductor 12 at an initial time such as when the machine is installed, shipped, or when the photoconductor is replaced. Remember. This VL is represented as VLi. Then, the print number integrated value is initialized (reset to 0). Thereafter, the CPU 60 counts up the print number integrated value every time printing (image formation), and at the end of printing when the integrated value exceeds 1000 (immediately after the end) and when the power is turned on (immediately after the input), Similarly to the case, charging and writing of a VL detection pattern are performed to detect VL. This VL is represented as VLs. Then, ΔVL = VLs−VLi is calculated, and when ΔVL is positive and equal to or greater than the set value, the light quantity of the light neutralizing device 17 when executing the light irradiation mode: VL decrease speed absolute value B at 30 W / m 2 (FIG. 5) Is used to calculate the light irradiation mode execution time T = ΔVL / B, and the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec under a predetermined image forming condition. The photoconductor 12 is neutralized under the condition that the light quantity of the apparatus 17 is 30 W / m 2. When the time T elapses, the neutralization is stopped, and the print number integrated value is initialized (reset to 0). Thereafter, the print number integrated value is counted up every time printing (image formation), and the above-mentioned light irradiation mode is set at the end of printing (immediately after the completion) when the integrated value exceeds 1000 and when the power is turned on (immediately after being turned on). Run.

このような構成としたことにより、VL上昇量を予測ではなく実測できるため、実施態様2〜4において予測するVL上昇速度Aと、実際のVL上昇速度の間にズレが生じるような場合においても、VL上昇速度に応じて適切な照射時間Tで光照射モードを実行することができるため、光照射モードが必要以上に長くダウンタイムが長くなったり、光照射モードが短くVLを低下しきれなくなったりするといったことがなく、効率よくVLを低下させることができる。予測するVL上昇速度と、実際のVL上昇速度の間にズレが生じる場合の例としては、実施態様2〜4の、VL上昇速度予測タイミングとして感光体駆動モータ積算回転時間を用いる場合では、プリントが連続で行われるか、数枚ずつ行われるかで同じ積算回転時間でも、図22に示すように、プリント枚数が大きく変わるため、VL上昇速度も大きく異なる。   By adopting such a configuration, the amount of VL increase can be measured rather than predicted, so even when there is a deviation between the VL increase rate A predicted in Embodiments 2 to 4 and the actual VL increase rate. Because the light irradiation mode can be executed with an appropriate irradiation time T according to the VL rising speed, the light irradiation mode is longer than necessary and the downtime becomes longer, or the light irradiation mode is short and the VL cannot be lowered. The VL can be reduced efficiently without any trouble. As an example of a case where a deviation occurs between the predicted VL increase speed and the actual VL increase speed, in the case where the photosensitive member drive motor integrated rotation time is used as the VL increase speed prediction timing in Embodiments 2 to 4, printing is performed. 22 is performed continuously or several times, even in the same accumulated rotation time, as shown in FIG. 22, the number of prints varies greatly, so the VL increase speed also varies greatly.

本実施態様5においては、連続でプリントした場合の、感光体回転時間とVL上昇速度の関係から光照射モード実行時のVL上昇速度を予測しているため、実際の使われ方が少ない枚数のプリントを繰り返すような場合では、感光体駆動モータ回転時間に対してプリント枚数が少なくなり、予測するVL上昇速度よりも実際のVL上昇量が小さくなってしまう。つまり、光照射モード実行時間Tが短くて良いのに、無駄に光照射モードを実行することになってしまい、エネルギーを無駄使いする上に、ダウンタイムも必要以上に長くなってしまう。また同じプリント枚数でも、プリント画像の画像面積率が大きく異なる場合には、感光体12を通過する電荷量も大きく異なるため、VL上昇速度に差が生じることになる。さらに、温湿度条件が変動した場合も、予測値と実際の値にズレが生じてしまう。しかし本実施態様5においてはVLを検知しているため、適切な照射時間Tで、図14に示すように、VLの上昇を抑制することができる。なお図14は、本実施態様5における、温度:23℃、湿度:50%、感光体帯電電位:−800V、書込み光量:110μW、書込みパターン:黒ベタ、転写電流:130μAという条件で印刷を行った場合の走行時間とVL上昇量の関係を表したグラフである。   In the fifth embodiment, the VL increase speed during execution of the light irradiation mode is predicted from the relationship between the photosensitive member rotation time and the VL increase speed in the case of continuous printing. In a case where printing is repeated, the number of printed sheets is reduced with respect to the rotation time of the photosensitive member driving motor, and the actual VL increase amount becomes smaller than the predicted VL increase speed. That is, although the light irradiation mode execution time T may be short, the light irradiation mode is executed unnecessarily, resulting in wasteful use of energy and a longer downtime than necessary. Further, even when the number of prints is the same, if the image area ratios of the print images are greatly different, the amount of charge passing through the photoconductor 12 is also greatly different, so that a difference occurs in the VL increase speed. Furthermore, even when the temperature and humidity conditions fluctuate, a deviation occurs between the predicted value and the actual value. However, since the VL is detected in the fifth embodiment, the increase in the VL can be suppressed with an appropriate irradiation time T as shown in FIG. FIG. 14 shows printing in the fifth embodiment under the conditions of temperature: 23 ° C., humidity: 50%, photosensitive member charging potential: −800 V, writing light quantity: 110 μW, writing pattern: black solid, transfer current: 130 μA. It is a graph showing the relationship between the travel time and the VL increase amount in the case of.

−実施態様6−
この実施態様6も、作像(プリント)時には、感光体12を線速630mm/secで回転駆動し、感光体帯電電位:−800V,光除電装置17の光量:1.0W/mという条件で、感光体12の帯電および除電を連続して行う。すなわち既定の作像条件でプリントする。
Embodiment 6
In Embodiment 6 as well, at the time of image formation (printing), the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec, the photosensitive member charging potential is −800 V, and the light amount of the light neutralizing device 17 is 1.0 W / m 2. Thus, the charging and discharging of the photoconductor 12 are continuously performed. That is, printing is performed under predetermined image forming conditions.

実施態様6は、実施態様5において、光除電装置17の光量を可変とする代わりに、図9に示すように、感光体12回転方向における現像装置14と転写・搬送装置15の間に、光照射装置8を備え、光照射モード実行時に、光除電装置17の代わりにこの光照射装置8によって光照射を行うことによって、光除電装置17の光量を可変としなくても、光照射によるVL低下が達成できる構成となっている。光照射モード実行時間Tは、実施形態5と同様に(2)式から算出する。光量およびBの値は、実施形態5と同様、30W/m、0.016である。 In the sixth embodiment, instead of changing the light quantity of the light neutralizing device 17 in the fifth embodiment, as shown in FIG. 9, the light is removed between the developing device 14 and the transfer / conveying device 15 in the rotation direction of the photosensitive member 12. When the light irradiation mode is executed, light irradiation is performed by the light irradiation device 8 instead of the light neutralization device 17, so that the VL lowering due to light irradiation can be achieved without changing the light amount of the light neutralization device 17. Can be achieved. The light irradiation mode execution time T is calculated from the equation (2) as in the fifth embodiment. The amount of light and the value of B are 30 W / m 2 and 0.016, as in the fifth embodiment.

すなわち実施態様6では、マシン設置時や出荷時、感光体交換時等の初期時点にCPU60が、感光体12に対して、帯電とVL検出パターンの書込みを行い、VLを検知し不揮発メモリ69に記憶する。このVLをVLiと表す。そしてプリント枚数積算値を初期化(0にリセット)する。その後CPU60は、プリント(作像)のたびにプリント枚数積算値をカウントアップし、該積算値が1000を超えたプリント終了時(終了直後)および電源投入時(投入直後)に、上記初期時点のときと同様に、帯電とVL検出パターンの書込みを行い、VLを検知する。このVLをVLsと表す。そしてΔVL=VLs−VLiを算出し、ΔVLが正かつ設定値以上であると、光照射モード実行時の光照射装置8の光量:30W/mでのVL低下速度絶対値B(図5)を用いて、光照射モード実行時間T=ΔVL/Bを算出して、既定の作像条件の感光体移動速度:線速630mm/secで感光体12を回転駆動し、感光体12は帯電しないで、光除電装置17は消灯するが、光照射装置8の光量:30W/mという条件で感光体12を除電し、該時間Tが経過すると該除電を停止し、前記プリント枚数積算値を初期化(0にリセット)する。以降も、プリント(作像)のたびにプリント枚数積算値をカウントアップし、該積算値が1000を超えたプリント終了時(終了直後)および電源投入時(投入直後)に、上記光照射モードを実行する。 That is, in the sixth embodiment, the CPU 60 performs charging and writing of the VL detection pattern to the photoconductor 12 at an initial time such as when the machine is installed, shipped, or when the photoconductor is replaced, and VL is detected and stored in the nonvolatile memory 69. Remember. This VL is represented as VLi. Then, the print number integrated value is initialized (reset to 0). Thereafter, the CPU 60 counts up the print number integrated value every time printing (image formation), and at the end of printing when the integrated value exceeds 1000 (immediately after the end) and when the power is turned on (immediately after the input), Similarly to the case, charging and writing of a VL detection pattern are performed to detect VL. This VL is represented as VLs. Then, ΔVL = VLs−VLi is calculated, and when ΔVL is positive and equal to or larger than the set value, the light amount of the light irradiation device 8 when the light irradiation mode is executed: VL decrease speed absolute value B at 30 W / m 2 (FIG. 5) Is used to calculate the light irradiation mode execution time T = ΔVL / B, the photosensitive member 12 is rotated at a linear velocity of 630 mm / sec, and the photosensitive member 12 is not charged. Then, the light neutralization device 17 is turned off, but the photoconductor 12 is neutralized under the condition that the light irradiation device 8 has a light quantity of 30 W / m 2. When the time T has elapsed, the neutralization is stopped, and the print number integrated value is obtained. Initialize (reset to 0). Thereafter, the print number integrated value is counted up every time printing (image formation), and the above-mentioned light irradiation mode is set at the end of printing (immediately after the completion) when the integrated value exceeds 1000 and when the power is turned on (immediately after being turned on). Run.

このような構成としたことにより、光除電装置17の光量を可変とせずに、図16に示すように実施態様5と同様にVLの上昇を抑制することができる。なお、図16は実施態様6における、温度:23℃、湿度:50%、感光体帯電電位:−800V、書込み光量:110μW、書込みパターン:黒ベタ、転写電流:130μAという条件で印刷を行った場合の感光体回転時間とVL上昇量の関係を表したグラフである。また、光照射装置を複数個備えることによって、VLを低下させるのに必要な時間を短くし、ダウンタイムを短縮することも可能である。   By adopting such a configuration, it is possible to suppress an increase in VL as in the fifth embodiment as shown in FIG. In FIG. 16, printing was performed under the conditions of temperature: 23 ° C., humidity: 50%, photosensitive member charging potential: −800 V, writing light quantity: 110 μW, writing pattern: black solid, transfer current: 130 μA in Embodiment 6. 6 is a graph showing the relationship between the photosensitive member rotation time and the VL increase amount. In addition, by providing a plurality of light irradiation devices, it is possible to shorten the time required to reduce VL and to reduce downtime.

−実施態様7−
この実施態様7も、作像(プリント)時には、感光体12を線速630mm/secで回転駆動し、感光体帯電電位:−800V,光除電装置17の光量:1.0W/mという条件で、感光体12の帯電および除電を連続して行う。すなわち既定の作像条件でプリントする。
-Embodiment 7-
In Embodiment 7 as well, at the time of image formation (printing), the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec, the photosensitive member charging potential is −800 V, and the light amount of the light neutralizing device 17 is 1.0 W / m 2. Thus, the charging and discharging of the photoconductor 12 are continuously performed. That is, printing is performed under predetermined image forming conditions.

実施態様7は、光照射装置8を備える実施態様6においてさらに、光除電装置17の光量を可変とし、光照射モード実行時には、光除電装置17と光照射装置8によって光照射を行う構成となっている。光照射モード実行時間は、実施態様5と同様に(2)式から算出する。またBの値は、図11に示す光除電装置17と光照射装置8の光量の和毎の光照射時間とVLの関係を測定した結果から導き出す。本実施態様7においては、光除電装置17の光量:30W/m、光照射装置8の光量:30W/mとした。よって図11より本実施態様7におけるBの値は、0.0345となっている。Bの値が実施態様5,6と比較して2倍程度であるため、光照射モード実行時間は実施態様5,6と比較して1/2程度で済む。 The embodiment 7 further includes a configuration in which the amount of light of the light neutralization device 17 is variable in the sixth embodiment including the light irradiation device 8 and light irradiation is performed by the light neutralization device 17 and the light irradiation device 8 when the light irradiation mode is executed. ing. The light irradiation mode execution time is calculated from the equation (2) as in the fifth embodiment. Further, the value of B is derived from the result of measuring the relationship between the light irradiation time and the VL for each sum of the light amounts of the light neutralization device 17 and the light irradiation device 8 shown in FIG. In this Embodiment 7, the light quantity of the light static elimination apparatus 17 was set to 30 W / m 2 , and the light quantity of the light irradiation apparatus 8 was set to 30 W / m 2 . Therefore, from FIG. 11, the value of B in the present embodiment 7 is 0.0345. Since the value of B is about twice that of the fifth and sixth embodiments, the light irradiation mode execution time is about ½ that of the fifth and sixth embodiments.

すなわち実施態様7では、マシン設置時や出荷時、感光体交換時等の初期時点にCPU60が、感光体12に対して、帯電とVL検出パターンの書込みを行い、VLを検知し不揮発メモリ69に記憶する。このVLをVLiと表す。そしてプリント枚数積算値を初期化(0にリセット)する。その後CPU60は、プリント(作像)のたびにプリント枚数積算値をカウントアップし、該積算値が1000を超えたプリント終了時(終了直後)および電源投入時(投入直後)に、上記初期時点のときと同様に、帯電とVL検出パターンの書込みを行い、VLを検知する。このVLをVLsと表す。そしてΔVL=VLs−VLiを算出し、ΔVLが正かつ設定値以上であると、光照射モード実行時の光除電装置19と光照射装置8の光量和:60W/mでのVL低下速度絶対値B(図11)を用いて、光照射モード実行時間T=ΔVL/Bを算出して、感光体12を既定の作像条件の線速630mm/secで回転駆動し、感光体12は帯電しないで、光除電装置17の光量:30W/mおよび光照射装置8の光量:30W/mという条件で感光体12を除電し、該時間Tが経過すると該除電を停止し、前記プリント枚数積算値を初期化(0にリセット)する。以降も、プリント(作像)のたびにプリント枚数積算値をカウントアップし、該積算値が1000を超えたプリント終了時(終了直後)および電源投入時(投入直後)に、上記光照射モードを実行する。 That is, in the seventh embodiment, the CPU 60 performs charging and writing of the VL detection pattern to the photoconductor 12 at an initial time such as when the machine is installed, shipped, or when the photoconductor is replaced. Remember. This VL is represented as VLi. Then, the print number integrated value is initialized (reset to 0). Thereafter, the CPU 60 counts up the print number integrated value every time printing (image formation), and at the end of printing when the integrated value exceeds 1000 (immediately after the end) and when the power is turned on (immediately after the input), Similarly to the case, charging and writing of a VL detection pattern are performed to detect VL. This VL is represented as VLs. Then, ΔVL = VLs−VLi is calculated, and when ΔVL is positive and equal to or larger than the set value, the light amount sum of the light neutralization device 19 and the light irradiation device 8 when the light irradiation mode is executed: the VL decrease speed absolute at 60 W / m 2 Using the value B (FIG. 11), the light irradiation mode execution time T = ΔVL / B is calculated, and the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec, which is a predetermined image forming condition. However, the photoconductor 12 is neutralized under the conditions of the light quantity of the light static elimination device 17: 30 W / m 2 and the light quantity of the light irradiation device 8: 30 W / m 2. When the time T elapses, the static elimination is stopped, and the print The total number of sheets is initialized (reset to 0). Thereafter, the print number integrated value is counted up every time printing (image formation), and the above-mentioned light irradiation mode is set at the end of printing (immediately after the completion) when the integrated value exceeds 1000 and when the power is turned on (immediately after being turned on). Run.

このような構成としたことにより、図17に示すように実施態様5,6と同様の効果をより短いダウンタイムで実現できる。なお、図17は本実施態様における、温度:23℃、湿度:50%、感光体帯電電位:−800V、書込み光量:110μW、書込みパターン:黒ベタ、転写電流:130μAという条件で印刷を行った場合の感光体回転時間とVL上昇量の関係を表したグラフである。   By adopting such a configuration, as shown in FIG. 17, the same effects as those of Embodiments 5 and 6 can be realized with a shorter downtime. In FIG. 17, printing was performed under the conditions of temperature: 23 ° C., humidity: 50%, photosensitive member charging potential: −800 V, writing light quantity: 110 μW, writing pattern: black solid, transfer current: 130 μA in this embodiment. 6 is a graph showing the relationship between the photosensitive member rotation time and the VL increase amount.

−実施態様8−
この実施態様8も、感光体12を線速630mm/secで回転駆動し、感光体帯電電位:−800V,光除電装置17の光量:1.0W/mという条件で、感光体12の帯電および除電を連続して行う。すなわち既定の作像条件でプリントする。
-Embodiment 8-
In Embodiment 8, the photosensitive member 12 is rotated at a linear speed of 630 mm / sec, the photosensitive member 12 is charged on the condition that the photosensitive member charging potential is −800 V, and the light quantity of the light neutralizing device 17 is 1.0 W / m 2. And static elimination is performed continuously. That is, printing is performed under predetermined image forming conditions.

実施態様8は、光除電装置17の光量を可変とした。CPU60は、感光体初期のVRを不揮発メモリに記憶する機能を備え、マシン設置時や出荷時、感光体交換時等に、この感光体初期のVRを検出して記憶する「初期値設定モード」を実行することにより感光体初期のVRを記憶する。   In the eighth embodiment, the light quantity of the light neutralizing device 17 is variable. The CPU 60 has a function of storing the initial VR of the photoconductor in a non-volatile memory, and detects and stores the initial VR of the photoconductor when the machine is installed, shipped, or when the photoconductor is replaced. To store the initial VR of the photosensitive member.

さらにVR検知は、積算1000プリントを超えたプリント終了時および電源投入時にも行う。なお、VR検知後は積算1000プリントをカウントするカウンタはリセットする。この検知したVRが、不揮発メモリ69記憶された感光体初期のVRよりも高かった場合、その差ΔVRに応じて光照射モードを実行する。   Further, VR detection is performed at the end of printing when the accumulated number of prints exceeds 1000 and when the power is turned on. Note that the counter that counts 1000 accumulated prints is reset after VR detection. If the detected VR is higher than the initial VR stored in the non-volatile memory 69, the light irradiation mode is executed according to the difference ΔVR.

ここでの光照射モードも、帯電や書込み、現像、転写等を行わずに、感光体12と光除電装置17のみを駆動させる除電モードであり、光照射モード実行中は光除電装置17の光量を大に変更し、感光体12に光を照射し続ける。この光照射モードの実行時間Tは、以下に示す(3)式に基づいて算出する。なお、(3)式のCは、実施態様1のBと同様にして測定する、図15に示す単位時間あたりのVR低下量絶対値すなわちVR低下速度絶対値、である。本実施態様8においては、光照射モード実行時の光除電装置17の光量を30W/mとした。よって図15より本実施態様におけるCの値は、0.016となっている。
T=ΔVR/C ・・・(3)
すなわち実施態様8では、マシン設置時や出荷時、感光体交換時等の初期時点にCPU60が、感光体12のVRを検知し不揮発メモリ69に記憶する。このVRをVRiと表す。そしてプリント枚数積算値を初期化(0にリセット)する。その後CPU60は、プリント(作像)のたびにプリント枚数積算値をカウントアップし、該積算値が1000を超えたプリント終了時(終了直後)および電源投入時(投入直後)に、上記初期時点のときと同様に、VRを検知する。このVRをVRsと表す。そしてΔVR=VRs−VRiを算出し、ΔVRが正かつ設定値以上であると、光照射モード実行時の光除電装置17の光量:30W/mでのVR低下速度絶対値C(図15)を用いて、光照射モード実行時間T=ΔVR/Cを算出して、感光体12を既定の作像条件の線速630mm/secで回転駆動し、感光体12は帯電しないで、光除電装置17の光量:30W/mという条件で感光体12を除電し、該時間Tが経過すると該除電を停止し、前記プリント枚数積算値を初期化(0にリセット)する。以降も、プリント(作像)のたびにプリント枚数積算値をカウントアップし、該積算値が1000を超えたプリント終了時(終了直後)および電源投入時(投入直後)に、上記光照射モードを実行する。
The light irradiation mode here is also a static elimination mode in which only the photosensitive member 12 and the light static elimination device 17 are driven without performing charging, writing, development, transfer, etc. During the light irradiation mode, the light quantity of the light static elimination device 17 is driven. Is changed to a large value, and the photoconductor 12 is continuously irradiated with light. The execution time T of this light irradiation mode is calculated based on the following equation (3). Note that C in the formula (3) is the VR reduction amount absolute value per unit time, that is, the VR reduction speed absolute value shown in FIG. In the eighth embodiment, the light quantity of the light neutralizing device 17 when the light irradiation mode is executed is set to 30 W / m 2 . Therefore, the value of C in this embodiment is 0.016 from FIG.
T = ΔVR / C (3)
That is, in the eighth embodiment, the CPU 60 detects the VR of the photoconductor 12 and stores it in the nonvolatile memory 69 at an initial time such as when the machine is installed, shipped, or when the photoconductor is replaced. This VR is represented as VRi. Then, the print number integrated value is initialized (reset to 0). Thereafter, the CPU 60 counts up the print number integrated value every time printing (image formation), and at the end of printing when the integrated value exceeds 1000 (immediately after the end) and when the power is turned on (immediately after the input), As with time, VR is detected. This VR is expressed as VRs. Then, ΔVR = VRs−VRi is calculated, and when ΔVR is positive and equal to or larger than the set value, the VR discharge speed absolute value C at 30 W / m 2 in the light quantity of the light static elimination device 17 when the light irradiation mode is executed (FIG. 15). Is used to calculate the light irradiation mode execution time T = ΔVR / C, and the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec under a predetermined image forming condition. 17 the amount of light: and discharges the photoreceptor 12 with the proviso that 30 W / m 2, to stop the該除conductive when said time T has passed, the print number integrated value initialized (reset to 0). Thereafter, the print number integrated value is counted up every time printing (image formation), and the above-mentioned light irradiation mode is set at the end of printing (immediately after the completion) when the integrated value exceeds 1000 and when the power is turned on (immediately after being turned on). Run.

このような構成としたことにより、実施態様5のように積算1000プリントを超えたプリント終了時および電源投入時の検知タイミング毎にVLパターンを作成する必要がないため、ダウンタイムを低減することができ、かつ図18に示すように、VRの上昇を抑制することができる。なお図18は、本実施態様8における、温度:23℃、湿度:50%、感光体帯電電位:−800V、書込み光量:110μW、書込みパターン:黒ベタ、転写電流:130μAという条件で印刷を行った場合の感光体回転時間とVR上昇量の関係を表したグラフである。   By adopting such a configuration, it is not necessary to create a VL pattern for each detection timing at the end of printing exceeding the cumulative 1000 prints and when the power is turned on as in the fifth embodiment, so that downtime can be reduced. As shown in FIG. 18, the increase in VR can be suppressed. In FIG. 18, printing is performed under the conditions of temperature: 23 ° C., humidity: 50%, photosensitive member charging potential: −800 V, writing light quantity: 110 μW, writing pattern: black solid, transfer current: 130 μA in the eighth embodiment. 6 is a graph showing the relationship between the photosensitive member rotation time and the VR increase amount.

−実施態様9−
この実施態様9も、作像(プリント)時には、感光体12を線速630mm/secで回転駆動し、感光体帯電電位:−800V,光除電装置17の光量:1.0W/mという条件で、感光体12の帯電および除電を連続して行う。すなわち既定の作像条件でプリントする。
-Embodiment 9-
In Embodiment 9 as well, at the time of image formation (printing), the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec, the photosensitive member charging potential is −800 V, and the light amount of the light neutralizing device 17 is 1.0 W / m 2. Thus, the charging and discharging of the photoconductor 12 are continuously performed. That is, printing is performed under predetermined image forming conditions.

実施態様9は、実施態様8において、光除電装置17の光量を可変とする代わりに、図9に示すように感光体12回転方向における現像装置14と転写・搬送装置15の間に光照射装置8を備え、光照射モード実行時に、光除電装置17の代わりにこの光照射装置8によって光照射を行うことによって、光除電装置17の光量を可変としなくても、光照射によるVR低下を達成する構成となっている。光照射モード実行時間Tは、実施態様8と同様に(3)式から算出する。光照射装置8k光量およびCの値は、実施態様8と同様、30W/m、0.016である。 In the ninth embodiment, instead of changing the light quantity of the light neutralizing device 17 in the eighth embodiment, a light irradiation device is provided between the developing device 14 and the transfer / conveying device 15 in the rotation direction of the photosensitive member 12 as shown in FIG. 8, when the light irradiation mode is executed, light irradiation is performed by the light irradiation device 8 instead of the light charge removal device 17, thereby achieving a reduction in VR due to light irradiation without changing the light amount of the light discharge device 17. It is the composition to do. The light irradiation mode execution time T is calculated from the expression (3) as in the eighth embodiment. The light irradiation device 8k light quantity and the value of C are 30 W / m 2 and 0.016, as in the eighth embodiment.

すなわち実施態様9では、マシン設置時や出荷時、感光体交換時等の初期時点にCPU60が、感光体12のVRを検知し不揮発メモリ69に記憶する。このVRをVRiと表す。そしてプリント枚数積算値を初期化(0にリセット)する。その後CPU60は、プリント(作像)のたびにプリント枚数積算値をカウントアップし、該積算値が1000を超えたプリント終了時(終了直後)および電源投入時(投入直後)に、上記初期時点のときと同様に、VRを検知する。このVRをVRsと表す。そしてΔVR=VRs−VRiを算出し、ΔVRが正かつ設定値以上であると、光照射モード実行時の光照射装置8の光量:30W/mでのVR低下速度絶対値C(図15)を用いて、光照射モード実行時間T=ΔVR/Cを算出して、感光体12を既定の作像条件の線速630mm/secで回転駆動し、感光体12は帯電しないで、光照射装置8の光量:30W/mという条件で感光体12を除電し、該時間Tが経過すると該除電を停止し、前記プリント枚数積算値を初期化(0にリセット)する。以降も、プリント(作像)のたびにプリント枚数積算値をカウントアップし、該積算値が1000を超えたプリント終了時(終了直後)および電源投入時(投入直後)に、上記光照射モードを実行する。 That is, in the ninth embodiment, the CPU 60 detects the VR of the photoconductor 12 and stores it in the nonvolatile memory 69 at an initial time such as when the machine is installed, shipped, or when the photoconductor is replaced. This VR is represented as VRi. Then, the print number integrated value is initialized (reset to 0). Thereafter, the CPU 60 counts up the print number integrated value every time printing (image formation), and at the end of printing when the integrated value exceeds 1000 (immediately after the end) and when the power is turned on (immediately after the input), As with time, VR is detected. This VR is expressed as VRs. Then, ΔVR = VRs−VRi is calculated, and when ΔVR is positive and equal to or larger than the set value, the VR irradiation speed absolute value C at 30 W / m 2 when the light irradiation mode is executed: 30 W / m 2 (FIG. 15) Is used to calculate the light irradiation mode execution time T = ΔVR / C, and the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec under a predetermined image forming condition. 8 the amount of light: and discharges the photoreceptor 12 with the proviso that 30 W / m 2, to stop the該除conductive when said time T has passed, the print number integrated value initialized (reset to 0). Thereafter, the print number integrated value is counted up every time printing (image formation), and the above-mentioned light irradiation mode is set at the end of printing (immediately after the completion) when the integrated value exceeds 1000 and when the power is turned on (immediately after being turned on). Run.

このような構成としたことにより、実施態様6のように、積算1000プリントを超えたプリント終了時および電源投入時の検知タイミング毎にVLパターンを作成する必要がないため、ダウンタイムを低減でき、かつ図19に示すように実施態様8と同様にVRの上昇を抑制することができる。なお、図19は本実施態様における、温度:23℃、湿度:50%、感光体帯電電位:−800V、書込み光量:110μW、書込みパターン:黒ベタ、転写電流:130μAという条件で印刷を行った場合の感光体回転時間とVL上昇量の関係を表したグラフである。また、光照射装置を複数個備えることによって、VRを低下させるのに必要な時間を短くし、ダウンタイムを短縮することも可能である。   By adopting such a configuration, unlike the embodiment 6, it is not necessary to create a VL pattern for each detection timing at the end of printing exceeding 1000 prints and when the power is turned on, so that downtime can be reduced, And as shown in FIG. 19, the rise of VR can be suppressed similarly to the eighth embodiment. In FIG. 19, printing was performed under the conditions of temperature: 23 ° C., humidity: 50%, photosensitive member charging potential: −800 V, writing light quantity: 110 μW, writing pattern: black solid, transfer current: 130 μA in this embodiment. 6 is a graph showing the relationship between the photosensitive member rotation time and the VL increase amount. In addition, by providing a plurality of light irradiation devices, it is possible to shorten the time required to lower the VR and shorten the downtime.

−実施態様10−
この実施態様10も、感光体12を線速630mm/secで回転駆動し、感光体帯電電位:−800V,光除電装置17の光量:1.0W/mという条件で、感光体12の帯電および除電を連続して行う。すなわち既定の作像条件でプリントする。
-Embodiment 10-
In the tenth embodiment, the photosensitive member 12 is charged under the conditions that the photosensitive member 12 is rotated at a linear speed of 630 mm / sec, the charging potential of the photosensitive member is −800 V, and the light amount of the photostatic discharger 17 is 1.0 W / m 2. And static elimination is performed continuously. That is, printing is performed under predetermined image forming conditions.

実施態様10は、光照射装置8を備える実施態様9においてさらに、光除電装置17の光量を可変とし、光照射モード実行時には、光除電装置17と光照射装置8によって光照射を行う。光照射モード実行時間Tは、実施態様8と同様に(3)式から算出する。またCの値は、図20に示す光除電装置17と光照射装置8の光量の和毎の光照射時間とVRの関係を測定した結果から導き出す。本実施態様10においては、光除電装置17の光量:30W/m、光照射装置8の光量:30W/mとした。よって図20より本実施態様10におけるCの値は0.0345となっている。Cの値が実施態様8,9と比較して2倍程度であるため、光照射モード実行時間は実施態様8,9と比較して1/2程度で済む。 In the embodiment 10, the light neutralization device 17 is made variable in the light emission device 8 in the ninth embodiment, and light irradiation is performed by the light neutralization device 17 and the light irradiation device 8 when the light irradiation mode is executed. The light irradiation mode execution time T is calculated from the expression (3) as in the eighth embodiment. Further, the value of C is derived from the result of measuring the relationship between the light irradiation time and the VR for each sum of the light amounts of the light neutralization device 17 and the light irradiation device 8 shown in FIG. In the present embodiment 10, the light quantity of the light neutralization device 17 is 30 W / m 2 , and the light quantity of the light irradiation device 8 is 30 W / m 2 . Therefore, from FIG. 20, the value of C in the present embodiment 10 is 0.0345. Since the value of C is about twice that of the eighth and ninth embodiments, the light irradiation mode execution time is about ½ that of the eighth and ninth embodiments.

すなわち実施態様10では、マシン設置時や出荷時、感光体交換時等の初期時点にCPU60は、感光体12のVRを検知し不揮発メモリ69に記憶する。このVRをVRiと表す。そしてプリント枚数積算値を初期化(0にリセット)する。その後CPU60は、プリント(作像)のたびにプリント枚数積算値をカウントアップし、該積算値が1000を超えたプリント終了時(終了直後)および電源投入時(投入直後)に、上記初期時点のときと同様に、VRを検知する。このVRをVRsと表す。そしてΔVR=VRs−VRiを算出し、ΔVRが正かつ設定値以上であると、光照射モード実行時の光除電装置17と光照射装置8の光量和:60W/mでのVR低下速度絶対値C(図20)を用いて、光照射モード実行時間T=ΔVR/Cを算出して、感光体12を既定の作像条件の線速630mm/secで回転駆動し、感光体12は帯電しないで、光除電装置17の光量:30W/mかつ光照射装置8の光量:30W/mという条件で感光体12を除電し、該時間Tが経過すると該除電を停止し、前記プリント枚数積算値を初期化(0にリセット)する。以降も、プリント(作像)のたびにプリント枚数積算値をカウントアップし、該積算値が1000を超えたプリント終了時(終了直後)および電源投入時(投入直後)に、上記光照射モードを実行する。 That is, in the tenth embodiment, the CPU 60 detects the VR of the photoconductor 12 and stores it in the nonvolatile memory 69 at an initial time such as when the machine is installed, shipped, or when the photoconductor is replaced. This VR is represented as VRi. Then, the print number integrated value is initialized (reset to 0). Thereafter, the CPU 60 counts up the print number integrated value every time printing (image formation), and at the end of printing when the integrated value exceeds 1000 (immediately after the end) and when the power is turned on (immediately after the input), As with time, VR is detected. This VR is expressed as VRs. Then, ΔVR = VRs−VRi is calculated, and when ΔVR is positive and equal to or larger than the set value, the sum of the light amounts of the light static elimination device 17 and the light irradiation device 8 at the time of executing the light irradiation mode: absolute VR reduction speed at 60 W / m 2 Using the value C (FIG. 20), the light irradiation mode execution time T = ΔVR / C is calculated, and the photosensitive member 12 is rotationally driven at a linear speed of 630 mm / sec as a predetermined image forming condition. Without removing the charge on the photosensitive member 12 under the condition that the light quantity of the light static elimination device 17 is 30 W / m 2 and the light quantity of the light irradiation device 8 is 30 W / m 2 , the static elimination is stopped when the time T elapses, and the print The total number of sheets is initialized (reset to 0). Thereafter, the print number integrated value is counted up every time printing (image formation), and the above-mentioned light irradiation mode is set at the end of printing (immediately after the completion) when the integrated value exceeds 1000 and when the power is turned on (immediately after being turned on). Run.

このような構成としたことにより、図21に示すように実施態様8,9と同様の効果をより短いダウンタイムで実現できる。なお、図21は本実施態様における、温度:23℃、湿度:50%、感光体帯電電位:−800V、書込み光量:110μW、書込みパターン:黒ベタ、転写電流:130μAという条件で印刷を行った場合の感光体回転時間とVL上昇量の関係を表したグラフである。   By adopting such a configuration, as shown in FIG. 21, the same effects as those of Embodiments 8 and 9 can be realized with a shorter downtime. In FIG. 21, printing was performed under the conditions of temperature: 23 ° C., humidity: 50%, photosensitive member charging potential: −800 V, writing light quantity: 110 μW, writing pattern: black solid, transfer current: 130 μA in this embodiment. 6 is a graph showing the relationship between the photosensitive member rotation time and the VL increase amount.

本発明の第1実施例である複写機の縦断面図である。1 is a longitudinal sectional view of a copier that is a first embodiment of the present invention. 図1に示す現像装置の拡大縦断面図である。FIG. 2 is an enlarged vertical sectional view of the developing device shown in FIG. 1. 図1に示す複写機の機構制御システムの概要を示すブロック図である。FIG. 2 is a block diagram showing an outline of a mechanism control system of the copying machine shown in FIG. 1. 図1に示す感光体12の、既定の作像条件での作像の繰り返し継続時間に対する、除電後電位上昇量を示すグラフである。2 is a graph showing the amount of increase in potential after static elimination with respect to the repetition duration of image formation under predetermined image formation conditions of the photoconductor 12 shown in FIG. 図1に示す感光体12の、除電光照射時間に対するVL低下量を示すグラフである。2 is a graph showing the amount of decrease in VL with respect to the charge removal light irradiation time of the photoreceptor 12 shown in FIG. 図1に示す感光体12の、除電光量に対するVL低下速度絶対値Bを示すグラフである。2 is a graph showing an absolute value B of a VL decrease speed with respect to a charge removal amount of the photoreceptor 12 shown in FIG. 図1に示す感光体12の、作像の繰り返し継続時間に対するVL上昇量を、3種の除電光量につき示すグラフである。3 is a graph showing the amount of VL increase with respect to the repetition duration of image formation of the photoconductor 12 shown in FIG. 図1に示す感光体12の、所定タイミングで光照射モードを実行する実施態様2での、作像の繰り返し継続時間に対するVL上昇量を示すグラフである。6 is a graph showing the amount of increase in VL with respect to the repetition duration of image formation in Embodiment 2 in which the light irradiation mode is executed at a predetermined timing of the photoconductor 12 shown in FIG. 1. 図1に示す複写機にさらに光照射装置8を付加した、第2実施例である複写機の、現像装置14部の拡大断面図である。FIG. 6 is an enlarged cross-sectional view of a developing device 14 portion of a copying machine according to a second embodiment in which a light irradiation device 8 is further added to the copying machine shown in FIG. 1. 第2実施例である複写機の感光体12の、所定タイミングで光照射モードを実行する実施態様3での、作像の繰り返し継続時間に対するVL上昇量を示すグラフである。It is a graph which shows the amount of VL raise with respect to the repetition continuation time of image formation in Embodiment 3 which performs the light irradiation mode at the predetermined timing of the photoconductor 12 of the copying machine as the second embodiment. 第2実施例である複写機の感光体12の、除電光照射時間に対するVL低下量を示すグラフである。It is a graph which shows the amount of VL fall with respect to the static elimination light irradiation time of the photoconductor 12 of the copying machine which is 2nd Example. 第2実施例である複写機の感光体12、所定タイミングで光照射モードを実行する実施態様4での、作像の繰り返し継続時間に対するVL上昇量を示すグラフである。12 is a graph showing the amount of increase in VL with respect to the repetition duration of image formation in Embodiment 4 in which the photoconductor 12 of the copying machine according to the second embodiment executes the light irradiation mode at a predetermined timing. 図9に示す現像装置14部を、より簡易に示す断面図である。FIG. 10 is a cross-sectional view showing the developing device 14 shown in FIG. 9 more simply. 第1実施例の複写機の感光体12の、所定タイミングで光照射モードを実行する実施態様5での、作像の繰り返し継続時間に対するVL上昇量を示すグラフである。It is a graph which shows the VL raise amount with respect to the repetition continuation time of image formation in Embodiment 5 which performs the light irradiation mode at the predetermined timing of the photoconductor 12 of the copying machine of the first embodiment. 図1に示す感光体12の、除電光照射時間に対するVR低下量Cを示すグラフである。2 is a graph showing a VR reduction amount C with respect to the static elimination light irradiation time of the photoreceptor 12 shown in FIG. 1. 第2実施例である複写機の感光体12の、所定タイミングで光照射モードを実行する実施態様6での、作像の繰り返し継続時間に対するVL上昇量を示すグラフである。It is a graph which shows the amount of VL raise with respect to the repetition continuation time of image formation in Embodiment 6 which performs light irradiation mode at the predetermined timing of the photoconductor 12 of the copying machine which is 2nd Example. 第2実施例である複写機の感光体12の、所定タイミングで光照射モードを実行する実施態様7での、作像の繰り返し継続時間に対するVL上昇量を示すグラフである。It is a graph which shows the amount of VL raise with respect to the repetition continuation time of image formation in Embodiment 7 which performs the light irradiation mode at the predetermined timing of the photoconductor 12 of the copying machine as the second embodiment. 第1実施例の複写機の感光体12の、所定タイミングで光照射モードを実行する実施態様8での、作像の繰り返し継続時間に対するVL上昇量を示すグラフである。It is a graph which shows the amount of VL raise with respect to the repetition continuation time of image formation in Embodiment 8 which performs the light irradiation mode at the predetermined timing of the photoconductor 12 of the copying machine of the first embodiment. 第2実施例である複写機の感光体12の、所定タイミングで光照射モードを実行する実施態様9での、作像の繰り返し継続時間に対するVL上昇量を示すグラフである。It is a graph which shows the amount of VL raise with respect to the repetition continuation time of image formation in Embodiment 9 which performs the light irradiation mode at the predetermined timing of the photoconductor 12 of the copying machine as the second embodiment. 第2実施例である複写機の感光体12の、除電光照射時間に対するVR低下量Cを示すグラフである。It is a graph which shows VR fall amount C with respect to the static elimination light irradiation time of the photoconductor 12 of the copying machine which is 2nd Example. 第2実施例である複写機の感光体12の、所定タイミングで光照射モードを実行する実施態様10での、作像の繰り返し継続時間に対するVL上昇量を示すグラフである。It is a graph which shows the amount of VL raise with respect to the repetition continuation time of image formation in Embodiment 10 which performs the light irradiation mode at the predetermined timing of the photoconductor 12 of the copying machine as the second embodiment. 図1に示す感光体12を駆動するモータの回転時間およびプリントモードとプリント枚数の関係を示すグラフである。3 is a graph showing a relationship between a rotation time of a motor for driving the photosensitive member 12 shown in FIG. 1 and a print mode and the number of prints.

符号の説明Explanation of symbols

8:光照射装置
9:電位センサ 10:プリンタ
12:感光体 13:帯電装置
14:現像装置 15:転写・搬送装置
16:クリーニング装置
17:光除電装置 18:レーザ書込み装置
20:光源 21:走査用の回転多面鏡
22:ポリゴンモータ
23:走査光学系 25:定着装置
26:定着ローラ 27:加圧ローラ
30:原稿スキャナ
31:光源 32:ミラー
33:結像レンズ 34:イメージセンサ
51:現像ローラ 53:ブラシローラ
8: Light irradiation device 9: Potential sensor 10: Printer 12: Photoconductor 13: Charging device 14: Development device 15: Transfer / conveyance device 16: Cleaning device 17: Photostatic device 18: Laser writing device 20: Light source 21: Scanning Rotating polygon mirror 22: polygon motor 23: scanning optical system 25: fixing device 26: fixing roller 27: pressure roller 30: document scanner 31: light source 32: mirror 33: imaging lens 34: image sensor 51: developing roller 53: Brush roller

Claims (15)

感光体と、光照射により感光体表面の残留電荷を除電する光除電装置を備える電子写真式画像形成装置において、
作像の繰返しが連続すると前記感光体に残留電位上昇を生じる、感光体速度,作像用感光体帯電電位および作像後除電光量でなる、既定の作像条件で、前記感光体を駆動し帯電し前記光除電装置で除電する場合の、VL又はVRの上昇速度絶対値Aに対して、帯電は行わずに前記感光体を前記感光体速度で駆動し前記光除電装置から光を前記感光体に照射した場合のVL又はVRの低下速度絶対値B又はCが、等しいか大きくなり作像の繰返しが連続する間VLの上昇がない一定の光量を、前記光除電装置から感光体に照射することを特徴とする、電子写真式画像形成装置:
VL:前記感光体を露光しベタ画像を形成する際のベタ画像部の感光体表面電位
VR:除電後の感光体表面残留電位。
In an electrophotographic image forming apparatus provided with a photoconductor and a photostatic device that neutralizes residual charge on the surface of the photoconductor by light irradiation,
When the repetition of image formation continues, the residual potential rises in the photosensitive member. The photosensitive member is driven under predetermined image forming conditions consisting of the photosensitive member speed, the photosensitive member charging potential for image formation, and the amount of charge removed after image formation. When charging and neutralizing with the photostatic device, the photosensitive member is driven at the photoconductor speed without charging the VL or VR rising speed absolute value A, and light is emitted from the photostatic device. dropping speed absolute value B or C of the VL or VR when irradiated in the body, a constant amount of light is not increased between VL repeated equal to or greater-than imaging is continuous, the photoreceptor from the optical charge removing device Electrophotographic image forming apparatus characterized by irradiating:
VL: Photoconductor surface potential of a solid image portion when the photoconductor is exposed to form a solid image VR: Photoconductor surface residual potential after static elimination.
感光体と、光照射により感光体表面の残留電荷を除電する照射光量が可変の光除電装置を備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の積算時間が設定値を超えた作像終了時に、該作像終了時の積算時間の間のVL上昇量ΔVL=∫Aを、既定の作像条件での前記光除電装置の光量でのVL上昇速度Aと前記終了時の積算時間に基づいて算出し、前記既定の作像条件での前記光除電装置の光量より大きい光照射モード光量でのVL低下速度絶対値Bを用いて、光照射モード実行時間T=ΔVL/Bを算出し、前記感光体を駆動し感光体は帯電しないで、前記光除電装置の光量を前記光照射モード光量として感光体を除電し、前記時間Tが経過すると該除電を停止し、前記作像の積算時間を初期化する、ことを特徴とする電子写真式画像形成装置。
In an electrophotographic image forming apparatus provided with a photoconductor and a photostatic device with a variable amount of irradiation light that neutralizes residual charge on the surface of the photoconductor by light irradiation,
When image formation is performed under predetermined image formation conditions, and when the image formation integration time exceeds the set value, the VL increase amount ΔVL = ∫A during the image formation completion time is set to a predetermined value. A light irradiation mode light amount that is calculated based on the VL increase speed A with the light amount of the light neutralizing device under the image forming condition and the integrated time at the end, and is larger than the light amount of the light static eliminating device with the predetermined image forming condition The light irradiation mode execution time T = ΔVL / B is calculated using the absolute value B of the VL decrease speed at, and the photoconductor is driven and the photoconductor is not charged. An electrophotographic image forming apparatus, wherein the photosensitive member is discharged as a light amount, and when the time T elapses, the discharging is stopped and the integrated time for image formation is initialized.
感光体と、光除電装置以外に光除電装置と同様に感光体に光を照射する光照射装置を少なくとも1つ備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の積算時間が設定値を超えた作像終了時に、該作像終了時の積算時間の間のVL上昇量ΔVL=∫Aを、既定の作像条件での前記光除電装置の光量でのVL上昇速度Aと前記終了時の積算時間に基づいて算出し、前記既定の作像条件での前記光除電装置の光量より大きい光照射モード光量でのVL低下速度絶対値Bを用いて、光照射モード実行時間T=ΔVL/Bを算出し、前記感光体を駆動し感光体は帯電しないで、前記光照射装置の光量を前記光照射モード光量として感光体を除電し、前記時間Tが経過すると該除電を停止し、前記作像の積算時間を初期化する、ことを特徴とする電子写真式画像形成装置。
In the electrophotographic image forming apparatus provided with at least one light irradiation device for irradiating light to the photoconductor in the same manner as the photostatic discharge device other than the photostatic discharge device,
When image formation is performed under predetermined image formation conditions, and when the image formation integration time exceeds the set value, the VL increase amount ΔVL = ∫A during the image formation completion time is set to a predetermined value. A light irradiation mode light amount that is calculated based on the VL increase speed A with the light amount of the light neutralizing device under the image forming condition and the integrated time at the end, and is larger than the light amount of the light static eliminating device with the predetermined image forming condition The light irradiation mode execution time T = ΔVL / B is calculated using the absolute value B of the VL decrease speed at, and the photoconductor is driven and the photoconductor is not charged, and the light amount of the light irradiation device is set to the light irradiation mode. An electrophotographic image forming apparatus, wherein the photosensitive member is discharged as a light amount, and when the time T elapses, the discharging is stopped and the integrated time for image formation is initialized.
感光体と、照射光量が可変の光除電装置と、光除電装置以外に光除電装置と同様に感光体に光を照射する光照射装置を少なくとも1つ備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の積算時間が設定値を超えた作像終了時に、該作像終了時の積算時間の間のVL上昇量ΔVL=∫Aを、既定の作像条件での前記光除電装置の光量でのVL上昇速度Aと前記終了時の積算時間に基づいて算出し、前記既定の作像条件での前記光除電装置の光量より大きい、前記光除電装置の光量と前記光照射装置の光量の和でなる光照射モード光量でのVL低下速度絶対値Bを用いて、光照射モード実行時間T=ΔVL/Bを算出し、前記感光体を駆動し感光体は帯電しないで、前記光除電装置と光照射装置で前記光照射モード光量の感光体除電をおこない、前記時間Tが経過すると該除電を停止し、前記作像の積算時間を初期化する、ことを特徴とする電子写真式画像形成装置。
In an electrophotographic image forming apparatus provided with at least one light irradiating device that irradiates light to the photosensitive member in the same manner as the light static eliminator, in addition to the photo static eliminator and the photo static eliminator with a variable amount of irradiation light
When image formation is performed under predetermined image formation conditions, and when the image formation integration time exceeds the set value, the VL increase amount ΔVL = ∫A during the image formation completion time is set to a predetermined value. Calculated based on the VL rising speed A with the light quantity of the light static eliminator under the image forming condition and the integrated time at the end, and larger than the light quantity of the light static eliminator with the predetermined image forming condition The light irradiation mode execution time T = ΔVL / B is calculated using the absolute value B of the VL decrease speed at the light irradiation mode light amount that is the sum of the light amount of the device and the light amount of the light irradiation device, and the photosensitive member is driven. The photoconductor is not charged, and the photostatic discharge device and the light irradiation device are used to discharge the photoconductor in the light irradiation mode light amount. When the time T has elapsed, the charge removal is stopped, and the image forming integration time is initialized. An electrophotographic image forming apparatus characterized by that.
感光体と、感光体の表面電位を検知する表面電位検知装置と、検知した表面電位を記憶する表面電位記憶手段と、照射光量が可変の光除電装置を備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の枚数積算値が設定値を超えた作像終了時に、VLを検知して検出値VLsの、前記表面電位記憶手段に記憶している感光体初期時点のVL検出値VLiに対する上昇量ΔVL=VLs−VLiを算出し、前記既定の作像条件での前記光除電装置の光量より大きい光照射モード光量でのVL低下速度絶対値Bを用いて、光照射モード実行時間T=ΔVL/Bを算出し、前記感光体を駆動し感光体は帯電しないで、前記光除電装置で前記光照射モード光量で感光体を除電し、該時間Tが経過すると該除電を停止し、前記枚数積算値を初期化する、ことを特徴とする電子写真式画像形成装置。
In an electrophotographic image forming apparatus comprising: a photoconductor; a surface potential detection device that detects the surface potential of the photoconductor; a surface potential storage unit that stores the detected surface potential;
Image formation is performed under predetermined image formation conditions, and at the end of the image formation when the integrated number of images exceeds the set value, VL is detected and the detected value VLs is stored in the surface potential storage means. The amount of increase ΔVL = VLs−VLi with respect to the VL detection value VLi at the initial stage of the body is calculated, and the VL decrease speed absolute value B is used for the light irradiation mode light amount larger than the light amount of the light static elimination device under the predetermined imaging conditions. Then, the light irradiation mode execution time T = ΔVL / B is calculated, the photosensitive member is driven and the photosensitive member is not charged, and the photosensitive member is discharged with the light irradiation mode light amount by the light discharging device. An electrophotographic image forming apparatus characterized in that, after the elapse of time, the static elimination is stopped and the integrated number of sheets is initialized.
感光体と、感光体の表面電位を検知する表面電位検知装置と、検知した表面電位を記憶する表面電位記憶手段と、光除電装置以外に光除電装置と同様に感光体に光を照射する光照射装置を少なくとも1つ備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の枚数積算値が設定値を超えた作像終了時に、VLを検知して検出値VLsの、前記表面電位記憶手段に記憶している感光体初期時点のVL検出値VLiに対する上昇量ΔVL=VLs−VLiを算出し、前記既定の作像条件での前記光除電装置の光量より大きい光照射モード光量でのVL低下速度絶対値Bを用いて、光照射モード実行時間T=ΔVL/Bを算出し、前記感光体を駆動し感光体は帯電しないで、前記光照射装置で前記光照射モード光量で感光体を除電し、該時間Tが経過すると該除電を停止し、前記枚数積算値を初期化する、ことを特徴とする電子写真式画像形成装置。
Photoconductor, surface potential detector for detecting the surface potential of the photoconductor, surface potential storage means for storing the detected surface potential, and light for irradiating the photoconductor with light in the same manner as the photostatic device other than the photostatic device In an electrophotographic image forming apparatus including at least one irradiation device,
Image formation is performed under predetermined image formation conditions, and at the end of the image formation when the integrated number of images exceeds the set value, VL is detected and the detected value VLs is stored in the surface potential storage means. The amount of increase ΔVL = VLs−VLi with respect to the VL detection value VLi at the initial stage of the body is calculated, and the VL decrease speed absolute value B is used for the light irradiation mode light amount larger than the light amount of the light static elimination device under the predetermined imaging conditions. The light irradiation mode execution time T = ΔVL / B is calculated, the photosensitive member is driven and the photosensitive member is not charged, and the photosensitive member is neutralized with the light irradiation mode light amount by the light irradiation device. An electrophotographic image forming apparatus characterized in that, after the elapse of time, the static elimination is stopped and the integrated number of sheets is initialized.
感光体と、感光体の表面電位を検知する表面電位検知装置と、検知した表面電位を記憶する表面電位記憶手段と、照射光量が可変の光除電装置と、光除電装置以外に光除電装置と同様に感光体に光を照射する光照射装置を少なくとも1つ備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の枚数積算値が設定値を超えた作像終了時に、VLを検知して検出値VLsの、前記表面電位記憶手段に記憶している感光体初期時点のVL検出値VLiに対する上昇量ΔVL=VLs−VLiを算出し、前記既定の作像条件での前記光除電装置の光量より大きい、前記光除電装置の光量と前記光照射装置の光量の和でなる光照射モード光量でのVL低下速度絶対値Bを用いて、光照射モード実行時間T=ΔVL/Bを算出し、前記感光体を駆動し感光体は帯電しないで、前記光除電装置と光照射装置で前記光照射モード光量の感光体除電をおこない、前記時間Tが経過すると該除電を停止し、前記枚数積算値を初期化する、ことを特徴とする電子写真式画像形成装置。
A photoconductor, a surface potential detection device for detecting the surface potential of the photoconductor, a surface potential storage means for storing the detected surface potential, a photostatic device with a variable amount of irradiation light, and a photostatic device other than the photostatic device, Similarly, in an electrophotographic image forming apparatus provided with at least one light irradiation device for irradiating light to a photoconductor,
Image formation is performed under predetermined image formation conditions, and at the end of the image formation when the integrated number of images exceeds the set value, VL is detected and the detected value VLs is stored in the surface potential storage means. The amount of increase ΔVL = VLs−VLi with respect to the VL detection value VLi at the initial stage of the body is calculated, and the light quantity of the light static eliminator and the light quantity of the light irradiator are larger than the light quantity of the light static eliminator under the predetermined imaging conditions. The light irradiation mode execution time T = ΔVL / B is calculated by using the absolute value B of the VL decrease rate at the light irradiation mode light amount which is the sum of the above, and the photoconductor is driven without charging the photoconductor. An electrophotographic image forming apparatus characterized in that static elimination of the light amount in the light irradiation mode is performed by an apparatus and a light irradiating apparatus, and when the time T elapses, the neutralization is stopped and the integrated number of sheets is initialized. .
感光体と、感光体の表面電位を検知する表面電位検知装置と、検知した表面電位を記憶する表面電位記憶手段と、照射光量が可変の光除電装置を備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の枚数積算値が設定値を超えた作像終了時に、VRを検知して検出値VRsの、前記表面電位記憶手段に記憶している感光体初期時点のVR検出値VRiに対する上昇量ΔVR=VRs−VRiを算出し、前記既定の作像条件での前記光除電装置の光量より大きい光照射モード光量でのVR低下速度絶対値Cを用いて、光照射モード実行時間T=ΔVR/Cを算出し、前記感光体を駆動し感光体は帯電しないで、前記光除電装置で前記光照射モード光量で感光体を除電し、該時間Tが経過すると該除電を停止し、前記枚数積算値を初期化する、ことを特徴とする電子写真式画像形成装置。
In an electrophotographic image forming apparatus comprising: a photoconductor; a surface potential detection device that detects the surface potential of the photoconductor; a surface potential storage unit that stores the detected surface potential;
When image formation is performed under predetermined image formation conditions, and VR is completed when the integrated number of images exceeds the set value, VR is detected and the detected value VRs is stored in the surface potential storage means. The amount of increase ΔVR = VRs−VRi with respect to the VR detection value VRi at the initial stage of the body is calculated, and the VR decrease speed absolute value C at the light irradiation mode light amount larger than the light amount of the light neutralizing device under the predetermined image forming condition is used. Then, the light irradiation mode execution time T = ΔVR / C is calculated, the photosensitive member is driven and the photosensitive member is not charged, and the photosensitive member is discharged with the light irradiation mode light amount by the light discharging device. An electrophotographic image forming apparatus characterized in that, after the elapse of time, the static elimination is stopped and the integrated number of sheets is initialized.
感光体と、感光体の表面電位を検知する表面電位検知装置と、検知した表面電位を記憶する表面電位記憶手段と、光除電装置以外に光除電装置と同様に感光体に光を照射する光照射装置を少なくとも1つ備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の枚数積算値が設定値を超えた作像終了時に、VRを検知して検出値VRsの、前記表面電位記憶手段に記憶している感光体初期時点のVR検出値VRiに対する上昇量ΔVR=VRs−VRiを算出し、前記既定の作像条件での前記光除電装置の光量より大きい光照射モード光量でのVR低下速度絶対値Cを用いて、光照射モード実行時間T=ΔVR/Cを算出し、前記感光体を駆動し感光体は帯電しないで、前記光照射装置で前記光照射モード光量で感光体を除電し、該時間Tが経過すると該除電を停止し、前記枚数積算値を初期化する、ことを特徴とする電子写真式画像形成装置。
Photoconductor, surface potential detector for detecting the surface potential of the photoconductor, surface potential storage means for storing the detected surface potential, and light for irradiating the photoconductor with light in the same manner as the photostatic device other than the photostatic device In an electrophotographic image forming apparatus including at least one irradiation device,
When image formation is performed under predetermined image formation conditions, and VR is completed when the integrated number of images exceeds the set value, VR is detected and the detected value VRs is stored in the surface potential storage means. The amount of increase ΔVR = VRs−VRi with respect to the VR detection value VRi at the initial stage of the body is calculated, and the VR decrease speed absolute value C at the light irradiation mode light amount larger than the light amount of the light neutralizing device under the predetermined image forming condition is used. The light irradiation mode execution time T = ΔVR / C is calculated, the photosensitive member is driven and the photosensitive member is not charged, and the photosensitive member is discharged with the light irradiation mode light amount by the light irradiation device. An electrophotographic image forming apparatus characterized in that, after the elapse of time, the static elimination is stopped and the integrated number of sheets is initialized.
感光体と、感光体の表面電位を検知する表面電位検知装置と、検知した表面電位を記憶する表面電位記憶手段と、照射光量が可変の光除電装置と、光除電装置以外に光除電装置と同様に感光体に光を照射する光照射装置を少なくとも1つ備える電子写真式画像形成装置において、
既定の作像条件で作像をおこない、該作像の枚数積算値が設定値を超えた作像終了時に、VRを検知して検出値VRsの、前記表面電位記憶手段に記憶している感光体初期時点のVR検出値VRiに対する上昇量ΔVR=VRs−VRiを算出し、前記既定の作像条件での前記光除電装置の光量より大きい、前記光除電装置の光量と前記光照射装置の光量の和でなる光照射モード光量でのVR低下速度絶対値Cを用いて、光照射モード実行時間T=ΔVR/Cを算出し、前記感光体を駆動し感光体は帯電しないで、前記光除電装置と光照射装置で前記光照射モード光量の感光体除電をおこない、前記時間Tが経過すると該除電を停止し、前記枚数積算値を初期化する、ことを特徴とする電子写真式画像形成装置。
A photoconductor, a surface potential detection device for detecting the surface potential of the photoconductor, a surface potential storage means for storing the detected surface potential, a photostatic device with a variable amount of irradiation light, and a photostatic device other than the photostatic device, Similarly, in an electrophotographic image forming apparatus provided with at least one light irradiation device for irradiating light to a photoconductor,
When image formation is performed under predetermined image formation conditions, and VR is completed when the integrated number of images exceeds the set value, VR is detected and the detected value VRs is stored in the surface potential storage means. The amount of increase ΔVR = VRs−VRi with respect to the VR detection value VRi at the initial stage of the body is calculated, and the light quantity of the light static eliminator and the light quantity of the light irradiator are larger than the light quantity of the light static eliminator under the predetermined imaging conditions. The light irradiation mode execution time T = ΔVR / C is calculated using the absolute value C of the VR decrease rate at the light irradiation mode light amount that is the sum of the above, and the photoconductor is driven without being charged. An electrophotographic image forming apparatus characterized in that static elimination of the light amount in the light irradiation mode is performed by an apparatus and a light irradiating apparatus, and when the time T elapses, the neutralization is stopped and the integrated number of sheets is initialized. .
前記感光体は、電荷発生材料を含有する有機感光体である、請求項1乃至10のいずれか1つに記載の電子写真式画像形成装置。   The electrophotographic image forming apparatus according to claim 1, wherein the photoconductor is an organic photoconductor containing a charge generating material. 前記感光体は、電荷発生材料としてフタロシアニン類を含有する有機感光体である、請求項1乃至10のいずれか1つに記載の電子写真式画像形成装置。   The electrophotographic image forming apparatus according to claim 1, wherein the photoconductor is an organic photoconductor containing phthalocyanines as a charge generating material. 前記感光体は、電荷発生材料としてチタニルフタロシアニンを含有する有機感光体である、請求項1乃至10のいずれか1つに記載の電子写真式画像形成装置。   The electrophotographic image forming apparatus according to claim 1, wherein the photoreceptor is an organic photoreceptor containing titanyl phthalocyanine as a charge generation material. 前記既定の作像条件は、作像用感光体帯電電位:−800V、作像後除電光量:1W/m、を含む、請求項1乃至13のいずれか1つに記載の電子写真式画像形成装置。 14. The electrophotographic image according to claim 1, wherein the predetermined image forming conditions include: an image forming photoconductor charging potential: −800 V, and a post-image forming charge removal amount: 1 W / m 2 . Forming equipment. 前記既定の作像条件は、感光体移動速度:630mm/secを含む、請求項14に記載の電子写真式画像形成装置。   The electrophotographic image forming apparatus according to claim 14, wherein the predetermined image forming condition includes a photosensitive member moving speed: 630 mm / sec.
JP2008215636A 2008-08-25 2008-08-25 Electrophotographic image forming apparatus Expired - Fee Related JP5344280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008215636A JP5344280B2 (en) 2008-08-25 2008-08-25 Electrophotographic image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008215636A JP5344280B2 (en) 2008-08-25 2008-08-25 Electrophotographic image forming apparatus

Publications (2)

Publication Number Publication Date
JP2010049190A JP2010049190A (en) 2010-03-04
JP5344280B2 true JP5344280B2 (en) 2013-11-20

Family

ID=42066297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215636A Expired - Fee Related JP5344280B2 (en) 2008-08-25 2008-08-25 Electrophotographic image forming apparatus

Country Status (1)

Country Link
JP (1) JP5344280B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5855063B2 (en) 2013-09-19 2016-02-09 キヤノン株式会社 Image forming apparatus
JP7069616B2 (en) * 2017-09-27 2022-05-18 コニカミノルタ株式会社 Image forming method and image forming device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598777A (en) * 1979-01-22 1980-07-28 Canon Inc Electrophotographic method and apparatus
JPS5737357A (en) * 1980-08-19 1982-03-01 Canon Inc Method for adjusting electrophotographic image
JPS58175561U (en) * 1982-05-18 1983-11-24 株式会社東芝 electrophotographic equipment
JPS60188965A (en) * 1984-03-07 1985-09-26 Canon Inc Formation of image by electrophotography
JPS60208772A (en) * 1984-04-02 1985-10-21 Konishiroku Photo Ind Co Ltd Copying machine
JPS6117172A (en) * 1984-07-02 1986-01-25 Konishiroku Photo Ind Co Ltd Electrostatic recorder
JPS6294350U (en) * 1985-11-29 1987-06-16
JPH07109535B2 (en) * 1987-07-21 1995-11-22 シャープ株式会社 Method for stabilizing surface potential of electrophotographic photoreceptor
JPH0996947A (en) * 1995-09-28 1997-04-08 Canon Inc Image forming device
JPH11202705A (en) * 1998-01-20 1999-07-30 Canon Inc Image forming device
JP2004309703A (en) * 2003-04-04 2004-11-04 Canon Inc Image-forming apparatus and control method thereof, cartridge, and recording medium
JP5084292B2 (en) * 2007-02-07 2012-11-28 キヤノン株式会社 Image forming apparatus

Also Published As

Publication number Publication date
JP2010049190A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
US6577842B2 (en) Image forming method and apparatus with toner recycling unit
JP4890810B2 (en) Image forming apparatus
JP5034893B2 (en) Motor control device
US20090022517A1 (en) Image forming apparatus
US8170432B2 (en) Image forming apparatus
JP5344280B2 (en) Electrophotographic image forming apparatus
JP6270602B2 (en) Image forming apparatus
JP2006234883A (en) Image forming apparatus
US9946216B2 (en) Image forming apparatus
JP6515851B2 (en) Charge removing device and image forming apparatus provided with the same
JP2007232856A (en) Image forming apparatus
JP6544074B2 (en) Image forming apparatus, recovery method, and program
JP4706497B2 (en) Image forming apparatus
JP6221976B2 (en) Image forming apparatus
JP2006208933A (en) Image forming apparatus
JP2010014817A (en) Image forming apparatus
JP2006095735A (en) Image forming device
US8705995B2 (en) Image forming apparatus
JP4090404B2 (en) Image forming apparatus
JP5929392B2 (en) Image forming apparatus
JP6318943B2 (en) Image forming apparatus
JP2019035791A (en) Image forming apparatus
JP4909544B2 (en) Image forming apparatus
JP2008309973A (en) Image forming apparatus
JP2005134813A (en) Image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130801

R151 Written notification of patent or utility model registration

Ref document number: 5344280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees