JP5343771B2 - Tandem rotating submerged arc welding method - Google Patents

Tandem rotating submerged arc welding method Download PDF

Info

Publication number
JP5343771B2
JP5343771B2 JP2009204824A JP2009204824A JP5343771B2 JP 5343771 B2 JP5343771 B2 JP 5343771B2 JP 2009204824 A JP2009204824 A JP 2009204824A JP 2009204824 A JP2009204824 A JP 2009204824A JP 5343771 B2 JP5343771 B2 JP 5343771B2
Authority
JP
Japan
Prior art keywords
welding
arc
welding wire
tandem
submerged arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009204824A
Other languages
Japanese (ja)
Other versions
JP2011051005A (en
Inventor
孝次 吉井
雅智 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2009204824A priority Critical patent/JP5343771B2/en
Publication of JP2011051005A publication Critical patent/JP2011051005A/en
Application granted granted Critical
Publication of JP5343771B2 publication Critical patent/JP5343771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、タンデム回転サブマージアーク溶接方法に係り、特に、タンデムサブマージアーク溶接において、溶接ビード形状や溶け込みを制御することが可能なタンデム回転サブマージアーク溶接方法に関する。   The present invention relates to a tandem rotating submerged arc welding method, and more particularly to a tandem rotating submerged arc welding method capable of controlling a weld bead shape and penetration in tandem submerged arc welding.

図1に例示する如く、粒状フラックス20下で溶接ワイヤ22と母材10間にアークを発生させ、これにより生じる高熱を利用して溶接を行うサブマージアーク溶接が知られている。このサブマージアーク溶接では、母材10の上に予め粒上のフラックス20を堆積しておき、その中に溶接ワイヤ22の先端を突込んで溶接を行う。アークは、フラックス20に覆われて外からは見えない。フラックス20は、大気の遮断、溶接金属の精錬作用に寄与し、スラグ26や溶接ビード28の形成に寄与する。図において、12は裏当て材、24は電極である。 As illustrated in FIG. 1, submerged arc welding is known in which an arc is generated between a welding wire 22 and a base material 10 under a granular flux 20 and welding is performed using high heat generated thereby. In this submerged arc welding, a granular flux 20 is deposited in advance on the base material 10, and the tip of the welding wire 22 is inserted into the flux 20 for welding. The arc is covered with the flux 20 and is not visible from the outside. The flux 20 contributes to the blocking of the atmosphere and the refining action of the weld metal, and contributes to the formation of the slag 26 and the weld bead 28. In the figure, 12 is a backing material, and 24 is an electrode.

このサブマージアーク溶接は、造船や橋梁の板継ぎ溶接や、高層ビルのBOX柱、圧力容器などに広く使用されている。大電流や、多電極の採用が可能なため、高能率(高溶着速度)であり、且つ、溶け込みも深いが、溶接姿勢は、図2に例示するような下向き、又は図3に例示するような水平(横向き)に限られ、その殆んどは下向き施工である。図2、図3において、14は立板(例えばH形鋼材のフランジ)、16は下板(同じくウェブ)である。又、運棒方法は、殆んどがストレートであり、揺動させている事例もある。   This submerged arc welding is widely used for shipbuilding, bridge welding of bridges, BOX columns and pressure vessels of high-rise buildings. Since it is possible to employ a large current and multiple electrodes, it has high efficiency (high welding speed) and deep penetration, but the welding posture is downward as illustrated in FIG. 2 or illustrated in FIG. However, most of the construction is downward. 2 and 3, reference numeral 14 denotes a standing plate (for example, a flange of an H-shaped steel material), and 16 denotes a lower plate (also a web). In addition, most of the rod moving methods are straight and there are cases where they are swung.

図2に例示した下向き姿勢では、太径ワイヤ、高電流溶接が適用され、高能率・高品質(深溶け込み、ビード外観良好)であるが、溶接姿勢が下向きとなるようにワーク姿勢を変更する必要があり、H形鋼材の場合はウェブ片側の1継手ずつしか施工できない。   In the downward posture illustrated in FIG. 2, thick wire and high current welding are applied and high efficiency and high quality (deep penetration, good bead appearance), but the workpiece posture is changed so that the welding posture is downward. In the case of H-shaped steel, only one joint on one side of the web can be constructed.

一方、図3に例示した水平姿勢では、H形鋼材の場合でもウェブ両側の2継手同時施工が可能であるが、重力の作用でビード垂れが発生し、図3に例示したような水平隅肉溶接では、立板14側の上脚長不足やアンダーカットが発生しやすい。更に、脚長が長い大脚長側では、垂れ気味となり、ビード止端部形状も悪く、水平姿勢での1ラン10mm以上の大脚長隅肉溶接の実用化は非常に困難であった。   On the other hand, in the horizontal posture illustrated in FIG. 3, two joints on both sides of the web can be simultaneously applied even in the case of an H-shaped steel material, but bead sagging occurs due to the action of gravity, and the horizontal fillet as illustrated in FIG. In welding, upper leg length shortage or undercut is likely to occur on the standing plate 14 side. Furthermore, on the long leg side where the leg length is long, the drooping appearance is poor, the shape of the bead toe portion is bad, and it is very difficult to put a large leg long fillet weld having a length of 10 mm or more in a horizontal posture to practical use.

又、対象ワークの反転回数削減や施工時間の短縮(例えばビルドエッジBH首溶接の両側同時施工)を狙って、水平姿勢でのタンデムサブマージアーク溶接が特許文献1等で提案されている。しかし、従来の水平タンデムサブマージアーク溶接では、適正な溶接条件範囲(特に狙い位置)が非常に狭く、通常は、溶接条件(電流、電圧、速度、電極配置(角度)、など)の調整や溶接ワイヤ、フラックスの選定により、要求される溶接品質を満たすように努めているが、高速溶接性や大脚長性、耐アンダーカット性に劣り、特に、機械式倣いや押し当て式ポテンショなどによる従来の倣い制御では、長尺ワークにおいて、微妙な狙いずれにより上脚長不足や立板アンダーカットなどが発生する可能性が大きかった。   Further, tandem submerged arc welding in a horizontal posture has been proposed in Patent Document 1 and the like for the purpose of reducing the number of times of reversal of the target workpiece and shortening the construction time (for example, simultaneous construction on both sides of build edge BH neck welding). However, in the conventional horizontal tandem submerged arc welding, the appropriate welding condition range (especially the target position) is very narrow, and usually adjustment of welding conditions (current, voltage, speed, electrode arrangement (angle), etc.) and welding We strive to meet the required welding quality by selecting the wire and flux, but are inferior in high-speed weldability, large leg length, and undercut resistance, especially with conventional mechanical copying and pushing-type potentiometers. In the copying control, there is a high possibility that an upper leg length shortage or a vertical undercut will occur in a long workpiece due to a delicate aim.

そこで、従来は、上記条件裕度や施工性のため、下向きタンデムサブマージアーク溶接が一般的である。   Therefore, conventionally, downward tandem submerged arc welding is generally used because of the above-mentioned tolerance of conditions and workability.

一方、フラックスを使わないガスシールドアーク溶接においては、出願人が特許文献2で提案したように、図4に示す如く、溶接ワイヤ22の先端を回転させる回転アーク隅肉溶接が実用化されている。図において、23はアークである。特許文献2には、この回転アーク隅肉溶接を、ガスシールドアーク溶接だけではなく、サブマージアーク溶接に用いることも示唆されている。   On the other hand, in gas shielded arc welding without using flux, as proposed by the applicant in Patent Document 2, as shown in FIG. 4, rotating arc fillet welding in which the tip of the welding wire 22 is rotated has been put into practical use. . In the figure, 23 is an arc. Patent Document 2 also suggests that this rotating arc fillet welding is used not only for gas shielded arc welding but also for submerged arc welding.

又、特許文献3には、タンデム回転ガスシールドアーク溶接が記載されている。   Patent Document 3 describes tandem rotating gas shielded arc welding.

特開昭63−16870号公報JP-A 63-16870 特開昭61−249667号公報JP 61-249667 A 特開2000−667号公報JP 2000-667 A

しかしながら、発明者が特許文献2の技術をサブマージアーク溶接にそのまま適用しようと試みたところ、上手くいかないことが判明した。即ち、サブマージアーク溶接では、ガスシールドアーク溶接とはビードの偏りが逆になり、回転周波数に関しても、ガスシールドアーク溶接で一般的な50Hzの回転周波数では、ビード外観が不良になることが判明した。   However, when the inventor tried to apply the technique of Patent Document 2 to submerged arc welding as it was, it turned out that it did not work. That is, in the submerged arc welding, the bead bias is reversed from that of the gas shielded arc welding, and the bead appearance is poor at the rotational frequency of 50 Hz which is general in the gas shielded arc welding. .

又、アーク溶接の適用のほとんどは自動台車(装置)によるものであるが、サブマージアーク溶接の場合、アーク発生地点がフラックスに覆われており、目視確認をすることが出来ないため、本当の狙い位置調整は非常に難しい。従来技術としては、(1)溶接対象部材に接触させたガイドローラに沿って台車を走行させ、部材と電極位置関係を保つ、ガイドローラなどによる機械式倣いや、(2)台車レールを狙い位置に沿って設置するレール走行式、あるいは、(3)先端部にローラ部を設けたポテンショメータ(位置センサ)を溶接対象部材に押し当てて位置制御する方法などがあるが、いずれも倣い精度が低かった。   Most of arc welding is applied to automatic carts (equipment), but in the case of submerged arc welding, the arc generation point is covered with flux and cannot be confirmed visually. Position adjustment is very difficult. The conventional technologies include (1) mechanical carriage copying with a guide roller, etc. that keeps the positional relationship between the member and the electrode along with the guide roller in contact with the member to be welded, and (2) the target position of the carriage rail. Or (3) a method of controlling the position by pressing a potentiometer (position sensor) with a roller at the tip against the member to be welded. It was.

即ち、機械式倣いやポテンショメータを利用した位置制御では、あくまでガイドローラやセンサを接触させている部分と電極の位置関係を制御できるだけであり、部材の交差部や開先ルート部などを正確に倣うことはできない。又、溶接中の熱変形への対応もできない。特に、タンデム溶接の場合、先行電極に対して狙い位置を設定したいが不可能である等の問題点も有していた。   That is, position control using mechanical copying or a potentiometer can only control the positional relationship between the electrode and the portion where the guide roller or sensor is in contact, and accurately copies the crossing portion of the member, the groove root portion, and the like. It is not possible. Also, it cannot cope with thermal deformation during welding. In particular, in the case of tandem welding, there is a problem that it is impossible to set a target position with respect to the preceding electrode.

本発明は、前記従来の問題点を解消するべくなされたもので、ガスシールドアーク溶接の溶接ワイヤ回転状態をそのまま適用したのでは、溶接が上手くいかないタンデムサブマージアーク溶接の溶接ワイヤ回転状態を適切に制御して、高速溶接性や大脚長性、耐アンダーカット性を向上することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems. When the welding wire rotating state of gas shielded arc welding is applied as it is, the welding wire rotating state of tandem submerged arc welding, which does not work well, is appropriately used. It is an object to improve high-speed weldability, large leg length, and undercut resistance.

本発明は、先行電極と後行電極を用い、粒状フラックス下で溶接ワイヤと母材間にアークを発生させ、これにより生じる高熱を利用してタンデムサブマージアーク溶接を行う際に、狙い位置を溶接線より片側にずらした先行電極の溶接ワイヤ先端を、溶接ワイヤ前側が溶接線に近づく方向に回転させると共に、狙い位置を先行電極と反対側にずらした後行電極の溶接ワイヤの先端を、溶接ワイヤ前側が溶接線に近づく方向に回転させることにより、前記課題を解決したものである。 The present invention uses a leading electrode and a trailing electrode to generate an arc between the welding wire and the base metal under a granular flux, and welds the target position when performing tandem submerged arc welding using the high heat generated thereby. the welding wire tip of the leading electrode which is shifted to one side than the line, Rutotomoni rotated in the direction of the welding wire front approaches the weld line, the distal end of the welding wire of the row electrodes after shifted to the side opposite to the leading electrode aim position, The problem is solved by rotating the front side of the welding wire in a direction approaching the welding line.

ここで、水平隅肉溶接に際して、前記先行電極の溶接ワイヤ先端の狙い位置を溶接線より下板側にずらし、前記後行電極の溶接ワイヤ先端の狙い位置を溶接線より立板側にずらすことができる。
本発明は、又、先行電極と後行電極を用い、粒状フラックス下で溶接ワイヤと母材間にアークを発生させ、これにより生じる高熱を利用してタンデムサブマージアーク溶接で水平隅肉溶接を行う際に、狙い位置を溶接線より下板側にずらした先行電極の溶接ワイヤ先端を回転させず、狙い位置を溶接線より上板側にずらした後行電極の溶接ワイヤの先端を、常に溶接ワイヤ前側が溶接線に近づく方向に回転させることにより、前記課題を解決したものである。
Here, during horizontal fillet welding, the aiming position of the leading electrode welding wire tip is shifted to the lower plate side from the welding line, and the aiming position of the trailing electrode welding wire tip is shifted from the welding line to the vertical plate side. Can do.
The present invention also uses a leading electrode and a trailing electrode to generate an arc between the welding wire and the base metal under a granular flux, and performs horizontal fillet welding by tandem submerged arc welding using the high heat generated thereby. At this time, the tip of the welding wire of the following electrode is always welded without shifting the tip of the welding wire of the leading electrode shifted from the welding line to the lower plate side than the welding line. The problem is solved by rotating the front side of the wire in a direction approaching the weld line.

ここで、前記タンデム回転サブマージアーク溶接に際して、アークの回転円における溶接進行方向の前方中心点Cfとアーク電圧波形又はアーク電流波形の間に規則性がある所定回転条件範囲で、Cfを中心とする左右対称な所定積分領域(例えば0°〜90°)のアーク電圧値又はアーク電流値の積分値の差が一定値となるように狙い位置を制御するようにして、アークセンサによる倣い制御を可能とすることができる。なお、前記規則性が回転条件によらず常に成立するガスシールドアーク溶接と異なり、サブマージアーク溶接の場合、前記規則性が成立するのは、例えば回転周波数3Hz〜30Hzの所定回転条件範囲に限られ、回転径の限界も存在し、その他、回転ピッチで規定することもできる。 Here, at the time of the tandem rotation submerged arc welding, Cf is the center in a predetermined rotation condition range in which there is regularity between the front center point Cf in the welding progress direction in the arc rotation circle and the arc voltage waveform or arc current waveform. Tracking control by an arc sensor is possible by controlling the target position so that the difference between the integrated values of arc voltage values or arc current values in a predetermined symmetrical integration region (for example, 0 ° to 90 °) is constant. It can be. In the case of submerged arc welding, the regularity is established only in a predetermined rotation condition range of, for example, a rotation frequency of 3 Hz to 30 Hz, unlike gas shielded arc welding in which the regularity is always established regardless of the rotation conditions. Also, there is a limit of the rotation diameter, and in addition, it can be defined by the rotation pitch.

本発明によれば、タンデムサブマージアーク溶接においても、溶接ワイヤ先端の回転により、ビード形状や溶け込みを制御することが可能となる。従って、高速溶接性や大脚長性、耐アンダーカット性を向上することが可能となる。更に、狙い位置の条件裕度を向上し、実工事における高品質、高安定を実現することができる。   According to the present invention, even in tandem submerged arc welding, the bead shape and penetration can be controlled by rotating the tip of the welding wire. Therefore, high-speed weldability, large leg length, and undercut resistance can be improved. Furthermore, the condition tolerance of the target position can be improved, and high quality and high stability in actual construction can be realized.

本発明が対象とするサブマージアーク溶接の原理を示す斜視図The perspective view which shows the principle of the submerged arc welding which this invention makes object 下向き溶接の例を示す断面図Sectional view showing an example of downward welding 水平隅肉溶接の例を示す断面図Cross section showing an example of horizontal fillet welding ガスシールドアーク溶接における回転アーク隅肉溶接の様子を示す斜視図Perspective view showing the state of rotating arc fillet welding in gas shielded arc welding 本発明の原理を説明するための、回転方向と回転周波数の影響を調べた実験結果の一部を示す図The figure which shows a part of experiment result which investigated the influence of the rotation direction and rotation frequency for demonstrating the principle of this invention. 本発明の第1実施形態の概要を示す斜視図The perspective view which shows the outline | summary of 1st Embodiment of this invention. 同じく先行電極と後行電極の配置を示す(A)正面図及び(B)平面図(A) Front view and (B) Plan view showing the arrangement of the leading electrode and the trailing electrode. 同じく溶接断面を従来法と比較して示す図Figure showing the welding cross section in comparison with the conventional method 同じく上脚長と溶接速度を従来法と比較して示す図Figure showing the upper leg length and welding speed in comparison with the conventional method 本発明の第2実施形態を示す斜視図The perspective view which shows 2nd Embodiment of this invention. アークの回転位置の定義を示す図Diagram showing definition of arc rotation position 溶接トーチの狙い位置とアークセンサの出力の関係を示す図Diagram showing the relationship between the target position of the welding torch and the output of the arc sensor 前記実施形態で用いることが可能なアーク溶接線倣い制御回路の例を示す図The figure which shows the example of the arc welding line scanning control circuit which can be used by the said embodiment

以下、図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図3に示したような、左側の立板14と右側の下板16のトーチ角度50°での水平隅肉サブマージアーク溶接について、発明者が、直径1.6mmの溶接ワイヤ22の先端を回転径3mmで回転させて実験を行ったところ、溶接ビード28をかき上げるように溶接ワイヤ22の先端を時計方向CWに回転(正転と称する)させた時は表1、逆に、溶接ビード28をかき下げるように溶接ワイヤ22の先端を反時計方向CCWに回転(逆転と称する)させた時は表2に示す様な結果が得られた。   For horizontal fillet submerged arc welding with a torch angle of 50 ° between the left standing plate 14 and the right lower plate 16 as shown in FIG. 3, the inventor rotates the tip of a welding wire 22 having a diameter of 1.6 mm. When the experiment was carried out with a diameter of 3 mm, when the tip of the welding wire 22 was rotated clockwise (referred to as forward rotation) so as to scoop up the weld bead 28, the welding bead 28 was reversed. When the tip of the welding wire 22 was rotated counterclockwise CCW (referred to as reverse rotation) so as to scrape, the results shown in Table 2 were obtained.

図5に回転周波数が30Hzと50Hzの時の例を示す。   FIG. 5 shows an example when the rotation frequency is 30 Hz and 50 Hz.

表1、表2から、溶接ワイヤを正転させたとき(表1)には、ガスシールドアーク溶接時の傾向と逆に下板側の脚長(下脚長)が大きくなり、反時計方向に回転(逆転)させたとき(表2)には、ガスシールドアーク溶接時の傾向と逆に立板側の脚長(上脚長)が大きくなること、更に、回転周波数を高くするほどビード偏向は大きくなるが、回転ガスシールドアーク溶接で一般的な50Hzまで回転周波数を高めると、正転、逆転共にハンピングビードなど、ビード不良となり、限界があることが判明した。   From Table 1 and Table 2, when the welding wire is rotated forward (Table 1), the leg length (lower leg length) on the lower plate side becomes larger and rotates counterclockwise, contrary to the tendency at the time of gas shield arc welding. When (reversed) (Table 2), the leg length (upper leg length) on the standing plate side is increased contrary to the tendency at the time of gas shield arc welding, and the bead deflection is increased as the rotational frequency is increased. However, when the rotational frequency was increased to 50 Hz, which is common in rotating gas shield arc welding, it became clear that there was a limit due to bead defects such as humping beads in both forward and reverse rotation.

本発明は、上記知見に基づいてなされたもので、その第1実施形態は、図6に示す如く、水平隅肉タンデムサブマージアーク溶接を行う際に、先行電極24Aの溶接ワイヤ22Aは回転させずストレート運棒とし、後行電極24Bの溶接ワイヤ22Bの先端のみを、回転周波数50Hzが一般的であるガスシールドアーク溶接に比べて比較的低速度の回転周波数3〜15Hzで、該溶接ワイヤ22B前側(図6の手前側)が溶接線WLに近づく反時計方向CCWにかき下げ回転させるようにしたものである。   The present invention has been made on the basis of the above knowledge. In the first embodiment, as shown in FIG. 6, when performing horizontal fillet tandem submerged arc welding, the welding wire 22A of the leading electrode 24A is not rotated. A straight rod is used, and only the tip of the welding wire 22B of the trailing electrode 24B has a rotational frequency of 3 to 15 Hz, which is a relatively low speed compared to gas shield arc welding in which a rotational frequency of 50 Hz is general, and the front side of the welding wire 22B. The front side of FIG. 6 is rotated down in the counterclockwise direction CCW approaching the weld line WL.

先行電極24Aのノズル回転軸25Aと後行電極24Bのノズル回転軸25Bの配置の例を図7に示す。   An example of the arrangement of the nozzle rotation shaft 25A of the preceding electrode 24A and the nozzle rotation shaft 25B of the subsequent electrode 24B is shown in FIG.

回転以外の全ての溶接条件が同一(溶接速度は84cpm)で、後行電極24Bの溶接ワイヤ22Bの先端を適正条件(実施例では回転径3mm、回転周波数7Hz、回転ピッチ2mm)で回転させることにより、図8(A)に示す如く、先行電極、後行電極とも非回転であった従来例で、立板側の上脚脚長が7mmであったのが、図8(B)に示す如く、上脚脚長を9mmに長くすることができた。更に、溶接速度を約半分の40cpmに落とした場合には、図8(C)に示す如く、上脚脚長を13.5mmまで拡大することができた。   All welding conditions other than rotation are the same (welding speed is 84 cpm), and the tip of the welding wire 22B of the trailing electrode 24B is rotated under appropriate conditions (in the embodiment, the rotation diameter is 3 mm, the rotation frequency is 7 Hz, and the rotation pitch is 2 mm). Thus, as shown in FIG. 8 (A), as shown in FIG. 8 (B), as shown in FIG. 8 (B), as shown in FIG. The leg length of the upper leg could be increased to 9 mm. Further, when the welding speed was reduced to about 40 cpm, as shown in FIG. 8C, the upper leg leg length could be increased to 13.5 mm.

本実施形態における上脚脚長と溶接速度の関係の例を図9に実線Aで示す。同じく実線Bで示す、前後とも非回転で、高電流が可能な太径ワイヤを使用した従来例に比べて、後行電極の溶接ワイヤのみの回転で、細径ワイヤを使用した場合、標準脚長(8mm)の場合の溶接速度は70cpm→84cpmに20%向上し、低速溶接(50cpm)の場合の上脚脚長は11.8mm→14.0mmに19%向上することが確認できた。   An example of the relationship between the upper leg leg length and the welding speed in this embodiment is shown by a solid line A in FIG. In the same way as shown by the solid line B, when compared to the conventional example using a large-diameter wire that is non-rotating both front and rear and capable of high current, when using a thin-diameter wire by rotating only the welding wire of the trailing electrode, the standard leg length It was confirmed that the welding speed in the case of (8 mm) was improved by 20% from 70 cpm to 84 cpm, and the upper leg leg length in the case of low speed welding (50 cpm) was improved by 19% from 11.8 mm to 14.0 mm.

下脚の形状や脚長を確保することは比較的容易であるため、本実施形態においては、先行電極24Aの溶接ワイヤ22Aを非回転のストレート運棒としたので、電極間の溶融プールを安定させることができ、制御が容易である。   Since it is relatively easy to ensure the shape and leg length of the lower leg, in this embodiment, the welding wire 22A of the leading electrode 24A is a non-rotating straight conveying rod, so that the molten pool between the electrodes is stabilized. Can be controlled easily.

尚、図10に示す第2実施形態のように、先行電極24Aの溶接ワイヤ22Aの先端を、該溶接ワイヤ22Aの前側(図6の手前側)が溶接線WLに近づく時計方向CWにかき上げ回転させ、後行電極24Bの溶接ワイヤ22Bの先端を、第1実施形態と同様に、反時計方向CCWにかき下げ回転させることもできる。   As in the second embodiment shown in FIG. 10, the tip of the welding wire 22A of the leading electrode 24A is scraped up in the clockwise direction CW where the front side (front side in FIG. 6) of the welding wire 22A approaches the welding line WL. The tip of the welding wire 22B of the trailing electrode 24B can also be rotated down in the counterclockwise direction CCW as in the first embodiment.

本実施形態によれば、電極間の溶融プールの安定性に考慮する必要があるが、下脚の形状や脚長も制御することができる。   According to this embodiment, it is necessary to consider the stability of the molten pool between the electrodes, but the shape and leg length of the lower leg can also be controlled.

前記実施形態における溶接線倣い制御は、例えば以下のように行うことができる。   The welding line scanning control in the embodiment can be performed as follows, for example.

図11に回転アーク溶接におけるアーク回転位置の定義の一例を示す。ここでは、アークの回転円において溶接進行方向の前方中心点をCf、後方中心点をCr、立板14側をR側、下板16側をL側とする。   FIG. 11 shows an example of the definition of the arc rotation position in rotary arc welding. Here, in the arc of rotation of the arc, the front center point in the welding progress direction is Cf, the rear center point is Cr, the standing plate 14 side is the R side, and the lower plate 16 side is the L side.

又、ノズル回転軸25と直交する軸線21上に溶接トーチの狙い位置xpをとり、溶接トーチの狙い位置が溶接線WLと一致しているときのxpをxp=0とし、xp=0を中心に、立板14側(図11のアーク回転位置で示すとR側)をプラス、下板16側(図11のアーク回転位置で示すとL側)をマイナスと定義する。 Also, taking the target position x p of the welding torch on an axis 21 perpendicular to the nozzle rotating shaft 25, the x p when the aiming position of the welding torch is consistent with the weld line WL is set to x p = 0, x p With respect to = 0, the standing plate 14 side (R side when indicated by the arc rotation position in FIG. 11) is defined as positive, and the lower plate 16 side (L side when indicated by the arc rotation position in FIG. 11) is defined as negative.

アークセンサ溶接線倣い制御方法では、図11に示すようにアークの1回転毎にCf点を中心に左右(L,R)同一の位相角θの範囲(例えば0°<θ<90°)で、例えばアーク電圧値を積分し、下板(L)側のアーク電圧値の積分値SLと立板(R)側のアーク電圧値の積分値SRとの差(SL−SR)をアークセンサの出力として取り出し、(SL−SR)の値及び符号により、溶接トーチの狙い位置を自動修正する。   In the arc sensor welding line tracking control method, as shown in FIG. 11, the left and right (L, R) phase angle θ is the same (for example, 0 ° <θ <90 °) around the Cf point for each rotation of the arc. For example, the arc voltage value is integrated, and the difference (SL−SR) between the integrated value SL of the arc voltage value on the lower plate (L) side and the integrated value SR of the arc voltage value on the standing plate (R) side is calculated. It is taken out as an output, and the target position of the welding torch is automatically corrected according to the value and sign of (SL-SR).

すなわち、アークセンサの出力(SL−SR)は、図12(A)に示すように、溶接トーチの狙い位置が溶接線と一致しているとき(xp=0)、SL−SR=0となるから、そのままで溶接を進行させる。また、図12(B)に示すように、溶接トーチの狙い位置が下板16側にずれているとき(xp<0)、アーク長は立板14側の方が下板16側よりも長くなり、SL−SR<0となるから、溶接トーチの狙い位置を立板14側へ修正するよう指令を与える。また、図12(C)に示すように、溶接トーチの狙い位置が立板14側にずれているとき(xp>0)、アーク長は下板16側の方が立板14側よりも長くなり、SL−SR>0となるから、溶接トーチの狙い位置を下板16側へ修正するよう指令を与える。 That is, the output (SL-SR) of the arc sensor is SL-SR = 0 when the target position of the welding torch coincides with the weld line (x p = 0) as shown in FIG. Therefore, welding is advanced as it is. Also, as shown in FIG. 12B, when the target position of the welding torch is shifted to the lower plate 16 side (x p <0), the arc length is higher on the vertical plate 14 side than on the lower plate 16 side. Since it becomes longer and SL-SR <0, a command is given to correct the target position of the welding torch toward the upright plate 14 side. Also, as shown in FIG. 12C, when the target position of the welding torch is shifted to the standing plate 14 side (x p > 0), the arc length is lower on the lower plate 16 side than on the standing plate 14 side. Since it becomes longer and SL-SR> 0, a command is given to correct the target position of the welding torch toward the lower plate 16 side.

図11から明らかなように、xp=0、SL−SR=0を中心として、アークセンサの出力(SR−SL)は符号が正負反転するから、溶接トーチの狙い位置が立板14側または下板16側にずれているときは、常にSL−SR=0となる方向へ溶接トーチの狙い位置を修正すればよい。なお、(SL−SR)の値の目標値を0以外とすれば、狙い位置を溶接線からオフセットさせることができる。 As apparent from FIG. 11, since the sign of the arc sensor output (SR-SL) is reversed from positive to negative with x p = 0 and SL-SR = 0 as the center, the target position of the welding torch is on the vertical plate 14 side or When it is shifted to the lower plate 16 side, the target position of the welding torch may be corrected in the direction in which SL-SR = 0 is always established. Note that if the target value of (SL-SR) is other than 0, the target position can be offset from the weld line.

前記実施形態で用いられるアークセンサ溶接線倣い制御装置の例を図13のブロック回路図に示す。   An example of the arc sensor welding line copying control device used in the embodiment is shown in the block circuit diagram of FIG.

図において、31はアーク電圧検出器、32は溶接電流検出器、33はスイッチで、ここではアーク電圧検出器31の方に接続している。溶接電流により制御する場合は、スイッチ33を溶接電流検出器32側へ切り替える。   In the figure, 31 is an arc voltage detector, 32 is a welding current detector, 33 is a switch, and is connected to the arc voltage detector 31 here. When controlling by welding current, switch 33 is switched to the welding current detector 32 side.

35はアーク回転位置検出器で、図11に示したアーク回転位置(Cf、R、Cr、L)を検出する。36はタイミングパルス発生器であって、アーク回転位置検出器35によって検出されたアーク回転位置を入力し、積分領域が所定の角度範囲になるようにタイミングパルスをそれぞれアーク電圧EaのL側積分器37とR側積分器38に指令する。   An arc rotation position detector 35 detects the arc rotation position (Cf, R, Cr, L) shown in FIG. Reference numeral 36 denotes a timing pulse generator which inputs the arc rotation position detected by the arc rotation position detector 35 and outputs the timing pulse to the L side integrator of the arc voltage Ea so that the integration region becomes a predetermined angle range. 37 and the R-side integrator 38 are commanded.

タイミングパルス発生器36によって指令される角度範囲は、本例においては、左右0°〜90°である。この角度範囲は、予め設定されているものであり、本例では上述のように0°〜90°に設定されているが、これに限られるものではなく、左右対称であれば良い。   The angle range commanded by the timing pulse generator 36 is 0 ° to 90 ° left and right in this example. This angle range is set in advance, and is set to 0 ° to 90 ° in the present example as described above, but is not limited to this and may be symmetrical.

39は、L側積分器37によるL側積分値SLとR側積分器38によるR側積分値SRとの差を演算する差動アンプで、この差動アンプ39によりアークセンサ出力(SL−SR)が求められる。   Reference numeral 39 denotes a differential amplifier that calculates the difference between the L-side integral value SL by the L-side integrator 37 and the R-side integral value SR by the R-side integrator 38. The differential amplifier 39 outputs an arc sensor output (SL-SR). ) Is required.

求められたアークセンサ出力(SL−SR)は、溶接線倣い制御回路40に入力する。溶接線倣い制御回路40では、差動アンプ39の偏差信号に基づいて倣い距離が演算され、この演算結果に基づいてモータ41が制御され、溶接トーチ47が倣い制御される。   The obtained arc sensor output (SL-SR) is input to the weld line scanning control circuit 40. In the welding line scanning control circuit 40, the scanning distance is calculated based on the deviation signal of the differential amplifier 39, the motor 41 is controlled based on the calculation result, and the welding torch 47 is scanned.

タンデムアーク溶接では、後行電極の狙い位置がビード形状に及ぼす影響が大きいため、このアーク溶接線倣い制御による自動倣いの導入効果は大きく、実工事での品質安定性を向上できる。   In tandem arc welding, the target position of the succeeding electrode has a great influence on the bead shape, so that the effect of introducing automatic scanning by this arc welding line scanning control is great, and the quality stability in actual construction can be improved.

尚、前記実施形態において本発明が水平隅肉溶接に適用され、先行電極と後行電極の関係が図7に例示するようにされていたが、本発明の適用対象はこれに限定されず、図7以外の電極配置や、下向き溶接にも適用できる。   In the above embodiment, the present invention is applied to horizontal fillet welding, and the relationship between the leading electrode and the trailing electrode is illustrated in FIG. 7, but the application target of the present invention is not limited to this, It can be applied to electrode arrangements other than those shown in FIG. 7 and downward welding.

14…立板
16…下板
20…フラックス
22、22A、22B…溶接ワイヤ
24A…先行電極
24B…後行電極
28…溶接ビード
DESCRIPTION OF SYMBOLS 14 ... Standing plate 16 ... Lower plate 20 ... Flux 22, 22A, 22B ... Welding wire 24A ... Leading electrode 24B ... Subsequent electrode 28 ... Welding bead

Claims (4)

先行電極と後行電極を用い、粒状フラックス下で溶接ワイヤと母材間にアークを発生させ、これにより生じる高熱を利用してタンデムサブマージアーク溶接を行う際に、
狙い位置を溶接線より片側にずらした先行電極の溶接ワイヤ先端を、溶接ワイヤ前側が溶接線に近づく方向に回転させると共に、狙い位置を先行電極と反対側にずらした後行電極の溶接ワイヤの先端を、溶接ワイヤ前側が溶接線に近づく方向に回転させることを特徴とするタンデム回転サブマージアーク溶接方法。
When using a leading electrode and a trailing electrode to generate an arc between the welding wire and the base metal under a granular flux, when performing tandem submerged arc welding using the high heat generated by this,
Welding wire of the row electrodes after the welding wire tip prior electrodes a target position shifted to one side from the weld line, the welding wire forward has shifted to the side opposite to the leading electrode Rutotomoni rotated toward the weld line, the target position A tandem rotating submerged arc welding method, wherein the front end of the welding wire is rotated in a direction in which the front side of the welding wire approaches the welding line.
水平隅肉溶接に際して、前記先行電極の溶接ワイヤ先端の狙い位置が溶接線より下板側にずらされ、前記後行電極の溶接ワイヤ先端の狙い位置が溶接線より立板側にずらされていることを特徴とする請求項1に記載のタンデム回転サブマージアーク溶接方法。 During horizontal fillet welding, the target position of the leading electrode welding wire tip is shifted to the lower plate side from the welding line, and the target position of the trailing electrode welding wire tip is shifted from the welding line to the vertical plate side. The tandem rotating submerged arc welding method according to claim 1 . 先行電極と後行電極を用い、粒状フラックス下で溶接ワイヤと母材間にアークを発生させ、これにより生じる高熱を利用してタンデムサブマージアーク溶接で水平隅肉溶接を行う際に、  When using the leading electrode and the trailing electrode to generate an arc between the welding wire and the base metal under the granular flux, and when performing horizontal fillet welding by tandem submerged arc welding using the high heat generated by this,
狙い位置を溶接線より下板側にずらした先行電極の溶接ワイヤ先端を回転させず、狙い位置を溶接線より上板側にずらした後行電極の溶接ワイヤの先端を、常に溶接ワイヤ前側が溶接線に近づく方向に回転させることを特徴とするタンデム回転サブマージアーク溶接方法。  The leading electrode welding wire tip is shifted from the welding line to the lower plate side, but the leading electrode welding wire tip is always rotated so that the leading electrode welding wire tip is shifted from the welding line to the upper plate side. A tandem rotating submerged arc welding method characterized by rotating in a direction approaching a welding line.
前記タンデム回転サブマージアーク溶接に際して、アークの回転円における溶接進行方向の前方中心点Cfとアーク電圧波形又はアーク電流波形の間に規則性がある所定回転条件範囲で、Cfを中心とする左右対称な所定積分領域のアーク電圧値又はアーク電流値の積分値の差が一定値となるように狙い位置を制御することを特徴とする請求項1乃至のいずれかに記載のタンデム回転サブマージアーク溶接方法。 In the tandem rotation submerged arc welding, the center of rotation is symmetrical with respect to Cf within a predetermined rotation condition range in which there is regularity between the front center point Cf in the welding progress direction in the arc rotation circle and the arc voltage waveform or arc current waveform. The tandem rotating submerged arc welding method according to any one of claims 1 to 3 , wherein the aiming position is controlled so that a difference between an integrated value of an arc voltage value or an arc current value in a predetermined integration region becomes a constant value. .
JP2009204824A 2009-09-04 2009-09-04 Tandem rotating submerged arc welding method Active JP5343771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204824A JP5343771B2 (en) 2009-09-04 2009-09-04 Tandem rotating submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204824A JP5343771B2 (en) 2009-09-04 2009-09-04 Tandem rotating submerged arc welding method

Publications (2)

Publication Number Publication Date
JP2011051005A JP2011051005A (en) 2011-03-17
JP5343771B2 true JP5343771B2 (en) 2013-11-13

Family

ID=43940586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204824A Active JP5343771B2 (en) 2009-09-04 2009-09-04 Tandem rotating submerged arc welding method

Country Status (1)

Country Link
JP (1) JP5343771B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240299B2 (en) * 1972-02-26 1977-10-11
JPS53106361A (en) * 1977-02-28 1978-09-16 Nippon Steel Corp Submerged arc welding method for steel plate
JPS61249667A (en) * 1985-04-26 1986-11-06 Nippon Kokan Kk <Nkk> Automatic fillet welding method with high speed rotating arc
JP3334616B2 (en) * 1998-06-16 2002-10-15 日本鋼管株式会社 Tandem arc welding method
JP2003048071A (en) * 2001-07-31 2003-02-18 Japan Techno Mate Corp Two-electrode rotating arc fillet welding method
JP4642675B2 (en) * 2006-03-01 2011-03-02 日鐵住金溶接工業株式会社 2-electrode large leg length horizontal fillet gas shielded arc welding method
JP4957441B2 (en) * 2007-08-07 2012-06-20 Jfeエンジニアリング株式会社 Gas shield arc welding method

Also Published As

Publication number Publication date
JP2011051005A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
US11759879B2 (en) Synchronized rotating arc welding method and system
CN105555465B (en) Laser welding method
JP6216111B2 (en) Welding system, welding process and welded article
WO2016175155A1 (en) Horizontal fillet welding method, horizontal fillet welding system, and program
JP7028658B2 (en) Weaving control method and weaving control system
JP5262641B2 (en) Tandem swing welding method
JP2011235316A (en) Robot controller that controls tandem arc welding system, arc tracking controlling method using the robot controller, and the tandem arc welding system
JP5826137B2 (en) Tandem submerged arc welding method
JP4420863B2 (en) Control method of laser arc composite welding
JP4957441B2 (en) Gas shield arc welding method
JP2009248171A (en) Arc welding method
JP5343771B2 (en) Tandem rotating submerged arc welding method
JP5170008B2 (en) Welding line scanning control method and apparatus
JP2007090390A (en) Welding method of rippled web beam
JP2011056553A (en) Method for profiling control with arc sensor in rotary submerge arc welding
WO2019151162A1 (en) One-side submerged arc welding method and one-side submerged arc welding device
JP5163613B2 (en) Rotating submerged arc welding method
JP6607677B2 (en) Four-electrode single-sided single-layer submerged arc welding method
JP2013027895A (en) Gas shielded arc welding method, and device therefor
JP5483553B2 (en) Laser-arc combined welding method
JP5681568B2 (en) Backside bead welding method
JP2617545B2 (en) Consumable electrode arc welding method
JPH0353068B2 (en)
JP2010274291A (en) Method for profile-controlling weld line and device used for the same
JPS61132272A (en) Groove seam profiling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5343771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350