JP2011056553A - Method for profiling control with arc sensor in rotary submerge arc welding - Google Patents

Method for profiling control with arc sensor in rotary submerge arc welding Download PDF

Info

Publication number
JP2011056553A
JP2011056553A JP2009209744A JP2009209744A JP2011056553A JP 2011056553 A JP2011056553 A JP 2011056553A JP 2009209744 A JP2009209744 A JP 2009209744A JP 2009209744 A JP2009209744 A JP 2009209744A JP 2011056553 A JP2011056553 A JP 2011056553A
Authority
JP
Japan
Prior art keywords
arc
welding
rotary
sensor
submerge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009209744A
Other languages
Japanese (ja)
Inventor
Koji Yoshii
孝次 吉井
Masatomo Murayama
雅智 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2009209744A priority Critical patent/JP2011056553A/en
Publication of JP2011056553A publication Critical patent/JP2011056553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for profiling control with an arc sensor in a rotary submerge arc welding which can realize proper profiling control with an arc sensor even in rotary submerge arc welding in which arc generation points cannot be visually confirmed due to covering with a flux. <P>SOLUTION: In performing submerge arc welding utilizing high heat produced by the generation of arc between a welding wire 22 and a base metal or between welding wires under a particulate flux 20, a target position is regulated so that a difference is constant between integral values SL and SR of arc voltage value or arc current value in a predetermined domain of integration that is bilaterally symmetrical with respect to a forward central point Cf, in a welding advance direction in a rotary circle of arc, in a predetermined rotary condition range having regularity between the forward central point Cf and the arc voltage waveform or the arc current waveform. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、回転サブマージアーク溶接のアークセンサによる倣い制御方法に係り、特に、アーク発生地点がフラックスに覆われており、目視確認をすることができないサブマージアーク溶接においても、狙い位置を的確に制御することが可能な、回転サブマージアーク溶接のアークセンサによる倣い制御方法に関する。   The present invention relates to a scanning control method using an arc sensor for rotary submerged arc welding, and in particular, accurately controls a target position even in submerged arc welding in which an arc generation point is covered with a flux and visual confirmation cannot be performed. The present invention relates to a scanning control method using an arc sensor of rotary submerged arc welding that can be performed.

図1に例示する如く、粒状フラックス20下で溶接ワイヤ22と母材10間あるいは溶接ワイヤ間にアークを発生させ、これにより生じる高熱を利用して溶接を行うサブマージアーク溶接が知られている。このサブマージアーク溶接では、母材10の上に予め粒上のフラックス20を堆積しておき、その中に溶接ワイヤ22の先端を突込んで溶接を行う。アークは、フラックス20に覆われて外からは見えない。フラックス20は、大気の遮断、溶接金属の精錬作用に寄与し、スラグ26や溶接ビード28の形成に寄与する。図において、12は裏当て材、24は電極である。   As illustrated in FIG. 1, submerged arc welding is known in which an arc is generated between the welding wire 22 and the base material 10 or between the welding wires under the granular flux 20 and welding is performed using high heat generated thereby. In this submerged arc welding, a granular flux 20 is deposited on the base material 10 in advance, and welding is performed by inserting the tip of the welding wire 22 therein. The arc is covered with the flux 20 and is not visible from the outside. The flux 20 contributes to the blocking of the atmosphere and the refining action of the weld metal, and contributes to the formation of the slag 26 and the weld bead 28. In the figure, 12 is a backing material, and 24 is an electrode.

このサブマージアーク溶接は、造船や橋梁の板継ぎ溶接や、高層ビルのBOX柱、圧力容器などに広く使用されている。大電流や、多電極の採用が可能なため、高能率(高溶着速度)であり、且つ、溶け込みも深いが、溶接姿勢は、図2に例示するような下向き、又は図3に例示するような水平(横向き)に限られ、その殆んどは下向き施工である。図2、図3において、14は立板(例えばH形鋼材のフランジ)、16は下板(同じくウェブ)である。又、運棒方法は、殆んどがストレートであり、一部で揺動させている事例もある。   This submerged arc welding is widely used for shipbuilding, bridge welding of bridges, BOX columns and pressure vessels of high-rise buildings. Since it is possible to employ a large current and multiple electrodes, it has high efficiency (high welding speed) and deep penetration, but the welding posture is downward as illustrated in FIG. 2 or illustrated in FIG. However, most of the construction is downward. 2 and 3, reference numeral 14 denotes a standing plate (for example, a flange of an H-shaped steel material), and 16 denotes a lower plate (also a web). In addition, most of the rod handling methods are straight, and there are cases where they are swung partially.

図2に例示した下向き姿勢では、太径ワイヤ、高電流溶接が適用され、高能率・高品質(深溶け込み、ビード外観良好)であるが、溶接姿勢が下向きとなるようにワーク姿勢を変更する必要があり、H形鋼材の場合はウェブ片側の1継手ずつしか施工できない。   In the downward posture illustrated in FIG. 2, thick wire and high current welding are applied, and high efficiency and high quality (deep penetration, good bead appearance), but the workpiece posture is changed so that the welding posture is downward. In the case of H-shaped steel, only one joint on one side of the web can be constructed.

一方、図3に例示した水平姿勢では、H形鋼材の場合でもウェブ両側の2継手同時施工が可能であるが、重力の作用でビード垂れが発生し、図3に例示したような水平隅肉溶接では、立板14側の上脚長不足やアンダカットが発生しやすい。更に、脚長が長い大脚長側では、垂れ気味となり、ビード止端部形状も悪く、水平姿勢での1ラン10mm以上の大脚長隅肉溶接の実用化は非常に困難であった。   On the other hand, in the horizontal posture illustrated in FIG. 3, two joints on both sides of the web can be simultaneously applied even in the case of an H-shaped steel material, but bead sagging occurs due to the action of gravity, and the horizontal fillet as illustrated in FIG. In welding, shortage of the upper leg length or undercut is likely to occur. Furthermore, on the long leg side where the leg length is long, the drooping appearance is poor, the shape of the bead toe portion is bad, and it is very difficult to put a large leg long fillet weld having a length of 10 mm or more in a horizontal posture to practical use.

アーク溶接の適用のほとんどは自動台車(装置)によるものであるが、サブマージアーク溶接の場合、アーク発生地点がフラックスに覆われており、目視確認をすることが出来ないため、本当の狙い位置調整は非常に難しい。従来技術としては、(1)溶接対象部材に接触させたガイドローラに沿って台車を走行させ、部材と電極位置関係を保つ、ガイドローラなどによる機械式倣いや、(2)台車レールを狙い位置に沿って設置するレール走行式、あるいは、(3)先端部にローラ部を設けたポテンショメータ(位置センサ)を溶接対象部材に押し当てて位置制御する方法などがあるが、いずれも倣い精度が低かった。   Most of arc welding is applied to automatic trolleys (equipment). However, in the case of submerged arc welding, the arc generation point is covered with flux and cannot be confirmed visually, so the true target position adjustment is possible. Is very difficult. Conventional technologies include (1) mechanical carriage copying with guide rollers, etc. that keep the carriage in contact with the member to be welded and maintain the electrode positional relationship with the member, and (2) aiming at the carriage rail. Or (3) a method of controlling the position by pressing a potentiometer (position sensor) with a roller at the tip against the member to be welded. It was.

即ち、機械式倣いやポテンショメータを利用した位置制御では、あくまでガイドローラやセンサを接触させている部分と電極の位置関係を制御できるだけであり、部材の交差部や開先ルート部などを正確に倣うことはできない。又、溶接中の熱変形への対応もできない。更に、タンデム溶接や多パス溶接の場合、先行電極や前パスのビード形状に対して狙い位置を設定したいが不可能である等の問題点を有していた。   That is, position control using mechanical copying or a potentiometer can only control the positional relationship between the electrode and the portion where the guide roller or sensor is in contact, and accurately copies the crossing portion of the member, the groove root portion, and the like. It is not possible. Also, it cannot cope with thermal deformation during welding. Furthermore, in the case of tandem welding or multi-pass welding, there is a problem that it is impossible to set the target position with respect to the leading electrode or the bead shape of the previous pass.

ここで、図2に例示したような下向き溶接の場合は、適切な溶接条件の裕度が広いため、倣い精度は大きな問題にならないが、図3に例示したような水平姿勢の場合、狙い位置条件の裕度が狭いため、ビード不良(立板側の上脚長不足やアンダカット)に繋がるという問題点を有していた。   Here, in the case of downward welding as illustrated in FIG. 2, the tolerance of appropriate welding conditions is wide, so that the scanning accuracy is not a big problem. However, in the case of a horizontal posture as illustrated in FIG. Since the tolerance of the condition is narrow, it has a problem that it leads to a bead failure (insufficient upper leg length or undercut).

一方、フラックスを使わないガスシールドアーク溶接においては、出願人が特許文献1で提案したように、図4に示す如く、溶接ワイヤ22の先端を回転させる回転アーク溶接における溶接線倣い制御が提案されている。図において、23はアークである。   On the other hand, in gas shielded arc welding that does not use flux, as proposed by the applicant in Patent Document 1, as shown in FIG. 4, welding line copying control in rotating arc welding in which the tip of the welding wire 22 is rotated is proposed. ing. In the figure, 23 is an arc.

図5にアーク回転位置の定義の一例を示す。ここでは、アークの回転円において溶接進行方向の前方中心点をCf、後方中心点をCr、立板14側をR側、下板16側をL側とする。   FIG. 5 shows an example of the definition of the arc rotation position. Here, in the arc of rotation of the arc, the front center point in the welding progress direction is Cf, the rear center point is Cr, the standing plate 14 side is the R side, and the lower plate 16 side is the L side.

又、ノズル回転軸25と直交する軸線21上に溶接トーチの狙い位置xpをとり、溶接トーチの狙い位置が溶接線WLと一致しているときのxpをxp=0とし、xp=0を中心に、立板14側(図5のアーク回転位置で示すとR側)をプラス、下板16側(図5のアーク回転位置で示すとL側)をマイナスと定義する。 Also, taking the target position x p of the welding torch on an axis 21 perpendicular to the nozzle rotating shaft 25, the x p when the aiming position of the welding torch is consistent with the weld line WL is set to x p = 0, x p With respect to = 0, the standing plate 14 side (R side when indicated by the arc rotation position in FIG. 5) is defined as plus, and the lower plate 16 side (L side when represented by the arc rotation position in FIG. 5) is defined as minus.

アークセンサ溶接線倣い制御方法では、図5に示すようにアークの1回転毎にCf点を中心に左右(L,R)同一の位相角θの範囲(例えば5°<θ<180°)で、例えばアーク電圧値を積分し、立板(R)側のアーク電圧値の積分値SRと下板(L)側のアーク電圧値の積分値SLとの差(SR−SL)をアークセンサの出力として取り出し、(SR−SL)の値及び符号により、溶接トーチの狙い位置を自動修正する。   In the arc sensor welding line scanning control method, as shown in FIG. 5, the left and right (L, R) phase angle θ is in the same range (for example, 5 ° <θ <180 °) around the Cf point for each rotation of the arc. For example, the arc voltage value is integrated, and the difference (SR−SL) between the integrated value SR of the arc voltage value on the vertical plate (R) side and the integrated value SL of the arc voltage value on the lower plate (L) side is calculated. Take out as an output and automatically correct the target position of the welding torch according to the value and sign of (SR-SL).

すなわち、アークセンサの出力(SR−SL)は、図6(A)に示すように、溶接トーチの狙い位置が溶接線と一致しているとき(xp=0)、SR−SL=0となるから、そのままで溶接を進行させる。また、図6(B)に示すように、溶接トーチの狙い位置が下板16側にずれているとき(xp<0)、アーク長は立板14側の方が下板16側よりも長くなり、SR−SL>0となるから、溶接トーチの狙い位置を立板14側へ修正するよう指令を与える。また、図6(C)に示すように、溶接トーチの狙い位置が立板14側にずれているとき(xp>0)、アーク長は下板16側の方が立板14側よりも長くなり、SR−SL<0となるから、溶接トーチの狙い位置を下板16側へ修正するよう指令を与える。 That is, the output (SR-SL) of the arc sensor is SR-SL = 0 when the target position of the welding torch coincides with the weld line (x p = 0) as shown in FIG. Therefore, welding is advanced as it is. As shown in FIG. 6B, when the aiming position of the welding torch is shifted to the lower plate 16 side (x p <0), the arc length is longer on the vertical plate 14 side than on the lower plate 16 side. Since it becomes longer and SR-SL> 0, a command is given to correct the target position of the welding torch toward the upright plate 14 side. Further, as shown in FIG. 6C, when the target position of the welding torch is shifted to the standing plate 14 side (x p > 0), the arc length is lower on the lower plate 16 side than on the standing plate 14 side. Since it becomes longer and SR-SL <0, a command is given to correct the target position of the welding torch toward the lower plate 16 side.

図5から明らかなように、xp=0、SR−SL=0を中心として、アークセンサの出力(SR−SL)は符号が正負反転するから、溶接トーチの狙い位置が立板14側または下板16側にずれているときは、常にSR−SL=0となる方向へ溶接トーチの狙い位置を修正すればよい。 As apparent from FIG. 5, around the x p = 0, SR-SL = 0, since the output of the arc sensor (SR-SL) the sign is positive or negative reversal, the aiming position of the welding torch is vertical plate 14 side or When it is shifted to the lower plate 16 side, the target position of the welding torch may be corrected in the direction in which SR-SL = 0 is always achieved.

従って、回転ガスシールドアーク溶接で用いられているアークセンサによる溶接線倣い制御を、サブマージアーク溶接にも適用することが考えられる。   Therefore, it is conceivable to apply the welding line scanning control by the arc sensor used in the rotary gas shielded arc welding to the submerged arc welding.

特開平3−114670号公報Japanese Patent Laid-Open No. 3-114670

しかしながら、発明者がガスシールドアーク溶接の技術をサブマージアーク溶接にそのまま適用しようと試みたところ、上手くいかないことが判明した。即ち、ガスシールドアーク溶接では、回転周波数によらずCf信号とアーク電圧波形の関係が図7に示す如くとなり、アーク電圧波形が規則性を有するが、サブマージアーク溶接では、図7に示すような理想的な回転アーク溶接−電圧波形の関係を得ることができなかった。   However, when the inventor tried to apply the gas shielded arc welding technique to submerged arc welding as it was, it turned out that it did not work. That is, in gas shielded arc welding, the relationship between the Cf signal and the arc voltage waveform is as shown in FIG. 7 regardless of the rotation frequency, and the arc voltage waveform has regularity, but in submerged arc welding, as shown in FIG. An ideal rotating arc welding-voltage waveform relationship could not be obtained.

本発明は、前記従来の問題点を解消するべくなされたもので、ガスシールドアーク溶接の倣い制御をそのまま適用したのでは、倣い制御が上手くいかないサブマージアーク溶接の条件を適切に制御して、アークセンサによる倣い制御を可能とすることを課題とする。   The present invention was made to solve the above-mentioned conventional problems, and by applying the copy control of gas shielded arc welding as it is, appropriately control the conditions of submerged arc welding in which the copy control does not work, It is an object to enable scanning control by an arc sensor.

本発明は、粒状フラックス下で溶接ワイヤと母材間、あるいは溶接ワイヤ間にアークを発生させ、これにより生じる高熱を利用してサブマージアーク溶接を行う際に、アークの回転円における溶接進行方向の前方中心点Cfとアーク電圧波形又はアーク電流波形の間に規則性がある所定回転条件範囲で、Cfを中心とする左右対称な所定積分領域のアーク電圧値又はアーク電流値の積分値の差が一定値となるように狙い位置を制御するようにして、前記課題を解決したものである。   The present invention generates an arc between a welding wire and a base metal or between welding wires under a granular flux, and when performing submerged arc welding using the high heat generated thereby, The difference between the integrated value of the arc voltage value or the arc current value in a predetermined integration region symmetrical with respect to Cf in the predetermined rotation condition range having regularity between the front center point Cf and the arc voltage waveform or the arc current waveform. The above-mentioned problem is solved by controlling the target position so as to be a constant value.

ここで、前記所定回転条件範囲を、回転周波数3Hzより大きく、且つ、30Hzより小さくすることができる。   Here, the predetermined rotation condition range can be made larger than the rotation frequency 3 Hz and smaller than 30 Hz.

又、前記所定積分領域を、Cfを中心とする左右90°の領域とすることができる。   Further, the predetermined integration region can be a region of 90 ° left and right centering on Cf.

本発明によれば、サブマージアーク溶接においても、アークセンサによる倣い制御が可能となる。従って、フラックスによりアークは見えないが、近傍の部材などを基準に狙い位置を制御するわけではなく、発生しているアーク自体の電流、電圧データによりアーク発生地点で狙い位置を制御できるため、熱変形及び先行電極や前パスのビード形状への対応が可能となる。   According to the present invention, copying control by an arc sensor is possible even in submerged arc welding. Therefore, although the arc is not visible due to the flux, the target position is not controlled based on nearby members, but the target position can be controlled by the current and voltage data of the generated arc itself. It becomes possible to cope with deformation and the bead shape of the preceding electrode and the previous pass.

本発明が対象とするサブマージアーク溶接の原理を示す斜視図The perspective view which shows the principle of the submerged arc welding which this invention makes object 下向き溶接の例を示す断面図Sectional view showing an example of downward welding 水平隅肉溶接の例を示す断面図Cross section showing an example of horizontal fillet welding ガスシールドアーク溶接における回転アーク溶接の様子を示す斜視図Perspective view showing the state of rotary arc welding in gas shielded arc welding アークの回転位置の定義を示す図Diagram showing definition of arc rotation position 溶接トーチの狙い位置とアークセンサの出力の関係を示す図Diagram showing the relationship between the target position of the welding torch and the output of the arc sensor 理想的な回転アーク溶接−電圧波形の例を示す図An example of ideal rotating arc welding-voltage waveform 本発明の原理を説明するための、7HzでのCf信号とアーク電圧/電流波形の関係の例を示す図The figure which shows the example of the relationship between Cf signal in 7 Hz, and an arc voltage / current waveform for demonstrating the principle of this invention. 同じく3HzでのCf信号とアーク電圧/電流波形の関係の例を示す図The figure which similarly shows the example of the relationship between Cf signal and arc voltage / current waveform in 3 Hz 同じく30HzでのCf信号とアーク電圧/電流波形の関係の例を示す図The figure which similarly shows the example of the relationship between Cf signal in 30 Hz, and an arc voltage / current waveform 本発明の第1実施形態の概要を示す斜視図The perspective view which shows the outline | summary of 1st Embodiment of this invention. 同じく積分領域を示す図Figure showing the integration region 同じく制御回路を示す図The figure which also shows a control circuit 本発明の第2実施形態の概要を示す斜視図The perspective view which shows the outline | summary of 2nd Embodiment of this invention. 本発明の第3実施形態の概要を示す斜視図The perspective view which shows the outline | summary of 3rd Embodiment of this invention. 第3実施形態の電極配置を示す図The figure which shows the electrode arrangement | positioning of 3rd Embodiment. 本発明の第4実施形態の概要を示す斜視図The perspective view which shows the outline | summary of 4th Embodiment of this invention.

以下、図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

回転サブマージアーク溶接について、発明者が、直径1.6mmの溶接ワイヤの先端を回転径3mmで、溶接ビードを掻き下げるように反時計方向CCWに回転させてトーチ角度50°、溶接速度40cpmで実験を行ったところ、所定回転条件範囲、例えば回転周波数3Hzより大きく、且つ、30Hzより小さいときに、Cf位置とアーク電圧/電流波形の間に、図8(回転周波数7Hzの例)に示す如く、前方Cf位置でピーク電圧となり、後方180°位置でボトム電圧となる規則性が得られた。3Hz及び30Hzで、Cf信号と電圧(電流)信号に規則性の無いデータを、それぞれ図9及び図10に示す。   For rotating submerged arc welding, the inventor conducted an experiment at a torch angle of 50 ° and a welding speed of 40 cpm by rotating the tip of a 1.6 mm diameter welding wire at a rotating diameter of 3 mm and counterclockwise CCW so as to scrape the weld bead. As shown in FIG. 8 (example of a rotation frequency of 7 Hz) between a Cf position and an arc voltage / current waveform when a predetermined rotation condition range, for example, the rotation frequency is larger than 3 Hz and smaller than 30 Hz, Regularity was obtained in which the peak voltage was at the front Cf position and the bottom voltage was at the rear 180 ° position. Data having no regularity in the Cf signal and the voltage (current) signal at 3 Hz and 30 Hz are shown in FIGS. 9 and 10, respectively.

なお回転条件範囲には、回転径の限界も存在し、その他、回転ピッチで規定することもできる。   The rotation condition range also has a limit of the rotation diameter, and can be defined by the rotation pitch.

本発明は、上記知見に基づいてなされたもので、その第1実施形態は、シングル回転サブマージアーク溶接において、図11に示す如く、溶接ワイヤ22の先端を回転周波数3Hz〜30Hzで反時計方向CCWに回転させて掻き下げる際に、図12に示す如く、Cfを中心とする左右90°の所定積分領域でアーク電圧値を積分して積分値SLとSRの差(SL−SR)の値を検出し、これが一定値(例えば0)となるように狙い位置を制御するようにしたものである。なお、(SL−SR)の値の目標値を0以外として、狙い位置を溶接先からオフセットさせても良い。   The present invention has been made on the basis of the above knowledge. In the first embodiment, in single rotation submerged arc welding, as shown in FIG. 11, the tip of the welding wire 22 is counterclockwise CCW at a rotation frequency of 3 Hz to 30 Hz. , The arc voltage value is integrated in a predetermined 90 ° horizontal integration centered on Cf, and the difference between the integrated values SL and SR (SL−SR) is obtained as shown in FIG. The target position is controlled so that it is detected and becomes a constant value (for example, 0). Note that the target position of (SL-SR) may be set to a value other than 0, and the target position may be offset from the welding destination.

本発明を実施する場合に用いられるアークセンサ溶接線倣い制御装置のブロック回路図を図13に示す。   FIG. 13 shows a block circuit diagram of an arc sensor welding line copying control apparatus used when the present invention is implemented.

図において、31はアーク電圧検出器、32は溶接電流検出器、33はスイッチで、ここではアーク電圧検出器31の方に接続している。溶接電流により制御する場合は、スイッチ33を溶接電流検出器32側へ切り替える。   In the figure, 31 is an arc voltage detector, 32 is a welding current detector, 33 is a switch, and is connected to the arc voltage detector 31 here. When controlling by welding current, switch 33 is switched to the welding current detector 32 side.

35はアーク回転位置検出器で、図5に示したアーク回転位置(Cf、R、Cr、L)を検出する。36はタイミングパルス発生器であって、アーク回転位置検出器35によって検出されたアーク回転位置を入力し、積分領域が所定の角度範囲になるようにタイミングパルスをそれぞれアーク電圧EaのL側積分器37とR側積分器38に指令する。   An arc rotation position detector 35 detects the arc rotation position (Cf, R, Cr, L) shown in FIG. Reference numeral 36 denotes a timing pulse generator which inputs the arc rotation position detected by the arc rotation position detector 35 and outputs the timing pulse to the L side integrator of the arc voltage Ea so that the integration region becomes a predetermined angle range. 37 and the R-side integrator 38 are commanded.

タイミングパルス発生器36によって指令される角度範囲は、本例においては、左右0°〜90°である。この角度範囲は、予め設定されているものであり、本例では上述のように0°〜90°に設定されているが、これに限られるものではなく、左右対称であれば良い。   The angle range commanded by the timing pulse generator 36 is 0 ° to 90 ° left and right in this example. This angle range is set in advance, and is set to 0 ° to 90 ° in the present example as described above, but is not limited to this and may be symmetrical.

39は、L側積分器37によるL側積分値SLとR側積分器38によるR側積分値SRとの差を演算する差動アンプで、この差動アンプ39によりアークセンサ出力(SL−SR)が求められる。   Reference numeral 39 denotes a differential amplifier that calculates the difference between the L-side integral value SL by the L-side integrator 37 and the R-side integral value SR by the R-side integrator 38. The differential amplifier 39 outputs an arc sensor output (SL-SR). ) Is required.

求められたアークセンサ出力(SL−SR)は、溶接線倣い制御回路40に入力する。溶接線倣い制御回路40では、差動アンプ39の偏差信号に基づいて倣い距離が演算され、この演算結果に基づいてモータ41が制御され、溶接トーチ47が倣い制御される。   The obtained arc sensor output (SL-SR) is input to the weld line scanning control circuit 40. In the welding line scanning control circuit 40, the scanning distance is calculated based on the deviation signal of the differential amplifier 39, the motor 41 is controlled based on the calculation result, and the welding torch 47 is scanned.

本実施形態においては、立板14側の溶け込みを広くして、上脚脚長を伸ばすことができる。   In the present embodiment, the upper leg leg length can be extended by widening the penetration on the standing plate 14 side.

次に、図14を参照して本発明の第2実施形態を説明する。本実施形態は、第1実施形態と同様のシングル回転サブマージアーク溶接において、溶接ワイヤ22を第1実施形態と逆の時計方向CWに掻き上げ回転するようにしたものである。   Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, in the same single rotation submerged arc welding as in the first embodiment, the welding wire 22 is scraped and rotated in the clockwise direction CW opposite to that in the first embodiment.

本実施形態においては、下板16側の溶け込みを広くして、下脚脚長を伸ばすことができる。   In the present embodiment, the lower leg 16 side can be widened to extend the lower leg leg length.

次に、図15を参照して本発明の第3実施形態を説明する。本実施形態は、タンデム回転サブマージアーク溶接において、先行電極24Aの溶接ワイヤ22Aを回転させないストレート運棒とし、後行電極24Bの溶接ワイヤ22Bの先端を、反時計方向CCWの掻き下げ回転とするようにしたものである。   Next, a third embodiment of the present invention will be described with reference to FIG. In the present embodiment, in tandem rotary submerged arc welding, the welding wire 22A of the leading electrode 24A is a straight rod that does not rotate, and the tip of the welding wire 22B of the trailing electrode 24B is rotated counterclockwise in the counterclockwise direction CCW. It is a thing.

先行電極24Aのノズル回転軸25Aと後行電極24Bのノズル回転軸25Bの配置例を図16に示す。   An arrangement example of the nozzle rotation shaft 25A of the preceding electrode 24A and the nozzle rotation shaft 25B of the subsequent electrode 24B is shown in FIG.

本実施形態においては、後行電極24Bの溶接ワイヤ22Bの回転により、立板14側の溶け込みを広くして、上脚脚長を伸ばすと共に、先行電極24Aへの対応が可能となる。   In the present embodiment, by rotating the welding wire 22B of the trailing electrode 24B, it is possible to widen the penetration on the standing plate 14 side, extend the length of the upper leg, and cope with the leading electrode 24A.

なお、図17に示す第4実施形態のように、先行電極24Aの溶接ワイヤ22Aの先端も、例えば時計方向CWへ掻き上げ回転させて、下板16側の溶け込みを広くし、下脚脚長を伸ばすこともできる。   Note that, as in the fourth embodiment shown in FIG. 17, the tip of the welding wire 22A of the leading electrode 24A is also scraped and rotated, for example, in the clockwise direction CW to widen the penetration on the lower plate 16 side and extend the leg leg length. You can also.

なお、前記実施形態においては所定回転周波数範囲が3Hzより大きく、且つ、30Hzより小さくされ、所定積分領域が、Cfを中心とする左右90°の領域とされていたが、所定回転周波数範囲や所定積分領域は、これに限定されず、例えば回転径に応じて変えることができる。   In the above-described embodiment, the predetermined rotation frequency range is larger than 3 Hz and smaller than 30 Hz, and the predetermined integration region is a left and right 90 ° region centered on Cf. The integration region is not limited to this, and can be changed according to, for example, the rotation diameter.

本発明の適用対象も、水平隅肉溶接に限定されず、下向き溶接や開先形状を有する平板の突合せ溶接を対象とすることもできる。   The application object of the present invention is not limited to horizontal fillet welding, and can be directed to downward welding or butt welding of flat plates having a groove shape.

14…立板
16…下板
20…フラックス
22、22A、22B…溶接ワイヤ
24、24A、24B…電極
28…溶接ビード
14 ... Standing plate 16 ... Lower plate 20 ... Flux 22, 22A, 22B ... Welding wire 24, 24A, 24B ... Electrode 28 ... Welding bead

Claims (3)

粒状フラックス下で溶接ワイヤと母材間、あるいは溶接ワイヤ間にアークを発生させ、これにより生じる高熱を利用してサブマージアーク溶接を行う際に、
アークの回転円における溶接進行方向の前方中心点Cfとアーク電圧波形又はアーク電流波形の間に規則性がある所定回転条件範囲で、
Cfを中心とする左右対称な所定積分領域のアーク電圧値又はアーク電流値の積分値の差が一定値となるように狙い位置を制御することを特徴とする回転サブマージアーク溶接のアークセンサによる倣い制御方法。
When generating an arc between the welding wire and the base metal or between the welding wire under granular flux, and performing submerged arc welding using the high heat generated by this,
In a predetermined rotation condition range where there is regularity between the front center point Cf in the welding progress direction in the arc rotation circle and the arc voltage waveform or arc current waveform,
Copying by rotary arc-merged arc welding using an arc sensor characterized in that the target position is controlled so that the difference between the integral values of arc voltage values or arc current values in a predetermined integral region symmetrical about Cf is constant. Control method.
前記所定回転条件範囲が、回転周波数3Hzより大きく、且つ、30Hzより小さいことを特徴とする請求項1に記載の回転サブマージアーク溶接のアークセンサによる倣い制御方法。   2. The scanning control method using an arc sensor of rotary submerged arc welding according to claim 1, wherein the predetermined rotation condition range is greater than a rotation frequency of 3 Hz and less than 30 Hz. 前記所定積分領域が、Cfを中心とする左右90°の領域であることを特徴とする請求項1に記載の回転サブマージアーク溶接のアークセンサによる倣い制御方法。   2. The scanning control method using an arc sensor of rotary submerged arc welding according to claim 1, wherein the predetermined integration region is a region of 90 ° left and right centering on Cf.
JP2009209744A 2009-09-10 2009-09-10 Method for profiling control with arc sensor in rotary submerge arc welding Pending JP2011056553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009209744A JP2011056553A (en) 2009-09-10 2009-09-10 Method for profiling control with arc sensor in rotary submerge arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009209744A JP2011056553A (en) 2009-09-10 2009-09-10 Method for profiling control with arc sensor in rotary submerge arc welding

Publications (1)

Publication Number Publication Date
JP2011056553A true JP2011056553A (en) 2011-03-24

Family

ID=43944810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009209744A Pending JP2011056553A (en) 2009-09-10 2009-09-10 Method for profiling control with arc sensor in rotary submerge arc welding

Country Status (1)

Country Link
JP (1) JP2011056553A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249667A (en) * 1985-04-26 1986-11-06 Nippon Kokan Kk <Nkk> Automatic fillet welding method with high speed rotating arc
JPH03114670A (en) * 1989-09-28 1991-05-15 Nkk Corp Groove automatic profile control method by arc sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249667A (en) * 1985-04-26 1986-11-06 Nippon Kokan Kk <Nkk> Automatic fillet welding method with high speed rotating arc
JPH03114670A (en) * 1989-09-28 1991-05-15 Nkk Corp Groove automatic profile control method by arc sensor

Similar Documents

Publication Publication Date Title
US11759879B2 (en) Synchronized rotating arc welding method and system
JP2009518189A (en) Laser rotating arc hybrid welding apparatus and method
WO2016175155A1 (en) Horizontal fillet welding method, horizontal fillet welding system, and program
WO2016175156A1 (en) Horizontal fillet welding method, horizontal fillet welding system, and program
WO2019151088A1 (en) Weaving control method and weaving control system
WO2018092647A1 (en) Gouging-less complete penetration welding method, and welded joint
JP4957441B2 (en) Gas shield arc welding method
JP2007000920A (en) Method for controlling laser arc composite welding
JP5621961B2 (en) Submerged arc welding method and apparatus
JP2010094697A (en) Control device of welding robot
JP2011056553A (en) Method for profiling control with arc sensor in rotary submerge arc welding
JP5343771B2 (en) Tandem rotating submerged arc welding method
JP2007090390A (en) Welding method of rippled web beam
JP6996993B2 (en) Single-sided submerged arc welding method and single-sided submerged arc welding equipment
US6858813B1 (en) Weld overlay system
JP2014111261A (en) Weld method, and automatic weld device
JP5163613B2 (en) Rotating submerged arc welding method
JP2002316265A (en) Method for arc welding of aluminum-based member
JP2002224829A (en) Method and equipment for welding narrow groove with peak pulse tig
JP2011000630A (en) Method and apparatus for controlling welding line copying
JP2522114B2 (en) Joint welding method for steel members
WO2018092514A1 (en) Method of detecting amount of discrepancy in arc tracking welding
JP6607677B2 (en) Four-electrode single-sided single-layer submerged arc welding method
JP2010274291A (en) Method for profile-controlling weld line and device used for the same
JP2013027895A (en) Gas shielded arc welding method, and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20130510

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20130521

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022