JP5343511B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP5343511B2
JP5343511B2 JP2008279102A JP2008279102A JP5343511B2 JP 5343511 B2 JP5343511 B2 JP 5343511B2 JP 2008279102 A JP2008279102 A JP 2008279102A JP 2008279102 A JP2008279102 A JP 2008279102A JP 5343511 B2 JP5343511 B2 JP 5343511B2
Authority
JP
Japan
Prior art keywords
low
flow path
temperature
gas flow
temperature air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008279102A
Other languages
Japanese (ja)
Other versions
JP2010105516A (en
Inventor
路子 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008279102A priority Critical patent/JP5343511B2/en
Publication of JP2010105516A publication Critical patent/JP2010105516A/en
Application granted granted Critical
Publication of JP5343511B2 publication Critical patent/JP5343511B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、低温気体流路内を流通する気体と高温気体流路内を流通する気体との間で熱交換を行わせる構成を有する熱交換器に関する。   The present invention relates to a heat exchanger having a configuration in which heat exchange is performed between a gas flowing in a low temperature gas flow path and a gas flowing in a high temperature gas flow path.

従来より用いられている空調システムの構成の一例として、低温気体流路内を流通する気体と高温気体流路内を流通する気体との間で熱交換を行わせる構成を有するものが広く知られている。このような空調システムとして、例えば、航空機用に用いられ、図7に示すように、エンジンbからの抽気の供給を受けて圧縮手段cにより圧縮された抽気を流通させる高温気体流路たる高温空気流路dと、膨張手段e内で断熱膨張した低温空気を流通させる低温気体流路たる低温空気流路fと、前記高温空気流路d内の抽気と前記低温空気流路f内の低温空気との熱交換を行わせるための熱交換部gと、前記低温空気流路f内を流通する低温空気を前記熱交換部gを通過させずに流通させるべく前記低温空気流路fの前記熱交換部gより上流側の部位f1と下流側の部位f2とを連通させて設けたバイパス流路hと、バイパス流路hに設けられ開度を変更可能な流量調整手段iとを具備するものが挙げられる。前記バイパス流路hは、空気中の水分が前記膨張手段e内で氷結したもの(以下氷結水分と称する)が熱交換部gの低温気体流路入口側表面に付着し、低温空気流路fが塞がれることにより十分な量の調温済み空気を供給できなくなる不具合の発生を抑制すべく設けられる。また、前記流量調整手段iは、前記低温空気流路fが塞がれることにより該低温空気流路f内において発生する前記熱交換部gの上流側の部位f1と下流側の部位f2との圧力差に応じて開度を変更し、バイパス流路hを通過する低温空気の流量を調整するものである(例えば、特許文献1を参照)。
特開2002−321697号公報
As an example of the configuration of an air conditioning system that has been conventionally used, one that has a configuration that allows heat exchange between a gas flowing in a low-temperature gas flow channel and a gas flowing in a high-temperature gas flow channel is widely known. ing. As such an air conditioning system, for example, it is used for an aircraft, and as shown in FIG. 7, hot air serving as a high-temperature gas flow path for supplying the extracted air from the engine b and circulating the extracted air compressed by the compression means c A flow path d, a low-temperature air flow path f that is a low-temperature gas flow path through which low-temperature air adiabatically expanded in the expansion means e is circulated, extraction air in the high-temperature air flow path d, and low-temperature air in the low-temperature air flow path f. The heat of the low-temperature air flow path f so that the low-temperature air flowing through the low-temperature air flow path f is allowed to flow without passing through the heat exchange section g. A bypass channel h provided by communicating a site f1 upstream from the exchange part g and a site f2 downstream, and a flow rate adjusting means i provided in the bypass channel h and capable of changing the opening degree. Is mentioned. In the bypass flow path h, water in the air frozen in the expansion means e (hereinafter referred to as frozen water) adheres to the surface of the heat exchange part g on the low temperature gas flow path inlet side, and the low temperature air flow path f Is provided in order to suppress the occurrence of a problem that a sufficient amount of temperature-controlled air cannot be supplied by being blocked. Further, the flow rate adjusting means i includes an upstream portion f1 and a downstream portion f2 of the heat exchanging portion g that are generated in the low temperature air passage f when the low temperature air passage f is blocked. The opening degree is changed according to the pressure difference, and the flow rate of the low-temperature air passing through the bypass flow path h is adjusted (see, for example, Patent Document 1).
JP 2002-321697 A

ところで、前記特許文献1の構成を採用すれば、前記バイパス流路hを設けることにより、確かに低温空気流路fが塞がれることにより十分な量の調温済み空気を供給できなくなる不具合の発生は抑制できる。しかし、このような構成であっても、熱交換部gの低温気体流路入口側表面に付着した氷結水分により低温空気流路fが塞がれるという問題は依然として存在する。そして、氷結水分により低温空気流路fが塞がれた際には、熱交換部g内での高温空気との間の熱交換に供される低温空気の量が減少し、熱交換性能が低下する不具合が発生する。   By the way, if the configuration of Patent Document 1 is adopted, the provision of the bypass flow path h surely blocks the low-temperature air flow path f, so that a sufficient amount of temperature-controlled air cannot be supplied. Occurrence can be suppressed. However, even with such a configuration, there is still a problem that the cold air flow path f is blocked by icing moisture adhering to the surface of the heat exchange part g on the low temperature gas flow path inlet side. When the low-temperature air flow path f is blocked by icing moisture, the amount of low-temperature air used for heat exchange with the high-temperature air in the heat exchange part g is reduced, and the heat exchange performance is reduced. Deteriorating defects occur.

本発明は、以上に述べた課題を解決すること、すなわち、氷結水分により低温空気流路が塞がる不具合の発生を、氷結水分を融解させるための特別な部材を用意することなく抑制することを目的としている。   An object of the present invention is to solve the problems described above, that is, to suppress the occurrence of a problem that a low-temperature air flow path is blocked by icing moisture without preparing a special member for melting icing moisture. It is said.

本発明にかかる熱交換器は、以上の課題を解決するために、低温気体流路内を流通する気体と高温気体流路内を流通する気体との間で熱交換を行わせるためのコア部と、前記低温気体流路内を流通する氷結水分を有する気体を前記コア部の入口側表面に対して高温気体流の上流側に案内しつつ前記コア部に導入する低温気体流案内手段とを具備することを特徴とする。   In order to solve the above-described problems, the heat exchanger according to the present invention is a core portion for causing heat exchange between a gas flowing in the low temperature gas flow path and a gas flowing in the high temperature gas flow path. And a low-temperature gas flow guiding means for introducing a gas having frozen moisture flowing in the low-temperature gas flow path into the core portion while guiding the gas having the moisture content to the upstream side of the high-temperature gas flow with respect to the inlet-side surface of the core portion. It is characterized by comprising.

このようなものであれば、低温気体流案内手段の作用により、低温気体流路内を流通する氷結水分がコア部の入口側表面における高温気体流の上流側に案内される。コア部の低温気体流路の入口側表面に氷結水分が付着し始めるのは、より低温になっている高温気体流の下流側からであるので、高温気体流の下流側と比較して温度が高い上流側では氷結水分が融解しやすくなり、コア部の低温気体流路入口側表面に氷結水分が付着することを抑制し、コア部内の低温気体の流量を確保することができる。従って、氷結水分を融解させるための特別な部材を用意することなく、コア部の低温気体流路入口側表面に氷結水分が付着することにより熱交換効率が低下する不具合の発生を抑制できる。   If it is such, the frozen moisture which distribute | circulates the inside of a low temperature gas flow path will be guided to the upstream of the high temperature gas flow in the inlet side surface of a core part by the effect | action of a low temperature gas flow guide means. It is from the downstream side of the hot gas flow that is colder that the icing moisture begins to adhere to the inlet side surface of the cold gas flow path of the core, so the temperature is lower than the downstream side of the hot gas flow. On the high upstream side, icing moisture is easily melted, and it is possible to prevent icing moisture from adhering to the surface of the core portion on the inlet side of the low temperature gas flow path, thereby ensuring the flow rate of the low temperature gas in the core portion. Therefore, it is possible to suppress the occurrence of a problem that the heat exchange efficiency is lowered due to the attachment of the frozen moisture to the surface of the core portion on the low temperature gas flow path inlet side without preparing a special member for melting the frozen moisture.

コア部の設計変更を行うことなく以上の課題を解決するための構成として、前記低温気体流案内手段が、前記コア部内に低温気体流路内を流通する気体を導入させるべく設けられ、前記コア部入口側表面に対して高温気体流の下流側から上流側に向かう傾斜を有するダクト部であるものが挙げられる。このようなものであれば、コア部として従来より広く用いられている直方体状のものをそのまま利用したものであっても、前記ダクト部内を低温空気が通過すれば、低温空気はコア部の表面に達するまでコア部に向かいつつ高温気体流の下流側から上流側に向かう方向に流れ、低温空気に含まれる氷結水分がコア部の入口側表面において空気の流れにより高温空気流の上流側に移動するからである。   As a configuration for solving the above-described problems without changing the design of the core part, the low-temperature gas flow guide means is provided to introduce gas flowing in the low-temperature gas flow path into the core part, and the core What is a duct part which has the inclination which goes to the upstream from the downstream of a hot gas flow with respect to the part entrance side surface is mentioned. If it is such, even if the rectangular parallelepiped shape that has been widely used as the core part is used as it is, if the cold air passes through the duct part, the cold air is the surface of the core part It flows in the direction from the downstream side to the upstream side of the high-temperature gas flow until it reaches the core portion, and the icing moisture contained in the low-temperature air moves to the upstream side of the high-temperature air flow by the air flow on the inlet side surface of the core portion. Because it does.

一方、このような熱交換器付近の機器配置を大きく変更することなく以上の課題を解決するための構成として、前記コア部の形状を、低温気体流案内手段の流れ方向に対し、コア部の低温気体流路入口側表面の高温気体流下流側が低温気体流の上流側へ傾斜した、該コア部内における高温気体流の下流側に向かうにつれ長手方向寸法が大きくなる形状とし、このコア部の低温気体流路に向かう表面を前記低温気体流案内手段としているものが挙げられる。このようなものであれば、低温空気流路の熱交換器より上流側及び熱交換器より下流側を略同一直線状に配したものであっても、低温空気の流れがコア部の低温気体流路に向かう表面に達すれば、低温空気の流れは高温気体流の下流側から上流側に向かう方向に流れ、低温空気に含まれる氷結水分がコア部の入口側表面において空気の流れにより高温空気流の上流側に移動するからである。   On the other hand, as a configuration for solving the above problems without greatly changing the arrangement of the devices in the vicinity of such a heat exchanger, the shape of the core portion is set so that the core portion The downstream side of the high temperature gas flow on the surface of the low temperature gas flow path is inclined to the upstream side of the low temperature gas flow, and the longitudinal dimension is increased toward the downstream side of the high temperature gas flow in the core portion. The thing which makes the surface which goes to a gas flow path the said low temperature gas flow guide means is mentioned. In such a case, even if the upstream side of the heat exchanger of the low-temperature air flow path and the downstream side of the heat exchanger are arranged in substantially the same straight line, the flow of the low-temperature air is the low-temperature gas in the core part. When reaching the surface toward the flow path, the flow of low-temperature air flows in the direction from the downstream side to the upstream side of the high-temperature gas flow, and the icing moisture contained in the low-temperature air is heated by the air flow on the inlet-side surface of the core part. This is because it moves to the upstream side of the flow.

本発明の熱交換器の構成によれば、低温気体流案内手段の作用により、低温気体流路内を流通する氷結水分がコア部の入口側表面における高温気体流の上流側、すなわちより温度が高い部位に案内されつつコア部に導入されるので、氷結水分が融解しやすく、コア部の入口側表面に氷結水分が付着することを抑制し、コア部内の低温気体の流量を確保することができる。従って、氷結水分を融解させるための特別な部材を用意することなく、コア部内の低温気体の流量を確保し、熱交換効率の向上を図ることができる。   According to the configuration of the heat exchanger of the present invention, due to the action of the low-temperature gas flow guide means, the frozen moisture flowing through the low-temperature gas flow path is upstream of the high-temperature gas flow on the inlet side surface of the core part, that is, the temperature is higher. Since it is introduced into the core part while being guided to a high part, it is easy to melt frozen moisture, it is possible to prevent freezing moisture from adhering to the inlet side surface of the core part, and to secure a flow rate of low-temperature gas in the core part. it can. Therefore, the flow rate of the low-temperature gas in the core portion can be ensured and the heat exchange efficiency can be improved without preparing a special member for melting frozen moisture.

以下、本発明の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る空調システムは、図7に概略を示したものとほぼ同様の構成を有する。すなわち、本実施形態に係る空調システム1は、図1に概略を示すように、エンジン2からの抽気の供給を受けて抽気を圧縮する圧縮手段たるコンプレッサ3と、前記コンプレッサ3により圧縮された抽気を内部で断熱膨張させる膨張手段たるタービン4と、前記コンプレッサ3の出口と前記タービン4の入口との間を連通し前記コンプレッサ3で圧縮した高温のエンジン抽気(以下高温空気と称する)を流通させる高温空気流路5と、前記タービン4内で断熱膨張させた後の空気(以下低温空気と称する)を流通させる低温空気流路6と、前記高温空気流路5内を流通する高温空気と前記低温空気流路6内を流通する低温空気との熱交換を行わせるためのコンデンサ7と、前記低温空気流路6内を流通する低温空気を前記コンデンサ7を通過させずに流通させるべく前記低温空気流路6の前記コンデンサ7より上流側の部位6aと下流側の部位6bとを連通して設けたバイパス流路8とを具備する空調装置を用いるものである。ここで、前記低温空気流路6が本発明の低温気体流路、前記高温空気流路5が本発明の高温気体流路、前記コンデンサ7が本発明の熱交換器にそれぞれ対応する。   The air conditioning system according to the present embodiment has a configuration that is substantially the same as that schematically illustrated in FIG. That is, the air conditioning system 1 according to the present embodiment includes a compressor 3 serving as a compression unit that compresses the bleed air when the bleed air is supplied from the engine 2 and the bleed air compressed by the compressor 3 as schematically shown in FIG. And a high-temperature engine bleed air (hereinafter referred to as high-temperature air) compressed by the compressor 3 through the turbine 4 which is an expansion means for adiabatic expansion inside and communicating between the outlet of the compressor 3 and the inlet of the turbine 4. A high-temperature air flow path 5; a low-temperature air flow path 6 through which air after adiabatic expansion in the turbine 4 (hereinafter referred to as low-temperature air) flows; a high-temperature air flowing through the high-temperature air flow path 5; A capacitor 7 for causing heat exchange with the low-temperature air flowing through the low-temperature air flow path 6 and low-temperature air flowing through the low-temperature air flow path 6 are passed through the capacitor 7. In order to circulate without using the air conditioner, an air conditioner including a bypass passage 8 provided by communicating a portion 6a upstream of the condenser 7 and a portion 6b downstream of the condenser 7 of the low-temperature air passage 6 is used. . Here, the low temperature air flow path 6 corresponds to the low temperature gas flow path of the present invention, the high temperature air flow path 5 corresponds to the high temperature gas flow path of the present invention, and the capacitor 7 corresponds to the heat exchanger of the present invention.

前記コンデンサ7は、図2に示すように、平板状のプレートを多数積層しているとともに、互いに隣接するプレート間に、高温空気を通過させるための高温側通路7a1と、低温空気を通過させるための低温側通路7a2とを交互に設けていて、前記高温側通路7a1内の高温空気と前記低温側通路7a2内の低温空気との間で熱交換を行わせるようにしている直方体状をなすコア部7aと、前記コア部7aに高温空気を導入させるための高温側入口ダクト部7bと、前記コア部7aを通過した高温空気を高温空気流路5に導入させるための高温側出口ダクト部7cと、前記コア部7aに低温空気を導入させるための低温側入口ダクト部7dと、前記コア部7aを通過した低温空気を低温空気流路6に導入させるための低温側出口ダクト部7eとを具備する。なお、前記図2では、前記コンデンサ7の一部を破断して示している。   As shown in FIG. 2, the capacitor 7 is formed by laminating a large number of flat plates, and a high-temperature side passage 7a1 for allowing high-temperature air to pass between adjacent plates and low-temperature air passing therethrough. The low-temperature side passages 7a2 are alternately provided so that heat exchange can be performed between the high-temperature air in the high-temperature side passage 7a1 and the low-temperature air in the low-temperature side passage 7a2. Part 7a, a high temperature side inlet duct part 7b for introducing high temperature air into the core part 7a, and a high temperature side outlet duct part 7c for introducing the high temperature air that has passed through the core part 7a into the high temperature air flow path 5. A low temperature side inlet duct portion 7d for introducing low temperature air into the core portion 7a, and a low temperature side outlet duct portion 7 for introducing the low temperature air that has passed through the core portion 7a into the low temperature air flow path 6. Comprising the door. In FIG. 2, a part of the capacitor 7 is cut away.

しかして本実施形態では、前記図2に示すように、また、図3に概略的に示すように、前記低温側入口ダクト部7dが、コア部の低温気体流路入口側表面に対して前記高温空気流路6における下流側から上流側に向かう傾斜、すなわち前記高温側通路7a1の下流側から上流側に向かう傾斜を有し、低温空気を前記高温側通路7a1の上流側に案内しつつコア部7a内に導入させるための低温気体流案内手段として機能する。   Thus, in the present embodiment, as shown in FIG. 2 and as schematically shown in FIG. 3, the low temperature side inlet duct portion 7d is in contact with the low temperature gas flow path inlet side surface of the core portion. The core has an inclination from the downstream side to the upstream side in the high-temperature air flow path 6, that is, an inclination from the downstream side to the upstream side of the high-temperature side passage 7a1, and guides the low-temperature air to the upstream side of the high-temperature side passage 7a1. It functions as a low-temperature gas flow guiding means for introduction into the portion 7a.

そして、前記バイパス流路8は、前記コンデンサ7の筐体の外部に設けられ、前記低温空気流路6の前記コンデンサ7より上流側の部位6aと前記コンデンサ7より下流側の部位6bとを連通する。なお、本実施形態では、このバイパス通路8中に、コンデンサ7の上流側の部位6aと下流側の部位6bとの圧力差が所定以上になった場合のみに開成するチェック弁9を設けている。   The bypass flow path 8 is provided outside the housing of the capacitor 7, and communicates the portion 6 a upstream of the capacitor 7 and the portion 6 b downstream of the capacitor 7 of the low-temperature air flow path 6. To do. In the present embodiment, a check valve 9 is provided in the bypass passage 8 only when the pressure difference between the upstream portion 6a and the downstream portion 6b of the capacitor 7 exceeds a predetermined value. .

以下、この空調装置内の空気の流れを述べる。   Hereinafter, the flow of air in the air conditioner will be described.

この空調装置は、上述したようにエンジン2から抽気の供給を受ける。この抽気は、まず、前記一次熱交換器10内でラムエアと熱交換を行いある程度冷却される。次いで、前記コンプレッサ3内で断熱圧縮され、前記高温空気流路5に導かれる。高温空気流路5に導かれた高温空気は、前記二次熱交換器13内でラムエアと熱交換を行いある程度冷却される。前記二次熱交換器13で冷却された高温空気流路5内の空気は、次いで、再生熱交換器14に導かれ、前記コンデンサ7内で低温空気と熱交換を行い冷却された後の空気と熱交換する。再生熱交換器14を通過した高温空気流路5内の高温空気は、次いで前記コンデンサ7の高温側入口ダクト部7bを経て前記コア部7aに達する。この高温空気は、図3における矢印Xに示すように前記コア部7a内を流れる。すなわち、このコア部7a内で、低温空気流路6内を流通する低温空気と熱交換を行うことにより高温空気が冷却され、高温空気中の水分は凝結する。その後、高温空気は、高温側出口ダクト部7cを経て前記水分離器15に導かれる。前記高温空気中の凝結した水分の大部分は、前記水分離器15により分離除去される。水分を分離除去された高温空気は、前記再生熱交換器14に導かれて熱交換を行った後、タービン4内で断熱膨張する。そして、タービン4内で断熱膨張した後の低温空気は、前記低温空気流路6に導入され、少なくとも一部は前記コンデンサ7に導かれる。コンデンサ7に導かれた低温空気は、図3における矢印Yに示すように流れる。すなわち、前記低温側入口ダクト部7dにより前記高温空気流路5における上流側すなわち前記矢印Xで示されるコア部7a内における高温側通路7a1内の高温空気流の上流側に案内されつつコア部7a内に導入され、高温空気との熱交換に供される。そして、コア部7a内において前記高温空気との熱交換に供された後、低温側出口ダクト部7eを経て与圧室に供給される。   As described above, this air conditioner receives supply of extraction air from the engine 2. This bleed air is first cooled to some extent by exchanging heat with ram air in the primary heat exchanger 10. Subsequently, it is adiabatically compressed in the compressor 3 and guided to the high-temperature air flow path 5. The high-temperature air guided to the high-temperature air flow path 5 is cooled to some extent by exchanging heat with ram air in the secondary heat exchanger 13. The air in the high-temperature air flow path 5 cooled by the secondary heat exchanger 13 is then led to the regenerative heat exchanger 14, and is cooled by exchanging heat with the low-temperature air in the condenser 7. Exchange heat with. The high temperature air in the high temperature air flow path 5 that has passed through the regenerative heat exchanger 14 then reaches the core portion 7 a via the high temperature side inlet duct portion 7 b of the condenser 7. This hot air flows through the core portion 7a as indicated by an arrow X in FIG. That is, in the core portion 7a, the high-temperature air is cooled by exchanging heat with the low-temperature air flowing through the low-temperature air flow path 6, and the moisture in the high-temperature air condenses. Thereafter, the high temperature air is guided to the water separator 15 through the high temperature side outlet duct portion 7c. Most of the condensed water in the high-temperature air is separated and removed by the water separator 15. The high-temperature air from which moisture has been separated and removed is guided to the regenerative heat exchanger 14 for heat exchange, and then adiabatically expands in the turbine 4. Then, the low temperature air after adiabatic expansion in the turbine 4 is introduced into the low temperature air flow path 6, and at least a part thereof is guided to the capacitor 7. The low temperature air led to the condenser 7 flows as shown by an arrow Y in FIG. That is, the core portion 7a is guided by the low temperature side inlet duct portion 7d to the upstream side of the high temperature air flow path 5, that is, to the upstream side of the high temperature air flow in the high temperature side passage 7a1 in the core portion 7a indicated by the arrow X. It is introduced into the inside and used for heat exchange with hot air. Then, after being subjected to heat exchange with the high-temperature air in the core portion 7a, it is supplied to the pressurizing chamber through the low-temperature side outlet duct portion 7e.

ここで、コア部7aの入口側表面に達した低温空気は、上述したように前記高温空気流路5における上流側、すなわちコア部7a内の高温空気流の上流側に案内されつつコア部7a内に導入される。従って、この低温空気に含まれる氷結水分も、コア部7aの入口側表面において空気の流れにより前記高温空気流の上流側に移動する。そして、この氷結水分は、より高温な空気と熱交換を行い融解しやすくなる。   Here, the low-temperature air that has reached the inlet-side surface of the core portion 7a is guided to the upstream side of the high-temperature air flow path 5, that is, the upstream side of the high-temperature air flow in the core portion 7a as described above. Introduced in. Accordingly, the frozen moisture contained in the low-temperature air also moves upstream of the high-temperature air flow by the air flow on the inlet-side surface of the core portion 7a. And this frozen moisture becomes easy to melt by exchanging heat with higher temperature air.

なお、コア部7a内の低温空気の流量が減少し、コンデンサ7の上流側の部位6aと下流側の部位6bとの圧力差が所定以上になった場合には、前記チェック弁9が開成し、低温空気流路6を流通する低温空気の一部はバイパス通路8を経て与圧室に導かれる。   When the flow rate of the low-temperature air in the core portion 7a decreases and the pressure difference between the upstream portion 6a and the downstream portion 6b of the condenser 7 exceeds a predetermined value, the check valve 9 is opened. A part of the low-temperature air flowing through the low-temperature air flow path 6 is guided to the pressurizing chamber through the bypass passage 8.

すなわち本実施形態に係る構成によれば、コア部7aの入口側表面に達した低温空気が上述したように前記高温空気流の上流側に案内されることにより、以下のような効果が得られる。すなわち、この低温空気に含まれる氷結水分を、空気の流れによりコア部7aの入口側表面の前記高温空気流の上流側に移動させ、より高温な空気と熱交換を行い融解しやすくすることにより、氷結水分を除去するための特別な部材を用いることなく、簡単な構成により氷結水分のコア部7aへの付着を抑制し、コア部7aを通過する低温空気の流量を確保することができる。従って、少ない部品点数により、また、この構成に必要な部品の合計質量を抑制しつつ、コンデンサ7のコア部7aの低温気体流路入口側表面に氷結水分が付着することにより熱交換効率が低下する不具合、及び十分な量の調温済み空気を与圧室に供給できなくなる不具合の発生を抑制できる。   That is, according to the structure which concerns on this embodiment, the following effects are acquired by guiding the low temperature air which reached the inlet side surface of the core part 7a to the upstream of the said high temperature air flow as mentioned above. . That is, freezing moisture contained in this low-temperature air is moved to the upstream side of the high-temperature air flow on the inlet side surface of the core portion 7a by the air flow, and heat is exchanged with higher-temperature air to facilitate melting. Without using a special member for removing icing moisture, it is possible to suppress the adhesion of icing moisture to the core portion 7a with a simple configuration and to secure the flow rate of the low-temperature air passing through the core portion 7a. Accordingly, the heat exchange efficiency is lowered by the fact that icing moisture adheres to the surface on the inlet side of the low temperature gas flow path of the core portion 7a of the capacitor 7 while suppressing the total mass of the components necessary for this configuration with a small number of parts. And the occurrence of a problem that a sufficient amount of temperature-controlled air cannot be supplied to the pressurized chamber can be suppressed.

また、前記低温側入口ダクト部7dが、コア部の低温気体流路入口表面に対して前記高温空気流路6における下流側から上流側に向かう傾斜、すなわち前記高温側通路7a1の下流側から上流側に向かう傾斜を有し、低温空気を前記高温側通路7a1の上流側に案内しつつ直方体状をなすコア部7a内に導入させるための低温気体流案内手段として機能するので、低温空気がこの低温側入口ダクト部7dを通過してコア部7aの表面付近に達した際に、この低温空気の流れは前記高温側通路7a1の上流側に導かれる。従って、従来より広く用いられている直方体状のコア部7aをそのまま利用しつつ、低温空気自体の流れにより氷結水分をコア部7aの入口側表面にて高温側通路7a1の上流側に移動させて融解させるようにできる。   Further, the low temperature side inlet duct portion 7d is inclined from the downstream side to the upstream side in the high temperature air flow channel 6 with respect to the low temperature gas flow channel inlet surface of the core portion, that is, upstream from the downstream side of the high temperature side passage 7a1. The low-temperature air functions as a low-temperature gas flow guiding means for introducing the low-temperature air into the core portion 7a having a rectangular parallelepiped shape while guiding the low-temperature air to the upstream side of the high-temperature side passage 7a1. When passing through the low temperature side inlet duct portion 7d and reaching the vicinity of the surface of the core portion 7a, the flow of the low temperature air is guided to the upstream side of the high temperature side passage 7a1. Accordingly, while using the rectangular parallelepiped core portion 7a that has been widely used, the frozen moisture is moved to the upstream side of the high temperature side passage 7a1 on the inlet side surface of the core portion 7a by the flow of the low temperature air itself. Can be melted.

なお、本発明は以上に述べた実施形態に限らない。   The present invention is not limited to the embodiment described above.

例えば、図4に概略的に示すように、図示しない低温空気流路内を流通する空気と図示しない高温空気流路内を流通する空気との間で熱交換を行わせるためのコア部A7aと、前記コア部A7aに高温空気を導入させるための高温側入口ダクト部A7bと、前記コア部A7aを通過した高温空気を前記高温空気流路に導入させるための高温側出口ダクト部A7cと、前記コア部A7aに低温空気を導入させるための低温側入口ダクト部A7dと、前記コア部A7aを通過した低温空気を前記低温空気流路に導入させるための低温側出口ダクト部A7eとを具備する熱交換器たるコンデンサA7を、以下のように構成してもよい。すなわち、前記コア部A7aの形状を、低温側入口ダクト部A7dの流れ方向に対し、コア部A7aの低温気体流路入口側側表面の高温空気流下流側が低温空気流の上流側へ傾斜した、該コア部A7a内における高温空気流の下流側に向かうにつれ長手方向寸法すなわち低温側通路の長さ寸法が大きくなるものとし、このコア部A7aの低温気体流路に向かう表面すなわち低温側入口ダクト部A7dに向かう表面である低温空気流路入口側表面A7a3を前記低温気体流案内手段として機能させる態様を採用してもよい。   For example, as schematically shown in FIG. 4, a core part A7a for causing heat exchange between air flowing through a low-temperature air flow path (not shown) and air flowing through a high-temperature air flow path (not shown) A high temperature side inlet duct portion A7b for introducing high temperature air into the core portion A7a; a high temperature side outlet duct portion A7c for introducing high temperature air that has passed through the core portion A7a into the high temperature air flow path; Heat comprising a low temperature side inlet duct portion A7d for introducing low temperature air into the core portion A7a and a low temperature side outlet duct portion A7e for introducing low temperature air that has passed through the core portion A7a into the low temperature air flow path. The capacitor A7 as an exchanger may be configured as follows. That is, the shape of the core part A7a, with respect to the flow direction of the low temperature side inlet duct part A7d, the high temperature air flow downstream side of the low temperature gas flow path inlet side surface of the core part A7a is inclined to the upstream side of the low temperature air flow. The length in the longitudinal direction, i.e., the length of the low temperature side passage, increases toward the downstream side of the high temperature air flow in the core A7a. The surface of the core A7a toward the low temperature gas flow path, i.e., the low temperature side inlet duct. You may employ | adopt the aspect which functions the low temperature air flow path inlet side surface A7a3 which is a surface which goes to A7d as said low temperature gas flow guide means.

このような態様であっても、前記図4の矢印Yに示すように、低温空気がコア部A7aの低温空気流路入口側表面A7a3に沿って同図の矢印Xで示されるコア部A7a内の高温空気流の上流側に案内されつつコア部A7a内に導入されるので、低温空気に含まれる氷結水分が空気の流れによりコア部A7aの入口側表面の前記高温空気流の上流側に移動し、より高温な空気と熱交換を行い融解しやすくするので、上述した実施形態のコンデンサ7の構成に係る主な効果、すなわち、特別な部材を別途設けることなく熱交換性能の改善を図ることができる効果を同様に得ることができる。また、この態様では、低温空気流路のコア部A7aより上流側と下流側とを略同一直線状に位置付けつつ、低温空気の流れがコア部A7aの低温空気流路入口側表面A7a3近傍に達した際に低温空気の流れをコア部A7a内の高温空気流の上流側に案内するように低温空気流路側表面A7a3の形状を構成しているので、このような熱交換器たるコンデンサA7、及び低温空気流路の配置を従来のものと大きく変更する必要がない。   Even in such an embodiment, as shown by the arrow Y in FIG. 4, the low-temperature air flows along the low-temperature air flow path inlet side surface A7a3 of the core part A7a, and the inside of the core part A7a indicated by the arrow X in FIG. Since it is introduced into the core portion A7a while being guided to the upstream side of the high-temperature air flow, freezing moisture contained in the low-temperature air moves to the upstream side of the high-temperature air flow on the inlet side surface of the core portion A7a by the air flow. In addition, since heat exchange with higher-temperature air facilitates melting, the main effect related to the configuration of the capacitor 7 of the above-described embodiment, that is, improvement in heat exchange performance without providing a special member separately. The effect which can be obtained can be obtained similarly. Further, in this aspect, while the upstream side and the downstream side of the core portion A7a of the low-temperature air flow path are positioned substantially in the same straight line, the flow of the low-temperature air reaches the vicinity of the surface A7a3 of the low-temperature air flow path inlet side of the core portion A7a. Since the shape of the low temperature air flow path side surface A7a3 is configured to guide the flow of the low temperature air to the upstream side of the high temperature air flow in the core portion A7a, the condenser A7 as such a heat exchanger, and There is no need to change the arrangement of the low-temperature air flow path from the conventional one.

さらに、図5に示すように、低温空気流路B6内を流通する空気と図示しない高温空気流路内を流通する空気との間で熱交換を行わせるためコア部B7aと、前記コア部B7aに高温空気を導入させるための高温側入口ダクト部B7bと、前記コア部B7aを通過した高温空気を前記高温空気流路に導入させるための高温側出口ダクト部B7cと、前記コア部B7aに低温空気を導入させるための低温側入口ダクト部B7dと、前記コア部B7aを通過した低温空気を低温空気流路B6に導入させるための低温側出口ダクト部B7eとを具備する熱交換器たるコンデンサB7を、以下のように構成してもよい。すなわち、コンデンサB7の低温側入口ダクト部B7dがコンデンサB7の表面の法線方向に延伸するものであっても、低温空気流路B6の低温側入口ダクトB7dの上流側に隣接する部位B6xが前記高温空気流路5における下流側から上流側に向かう傾斜、すなわち矢印Xで示されるコア部B7a内の高温空気流の下流側から上流側に向かう傾斜を有し、前記図5の矢印Yに示すように、前記部位B6x及び低温側入口ダクトB7dが協働して低温空気を前記高温空気流の上流側に案内させつつコア部B7a内に導入させるための低温気体流案内手段として機能するものであれば、低温空気が前記高温空気流の上流側に案内されるので、低温空気に含まれる氷結水分も空気の流れによりコア部B7aの入口側表面の前記高温空気流の上流側に移動し、より高温な空気と熱交換を行い融解しやすくする。従って、上述した実施形態のコンデンサ7の構成に係る主な効果、すなわち、熱交換性能の改善も図ることができる効果を同様に得ることができる。また、この態様では、コンデンサB7のコア部B7a及び低温側入口ダクトB7dには、従来広く用いられているものをそのまま利用できる。すなわち、直方体状をなすコア部と、コア部の表面の法線方向に沿って低温空気を流通させる構成の低温側入口ダクトとをそのまま利用できる。   Further, as shown in FIG. 5, in order to exchange heat between the air flowing in the low temperature air flow path B6 and the air flowing in the high temperature air flow path (not shown), the core portion B7a and the core portion B7a A high-temperature side inlet duct B7b for introducing high-temperature air into the high-temperature air, a high-temperature side outlet duct B7c for introducing high-temperature air that has passed through the core B7a into the high-temperature air flow path, and a low temperature in the core B7a. A condenser B7 as a heat exchanger having a low temperature side inlet duct B7d for introducing air and a low temperature side outlet duct B7e for introducing the low temperature air that has passed through the core B7a into the low temperature air flow path B6. May be configured as follows. That is, even if the low temperature side inlet duct portion B7d of the capacitor B7 extends in the normal direction of the surface of the capacitor B7, the portion B6x adjacent to the upstream side of the low temperature side inlet duct B7d of the low temperature air flow path B6 is The high-temperature air flow path 5 has an inclination from the downstream side to the upstream side, that is, an inclination from the downstream side to the upstream side of the high-temperature air flow in the core portion B7a indicated by the arrow X, and is indicated by the arrow Y in FIG. As described above, the part B6x and the low temperature side inlet duct B7d cooperate to function as a low temperature gas flow guide means for introducing the low temperature air into the core B7a while guiding the low temperature air to the upstream side of the high temperature air flow. If there is, the low temperature air is guided to the upstream side of the high temperature air flow, so that the icing moisture contained in the low temperature air is also upstream of the high temperature air flow on the inlet side surface of the core B7a by the air flow. Go to, to facilitate melt make hotter air and heat exchange. Therefore, the main effect related to the configuration of the capacitor 7 of the above-described embodiment, that is, the effect of improving the heat exchange performance can be obtained similarly. Moreover, in this aspect, what was conventionally used widely can be utilized as it is for the core B7a and the low temperature side inlet duct B7d of the capacitor B7. That is, it is possible to directly use a rectangular parallelepiped core portion and a low-temperature side inlet duct configured to circulate low-temperature air along the normal direction of the surface of the core portion.

加えて、図6に示すように、図示しない低温空気流路内を流通する空気と図示しない高温空気流路内を流通する空気との間で熱交換を行わせるためのコア部C7aと、前記コア部C7aに高温空気を導入させるための高温側入口ダクト部C7bと、前記コア部C7aを通過した高温空気を前記高温空気流路に導入させるための高温側出口ダクト部C7cと、前記コア部C7aに低温空気を導入させるための低温側入口ダクト部C7dと、前記コア部C7aを通過した低温空気を前記低温空気流路に導入させるための低温側出口ダクト部C7eとを具備する熱交換器たるコンデンサC7を、以下のように構成してもよい。すなわち、コンデンサC7の低温側入口ダクト部C7d内に、低温空気を前記高温空気流路5における下流側から上流側に案内しつつコア部C7a内に導入させるための低温気体流案内手段たるフィンC7fを設けたものであっても、前記図6の矢印Yに示すように、低温空気が前記高温空気流路5における上流側、すなわち同図の矢印Xで示される前記コア部C7a内の高温空気流の上流側に案内されるので、低温空気に含まれる氷結水分も空気の流れにより前記コア部C7aの入口側表面の高温空気流の上流側に移動し、より高温な空気と熱交換を行い融解しやすくする。従って、上述した実施形態のコンデンサ7の構成に係る主な効果、すなわち、熱交換性能の改善も図ることができる効果を同様に得ることができる。また、この態様でも、低温空気流路のコンデンサC7より上流側の部位とコンデンサC7より下流側の部位とを同一直線状に配することができ、従って、このような熱交換器たるコンデンサC7、及び低温空気流路の配置を従来のものと大きく変更する必要がない。   In addition, as shown in FIG. 6, the core C7a for causing heat exchange between air flowing in a low-temperature air flow path (not shown) and air flowing in a high-temperature air flow path (not shown), A high temperature side inlet duct C7b for introducing high temperature air into the core C7a, a high temperature side outlet duct C7c for introducing high temperature air that has passed through the core C7a into the high temperature air flow path, and the core A heat exchanger comprising a low temperature side inlet duct C7d for introducing low temperature air into C7a and a low temperature side outlet duct C7e for introducing the low temperature air that has passed through the core C7a into the low temperature air flow path. The capacitor C7 may be configured as follows. That is, the fin C7f serving as a low temperature gas flow guide means for introducing the low temperature air into the core C7a while guiding the low temperature air from the downstream side to the upstream side in the high temperature air flow path 5 in the low temperature side inlet duct C7d of the capacitor C7. 6, as indicated by the arrow Y in FIG. 6, the low-temperature air is upstream of the high-temperature air flow path 5, that is, the high-temperature air in the core portion C <b> 7 a indicated by the arrow X in FIG. 6. Since it is guided to the upstream side of the flow, the icing moisture contained in the low temperature air also moves to the upstream side of the high temperature air flow on the inlet side surface of the core C7a by the air flow, and exchanges heat with the higher temperature air. Make it easy to melt. Therefore, the main effect related to the configuration of the capacitor 7 of the above-described embodiment, that is, the effect of improving the heat exchange performance can be obtained similarly. Also in this embodiment, the portion of the low-temperature air flow path upstream of the capacitor C7 and the portion of the downstream of the capacitor C7 can be arranged in the same straight line. Therefore, the capacitor C7, which is such a heat exchanger, In addition, the arrangement of the low-temperature air flow path does not need to be changed significantly from the conventional one.

そして、航空機用空調装置に限らず、また、空気を流通させるものに限らず、高温気体流体内を流通する気体と氷結成分を有する低温気体流路内を流通する気体との間で熱交換を行わせる熱交換器であれば本発明を適用してよい。すなわち、航空機用以外に用いられる空調装置であっても、また、空気以外の気体の温度調整に用いるものであっても、上述した実施形態の熱交換器たるコンデンサと同様に、低温気体流路内を流通する気体と高温気体流路内を流通する気体との間で熱交換を行わせるためのコア部と、前記コア部に低温気体流路内を流通する気体を導入させるべく設けたダクト部とを具備するものであって、前記ダクト部又はコア部に、前記低温気体流路中の気体の流れを高温気体流路における上流側に案内する低温気体案内手段を具備してなる構成を有するものであれば、本発明の主な効果を得ることはできる。   And not only for air conditioners for aircraft, but also for those that circulate air, heat exchange is performed between the gas that circulates in the high-temperature gas fluid and the gas that circulates in the low-temperature gas flow path having the icing component. The present invention may be applied to any heat exchanger to be performed. That is, even if it is an air-conditioner used for purposes other than aircraft, or used for temperature adjustment of gases other than air, the low-temperature gas flow path is similar to the condenser as the heat exchanger of the above-described embodiment. A core part for causing heat exchange between the gas flowing in the gas and the gas flowing in the high-temperature gas flow path, and a duct provided to introduce the gas flowing in the low-temperature gas flow path into the core part A low temperature gas guide means for guiding the gas flow in the low temperature gas flow path to the upstream side of the high temperature gas flow path in the duct portion or the core portion. If it has, the main effect of this invention can be acquired.

加えて、コンデンサのコア部を同一筐体内に複数設けるとともに、上述した実施形態におけるコア部間にバイパス通路及びチェック弁を設ける態様を採用してもよい。また、前記チェック弁に替えて、コンデンサの上流側と下流側との間の圧力差に対応して開度を変更する流量調整弁を設けてもよい。一方、高温気体の温度が十分高く、コア部の表面で氷結水分が略全て融解する場合ないし完全に融解する場合には、バイパス通路を省略してもよい。   In addition, a configuration in which a plurality of core portions of the capacitor are provided in the same housing and a bypass passage and a check valve are provided between the core portions in the above-described embodiments may be employed. Further, instead of the check valve, a flow rate adjusting valve that changes the opening degree corresponding to the pressure difference between the upstream side and the downstream side of the capacitor may be provided. On the other hand, when the temperature of the high-temperature gas is sufficiently high and almost all of the frozen moisture is melted or completely melted on the surface of the core portion, the bypass passage may be omitted.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の一実施形態に係る熱交換器を用いた航空機用空調システムの構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure explanatory drawing of the air conditioning system for aircraft using the heat exchanger which concerns on one Embodiment of this invention. 同実施形態に係る熱交換器の概略斜視図。The schematic perspective view of the heat exchanger which concerns on the same embodiment. 同実施形態に係る熱交換器の中央横断面を模式的に示す図。The figure which shows typically the center cross section of the heat exchanger which concerns on the same embodiment. 本発明の第1変形例に係る熱交換器の中央正断面を模式的に示す図。The figure which shows typically the center positive cross section of the heat exchanger which concerns on the 1st modification of this invention. 本発明の第2変形例に係る熱交換器の中央正断面を模式的に示す図。The figure which shows typically the center positive cross section of the heat exchanger which concerns on the 2nd modification of this invention. 本発明の第3変形例に係る熱交換器の中央正断面を模式的に示す図。The figure which shows typically the center positive cross section of the heat exchanger which concerns on the 3rd modification of this invention. 従来の熱交換器を用いた航空機用空調システムの構成説明図。Structure explanatory drawing of the air conditioning system for aircrafts using the conventional heat exchanger.

符号の説明Explanation of symbols

5…高温空気流路(高温気体流路)
6、B6…低温空気流路(低温気体流路)
7、A7、B7、C7…コンデンサ(熱交換器)
7a、A7a、B7a、C7a…コア部
7d…低温側入口ダクト部(低温気体案内手段)
A7a3…低温空気流路入口側表面(低温気体案内手段)
B6x…低温空気流路の低温側入口ダクト部隣接部位(低温気体案内手段)
C7f…フィン(低温気体案内手段)
5. High temperature air flow path (high temperature gas flow path)
6, B6 ... Low temperature air flow path (low temperature gas flow path)
7, A7, B7, C7 ... condenser (heat exchanger)
7a, A7a, B7a, C7a ... Core part 7d ... Low temperature side inlet duct part (low temperature gas guiding means)
A7a3 ... low temperature air flow path inlet side surface (low temperature gas guiding means)
B6x: Low temperature side inlet duct part adjacent to the low temperature air flow path (low temperature gas guiding means)
C7f ... Fin (low temperature gas guide means)

Claims (3)

低温気体流路内を流通する気体と高温気体流路内を流通する気体との間で熱交換を行わせるためのコア部と、前記低温気体流路内を流通する氷結水分を有する気体を前記コア部入口側表面の高温気体流の上流側に案内しつつ前記コア部に導入する低温気体流案内手段とを具備することを特徴とする熱交換器。 A core for causing heat exchange between a gas flowing in the low-temperature gas flow path and a gas flowing in the high-temperature gas flow path; and a gas having frozen moisture flowing in the low-temperature gas flow path. A heat exchanger comprising: a low-temperature gas flow guide means for introducing the core portion into the core portion while guiding the upstream portion of the high-temperature gas flow on the inlet side surface of the core portion. 前記低温気体流案内手段が、前記コア部内に低温気体流路内を流通する気体を導入させるべく設けられ、前記コア部の低温気体流路入口側表面に対して高温気体流の下流側から上流側に向かう傾斜を有するダクト部である請求項1記載の熱交換器。 The low-temperature gas flow guide means is provided to introduce a gas flowing through the low-temperature gas flow path into the core portion, and upstream from the downstream side of the high-temperature gas flow with respect to the low-temperature gas flow path inlet side surface of the core portion. The heat exchanger according to claim 1, wherein the heat exchanger is a duct portion having an inclination toward the side. 前記コア部の形状を、低温気体流案内手段の流れ方向に対し、該コア部の低温気体流路入口側表面の高温気体流下流側が低温気体流の上流側へ傾斜した、該コア部内における高温気体流の下流側に向かうにつれ長手方向寸法が大きくなる形状とし、このコア部の低温気体流路に向かう入口側表面を前記低温気体流案内手段としている請求項1記載の熱交換器。 The shape of the core portion is a high temperature in the core portion in which the downstream side of the high temperature gas flow at the inlet side surface of the low temperature gas flow path of the core portion is inclined toward the upstream side of the low temperature gas flow with respect to the flow direction of the low temperature gas flow guide means. 2. The heat exchanger according to claim 1, wherein the longitudinal dimension of the core increases toward the downstream side of the gas flow, and the inlet side surface of the core portion toward the low temperature gas flow path is used as the low temperature gas flow guiding means.
JP2008279102A 2008-10-30 2008-10-30 Heat exchanger Expired - Fee Related JP5343511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008279102A JP5343511B2 (en) 2008-10-30 2008-10-30 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008279102A JP5343511B2 (en) 2008-10-30 2008-10-30 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2010105516A JP2010105516A (en) 2010-05-13
JP5343511B2 true JP5343511B2 (en) 2013-11-13

Family

ID=42295384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008279102A Expired - Fee Related JP5343511B2 (en) 2008-10-30 2008-10-30 Heat exchanger

Country Status (1)

Country Link
JP (1) JP5343511B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3587243A (en) * 1969-05-29 1971-06-28 Grumman Aerospace Corp Precondensing regenerative air cycle system
US4246963A (en) * 1978-10-26 1981-01-27 The Garrett Corporation Heat exchanger
US4352273A (en) * 1979-05-22 1982-10-05 The Garrett Corporation Fluid conditioning apparatus and system
US4580406A (en) * 1984-12-06 1986-04-08 The Garrett Corporation Environmental control system
SE455883B (en) * 1987-02-27 1988-08-15 Svenska Rotor Maskiner Ab KIT OF TRANSFER TRANSFER PLATES, WHICH THE DOUBLE LOADERS OF THE PLATES HAVE A SPECIFIC INBOUND ORIENTATION
US5025642A (en) * 1990-02-20 1991-06-25 Allied-Signal Inc. Fluid conditioning apparatus and system
JP2555056Y2 (en) * 1991-07-30 1997-11-19 石川島播磨重工業株式会社 Plate fin type flash evaporator for heat control system exhaust heat of spacecraft
IL114613A (en) * 1995-07-16 1999-09-22 Tat Ind Ltd Parallel flow condenser heat exchanger
JP3577863B2 (en) * 1996-09-10 2004-10-20 三菱電機株式会社 Counter-flow heat exchanger
US6460353B2 (en) * 2001-03-02 2002-10-08 Honeywell International Inc. Method and apparatus for improved aircraft environmental control system utilizing parallel heat exchanger arrays
JP4453795B2 (en) * 2001-04-27 2010-04-21 株式会社島津製作所 Air conditioning system for aircraft
JP3879482B2 (en) * 2001-10-26 2007-02-14 三菱電機株式会社 Stacked heat exchanger

Also Published As

Publication number Publication date
JP2010105516A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
KR101935274B1 (en) Heat recovery system
EP0019492B1 (en) Gas conditioning system, especially air conditioning system
US9658005B2 (en) Heat exchanger system
JP5828968B2 (en) Bleed and hot partial component cooling air system and method
EP2738510A2 (en) Cross-flow heat exchanger having graduated fin density
DE112013001863B4 (en) Heat exchanger and heat pump system using the same
JP2006064155A5 (en)
US20130061617A1 (en) Air cycle condenser cold inlet heating using internally finned hot bars
JP2012211712A (en) Liquid cooling system
JP4824498B2 (en) Cooling air supply equipment for parking
SE0850102A1 (en) Method and system for overcooling the coolant in a vehicle&#39;s cooling system.
JP5343511B2 (en) Heat exchanger
JP2009030852A (en) Air conditioner
US20220185485A1 (en) Air conditioning system equipped with a system for the thermal management of oil and of pressurized air
KR101391320B1 (en) Engine room cooling system using cabin air-conditioning system
US8590603B2 (en) Heat exchanger insulation gap
EP3045852B1 (en) Bowed fin for heat exchanger
JP2009274593A (en) Air conditioning system
JP2012255613A (en) Air conditioner
JP2012092994A (en) Air conditioning system
US20050230095A1 (en) Heated sub-freezing airflow diverter
JP2009275988A (en) Heat exchanger
JP4391261B2 (en) Air conditioner
WO2021192828A1 (en) Heat pump
EP3904810A1 (en) Crossflow/counterflow subfreezing plate fin heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

LAPS Cancellation because of no payment of annual fees