JP2009274593A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2009274593A
JP2009274593A JP2008127810A JP2008127810A JP2009274593A JP 2009274593 A JP2009274593 A JP 2009274593A JP 2008127810 A JP2008127810 A JP 2008127810A JP 2008127810 A JP2008127810 A JP 2008127810A JP 2009274593 A JP2009274593 A JP 2009274593A
Authority
JP
Japan
Prior art keywords
low
flow path
temperature gas
check valve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008127810A
Other languages
Japanese (ja)
Inventor
Michiko Nishimura
路子 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008127810A priority Critical patent/JP2009274593A/en
Publication of JP2009274593A publication Critical patent/JP2009274593A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To secure a flow rate of low-temperature gas while restraining a total mass of parts required for an air conditioning system at a small number of parts and a small processing manhour in an air conditioning system having a heat exchanging part for exchanging heats of high-temperature gas flowing in a high-temperature gas flow path and low-temperature gas flowing in a low-temperature gas flow path, and a bypass flow path provided by communicating an upstream side and a downstream side of the heat exchanging part of the low-temperature gas flow path for flowing the gas flowing in the low-temperature gas flow path not through the heat exchanging part. <P>SOLUTION: In this air conditioning system 1, a check valve 9 is provided in a bypass flow path, and is normally energized under a closing condition. When a difference of a pressure directly received by the check valve from the upstream side and the downstream side of the heat exchanging part of the low-temperature gas flow path is not less than a predetermined value, the check valve is changed to an opening condition against an energizing force by the pressure directly applied to the check valve from the upstream side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高温気体流路内を流通する高温気体と低温気体流路内を流通する低温気体との熱交換を行う熱交換器を有する空調システムに関する。   The present invention relates to an air conditioning system having a heat exchanger that performs heat exchange between a high-temperature gas flowing in a high-temperature gas flow path and a low-temperature gas flowing in a low-temperature gas flow path.

従来より用いられている空調システムの構成の一例として、低温気体流路内を流通する気体と高温気体流路内を流通する気体との間で熱交換を行わせる構成を有するものが広く知られている。このような空調システムとして、例えば、航空機用に用いられ、図5に示すように、エンジンbからの抽気の供給を受けて圧縮手段cにより圧縮された抽気を流通させる高温気体流路たる高温空気流路dと、膨張手段e内で断熱膨張した低温空気を流通させる低温気体流路たる低温空気流路fと、前記高温空気流路d内の抽気と前記低温空気流路f内の低温空気との熱交換を行わせるための熱交換部gと、前記低温空気流路f内を流通する低温空気を前記熱交換部gを通過させずに流通させるべく前記低温空気流路fの前記熱交換部gより上流側の部位f1と下流側の部位f2とを連通させて設けたバイパス流路hと、バイパス流路hに設けられ開度を変更可能な流量調整手段iとを具備するものが挙げられる。前記バイパス流路hは、空気中の水分が前記膨張手段e内で氷結したものが熱交換部g内に付着し、低温空気流路fが塞がれることにより十分な量の調温済み空気を供給できなくなる不具合の発生を抑制すべく設けられる。また、前記流量調整手段iは、前記低温空気流路fが塞がれることにより該低温空気流路f内において発生する前記熱交換部gの上流側の部位f1と下流側の部位f2との圧力差に応じて開度を変更し、バイパス流路hを通過する低温空気の流量を調整するものである(例えば、特許文献1を参照)。   As an example of the configuration of an air conditioning system that has been conventionally used, one that has a configuration that allows heat exchange between a gas flowing in a low-temperature gas flow channel and a gas flowing in a high-temperature gas flow channel is widely known. ing. As such an air conditioning system, for example, it is used for aircraft, and as shown in FIG. 5, hot air serving as a high-temperature gas flow path for supplying the extraction air from the engine b and circulating the extraction air compressed by the compression means c A flow path d, a low-temperature air flow path f that is a low-temperature gas flow path through which low-temperature air adiabatically expanded in the expansion means e is circulated, extraction air in the high-temperature air flow path d, and low-temperature air in the low-temperature air flow path f. The heat of the low-temperature air flow path f so that the low-temperature air flowing through the low-temperature air flow path f is allowed to flow without passing through the heat exchange section g. A bypass channel h provided by communicating a site f1 upstream from the exchange part g and a site f2 downstream, and a flow rate adjusting means i provided in the bypass channel h and capable of changing the opening degree. Is mentioned. The bypass flow path h has a sufficient amount of temperature-controlled air when the moisture in the air freezes in the expansion means e and adheres to the heat exchange part g, and the low-temperature air flow path f is blocked. It is provided in order to suppress the occurrence of problems that make it impossible to supply the product. Further, the flow rate adjusting means i includes an upstream portion f1 and a downstream portion f2 of the heat exchanging portion g that are generated in the low temperature air passage f when the low temperature air passage f is blocked. The opening degree is changed according to the pressure difference, and the flow rate of the low-temperature air passing through the bypass flow path h is adjusted (see, for example, Patent Document 1).

また、前記バイパス流路hを設ける代わりに、低温空気流路f中の前記熱交換部gより上流側に図示しない旋回流発生手段や二重管を設け、低温空気中の氷結水分を遠心分離するとともに、電子機器冷却用冷媒を前記二重管の内管と外管との隙間に導き、前記冷媒の冷却をこの氷結水分により行うと同時に氷結水分を融解させて前記熱交換部g内への氷結水分の付着を抑制する構成も考えられている(例えば、特許文献2を参照)。
特開2002−321697号公報 特開2004−90777号公報
Further, instead of providing the bypass flow path h, a swirl flow generating means or a double pipe (not shown) is provided upstream of the heat exchange part g in the low temperature air flow path f to centrifuge the frozen water in the low temperature air. At the same time, the refrigerant for cooling the electronic device is guided to the gap between the inner tube and the outer tube of the double pipe, and the refrigerant is cooled by this frozen moisture, and at the same time, the frozen moisture is melted into the heat exchange part g. The structure which suppresses adhesion of the icing water | moisture content of this is also considered (for example, refer patent document 2).
JP 2002-321697 A JP 2004-90777 A

ところで、前記特許文献1の構成は、流量調整手段の開度を前記熱交換部の上流側と下流側との圧力差に応じて変更させるために、前記熱交換部の上流側と下流側との圧力差を検知し、前記流量調整手段の開度に反映させるための特別な機構を流量調整手段の外部に設ける必要があった。一方、前記特許文献2の構成では、旋回流発生手段、二重管や、電子機器冷却用冷媒を二重管の内管と外管との隙間に導くための管路等を特別に用意する必要があった。   By the way, in the configuration of Patent Document 1, in order to change the opening degree of the flow rate adjusting means according to the pressure difference between the upstream side and the downstream side of the heat exchange unit, the upstream side and the downstream side of the heat exchange unit Therefore, it is necessary to provide a special mechanism for detecting the pressure difference and reflecting the difference in the opening degree of the flow rate adjusting means outside the flow rate adjusting means. On the other hand, in the configuration of Patent Document 2, a swirling flow generating means, a double pipe, a pipe line for guiding the electronic device cooling refrigerant to the gap between the inner pipe and the outer pipe of the double pipe, and the like are specially prepared. There was a need.

すなわち、これらの構成では、構成が複雑なものとなり、部品点数や加工工数が多くなる。さらに、これらの構成では、空調システム全体としての質量が大きくなる。   That is, in these configurations, the configuration becomes complicated, and the number of parts and the number of processing steps increase. Furthermore, in these structures, the mass as the whole air conditioning system becomes large.

本発明は、以上に述べた課題を解決すること、すなわち、氷結水分により給気パイプが塞がる不具合を簡単な構成により空調システム全体としての質量を大きく増大させることなく解消することを目的としている。   An object of the present invention is to solve the above-described problems, that is, to solve the problem that an air supply pipe is blocked by icing moisture without greatly increasing the mass of the entire air conditioning system with a simple configuration.

本発明にかかる空調システムは、以上の課題を解決するために、高温気体を流通させる高温気体流路と、低温気体を流通させる低温気体流路と、前記高温気体流路内を流通する高温気体と低温気体流路内を流通する低温気体との熱交換を行わせるための熱交換部と、前記低温気体流路内を流通する気体を前記熱交換部を通過させずに流通させるべく前記低温気体流路の前記熱交換部より上流側と下流側とを連通して設けたバイパス流路と、このバイパス流路中に設けたチェック弁とを具備するものであって、前記チェック弁が、通常は閉止状態に付勢されているとともに、前記低温気体流路の前記熱交換部より上流側及び下流側からこのチェック弁が直接受ける圧力の差が所定以上である場合に、このチェック弁に直接作用する圧力により付勢力に抗して開成状態へ変化することを特徴とする。   In order to solve the above-described problems, an air conditioning system according to the present invention includes a high-temperature gas channel that circulates a high-temperature gas, a low-temperature gas channel that circulates a low-temperature gas, and a high-temperature gas that circulates in the high-temperature gas channel. A heat exchanging part for performing heat exchange with the low-temperature gas flowing in the low-temperature gas flow path, and the low-temperature to flow the gas flowing in the low-temperature gas flow path without passing through the heat exchange part A bypass passage provided upstream and downstream of the heat exchange portion of the gas passage, and a check valve provided in the bypass passage, the check valve comprising: Normally, the check valve is energized in a closed state, and the check valve receives a difference in pressure directly received from the upstream side and the downstream side of the heat exchange section of the low-temperature gas flow path. It is attached by direct acting pressure. Wherein the change against the force to the open state.

このようなものであれば、熱交換部の上流側と下流側との圧力差を検知するための特別な機構をチェック弁の外部に設けることなく、また、氷結水分を除去するための旋回流発生手段や二重管を用いることなく、チェック弁に直接作用する圧力によりチェック弁を機械的に開成させる簡単な構成により、低温気体のバイパスを行うことができる。   If this is the case, a special mechanism for detecting the pressure difference between the upstream side and the downstream side of the heat exchanging unit is not provided outside the check valve, and a swirling flow for removing frozen moisture is removed. By using a simple configuration in which the check valve is mechanically opened by pressure directly acting on the check valve without using a generating means or a double pipe, the low temperature gas can be bypassed.

なお、前記熱交換部を収納する筐体の外部に前記バイパス流路を設けてもよく、また、複数の熱交換部と、熱交換部間に形成してなり隔壁を介して高温気体流路と区画されたバイパス流路と、このバイパス流路中に設けてなるチェック弁とを同一の筐体内に設けてもよい。   The bypass flow path may be provided outside the housing that houses the heat exchange section, and the high-temperature gas flow path is formed between the plurality of heat exchange sections and the heat exchange section and has a partition wall. The bypass flow path partitioned and the check valve provided in the bypass flow path may be provided in the same housing.

本発明の空調装置の構成によれば、熱交換部を挟んで上流側と下流側との圧力差を検知するための特別な機構をチェック弁の外部に設けることなく、また低温気体流路の前記熱交換部より上流側及び下流側からこのチェック弁が直接受ける圧力の差が所定以上である場合にこのチェック弁に直接作用する圧力により付勢力に抗して該チェック弁が開成状態へ変化するので、簡単な構成により低温気体のバイパスを行い低温気体の流量を確保することができる。従って、少ない部品点数及び加工工数により、また、この構成に必要な部品の合計質量を抑制しつつ、熱交換部に氷結水分が付着することにより十分な量の調温済み気体を供給できなくなる不具合の発生を抑制できる。   According to the configuration of the air conditioner of the present invention, a special mechanism for detecting the pressure difference between the upstream side and the downstream side across the heat exchange part is not provided outside the check valve, and the low temperature gas flow path is provided. When the difference in pressure directly received by the check valve from the upstream side and the downstream side from the heat exchanging part is greater than or equal to a predetermined value, the check valve changes to an open state against the urging force by the pressure acting directly on the check valve. Therefore, the low-temperature gas can be bypassed with a simple configuration to ensure the flow rate of the low-temperature gas. Therefore, it is not possible to supply a sufficient amount of temperature-controlled gas due to adhesion of icing moisture to the heat exchanging part while reducing the total number of parts required for this configuration and the number of parts and processing steps. Can be suppressed.

以下、本発明の一実施例について図面を参照して説明する。   An embodiment of the present invention will be described below with reference to the drawings.

この実施例の空調システム1は、図1に概略を示すように、エンジン2からの抽気の供給を受けて抽気を圧縮する圧縮手段たるコンプレッサ3と、前記コンプレッサ3により圧縮された抽気を内部で断熱膨張させる膨張手段たるタービン4と、前記コンプレッサ3の出口と前記タービン4の入口との間を連通し前記コンプレッサ3で圧縮した高温のエンジン抽気(以下高温空気と称する)を流通させる高温空気流路5と、前記タービン4内で断熱膨張させた後の空気(以下低温空気と称する)を流通させる低温空気流路6と、前記高温空気流路5内を流通する高温空気と前記低温空気流路6内を流通する低温空気との熱交換を行わせるためのコンデンサ7と、前記低温空気流路6内を流通する低温空気を前記コンデンサ7を通過させずに流通させるべく前記低温空気流路6の前記コンデンサ7より上流側の部位6aと下流側の部位6bとを連通して設けたバイパス流路8と、このバイパス流路8中に設けたチェック弁9とを具備する空調装置を用いるものである。ここで、前記低温空気流路6が本発明の低温気体流路、前記高温空気流路5が本発明の高温気体流路、前記コンデンサ7が本発明の熱交換部にそれぞれ対応する。   As schematically shown in FIG. 1, the air conditioning system 1 of this embodiment receives a supply of extraction from the engine 2 and compresses the extraction air compressed by the compressor 3. A high-temperature air flow that allows high-temperature engine bleed air (hereinafter referred to as high-temperature air) to be circulated between the turbine 4 as expansion means for adiabatic expansion and communication between the outlet of the compressor 3 and the inlet of the turbine 4 and compressed by the compressor 3. A low-temperature air passage 6 through which the air after adiabatic expansion in the turbine 4 (hereinafter referred to as low-temperature air) flows, high-temperature air through the high-temperature air passage 5 and the low-temperature air flow Capacitor 7 for performing heat exchange with the low-temperature air flowing in the path 6 and low-temperature air flowing in the low-temperature air flow path 6 circulate without passing through the capacitor 7 A bypass passage 8 in which a portion 6a on the upstream side of the condenser 7 and a portion 6b on the downstream side of the condenser 7 of the low-temperature air passage 6 are connected to each other, and a check valve 9 provided in the bypass passage 8; The air conditioner which comprises is used. Here, the low temperature air flow path 6 corresponds to the low temperature gas flow path of the present invention, the high temperature air flow path 5 corresponds to the high temperature gas flow path of the present invention, and the capacitor 7 corresponds to the heat exchange section of the present invention.

前記エンジン2とコンプレッサ3との間には、ラムエアとエンジン抽気との間で熱交換を行うことによりエンジン抽気を予冷する一次熱交換器10を設けている。   A primary heat exchanger 10 is provided between the engine 2 and the compressor 3 to precool the engine bleed air by exchanging heat between the ram air and the engine bleed air.

前記コンプレッサ3及び前記タービン4は、共通の駆動軸11により結合したエアサイクルマシンを構成している。   The compressor 3 and the turbine 4 constitute an air cycle machine coupled by a common drive shaft 11.

前記高温空気流路5には、その中間に、前記コンプレッサ3により圧縮された高温空気をラムエアにより冷却する二次熱交換器13と、前記二次熱交換器13と前記コンデンサ7との間に設けられる再生熱交換器14と、前記コンデンサ7より下流側に設けられ前記コンデンサ7により冷却された空気中から水分を除去するための水分離器15とを設けている。そして、前記高温空気流路5の水分離器15より下流側は、前記再生熱交換器14を経てタービン4の入口側に連通している。前記再生熱交換器14は、前記コンデンサ7内で低温空気と熱交換を行う前の高温空気と前記コンデンサ7内で低温空気と熱交換を行った後の高温空気との間で熱交換を行わせる。前記水分離器15は、前記コンデンサ7内で低温空気流路6内を流通する低温空気との熱交換により冷却された際に凝縮した空気中の水分を、遠心力を利用して分離除去する。   In the middle of the high-temperature air flow path 5, a secondary heat exchanger 13 that cools the high-temperature air compressed by the compressor 3 with ram air, and between the secondary heat exchanger 13 and the condenser 7. A regenerative heat exchanger 14 provided and a water separator 15 provided on the downstream side of the condenser 7 for removing moisture from the air cooled by the condenser 7 are provided. The downstream side of the water separator 15 in the high-temperature air flow path 5 communicates with the inlet side of the turbine 4 through the regenerative heat exchanger 14. The regenerative heat exchanger 14 exchanges heat between high-temperature air before heat exchange with low-temperature air in the condenser 7 and high-temperature air after heat exchange with low-temperature air in the condenser 7. Make it. The water separator 15 separates and removes moisture in the air, which is condensed when cooled by heat exchange with the low-temperature air flowing through the low-temperature air flow path 6 in the condenser 7, using centrifugal force. .

前記低温空気流路6は、前記タービン4の出口と航空機の客室内等の図示しない与圧室とを連通する。また、この低温空気流路6の中間に、前記コンデンサ7を配している。   The low-temperature air flow path 6 communicates the outlet of the turbine 4 with a pressurizing chamber (not shown) such as in an aircraft cabin. Further, the capacitor 7 is disposed in the middle of the low-temperature air flow path 6.

前記コンデンサ7内には、図示はしないが、例えば平板状のプレートを多数積層しているとともに、互いに隣接するプレート間に、高温空気を通過させるための高温側通路と、低温空気を通過させるための低温側通路とを交互に設けていて、前記高温側通路内の高温空気と前記低温側通路内の低温空気との間で熱交換を行わせるようにしている。   Although not shown in the figure, for example, a large number of flat plates are stacked in the capacitor 7, and a high-temperature side passage for passing high-temperature air and low-temperature air are allowed to pass between adjacent plates. The low-temperature side passages are alternately provided, and heat exchange is performed between the high-temperature air in the high-temperature side passage and the low-temperature air in the low-temperature side passage.

そして、前記バイパス流路8は、前記コンデンサ7の筐体の外部に設けられ、前記低温空気流路6の前記コンデンサ7より上流側の部位6aと前記コンデンサ7より下流側の部位6bとを連通する。そして、前述したように、このバイパス通路8中には、チェック弁9を設けている。   The bypass flow path 8 is provided outside the housing of the capacitor 7, and communicates the portion 6 a upstream of the capacitor 7 and the portion 6 b downstream of the capacitor 7 of the low-temperature air flow path 6. To do. As described above, the check valve 9 is provided in the bypass passage 8.

このチェック弁9は、通常は図示しないばね等の付勢手段からの付勢力により閉止状態に付勢されているとともに、前記低温空気流路6の前記コンデンサ7より上流側及び下流側からこのチェック弁9がそれぞれ直接受ける圧力の差が所定以上である場合に、前記付勢力に抗して開成状態へ変化する。すなわち、前記低温空気流路6の前記コンデンサ7より上流側の部位6aからこのチェック弁9が直接受ける圧力が前記低温空気流路6の前記コンデンサ7より下流側の部位6bからこのチェック弁9が直接受ける圧力と付勢力との和を上回る場合に、このチェック弁9が直接受ける圧力の作用により前記付勢力に抗して開成状態へ変化する。   The check valve 9 is normally biased to a closed state by a biasing force from a biasing means such as a spring (not shown), and the check valve 9 is checked from the upstream side and the downstream side of the condenser 7 in the low-temperature air flow path 6. When the difference in pressure directly received by the valves 9 is greater than or equal to a predetermined value, the valve 9 changes to the open state against the biasing force. That is, the pressure received by the check valve 9 directly from the portion 6 a upstream of the capacitor 7 in the low-temperature air flow path 6 is reduced from the portion 6 b downstream of the capacitor 7 in the low-temperature air flow path 6. When the sum of the directly received pressure and the urging force is exceeded, the check valve 9 changes to the open state against the urging force by the action of the pressure directly received by the check valve 9.

以下、この空調装置内の空気の流れを述べる。   Hereinafter, the flow of air in the air conditioner will be described.

この空調装置は、上述したようにエンジン2から抽気の供給を受ける。この抽気は、まず、前記一次熱交換器10内でラムエアと熱交換を行いある程度冷却される。次いで、前記コンプレッサ3内で断熱圧縮され、前記高温空気流路5に導かれる。高温空気流路5に導かれた高温空気は、前記二次熱交換器13内でラムエアと熱交換を行いある程度冷却される。前記二次熱交換器13で冷却された高温空気流路5内の空気は、次いで、再生熱交換器14に導かれ、前記コンデンサ7内で低温空気と熱交換を行い冷却された後の空気と熱交換する。再生熱交換器14を通過した高温空気流路5内の高温空気は、次いで前記コンデンサ7に達する。このコンデンサ7内で低温空気流路6内を流通する低温空気と熱交換を行うことにより高温空気が冷却され、高温空気中の水分は凝結する。前記高温空気中の凝結した水分の大部分は、前記水分離器15により分離除去される。水分を分離除去された高温空気は、前記再生熱交換器14に導かれて熱交換を行った後、タービン4内で断熱膨張する。そして、タービン4内で断熱膨張した後の低温空気は、前記低温空気流路6に導入され、少なくとも一部は前記コンデンサ7に導かれる。コンデンサ7に導かれた低温空気は、前記高温空気流路5内を流通する高温空気との熱交換に供される。そして、前記高温空気との熱交換に供された後、与圧室に供給される。   As described above, this air conditioner receives supply of extraction air from the engine 2. This bleed air is first cooled to some extent by exchanging heat with ram air in the primary heat exchanger 10. Subsequently, it is adiabatically compressed in the compressor 3 and guided to the high-temperature air flow path 5. The high-temperature air guided to the high-temperature air flow path 5 is cooled to some extent by exchanging heat with ram air in the secondary heat exchanger 13. The air in the high-temperature air flow path 5 cooled by the secondary heat exchanger 13 is then led to the regenerative heat exchanger 14, and is cooled by exchanging heat with the low-temperature air in the condenser 7. Exchange heat with. The hot air in the hot air passage 5 that has passed through the regenerative heat exchanger 14 then reaches the condenser 7. By performing heat exchange with the low-temperature air flowing through the low-temperature air flow path 6 in the condenser 7, the high-temperature air is cooled, and moisture in the high-temperature air is condensed. Most of the condensed water in the high-temperature air is separated and removed by the water separator 15. The high-temperature air from which moisture has been separated and removed is guided to the regenerative heat exchanger 14 for heat exchange, and then adiabatically expands in the turbine 4. Then, the low temperature air after adiabatic expansion in the turbine 4 is introduced into the low temperature air flow path 6, and at least a part thereof is guided to the capacitor 7. The low temperature air led to the condenser 7 is used for heat exchange with the high temperature air flowing through the high temperature air flow path 5. Then, after being subjected to heat exchange with the high-temperature air, it is supplied to the pressurizing chamber.

ここで、前記低温空気流路6のコンデンサ7よりも上流側の部位6aと下流側の部位6bとの差圧が所定値を下回る場合は、前記低温空気流路6の前記コンデンサ7より上流側の部位6aからこのチェック弁9が直接受ける圧力が前記低温空気流路6の前記コンデンサ7より下流側の部位6bからこのチェック弁9が直接受ける圧力と付勢力との和を下回る。従って、バイパス流路8に設けた前記チェック弁9は閉止状態のままであり、低温空気は全量がコンデンサ7に導かれ、前記高温空気流路5内を流通する高温空気との熱交換に供される。一方、前記低温空気流路6のコンデンサ7よりも上流側の部位6aと下流側の部位6bとの差圧が所定値を上回る場合は、前記低温空気流路6の前記コンデンサ7より上流側の部位6aからこのチェック弁9が直接受ける圧力が前記低温空気流路6の前記コンデンサ7より下流側の部位6bからこのチェック弁9が直接受ける圧力と付勢力との和を上回る。従って、前記チェック弁9が前記低温空気流路6の前記コンデンサ7より上流側の部位6aからの圧力による作用を直接受け、付勢力に抗して開成状態に変化する。そして、低温空気の一部がこのバイパス流路8内を流通し、熱交換を行うことなく下流側に導かれ、航空機の客室内等の図示しない与圧室に達する。   Here, when the differential pressure between the upstream portion 6a and the downstream portion 6b of the low temperature air flow path 6 is lower than a predetermined value, the low temperature air flow path 6 is upstream of the condenser 7. The pressure directly received by the check valve 9 from the portion 6a is lower than the sum of the pressure and the biasing force directly received by the check valve 9 from the portion 6b on the downstream side of the condenser 7 of the low-temperature air passage 6. Accordingly, the check valve 9 provided in the bypass flow path 8 remains closed, and the entire amount of the low-temperature air is guided to the condenser 7 and used for heat exchange with the high-temperature air flowing through the high-temperature air flow path 5. Is done. On the other hand, when the differential pressure between the upstream portion 6a and the downstream portion 6b of the low-temperature air passage 6 exceeds a predetermined value, the upstream portion of the low-temperature air passage 6 is upstream of the condenser 7. The pressure directly received by the check valve 9 from the portion 6a exceeds the sum of the pressure and the biasing force directly received by the check valve 9 from the portion 6b downstream of the condenser 7 in the low-temperature air flow path 6. Therefore, the check valve 9 is directly affected by the pressure from the portion 6a upstream of the condenser 7 in the low-temperature air flow path 6, and changes to the open state against the urging force. A part of the low-temperature air flows through the bypass flow path 8 and is led downstream without performing heat exchange, and reaches a pressurized chamber (not shown) such as the cabin of an aircraft.

すなわち本実施例に係る構成によれば、前記チェック弁9がコンデンサ7より上流側の部位6aから直接受ける圧力と前記チェック弁9がコンデンサ7より下流側の部位6bから直接受ける圧力との差がこのチェック弁9を閉止状態に付勢する付勢力を上回る場合に、チェック弁9が付勢力に抗してこのチェック弁9が前記圧力の作用により開成状態に変化するので以下のような効果が得られる。すなわち、前記低温空気流路6のコンデンサ7よりも上流側の部位6aと下流側の部位6bとの圧力差を検知するための特別な機構をチェック弁9の外部に設けることなく、また、氷結水分を除去するための旋回流発生手段や二重管を用いることなく、簡単な構成により低温空気のバイパスを行い低温空気の流量を確保することができる。従って、少ない部品点数により、また、この構成に必要な部品の合計質量を抑制しつつ、コンデンサ7に氷結水分が付着することにより十分な量の調温済み空気を与圧室に供給できなくなる不具合の発生を抑制できる。   That is, according to the configuration of the present embodiment, the difference between the pressure directly received by the check valve 9 from the portion 6 a upstream of the capacitor 7 and the pressure directly received by the check valve 9 from the portion 6 b downstream of the capacitor 7 is different. When the check valve 9 exceeds the urging force that urges the check valve 9 to the closed state, the check valve 9 changes to the open state by the action of the pressure against the urging force. can get. In other words, a special mechanism for detecting a pressure difference between the upstream portion 6a and the downstream portion 6b of the low-temperature air flow path 6 is not provided outside the check valve 9, and the ice is frozen. Without using a swirl flow generating means or a double pipe for removing moisture, the low temperature air can be bypassed with a simple configuration to ensure the flow rate of the low temperature air. Therefore, it is impossible to supply a sufficient amount of temperature-controlled air to the pressurizing chamber due to a small number of parts and the amount of icing moisture adhering to the capacitor 7 while suppressing the total mass of parts necessary for this configuration. Can be suppressed.

なお、本発明は以上に述べた実施形態に限らない。   The present invention is not limited to the embodiment described above.

例えば、上述した実施例においてバイパス流路を省略した図2に回路図を示すような空調システムにおいて、上述した実施例のコンデンサ7に代えて、図3及び図4に示すように、高温空気と低温空気との熱交換を行う熱交換部27aと、前記低温空気を熱交換を行わせることなく与圧室に供給するためのバイパス流路28とを同一筐体内に有するものであって、このバイパス流路28の入口に、以下に述べるようなチェック弁29を具備するコンデンサ27を用いるようにしてもよい。この実施例では、前記熱交換部27aが、本発明の熱交換部に、また、前記バイパス流路28が本発明のバイパス流路にそれぞれ対応する。   For example, in the air conditioning system as shown in the circuit diagram of FIG. 2 in which the bypass flow path is omitted in the above-described embodiment, instead of the capacitor 7 of the above-described embodiment, as shown in FIGS. A heat exchange section 27a for exchanging heat with low-temperature air and a bypass flow path 28 for supplying the low-temperature air to the pressurizing chamber without causing heat exchange are provided in the same housing. A condenser 27 having a check valve 29 as described below may be used at the inlet of the bypass passage 28. In this embodiment, the heat exchange part 27a corresponds to the heat exchange part of the present invention, and the bypass flow path 28 corresponds to the bypass flow path of the present invention.

このコンデンサ27は、低温空気流路内を流通する低温空気と高温空気流路内を流通する高温空気との間で熱交換を行わせるための前記熱交換部27aと、前記低温空気を前記熱交換部27aを通過させることなく、すなわち熱交換させることなく流通させるための前記バイパス流路28と、このバイパス流路28と前記高温空気流路5とを区画する隔壁27bとを具備する。高温空気は、このコンデンサ27内を矢印X方向に流れる。一方、低温空気は、このコンデンサ27内を矢印Y方向に流れる。   The condenser 27 includes the heat exchanging portion 27a for exchanging heat between the low temperature air flowing through the low temperature air flow path and the high temperature air flowing through the high temperature air flow path, and the low temperature air as the heat. The bypass passage 28 is configured to flow without passing through the exchange portion 27a, that is, without being subjected to heat exchange, and the partition wall 27b that partitions the bypass passage 28 and the high-temperature air passage 5. Hot air flows through the capacitor 27 in the direction of arrow X. On the other hand, the low-temperature air flows in the capacitor Y direction in the arrow Y direction.

前記熱交換部27aは、平板状のプレート27a1を多数積層しているとともに、互いに隣接するプレート27a1間に、高温空気を通過させるための高温側通路27a2と、低温空気を通過させるための低温側通路27a3とを交互に設けている。また、この熱交換部27aは、上下1対に設けている。   The heat exchanging portion 27a is formed by laminating a large number of flat plates 27a1, and between the plates 27a1 adjacent to each other, a high temperature side passage 27a2 for passing high temperature air and a low temperature side for allowing low temperature air to pass therethrough. The passages 27a3 are alternately provided. The heat exchanging portions 27a are provided in a pair in the upper and lower sides.

前記バイパス流路28は、前記熱交換部27a間の空間を利用して形成している。また、このバイパス流路28は、上述したように前記高温空気流路5と隔壁27bにより区画されている。   The bypass flow path 28 is formed using a space between the heat exchange portions 27a. Further, as described above, the bypass flow path 28 is partitioned by the high-temperature air flow path 5 and the partition wall 27b.

そして、このバイパス流路28の入口に、以下に述べるようなチェック弁29を設けている。このチェック弁29は、通常は図示しないねじりコイルばね等の付勢手段により図3に示すような閉止状態Sに付勢されているとともに、前記低温気体流路6の前記熱交換部より上流側の部位6a及び下流側の部位6bからこのチェック弁29が直接受ける圧力の差、より具体的にはこのコンデンサ27の入口と出口との差圧が所定以上である場合に、このチェック弁29が付勢力に抗して前記圧力の作用により図4に示すような開成状態Oへ変化するように構成している。   A check valve 29 as described below is provided at the inlet of the bypass passage 28. The check valve 29 is normally biased to a closed state S as shown in FIG. 3 by biasing means such as a torsion coil spring (not shown), and upstream of the heat exchange part of the low-temperature gas flow path 6. When the check valve 29 receives a difference in pressure directly from the part 6a and the downstream part 6b, more specifically, when the pressure difference between the inlet and the outlet of the capacitor 27 is equal to or greater than a predetermined value, the check valve 29 It is configured to change to the open state O as shown in FIG. 4 by the action of the pressure against the urging force.

このような構成であっても、前記チェック弁29が上流側から直接受ける圧力と前記チェック弁29が下流側から直接受ける圧力との差がこのチェック弁29を閉止状態に付勢する付勢力を上回る場合に、チェック弁29が付勢力に抗して前記圧力の作用により開成状態Oに変化するので、上述した実施例に係る構成の効果を同様に得ることができる。すなわち、コンデンサ27よりも上流側と下流側との圧力差を検知するための特別な機構をチェック弁の外部に設けることなく、また、氷結水分を除去するための旋回流発生手段や二重管を用いることなく、簡単な構成により低温気体のバイパスを行い低温気体の流量を確保することができる。従って、少ない部品点数により、また、この構成に必要な部品の合計質量を抑制しつつ、コンデンサ27に氷結水分が付着することにより十分な量の調温済み気体を供給できなくなる不具合の発生を抑制できる。   Even in such a configuration, the difference between the pressure directly received by the check valve 29 from the upstream side and the pressure directly received by the check valve 29 from the downstream side causes the biasing force that biases the check valve 29 to the closed state. If it exceeds, the check valve 29 changes to the open state O by the action of the pressure against the urging force, so that the effect of the configuration according to the above-described embodiment can be obtained similarly. In other words, a special mechanism for detecting the pressure difference between the upstream side and the downstream side of the condenser 27 is not provided outside the check valve, and the swirling flow generating means or the double pipe for removing frozen moisture is removed. Without using the low temperature gas can be bypassed with a simple configuration to ensure the flow rate of the low temperature gas. Therefore, with the small number of parts, and while suppressing the total mass of parts required for this configuration, the occurrence of a problem that a sufficient amount of temperature-controlled gas cannot be supplied due to adhesion of icing moisture to the capacitor 27 is suppressed. it can.

さらに、バイパス流路及びチェック弁は複数設けるようにしてもよい。また、前段で述べたようなコンデンサにおいて、熱交換部を3個以上設けてもよく、熱交換部間のバイパス流路、及びこのバイパス流路ごとに設けてなるチェック弁をそれぞれ複数設けてもよい。この場合、複数のチェック弁を開成状態に変化させるためにそれぞれ必要な圧力差の所定値を、チェック弁ごとに異ならせるようにするとよい。   Further, a plurality of bypass flow paths and check valves may be provided. Further, in the condenser as described in the previous stage, three or more heat exchange portions may be provided, and a plurality of bypass passages between the heat exchange portions and a plurality of check valves provided for each bypass passage may be provided. Good. In this case, the predetermined value of the pressure difference necessary for changing the plurality of check valves to the open state may be made different for each check valve.

そして、航空機用空調装置に限らず、また、空気を流通させるものに限らず、高温気体流体内を流通する気体と低温気体流路内を流通する気体との間で熱交換を行わせる熱交換部と、低温気体流路の熱交換部より上流側と下流側とを連通して設けたバイパス流路とを具備する空調システムであれば本発明を適用してよい。すなわち、航空機用以外に用いられる空調システムであっても、また、空気以外の気体の温度調整に用いるものであっても、前記バイパス流路中に設けたチェック弁をさらに具備するものであって、このチェック弁が、通常は閉止状態に付勢されているとともに、前記低温気体流路の前記熱交換部より上流側及び下流側からこのチェック弁が直接受ける圧力の差が所定値以上である場合に、このチェック弁に前記上流側から直接作用する圧力により付勢力に抗して開成状態へ変化するものであれば、本発明の主な効果を同様に得ることができる。   And it is not limited to the air conditioner for aircraft, and is not limited to the one that circulates air, but the heat exchange that exchanges heat between the gas that circulates in the high-temperature gas fluid and the gas that circulates in the low-temperature gas flow path. The present invention may be applied to any air-conditioning system that includes a section and a bypass passage that is provided such that the upstream side and the downstream side of the heat exchange part of the low-temperature gas passage communicate with each other. That is, even if it is an air conditioning system used for purposes other than aircraft, or used for temperature adjustment of gases other than air, it further comprises a check valve provided in the bypass flow path. The check valve is normally energized in a closed state, and the difference in pressure that the check valve directly receives from the upstream side and the downstream side of the heat exchange part of the low-temperature gas flow path is a predetermined value or more. In this case, the main effect of the present invention can be obtained in the same manner as long as the check valve is changed to the open state against the urging force by the pressure directly acting on the check valve from the upstream side.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の第一実施例に係る空調装置の構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing of the air conditioner which concerns on the 1st Example of this invention. 本発明の第二実施例に係る空調装置の構成説明図。Structure explanatory drawing of the air conditioning apparatus which concerns on the 2nd Example of this invention. 同実施例に係る熱交換部及びチェック弁を概略的に示す斜視図。The perspective view which shows schematically the heat exchange part and check valve which concern on the Example. 図3に対応させて示すチェック弁の動作説明図。Operation | movement explanatory drawing of the check valve shown corresponding to FIG. 従来の空調システムの構成説明図。Structure explanatory drawing of the conventional air conditioning system.

符号の説明Explanation of symbols

1…空調システム
5…高温空気流路
6…低温空気流路
7…コンデンサ(熱交換部)
27a…熱交換部
8、28…バイパス流路
9、29…チェック弁
DESCRIPTION OF SYMBOLS 1 ... Air conditioning system 5 ... High temperature air flow path 6 ... Low temperature air flow path 7 ... Condenser (heat exchange part)
27a ... Heat exchange part 8, 28 ... Bypass flow path 9, 29 ... Check valve

Claims (1)

高温気体を流通させる高温気体流路と、低温気体を流通させる低温気体流路と、前記高温気体流路内を流通する高温気体と低温気体流路内を流通する低温気体との熱交換を行わせるための熱交換部と、前記低温気体流路内を流通する気体を前記熱交換部を通過させずに流通させるべく前記低温気体流路の前記熱交換部より上流側と下流側とを連通して設けたバイパス流路と、このバイパス流路中に設けたチェック弁とを具備するものであって、
前記チェック弁が、通常は閉止状態に付勢されているとともに、前記低温気体流路の前記熱交換部より上流側及び下流側からこのチェック弁が直接受ける圧力の差が所定値以上である場合に、このチェック弁に直接作用する圧力により付勢力に抗して開成状態へ変化することを特徴とする空調システム。
Heat exchange is performed between a high-temperature gas flow path for circulating a high-temperature gas, a low-temperature gas flow path for flowing a low-temperature gas, and a high-temperature gas flowing through the high-temperature gas flow path and a low-temperature gas flowing through the low-temperature gas flow path. A heat exchanging portion for allowing the gas flowing in the low temperature gas flow channel to communicate with the upstream side and the downstream side of the heat exchanging portion of the low temperature gas flow channel so as to flow without passing through the heat exchanging portion. A bypass flow path provided, and a check valve provided in the bypass flow path,
When the check valve is normally energized in a closed state and the difference in pressure directly received by the check valve from the upstream side and the downstream side of the heat exchange part of the low-temperature gas flow path is a predetermined value or more In addition, the air-conditioning system is characterized in that it changes to an open state against the urging force by the pressure directly acting on the check valve.
JP2008127810A 2008-05-15 2008-05-15 Air conditioning system Pending JP2009274593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008127810A JP2009274593A (en) 2008-05-15 2008-05-15 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008127810A JP2009274593A (en) 2008-05-15 2008-05-15 Air conditioning system

Publications (1)

Publication Number Publication Date
JP2009274593A true JP2009274593A (en) 2009-11-26

Family

ID=41440406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008127810A Pending JP2009274593A (en) 2008-05-15 2008-05-15 Air conditioning system

Country Status (1)

Country Link
JP (1) JP2009274593A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506514A (en) * 2011-11-08 2012-06-20 中国商用飞机有限责任公司 Refrigeration system for aircraft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506514A (en) * 2011-11-08 2012-06-20 中国商用飞机有限责任公司 Refrigeration system for aircraft
WO2013067886A1 (en) * 2011-11-08 2013-05-16 中国商用飞机有限责任公司 Refrigeration system for aircraft

Similar Documents

Publication Publication Date Title
US10040334B2 (en) R744 based heat pump system with a water cooled gas cooler for cooling, heating and dehumidification of an EV/HEV
JP4254863B2 (en) Air conditioner
EP2673585B1 (en) Brazed plate heat exchanger for water-cooled heat rejction in a refrigeration cycle
JP2007298268A (en) Heat management system and air-craft cooling method
US20110030397A1 (en) Start-up procedure for refrigerant systems having microchemical consensor and reheat cycle
JP4818154B2 (en) Expansion valve mechanism and flow path switching device
JP2006170608A (en) Heat exchanger in air conditioner
WO2014092064A1 (en) Refrigeration system device
JP4824498B2 (en) Cooling air supply equipment for parking
JP2007107859A (en) Gas heat pump type air conditioner
JP2008537773A (en) Refrigerant cycle with a three-way service valve for use with environmentally friendly refrigerants
JP2007107860A (en) Air conditioner
JP2009274593A (en) Air conditioning system
KR101391320B1 (en) Engine room cooling system using cabin air-conditioning system
KR20120022203A (en) Defrosting system using air cooling refrigerant evaporator and condenser
JP2009145026A (en) Multiple type air conditioner, and solenoid valve unit used for refrigerant leakage-prevention measure of indoor expansion valve
JP2012255613A (en) Air conditioner
US10259587B2 (en) Aircraft comprising a heat exchanger
JP4391261B2 (en) Air conditioner
KR20200134805A (en) An air conditioning apparatus
JP2012092994A (en) Air conditioning system
WO2018061185A1 (en) Refrigeration cycle device
JP2013198897A (en) Apparatus for reheating compressed air
JP5343511B2 (en) Heat exchanger
JP2007163080A (en) Air conditioner