JP4453795B2 - Air conditioning system for aircraft - Google Patents

Air conditioning system for aircraft Download PDF

Info

Publication number
JP4453795B2
JP4453795B2 JP2001131035A JP2001131035A JP4453795B2 JP 4453795 B2 JP4453795 B2 JP 4453795B2 JP 2001131035 A JP2001131035 A JP 2001131035A JP 2001131035 A JP2001131035 A JP 2001131035A JP 4453795 B2 JP4453795 B2 JP 4453795B2
Authority
JP
Japan
Prior art keywords
air
low
flow path
temperature air
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001131035A
Other languages
Japanese (ja)
Other versions
JP2002321697A (en
Inventor
孝一 小原
理 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001131035A priority Critical patent/JP4453795B2/en
Publication of JP2002321697A publication Critical patent/JP2002321697A/en
Application granted granted Critical
Publication of JP4453795B2 publication Critical patent/JP4453795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Landscapes

  • Control Of Turbines (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固定翼機および回転翼機を含む航空機の空調システムに関する。
【0002】
【従来の技術】
航空機の空調システムにおいて空気中に含まれている水分を除去する方式として、低圧除湿方式と高圧除湿方式の2種類がある。図2に示す従来の低圧除湿方式の空調システムは、コンプレッサー101により圧縮したエンジン102の抽気を、熱交換器103におけるラム空気との熱交換により冷却し、その冷却した抽気を膨張タービン105において膨張させることで低温空気とし、この低温空気から水分離器106により水分を除去した後に航空機のキャビン等の室内に供給している。その水分離器106においては、膨張タービン105で空気が減圧されることで霧状になった水分を、コアレッサと呼ばれる布状の部材を用いて凝縮させ、遠心力を利用して分離している。また、その膨張タービン105と水分離器106との間にバルブ107を介してエンジン抽気を導入可能とすることで、水分離器106における水分の氷結を解消している。
【0003】
図3に示す従来の高圧除湿方式の空調システムは、コンプレッサー201により圧縮したエンジン202の抽気を、熱交換器203におけるラム空気との熱交換により冷却し、その冷却した抽気を再生熱交換器205における熱交換によりさらに冷却した後に、コンデンサ206における低温空気との熱交換により冷却することで、その抽気中の水分を露点以下に冷却し、その水分を水分離器207において遠心力を利用して分離している。その水分を分離された抽気を、再生熱交換器205における水分分離前の抽気の冷却に用いた後に、膨張タービン208において膨張させることで低温空気とする。この低温空気をコンデンサ206における抽気の冷却に用いた後に航空機の室内に送り出している。また、その膨張タービン208とコンデンサ206との間にバルブ209を介してエンジン抽気を導入可能とすることで、コンデンサ206の抽気流路での水分の氷結を解消している。
【0004】
上記高圧除湿方式によれば、膨張タービン208の上流で抽気の除湿を行うことで、膨張タービン出口温度を低圧除湿方式よりも下げ、キャビン等へ供給する空気を低温にできる。その膨張タービン208の出口温度における空気温度を低くすることで、同じ冷房能力を達成するために必要な抽気流量を低減できるので、空調システムを作動させるために必要な燃料の消費量を低減できる。さらに、その高圧除湿方式によれば、低圧除湿方式において必要とされるコアレッサが不要になるので機体の整備が容易になる。
【0005】
しかし、高圧除湿方式の空調システムにおいては、抽気中に含まれる水分がコンデンサ206において氷結して抽気流路を塞ぐことにより、十分な低温空気をキャビン等へ供給できなくなるおそれがある。そこで、バルブ209を介して高温のエンジン抽気を膨張タービン208の下流に導入して低温空気と混合し、さらに、そのコンデンサ206における低温空気流路の入口と出口とを接続するバイパス流路206aを設け、コンデンサ206内で氷結状態が継続するのを防止している。
【0006】
【発明が解決しようとする課題】
従来の高圧除湿方式の空調システムにおいては、コンデンサ206における低温空気流路の入口と出口とを接続するバイパス流路206aを設けても、そのバイパス流路206aにおける低温空気の流路面積は一定であるため、コンデンサ206内での氷結状態が進行すると、高温のエンジン抽気を膨張タービンの下流に導入せざると得なかった。そのため、抽気流量を十分に低減することができず、また、膨張タービン出口での空気温度を十分に低減することができなかった。
【0007】
【課題を解決するための手段】
本発明は、エンジン抽気の圧縮手段と、その圧縮された抽気の冷却手段と、その冷却された抽気から水分を分離する手段と、その水分を分離された抽気を膨張させることで低温空気とする膨張手段とを備え、その冷却手段として、その圧縮手段と膨張手段との間の抽気流路を流れる抽気と、その膨張手段の出口に接続される低温空気流路を流れる低温空気との間で熱交換を行わせる熱交換部を有する航空機用空調システムにおいて、その低温空気流路に、その膨張手段の出口から流出する低温空気が前記熱交換部をバイパスするためのバイパス流路が接続され、そのバイパス流路における低温空気流量を、前記熱交換部における抽気流路の入口と出口との圧力差に応じて変更する流量調節手段が設けられていることを特徴とする。その流量調節手段は前記圧力差に応じて開度が変化するバルブにより構成することができる。
【0008】
この構成によれば、膨張手段から熱交換部に向かう低温空気の一部はバイパス流路を流れるので、その熱交換部における低温空気流量が減少し、その熱交換部における抽気と低温空気との熱交換効率が低下する。また、その熱交換部の抽気流路を抽気中に含まれる水分が氷結して塞ぐと、その抽気流路が狭くなる程にコンデンサにおける抽気流路の入口と出口との圧力差が増大し、バイパスバルブの開度が大きくなり、その熱交換部における低温空気流量が減少してバイパス流路における低温空気流量が増大する。これにより、その氷結の程度に応じて熱交換部における低温空気流量を調整して熱交換効率を変化させることができ、その氷結を解消すると同時に低温空気温度を可及的に降下させることができる。すなわち、その氷結解消を従来のように高温抽気を低温空気と混合することなく行い、最終的にキャビン等に供給する低温空気を従来技術では達成できない温度まで降下させることができる。しかも、その氷結解消のために高温抽気を用いないため、抽気流量の必要量を低減でき、空調システムを作動させるために必要な燃料の消費量を低減できる。
【0009】
【発明の実施の形態】
図1に示す高圧除湿方式の航空機用空調システム1は、空気冷凍サイクルにより低温空気を得るもので、エンジン2の抽気を、第一熱交換器3により機体外から導入されるラム空気との熱交換により冷却した後に、遠心型コンプレッサー4により圧縮し、第二熱交換器5でラム空気との熱交換により再度冷却し、さらに再生熱交換器6における熱交換により冷却した後に、コンデンサ(熱交換部)7において冷却する。その再生熱交換器6およびコンデンサ7における冷却により抽気中の水分を凝縮させる。その凝縮させた水分を水分離器8において遠心力を利用して分離して取り去っている。その水分を分離された抽気を、再生熱交換器6における水分分離前の抽気の冷却に用いた後に膨張タービン9に導入し、その膨張タービン9において膨張させることで低温空気とする。この低温空気をコンデンサ7における抽気の冷却に用いた後に調和空気として航空機のキャビン等の室内に供給している。なお、そのコンプレッサー4は始動時はモータ4aにより起動され、起動後は膨張タービン9から取り出される動力により駆動される。
【0010】
そのコンデンサ7においては、そのコンプレッサー4と膨張タービン9との間の抽気流路を流れる抽気と、その膨張タービン9の出口に接続される低温空気流路15を流れる低温空気との間で熱交換を行わせることでエンジン抽気を冷却する。
【0011】
その低温空気流路15に、その膨張タービン9の出口から流出する低温空気がコンデンサ7をバイパスするためのバイパス流路10が接続されている。本実施形態では、そのバイパス流路10は低温空気流路15におけるコンデンサ7の上下流部に連結されている。これにより、その膨張タービン9の出口から流出する低温空気の一部がコンデンサ7をバイパスしてキャビン等の低温空気供給空間への供給口に至る。そのバイパス流路10における低温空気流量を、コンデンサ7における抽気流路の入口と出口との圧力差に応じて変更する流量調節手段として、そのバイパス流路10にバイパスバルブ11が設けられている。そのバイパスバルブ11は、コンデンサ7における抽気流路の入口7aと出口7bとの圧力差が増大すると開度が大きくなり、その圧力差が小さくなると開度が小さくなる。例えば、その入口7aと出口7bの圧力差を検知する差圧検知センサを航空機に搭載される制御装置に接続し、その検知される差圧に応じてその制御装置により制御される電磁バルブをバイパスバルブ11としたり、あるいは、その入口7aと出口7bの圧力差が直接作用することにより変位するスプールを有する圧力制御バルブをバイパスバルブ11とすることができる。
【0012】
上記構成によれば、膨張タービン9からコンデンサ7に向かう低温空気の一部はバイパス流路10を流れるのでコンデンサ7における低温空気流量が減少し、コンデンサ7における抽気と低温空気との熱交換効率が低下する。また、コンデンサ7において抽気中に含まれる水分が氷結して抽気流路を塞ぐと、その抽気流路が狭くなる程にコンデンサ7における抽気流路の入口7aと出口7bとの圧力差が増大し、バイパスバルブ11の開度が大きくなり、コンデンサ7における低温空気流量が減少してバイパス流路10における低温空気流量が増大する。これにより、その氷結の程度に応じてコンデンサ7における低温空気流量を調整して熱交換効率を変化させることができ、氷結を解消すると同時に低温空気温度を可及的に降下させることができる。すなわち、その氷結解消を従来のように高温抽気を低温空気と混合することなく行い、最終的にキャビン等に供給する低温空気を降下させることができる。しかも、その氷結解消のために高温抽気を用いないため、抽気流量の必要量を低減でき、空調システムを作動させるために必要な燃料の消費量を低減できる。これにより、最終的にキャビン等に供給する低温空気を従来技術では達成できない温度まで降下させることができる。例えば、従来であれば調和空気の下限温度が−10degFDAR(乾球温度)程度あったのを、−20degFDAR以下にすることができる。
【0013】
【発明の効果】
本発明によれば、エンジン抽気の必要量を低減し、得られる低温空気温度を降下させ、省エネ、システムを小型軽量化してコスト低減を図ることのできる航空機用空調システムを提供できる。
【図面の簡単な説明】
【図1】本発明の実施形態の航空機用空調システムの構成説明図
【図2】従来の航空機用空調システムの構成説明図
【図3】従来の航空機用空調システムの構成説明図
【符号の説明】
1 航空機用空調システム
4 コンプレッサー
7 コンデンサ(熱交換部)
8 水分離器
9 膨張タービン
10 バイパス流路
11 バイパスバルブ
15 低温空気流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioning system for an aircraft including a fixed wing aircraft and a rotary wing aircraft.
[0002]
[Prior art]
There are two types of methods for removing moisture contained in air in an air conditioning system of an aircraft: a low pressure dehumidification method and a high pressure dehumidification method. The conventional low-pressure dehumidification type air conditioning system shown in FIG. 2 cools the extracted air of the engine 102 compressed by the compressor 101 by heat exchange with the ram air in the heat exchanger 103, and expands the cooled extracted air in the expansion turbine 105. The water is then removed from the low-temperature air by the water separator 106 and supplied to the cabin of an aircraft cabin or the like. In the water separator 106, the water that has become mist due to the decompression of air by the expansion turbine 105 is condensed using a cloth-like member called coalescer and separated using centrifugal force. . Further, by allowing the engine bleed air to be introduced between the expansion turbine 105 and the water separator 106 via the valve 107, moisture icing in the water separator 106 is eliminated.
[0003]
The conventional high pressure dehumidification type air conditioning system shown in FIG. 3 cools the bleed air of the engine 202 compressed by the compressor 201 by heat exchange with the ram air in the heat exchanger 203, and the cooled bleed air is regenerated by the regenerative heat exchanger 205. Is further cooled by heat exchange with the low-temperature air in the condenser 206, thereby cooling the moisture in the extracted air below the dew point, and using the centrifugal force in the water separator 207 It is separated. The extracted air from which the moisture has been separated is used for cooling the extracted air before the moisture separation in the regenerative heat exchanger 205 and then expanded in the expansion turbine 208 to form low-temperature air. The low-temperature air is used for cooling the extraction air in the condenser 206 and then sent out into the aircraft cabin. Further, by allowing the engine bleed air to be introduced between the expansion turbine 208 and the condenser 206 via the valve 209, moisture icing in the bleed passage of the condenser 206 is eliminated.
[0004]
According to the high pressure dehumidification method, by performing dehumidification of the extraction air upstream of the expansion turbine 208, the expansion turbine outlet temperature can be lowered as compared with the low pressure dehumidification method, and the air supplied to the cabin or the like can be made low temperature. By reducing the air temperature at the outlet temperature of the expansion turbine 208, it is possible to reduce the amount of bleed air required to achieve the same cooling capacity, so that it is possible to reduce the amount of fuel required to operate the air conditioning system. Further, according to the high-pressure dehumidification method, the coalescer required in the low-pressure dehumidification method is not required, so that maintenance of the airframe is facilitated.
[0005]
However, in the high-pressure dehumidification type air conditioning system, moisture contained in the bleed air freezes in the condenser 206 to block the bleed air flow path, and there is a possibility that sufficient low-temperature air cannot be supplied to the cabin or the like. Therefore, a high-temperature engine bleed air is introduced downstream of the expansion turbine 208 through the valve 209 and mixed with low-temperature air, and a bypass flow path 206a that connects the inlet and outlet of the low-temperature air flow path in the condenser 206 is provided. This prevents the icing state from continuing in the capacitor 206.
[0006]
[Problems to be solved by the invention]
In the conventional high-pressure dehumidification type air conditioning system, even if the bypass channel 206a that connects the inlet and the outlet of the low-temperature air channel in the capacitor 206 is provided, the channel area of the low-temperature air in the bypass channel 206a is constant. For this reason, when the icing state in the capacitor 206 progresses, it has been unavoidable to introduce hot engine bleed air downstream of the expansion turbine. Therefore, the extraction flow rate cannot be sufficiently reduced, and the air temperature at the expansion turbine outlet cannot be sufficiently reduced.
[0007]
[Means for Solving the Problems]
The present invention provides engine bleed air compression means, compressed bleed air cooling means, water separation means from the cooled bleed air, and expansion of the water from which the water has been separated into low temperature air. Expansion means, and as cooling means, between extraction air flowing through an extraction flow path between the compression means and expansion means, and low-temperature air flowing through a low-temperature air flow path connected to the outlet of the expansion means In an air conditioning system for an aircraft having a heat exchanging section for performing heat exchange, a bypass flow path for bypassing the heat exchanging section with low temperature air flowing out from an outlet of the expansion means is connected to the low temperature air flow path, The low-temperature air flow rate in the bypass flow path is provided with a flow rate adjusting means for changing according to the pressure difference between the inlet and the outlet of the extraction flow path in the heat exchange section. The flow rate adjusting means can be constituted by a valve whose opening degree changes according to the pressure difference.
[0008]
According to this configuration, part of the low-temperature air from the expansion means to the heat exchange unit flows through the bypass flow path, so that the low-temperature air flow rate in the heat exchange unit is reduced, and the extraction air and the low-temperature air in the heat exchange unit are reduced. Heat exchange efficiency decreases. In addition, when the extraction flow path of the heat exchange section is frozen by water contained in the extraction, the pressure difference between the inlet and the outlet of the extraction flow path in the condenser increases as the extraction flow path becomes narrower, The opening degree of the bypass valve is increased, the low-temperature air flow rate in the heat exchange part is decreased, and the low-temperature air flow rate in the bypass flow path is increased. As a result, the heat exchange efficiency can be changed by adjusting the low-temperature air flow rate in the heat exchange unit according to the degree of freezing, and the low-temperature air temperature can be lowered as much as possible while eliminating the freezing. . That is, the freezing can be eliminated without mixing the hot bleed air with the low temperature air as in the prior art, and the low temperature air finally supplied to the cabin or the like can be lowered to a temperature that cannot be achieved by the prior art. In addition, since high-temperature extraction is not used to eliminate the icing, the required amount of extraction flow can be reduced, and the amount of fuel consumed to operate the air conditioning system can be reduced.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
A high-pressure dehumidification aircraft air-conditioning system 1 shown in FIG. 1 obtains low-temperature air by an air refrigeration cycle. The air extracted from the engine 2 is heated by the first heat exchanger 3 with the ram air introduced from outside the airframe. After cooling by exchange, it is compressed by the centrifugal compressor 4, cooled again by heat exchange with the ram air in the second heat exchanger 5, and further cooled by heat exchange in the regenerative heat exchanger 6, and then the condenser (heat exchange Part) 7 is cooled. Water in the extracted air is condensed by cooling in the regenerative heat exchanger 6 and the condenser 7. The condensed water is separated and removed by centrifugal force in the water separator 8. The extracted air from which the moisture has been separated is used for cooling the extracted air before the moisture separation in the regenerative heat exchanger 6, and then introduced into the expansion turbine 9, where it is expanded in the expansion turbine 9 to produce low-temperature air. After this low temperature air is used for cooling the bleed air in the condenser 7, it is supplied as conditioned air into the cabin of an aircraft cabin or the like. The compressor 4 is started by a motor 4a at the time of starting, and is driven by power taken out from the expansion turbine 9 after starting.
[0010]
In the condenser 7, heat exchange is performed between the bleed air flowing through the bleed air passage between the compressor 4 and the expansion turbine 9 and the low-temperature air flowing through the low-temperature air passage 15 connected to the outlet of the expansion turbine 9. To cool the engine bleed air.
[0011]
The low-temperature air flow path 15 is connected to a bypass flow path 10 for low-temperature air flowing out from the outlet of the expansion turbine 9 to bypass the condenser 7. In the present embodiment, the bypass flow path 10 is connected to the upstream and downstream portions of the capacitor 7 in the low-temperature air flow path 15. As a result, part of the low-temperature air flowing out from the outlet of the expansion turbine 9 bypasses the condenser 7 and reaches the supply port to the low-temperature air supply space such as the cabin. A bypass valve 11 is provided in the bypass flow path 10 as flow rate adjusting means for changing the low-temperature air flow rate in the bypass flow path 10 according to the pressure difference between the inlet and outlet of the extraction flow path in the condenser 7. The opening of the bypass valve 11 increases when the pressure difference between the inlet 7a and the outlet 7b of the extraction flow path in the condenser 7 increases, and the opening decreases when the pressure difference decreases. For example, a differential pressure detection sensor that detects a pressure difference between the inlet 7a and the outlet 7b is connected to a control device mounted on an aircraft, and an electromagnetic valve controlled by the control device is bypassed according to the detected differential pressure. The bypass valve 11 can be a valve 11 or a pressure control valve having a spool that is displaced by the direct action of the pressure difference between the inlet 7a and the outlet 7b.
[0012]
According to the above configuration, part of the low-temperature air from the expansion turbine 9 toward the condenser 7 flows through the bypass flow path 10, so that the low-temperature air flow rate in the condenser 7 decreases, and the heat exchange efficiency between the extracted air and the low-temperature air in the condenser 7 is increased. descend. In addition, when moisture contained in the bleed air in the condenser 7 freezes and blocks the bleed air passage, the pressure difference between the inlet 7a and the outlet 7b of the bleed air passage in the condenser 7 increases as the bleed air passage becomes narrower. The opening degree of the bypass valve 11 increases, the low-temperature air flow rate in the condenser 7 decreases, and the low-temperature air flow rate in the bypass flow path 10 increases. Thereby, the heat exchange efficiency can be changed by adjusting the low-temperature air flow rate in the condenser 7 according to the degree of freezing, and the low-temperature air temperature can be lowered as much as possible while eliminating freezing. That is, the freezing can be eliminated without mixing the hot bleed air with the low temperature air as in the prior art, and the low temperature air finally supplied to the cabin or the like can be lowered. In addition, since high-temperature extraction is not used to eliminate the icing, the required amount of extraction flow can be reduced, and the amount of fuel consumed to operate the air conditioning system can be reduced. Thereby, the low-temperature air finally supplied to the cabin or the like can be lowered to a temperature that cannot be achieved by the prior art. For example, conventionally, the lower limit temperature of conditioned air, which is about -10 deg FDAR (dry bulb temperature), can be reduced to -20 deg FDAR or less.
[0013]
【The invention's effect】
According to the present invention, it is possible to provide an aircraft air conditioning system that can reduce the required amount of engine bleed, lower the obtained low-temperature air temperature, save energy, reduce the size and weight of the system, and reduce the cost.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a configuration of an aircraft air conditioning system according to an embodiment of the present invention. FIG. 2 is an explanatory diagram of a configuration of a conventional aircraft air conditioning system. FIG. 3 is an explanatory diagram of a configuration of a conventional aircraft air conditioning system. ]
1 Air-conditioning system for aircraft 4 Compressor 7 Condenser (Heat exchange part)
8 Water separator 9 Expansion turbine 10 Bypass passage 11 Bypass valve 15 Low temperature air passage

Claims (1)

エンジン抽気の圧縮手段と、
その圧縮された抽気の冷却手段と、
その冷却された抽気から水分を分離する手段と、
その水分を分離された抽気を膨張させることで低温空気とする膨張手段とを備え、
その冷却手段として、その圧縮手段と膨張手段との間の抽気流路を流れる抽気と、その膨張手段の出口に接続される低温空気流路を流れる低温空気との間で熱交換を行わせる熱交換部を有する航空機用空調システムにおいて、
その低温空気流路に、その膨張手段の出口から流出する低温空気が前記熱交換部をバイパスするためのバイパス流路が接続され、
そのバイパス流路における低温空気流量を、前記熱交換部における抽気流路の入口と出口との圧力差に応じて変更する流量調節手段が設けられていることを特徴とする航空機用空調システム。
Compression means for engine bleed,
Means for cooling the compressed bleed air;
Means for separating moisture from the cooled bleed air;
An expansion means for expanding the extracted air from which the moisture has been separated into low temperature air;
As the cooling means, heat for exchanging heat between the bleed air flowing through the bleed air flow path between the compression means and the expansion means and the low temperature air flowing through the low temperature air flow path connected to the outlet of the expansion means. In an air conditioning system for aircraft having an exchange part,
The low-temperature air flow path is connected to a bypass flow path for the low-temperature air flowing out from the outlet of the expansion means to bypass the heat exchange unit,
An air conditioning system for an aircraft, comprising a flow rate adjusting means for changing a low-temperature air flow rate in the bypass flow path according to a pressure difference between an inlet and an outlet of the extraction flow path in the heat exchange section.
JP2001131035A 2001-04-27 2001-04-27 Air conditioning system for aircraft Expired - Fee Related JP4453795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001131035A JP4453795B2 (en) 2001-04-27 2001-04-27 Air conditioning system for aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001131035A JP4453795B2 (en) 2001-04-27 2001-04-27 Air conditioning system for aircraft

Publications (2)

Publication Number Publication Date
JP2002321697A JP2002321697A (en) 2002-11-05
JP4453795B2 true JP4453795B2 (en) 2010-04-21

Family

ID=18979288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001131035A Expired - Fee Related JP4453795B2 (en) 2001-04-27 2001-04-27 Air conditioning system for aircraft

Country Status (1)

Country Link
JP (1) JP4453795B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343511B2 (en) * 2008-10-30 2013-11-13 株式会社島津製作所 Heat exchanger

Also Published As

Publication number Publication date
JP2002321697A (en) 2002-11-05

Similar Documents

Publication Publication Date Title
US11518523B2 (en) Aircraft air conditioning system with a cabin exhaust air turbine
EP3480113B1 (en) Regenerative system ecoecs
CN107444658B (en) Mixing exhaust and ram air using a dual use turbine system
CA2992857A1 (en) Advanced environmental control system in an integrated pack arrangement with one bleed/outflow heat exchanger
JPH0796936B2 (en) Environmental control device with simplified cycle
WO2016170128A1 (en) Operating-phase-dependently controllable aircraft air conditioning system and method for operating such an aircraft air conditioning system
CN106064672A (en) Utilize the environmental control system of cabin discharge air starting circulation
EP3235731B1 (en) Environmental control system utilizing bleed pressure assist
CA2968733A1 (en) Mixing bleed and ram air at a turbine inlet
EP3326915B1 (en) An environmental control system with optimized moisture removal
EP3085622B1 (en) Environmental control system mixing cabin discharge air with bleed air during a cycle
EP3235729B1 (en) Environmental control system utilizing multiple mix points for recirculation air in accordance with pressure mode and motor assist
EP3235727B1 (en) Environmental control system utilizing two pass secondary heat exchanger and cabin pressure assist
EP3235728B1 (en) Environmental control system utilizing multiple mix points for recirculation air in accordance with pressure mode
JP4144414B2 (en) Air conditioning system for aircraft
JP4453795B2 (en) Air conditioning system for aircraft
JP4023260B2 (en) Air conditioning system for aircraft
JP4144379B2 (en) Air conditioning system for aircraft
JP2003042578A (en) Air conditioning system for aircraft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees