JP5342364B2 - Power supply mechanism and vacuum processing apparatus - Google Patents

Power supply mechanism and vacuum processing apparatus Download PDF

Info

Publication number
JP5342364B2
JP5342364B2 JP2009182085A JP2009182085A JP5342364B2 JP 5342364 B2 JP5342364 B2 JP 5342364B2 JP 2009182085 A JP2009182085 A JP 2009182085A JP 2009182085 A JP2009182085 A JP 2009182085A JP 5342364 B2 JP5342364 B2 JP 5342364B2
Authority
JP
Japan
Prior art keywords
power
power transmission
rotating shaft
feeding mechanism
brush
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009182085A
Other languages
Japanese (ja)
Other versions
JP2011032560A (en
Inventor
崇展 堀
康浩 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shinmaywa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinmaywa Industries Ltd filed Critical Shinmaywa Industries Ltd
Priority to JP2009182085A priority Critical patent/JP5342364B2/en
Publication of JP2011032560A publication Critical patent/JP2011032560A/en
Application granted granted Critical
Publication of JP5342364B2 publication Critical patent/JP5342364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power feeding mechanism capable of applying an RF power to a substrate holder by using an RF power source and, at the same time, applying a DC pulse to the substrate holder by using a DC power source of a simple structure. <P>SOLUTION: The power feeding mechanism 110 includes: a rotation shaft 11 electrically connected to the substrate holder 12; a first power transmission brush 21 to which a high frequency power of a high frequency power source 31 is applied; and a second power transmission brush 22 to which a DC voltage of a DC power source 33 is applied. Therein, by rotation of the rotation shaft 11, the application of high frequency power to the rotation shaft 11 caused by sliding between the first power transmission brush 21 and the rotation shaft 11, and the application of DC voltage to the rotation shaft 11 caused by intermittent sliding between the second power transmission brush 22 and the rotation shaft 11 are performed. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は給電機構および真空処理装置に関する。   The present invention relates to a power feeding mechanism and a vacuum processing apparatus.

半導体素子や光学素子の機能薄膜の形成には、イオンプレーティングやスパッタリングなどの真空成膜法が利用されることが多い。このような真空成膜法では、回転軸に支持された基板ホルダを回転させ、これにより、基板ホルダ上の基板に堆積する薄膜の均一化を図る技術が良く用いられている。   In order to form a functional thin film of a semiconductor element or an optical element, a vacuum film forming method such as ion plating or sputtering is often used. In such a vacuum film forming method, a technique is often used in which a substrate holder supported by a rotating shaft is rotated to thereby make a thin film deposited on the substrate on the substrate holder uniform.

また、イオンプレーティング装置では、プラズマ形成用の高周波(RF)電力に対して重畳的に直流(DC)電圧を回転軸に印加することによって、RF電力の直流成分(セルフバイアス)を安定にする技術が知られている(例えば、特許文献1参照)。   Further, in the ion plating apparatus, a direct current (DC) voltage is applied to the rotating shaft in a superimposed manner with respect to the high frequency (RF) power for plasma formation, thereby stabilizing the direct current component (self bias) of the RF power. A technique is known (see, for example, Patent Document 1).

しかし、特許文献1に記載のイオンプレーティング装置では、例えば、プラス電荷を帯びた粒子を基板に引き込むことにより、基板上に絶縁性の薄膜を形成させる場合、このような薄膜の表面ではプラス電荷によるチャージアップ現象が起こる。すると、チャージアップ電圧によって様々な不都合が生じる。例えば、チャージアップ電圧によって、絶縁性の薄膜が絶縁破壊に至る場合がある。   However, in the ion plating apparatus described in Patent Document 1, for example, when an insulating thin film is formed on a substrate by drawing particles having a positive charge into the substrate, the surface of such a thin film has a positive charge. Charge up phenomenon occurs due to. Then, various inconveniences occur due to the charge-up voltage. For example, an insulating thin film may cause dielectric breakdown due to a charge-up voltage.

そこで、パルス状のDC電圧を出力できるDCパルス電源を用いて、薄膜表面に帯電したプラス電荷を中和する手法がすでに提案されている(例えば、特許文献2参照)。   Therefore, a method for neutralizing positive charges charged on the surface of the thin film by using a DC pulse power source capable of outputting a pulsed DC voltage has been proposed (for example, see Patent Document 2).

特公平1−48347号公報Japanese Patent Publication No. 1-48347 特開2001−262324号公報JP 2001-262324 A

しかし、特許文献2に記載のイオンプレーティング装置では、パルス状のDC電圧を出力する特別のDCパルス電源を必要とする。   However, the ion plating apparatus described in Patent Document 2 requires a special DC pulse power source that outputs a pulsed DC voltage.

そこで、本件発明者等は、イオンプレーティング装置の電源系と基板ホルダに接続された回転軸との間の機械的接点の工夫により、DCパルス電源に代えて、単純な構造のDC電源を用いても、DCパルスを基板ホルダに印加できる給電機構を案出した。特に、本件発明者等は、基板ホルダが回転軸によって回転される回転機構の存在に着目した。   Therefore, the inventors of the present invention use a DC power supply having a simple structure instead of the DC pulse power supply by devising a mechanical contact between the power supply system of the ion plating apparatus and the rotating shaft connected to the substrate holder. However, a power supply mechanism that can apply a DC pulse to the substrate holder has been devised. In particular, the present inventors have focused on the existence of a rotation mechanism in which the substrate holder is rotated by a rotation shaft.

本発明は、このような事情に鑑みてなされたものであり、RF電源を用いて基板ホルダにRF電力を印加するとともに、単純な構造のDC電源を用いて基板ホルダにDCパルスを印加することができる給電機構を提供することを目的とする。   The present invention has been made in view of such circumstances, and applies RF power to a substrate holder using an RF power source and applies a DC pulse to the substrate holder using a DC power source having a simple structure. An object of the present invention is to provide a power feeding mechanism capable of performing the above.

また、本発明は、このような給電機構を備えた真空処理装置を提供することも目的とする。   Another object of the present invention is to provide a vacuum processing apparatus having such a power feeding mechanism.

上記課題を解決するため、本発明は、基板ホルダに電気的に接続された回転軸と、
高周波電源の高周波電力が印加される第1送電ブラシと、直流電源の直流電圧が印加される第2送電ブラシと、を備え、
前記回転軸の回転によって、前記第1送電ブラシと前記回転軸との間の摺動による前記回転軸への前記高周波電力の印加、および、前記第2送電ブラシと前記回転軸との間の断続的な摺動による前記回転軸への前記直流電圧の印加が行われる給電機構を提供する。
In order to solve the above problems, the present invention provides a rotating shaft electrically connected to a substrate holder,
A first power transmission brush to which a high-frequency power of a high-frequency power source is applied; and a second power transmission brush to which a DC voltage of a DC power source is applied.
Application of the high-frequency power to the rotating shaft by sliding between the first power transmission brush and the rotating shaft and rotation between the second power transmitting brush and the rotating shaft by rotation of the rotating shaft. Provided is a power feeding mechanism in which the DC voltage is applied to the rotating shaft by a normal sliding.

以上の構成により、高周波電源を用いて基板ホルダに高周波電力を印加するとともに、単純な構造の直流電源を用いて基板ホルダに直流パルスを印加することができる。   With the above configuration, high-frequency power can be applied to the substrate holder using a high-frequency power source, and a DC pulse can be applied to the substrate holder using a DC power source having a simple structure.

つまり、基板ホルダの近傍でのプラズマ形成、RF電力のセルフバイアスの安定化、および、基板上の薄膜表面に帯電した電荷の中和を行うことができる。   That is, plasma formation in the vicinity of the substrate holder, stabilization of RF power self-bias, and neutralization of charges charged on the surface of the thin film on the substrate can be performed.

特に、本発明の給電機構では、回転軸の回転を上手く利用することにより、従来の直流パルス電源に代えて、単純な構造の直流電源を用いて、直流パルスを基板ホルダに印加できる。よって、本発明の給電機構は、簡易な電源系を用いて薄膜表面に帯電した電荷を中和できるという従来例と比較した有利な効果を奏する。   In particular, in the power feeding mechanism of the present invention, the DC pulse can be applied to the substrate holder using a DC power source having a simple structure instead of the conventional DC pulse power source by making good use of the rotation of the rotating shaft. Therefore, the power feeding mechanism of the present invention has an advantageous effect compared with the conventional example that the charge charged on the surface of the thin film can be neutralized using a simple power supply system.

なお、前記第1送電ブラシと前記回転軸との間の摺動も断続的に行われてもよい。   Note that sliding between the first power transmission brush and the rotating shaft may also be performed intermittently.

また、本発明の給電機構では、円弧状の前記第1送電ブラシおよび円弧状の前記第2送電ブラシが、互いの端面が対向するように配されて送電ブラシの対を構成してもよい。   Further, in the power feeding mechanism of the present invention, the arc-shaped first power transmission brush and the arc-shaped second power transmission brush may be arranged such that their end faces face each other to constitute a pair of power transmission brushes.

また、本発明の給電機構では、前記回転軸が、円柱状の本体部と、前記本体部に設けられた受電部と、を備えてもよい。そして、前記受電部が、前記本体部の中心軸周りの回転に基づいて、前記第1送電ブラシとの間の接続状態、および、第2送電ブラシとの間の接続状態を取ってもよい。   In the power supply mechanism of the present invention, the rotating shaft may include a columnar main body and a power receiving unit provided in the main body. And the said power receiving part may take the connection state between the said 1st power transmission brush and the connection state between the 2nd power transmission brush based on the rotation around the central axis of the said main-body part.

また、本発明の給電機構では、前記送電ブラシの対を前記本体部の中心軸が延びる方向から見た場合、前記送電ブラシの対の内面に沿った仮想円を前記回転軸の本体部と同軸状に描くことができ、前記本体部の中心軸から偏倚した位置の前記受電部が、前記本体部の中心軸周りの回転に基づいて、前記中心軸を中心とする円運動を行うことにより、前記受電部の側面が前記送電ブラシの対の内面を摺動してもよい。   In the power supply mechanism of the present invention, when the pair of power transmission brushes is viewed from the direction in which the central axis of the main body extends, a virtual circle along the inner surface of the pair of power transmission brushes is coaxial with the main body of the rotating shaft. The power receiving unit at a position deviated from the central axis of the main body part performs a circular motion around the central axis based on rotation around the central axis of the main body part, The side surface of the power receiving unit may slide on the inner surface of the pair of power transmission brushes.

また、本発明の給電機構は、前記送電ブラシの対を挟む一対の円環状の絶縁板を備えてもよい。   The power supply mechanism of the present invention may include a pair of annular insulating plates that sandwich the pair of power transmission brushes.

これにより、送電ブラシの対を適切に保持できる。   Thereby, the pair of power transmission brushes can be appropriately retained.

また、本発明の給電機構は、前記第1送電ブラシの端面と前記第2送電ブラシの端面との間の空隙を埋める絶縁部材を備えてもよい。   In addition, the power feeding mechanism of the present invention may include an insulating member that fills a gap between an end surface of the first power transmission brush and an end surface of the second power transmission brush.

これにより、送電ブラシの対を適切に保持できる。   Thereby, the pair of power transmission brushes can be appropriately retained.

また、前記第2送電ブラシは、互いに絶縁された複数のサブブラシに分割されており、隣接する前記サブブラシ同士は、極性が異なる前記直流電圧が印加されてもよい。   The second power transmission brush may be divided into a plurality of sub-brushes insulated from each other, and the DC voltages having different polarities may be applied to adjacent sub-brushes.

これにより、本発明の給電機構では、回転軸の回転を上手く利用することにより、従来の直流パルス電源に代えて、単純な構造の直流電源を用いて、直流マイナス電圧のパルスおよび直流プラス電圧のパルスを交互に、基板ホルダに印加することができる。よって、本発明の給電機構は、簡易な電源系を用いて薄膜表面に帯電した電荷を中和できるという従来例と比較した有利な効果を奏する。   Thus, in the power feeding mechanism of the present invention, by utilizing the rotation of the rotating shaft, a DC power source having a simple structure can be used instead of the conventional DC pulse power source, and a DC negative voltage pulse and a DC positive voltage can be generated. Pulses can be applied alternately to the substrate holder. Therefore, the power feeding mechanism of the present invention has an advantageous effect compared with the conventional example that the charge charged on the surface of the thin film can be neutralized using a simple power supply system.

また、本発明は、以上の給電機構と、前記給電機構に前記高周波電力を出力する高周波電源と、前記給電機構に前記直流電圧を出力する直流電源と、前記給電機構の回転軸に支持された基板ホルダを内部に配している真空槽と、前記基板ホルダに対置している蒸発源と、を備える真空処理装置を提供する。   Further, the present invention is supported by the above power feeding mechanism, a high frequency power source that outputs the high frequency power to the power feeding mechanism, a DC power source that outputs the DC voltage to the power feeding mechanism, and a rotating shaft of the power feeding mechanism. Provided is a vacuum processing apparatus comprising a vacuum chamber in which a substrate holder is disposed, and an evaporation source facing the substrate holder.

以上の構成により、高周波電源を用いて基板ホルダに高周波電力を印加するとともに、単純な構造の直流電源を用いて基板ホルダに直流パルスを印加することができる。   With the above configuration, high-frequency power can be applied to the substrate holder using a high-frequency power source, and a DC pulse can be applied to the substrate holder using a DC power source having a simple structure.

本発明によれば、RF電源を用いて基板ホルダにRF電力を印加するとともに、単純な構造のDC電源を用いて基板ホルダにDCパルスを印加することができる給電機構が得られる。   According to the present invention, it is possible to obtain a power feeding mechanism that can apply RF power to a substrate holder using an RF power source and can apply a DC pulse to the substrate holder using a DC power source having a simple structure.

また、本発明によれば、このような給電機構を備えた真空処理装置も得られる。   Further, according to the present invention, a vacuum processing apparatus having such a power feeding mechanism can be obtained.

本発明の第1実施形態の給電機構を備えた真空処理装置の一構成例を示した図である。It is the figure which showed one structural example of the vacuum processing apparatus provided with the electric power feeding mechanism of 1st Embodiment of this invention. 図1の給電機構を斜視した図である。FIG. 2 is a perspective view of the power feeding mechanism of FIG. 1. 図1の給電機構を本体部の中心軸が延びる方向から見た図である。It is the figure which looked at the electric power feeding mechanism of FIG. 1 from the direction where the central axis of a main-body part is extended. 本発明の第2実施形態の給電機構の一構成例を示した図である。It is the figure which showed the example of 1 structure of the electric power feeding mechanism of 2nd Embodiment of this invention. 本発明の第1変形例による給電機構の構成の説明に用いる図である。It is a figure used for description of the structure of the electric power feeding mechanism by the 1st modification of this invention.

以下、本発明の第1実施形態および第2実施形態について図面を参照しながら説明する。   Hereinafter, a first embodiment and a second embodiment of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態の給電機構を備えた真空処理装置の一構成例を示した図である。また、図1には、給電機構110の電源系のブロック図も併記されている。
(First embodiment)
FIG. 1 is a diagram illustrating a configuration example of a vacuum processing apparatus including the power supply mechanism according to the first embodiment of the present invention. 1 also includes a block diagram of a power supply system of the power feeding mechanism 110.

なお、ここでは、真空処理装置100の一例として、イオンプレーティング成膜装置を述べるが、これに限らない。例えば、真空処理装置100として、スパッタリング成膜装置を用いてもよい。   In addition, although an ion plating film-forming apparatus is described here as an example of the vacuum processing apparatus 100, it is not limited to this. For example, a sputtering film forming apparatus may be used as the vacuum processing apparatus 100.

真空処理装置100は、図1に示すように、基板ホルダ12に高周波(RF)電力および直流(DC)マイナス電圧を印加できる給電機構110と、給電機構110に上記RF電力を出力するRF電源31と、給電機構110に上記DCマイナス電圧を出力するDC電源33と、基板ホルダ12を内部に配している接地状態の真空槽13と、を備える。   As shown in FIG. 1, the vacuum processing apparatus 100 includes a power supply mechanism 110 that can apply high frequency (RF) power and direct current (DC) negative voltage to the substrate holder 12, and an RF power supply 31 that outputs the RF power to the power supply mechanism 110. And a DC power source 33 that outputs the DC negative voltage to the power feeding mechanism 110, and a grounded vacuum chamber 13 in which the substrate holder 12 is disposed.

なお、給電機構110の導電性の回転軸11は、基板(図示せず)を保持できる基板ホルダ12と電気的に接続されている。   The conductive rotating shaft 11 of the power feeding mechanism 110 is electrically connected to a substrate holder 12 that can hold a substrate (not shown).

この回転軸11の本体部11Aの回転によって、第1送電ブラシ21を用いた回転軸11の受電部11BとRF電源31の端子31Aとの間の電気接続がなされ、回転軸11へのRF電力の印加が行われる。同様に、上記回転によって、第2送電ブラシ22を用いた回転軸11の受電部11BとDC電源33の端子33A(マイナス電圧側の端子)との間の電気接続もなされ、回転軸11へのDCマイナス電圧の印加も行われる。   The rotation of the main body 11 </ b> A of the rotating shaft 11 makes an electrical connection between the power receiving unit 11 </ b> B of the rotating shaft 11 and the terminal 31 </ b> A of the RF power supply 31 using the first power transmission brush 21, and RF power to the rotating shaft 11. Is applied. Similarly, due to the above rotation, electrical connection between the power receiving unit 11B of the rotating shaft 11 using the second power transmission brush 22 and the terminal 33A (negative voltage side terminal) of the DC power source 33 is also made, and the rotation shaft 11 is connected to the rotating shaft 11. A DC negative voltage is also applied.

なお、第1送電ブラシ21、第2送電ブラシ22および回転軸11の詳細な構成は後述する。   In addition, the detailed structure of the 1st power transmission brush 21, the 2nd power transmission brush 22, and the rotating shaft 11 is mentioned later.

また、図1に示すように、RF電源31の端子31Aは、インピーダンスマッチング用のマッチング回路30を介して第1送電ブラシ21に接続され、その他方の端子31Bは接地されている。DC電源33の端子33Aは、ローパスフィルタ32を介して第2送電ブラシ22に接続され、その他方の端子33B(プラス電圧側の端子)は接地されている。   Further, as shown in FIG. 1, the terminal 31A of the RF power supply 31 is connected to the first power transmission brush 21 via the matching circuit 30 for impedance matching, and the other terminal 31B is grounded. The terminal 33A of the DC power source 33 is connected to the second power transmission brush 22 via the low-pass filter 32, and the other terminal 33B (plus voltage side terminal) is grounded.

給電機構110の回転軸11は、図1に示すように、真空槽13の壁孔を貫通するようにして、真空槽13の外部(大気中)から真空槽13の内部(真空中)にまで延びており、回転軸11の先端には基板ホルダ12が支持されている。   As shown in FIG. 1, the rotating shaft 11 of the power supply mechanism 110 penetrates through the wall hole of the vacuum chamber 13 and extends from the outside (in the atmosphere) of the vacuum chamber 13 to the inside (in vacuum) of the vacuum chamber 13. The substrate holder 12 is supported at the tip of the rotating shaft 11.

また、真空処理装置100は、回転軸11の本体部11Aに回転力を伝達できる回転機構120を備える。   Further, the vacuum processing apparatus 100 includes a rotation mechanism 120 that can transmit a rotational force to the main body 11 </ b> A of the rotation shaft 11.

この回転機構120は、上記回転力を発生させるモータ18Aと、上記回転力の回転軸11への伝達用のプーリ18Dおよびベルト18Cと、回転軸11の本体部11Aを回転可能な状態に保持する回転軸受18Bと、を備える。   The rotating mechanism 120 holds the motor 18A that generates the rotational force, the pulley 18D and the belt 18C for transmitting the rotational force to the rotating shaft 11, and the main body 11A of the rotating shaft 11 in a rotatable state. Rotary bearing 18B.

但し、これらの各部材18A、18B、18C、18Dは一例に過ぎず、回転機構120は、真空槽13の内部を気密に保って回転軸11の本体部11Aを回転できる様々な慣用手段により構成できる。よって、回転機構120の詳細な構成の説明は、ここでは、省略する。   However, each of these members 18A, 18B, 18C, 18D is merely an example, and the rotation mechanism 120 is configured by various conventional means that can rotate the body 11A of the rotating shaft 11 while keeping the inside of the vacuum chamber 13 airtight. it can. Therefore, description of the detailed structure of the rotation mechanism 120 is omitted here.

また、真空処理装置100は、基板への薄膜形成用の材料を蒸発できる高周波加熱蒸発源16(以下、「蒸発源16」と略す)を備える。   Further, the vacuum processing apparatus 100 includes a high-frequency heating evaporation source 16 (hereinafter, abbreviated as “evaporation source 16”) that can evaporate a material for forming a thin film on a substrate.

この蒸発源16は、基板ホルダ12に対置しており、真空槽13内に置かれた蒸発材料格納用の容器15と、材料の加熱に用いる高周波コイル14および電源17と、を備える。   The evaporation source 16 is opposed to the substrate holder 12 and includes a container 15 for storing an evaporation material placed in a vacuum chamber 13, a high-frequency coil 14 and a power source 17 used for heating the material.

但し、これらの各部材14、15、17は一例に過ぎず、蒸発源16は、容器15に入れた材料を加熱および溶融させることにより、真空槽13内に材料を蒸発できる様々な慣用手段により構成できる。例えば、蒸発源16の材料の加熱において、抵抗加熱法や電子ビーム加熱法を用いてもよい。よって、蒸発源16の詳細な構成の説明も、ここでは、省略する。   However, each of these members 14, 15, and 17 is merely an example, and the evaporation source 16 can be heated and melted by using various conventional means that can evaporate the material in the vacuum chamber 13 by heating and melting the material. Can be configured. For example, in heating the material of the evaporation source 16, a resistance heating method or an electron beam heating method may be used. Therefore, the detailed description of the evaporation source 16 is also omitted here.

次に、本実施形態の真空処理装置100の特徴部である給電機構110の電気接続の構造について図面を参照しながら説明する。   Next, the electrical connection structure of the power feeding mechanism 110, which is a characteristic part of the vacuum processing apparatus 100 of the present embodiment, will be described with reference to the drawings.

図2は、図1の給電機構を斜視した図である。図3は、図1の給電機構を本体部の中心軸が延びる方向から見た図である。   FIG. 2 is a perspective view of the power feeding mechanism of FIG. FIG. 3 is a view of the power feeding mechanism of FIG. 1 as viewed from the direction in which the central axis of the main body extends.

なお、図2では、給電機構110の電気接続の構造の理解が容易になるよう、第1送電ブラシ21および第2送電ブラシ22と、回転軸11の受電部11Bとを離間された形態を図示しているが、給電機構110の使用時には、受電部11Bが、送電ブラシの対50との電気接続を構成できるよう、送電ブラシの対50の内面50Aが、受電部11Bの側面11Cに接触する。   In FIG. 2, the first power transmission brush 21 and the second power transmission brush 22 are separated from the power receiving unit 11 </ b> B of the rotating shaft 11 so as to facilitate understanding of the electrical connection structure of the power supply mechanism 110. Although shown, when the power feeding mechanism 110 is used, the inner surface 50A of the power transmission brush pair 50 contacts the side surface 11C of the power reception unit 11B so that the power reception unit 11B can configure an electrical connection with the power transmission brush pair 50. .

まず、給電機構110の送電側の構造について述べる。   First, the structure on the power transmission side of the power feeding mechanism 110 will be described.

図2および図3に示すように、第1送電ブラシ21および第2送電ブラシ22が、互いの端面が対向するように配され、これにより、送電ブラシの対50を構成している。このような第1送電ブラシ21および第2送電ブラシ22として、例えば、公知のカーボンブラシを用いるとよい。   As shown in FIGS. 2 and 3, the first power transmission brush 21 and the second power transmission brush 22 are arranged so that the end faces thereof face each other, thereby constituting a pair 50 of power transmission brushes. For example, a known carbon brush may be used as the first power transmission brush 21 and the second power transmission brush 22.

第1送電ブラシ21および第2送電ブラシ22のそれぞれは、本体部11Aの中心軸200が延びる方向から見た場合においては、図3に示すように、仮想の円環状の導電板をその半径方向に略半分程度、切り取るようにして、略半円弧状(正確には、長さが全円周の半分より僅かに小さい)の形態となっている。このため、送電ブラシの対50においては、第1送電ブラシ21の端面と第2送電ブラシ22の端面との間に一対の空隙Sが形成され、これにより、互いの絶縁が確保されている。但し、この場合、送電ブラシの対50を固定する適宜の固定部材を設ける必要がある。   Each of the first power transmission brush 21 and the second power transmission brush 22 has a virtual annular conductive plate in the radial direction as shown in FIG. 3 when viewed from the direction in which the central axis 200 of the main body 11A extends. About half of this is cut off to form a substantially semicircular arc shape (more precisely, the length is slightly smaller than half of the entire circumference). For this reason, in the pair 50 of power transmission brushes, a pair of gaps S is formed between the end surface of the first power transmission brush 21 and the end surface of the second power transmission brush 22, thereby ensuring mutual insulation. However, in this case, it is necessary to provide an appropriate fixing member for fixing the power transmission brush pair 50.

そこで、本実施形態の給電機構110では、送電ブラシの対50の固定部材の一例として、図2に示すように、送電ブラシの対50を挟む一対の円環状の絶縁板23、24が配されている。これにより、送電ブラシの対50の第1送電ブラシ21および第2送電ブラシ22のそれぞれが、互いの絶縁を確保しながら絶縁板23、24によって適切に保持される。なお、給電機構110の電気接続の構造の理解が容易になるよう、図2の絶縁板23、24を想像線で表し、図3では、絶縁板23、24の図示を省略している。   Therefore, in the power supply mechanism 110 of the present embodiment, as an example of a fixing member of the power transmission brush pair 50, a pair of annular insulating plates 23 and 24 sandwiching the power transmission brush pair 50 are disposed as shown in FIG. ing. Thereby, each of the 1st power transmission brush 21 and the 2nd power transmission brush 22 of the pair 50 of power transmission brush is appropriately hold | maintained by the insulating plates 23 and 24, ensuring mutual insulation. In order to facilitate understanding of the electrical connection structure of the power feeding mechanism 110, the insulating plates 23 and 24 in FIG. 2 are represented by imaginary lines, and the insulating plates 23 and 24 are not shown in FIG.

次に、給電機構110の受電側の構造について述べる。   Next, the structure on the power receiving side of the power feeding mechanism 110 will be described.

図2に示すように、給電機構110の回転軸11は、円柱状の本体部11Aと、本体部11Aの一部(ここでは端)に設けられた受電部11Bと、を備える。受電部11Bは、ここでは、本体部11Aと一体的に形成されており、中心軸200の方向に延びた矩形の棒状となっている。但し、受電部11Bの摺動面として機能する側面11Cの角は面取りされている。   As shown in FIG. 2, the rotating shaft 11 of the power supply mechanism 110 includes a columnar main body 11A and a power receiving unit 11B provided at a part (here, an end) of the main body 11A. Here, the power receiving unit 11 </ b> B is formed integrally with the main body unit 11 </ b> A and has a rectangular bar shape extending in the direction of the central axis 200. However, the corners of the side surface 11C that functions as the sliding surface of the power receiving unit 11B are chamfered.

以上の構成により、受電部11Bは、本体部11Aの中心軸200周りの回転に基づいて移動(ここでは、円運動)することにより、第1送電ブラシ21との間の接続状態、および、第2送電ブラシ22との間の接続状態を取ることができる。   With the above configuration, the power receiving unit 11B moves (here, circular motion) based on the rotation around the central axis 200 of the main body 11A, thereby connecting the first power transmission brush 21 and the first power transmission brush 21. The connection state between the two power transmission brushes 22 can be taken.

詳しくは、本実施形態の給電機構110では、送電ブラシの対50を本体部11Aの中心軸200が延びる方向から見た場合、図3に示すように、送電ブラシの対50の内面50Aに沿った仮想円300を回転軸11の本体部11Aと同軸状に描くことができる。そして、回転軸11の受電部11Bの側面11Cが、送電ブラシの対50の内面50Aに接触するよう、受電部11Bは、本体部11Aの中心軸200から半径方向に偏倚して配されている。   Specifically, in the power supply mechanism 110 of the present embodiment, when the power transmission brush pair 50 is viewed from the direction in which the central axis 200 of the main body portion 11A extends, as illustrated in FIG. 3, along the inner surface 50A of the power transmission brush pair 50. The virtual circle 300 can be drawn coaxially with the main body portion 11 </ b> A of the rotating shaft 11. Then, the power receiving unit 11B is arranged in a radially deviated manner from the central axis 200 of the main body unit 11A so that the side surface 11C of the power receiving unit 11B of the rotating shaft 11 contacts the inner surface 50A of the pair 50 of power transmission brushes. .

よって、回転軸11の本体部11Aがその中心軸200周りに回転すると、本体部11Aの中心軸200から偏倚した位置の受電部11Bが、本体部11Aの回転に基づいて、中心軸200を中心とする円運動を行う。すると、受電部11Bの側面11Cが送電ブラシの対50の内面50Aを摺動することができる。   Therefore, when the main body portion 11A of the rotating shaft 11 rotates around the central axis 200, the power receiving portion 11B at a position deviated from the central axis 200 of the main body portion 11A is centered on the central shaft 200 based on the rotation of the main body portion 11A. Perform a circular motion. Then, the side surface 11C of the power receiving unit 11B can slide on the inner surface 50A of the pair 50 of power transmission brushes.

受電部11Bの側面11Cが第1送電ブラシ21の内面50Aを断続的に摺動する間は、受電部11B(回転軸11)と第1送電ブラシ21との電気接続を取ることができる。この場合、基板ホルダ12(図1参照)にRF電力を印加できる。   While the side surface 11C of the power reception unit 11B slides intermittently on the inner surface 50A of the first power transmission brush 21, electrical connection between the power reception unit 11B (rotary shaft 11) and the first power transmission brush 21 can be established. In this case, RF power can be applied to the substrate holder 12 (see FIG. 1).

また、受電部11Bの側面11Cが第2送電ブラシ22の内面50Aを断続的に摺動する間は、受電部11B(回転軸11)と第2送電ブラシ22との電気接続を取ることができる。この場合、基板ホルダ12(図1参照)にDCマイナス電圧を印加できる。   In addition, while the side surface 11C of the power reception unit 11B slides intermittently on the inner surface 50A of the second power transmission brush 22, the power reception unit 11B (rotary shaft 11) and the second power transmission brush 22 can be electrically connected. . In this case, a DC negative voltage can be applied to the substrate holder 12 (see FIG. 1).

このようにして、回転軸11の本体部11Aでの一定周期の回転によって、回転軸11の受電部11Bが、第2送電ブラシ22との間の周期的な電気接続を取れる。よって、本実施形態の給電機構110では、単純な構造のDC電源33を用いて、DCマイナス電圧の矩形パルスを、上記回転周期に基づいて基板ホルダ12に印加することができる。   In this manner, the electric power receiving unit 11B of the rotating shaft 11 can be periodically connected to the second power transmission brush 22 by the rotation of the main body 11A of the rotating shaft 11 at a constant period. Therefore, in the power feeding mechanism 110 according to the present embodiment, a rectangular pulse of a DC negative voltage can be applied to the substrate holder 12 using the DC power supply 33 having a simple structure based on the rotation period.

なお、上記矩形パルスの周期は、本体部11Aの回転周期(回転速度)や第2送電ブラシ22の形状(例えば、第2送電ブラシ22の内面50Aの長さ)などにより適宜、設定するとよい。これにより、イオンプレーティング法による基板ホルダ12の基板上の薄膜形成を行いながら、当該基板上の薄膜の表面に帯電したプラス電荷が適切に中和されるよう、所望の矩形パルスを基板ホルダ12に印加できる。   The period of the rectangular pulse may be appropriately set depending on the rotation period (rotational speed) of the main body 11A, the shape of the second power transmission brush 22 (for example, the length of the inner surface 50A of the second power transmission brush 22), and the like. Thus, while forming a thin film on the substrate of the substrate holder 12 by the ion plating method, a desired rectangular pulse is applied to the substrate holder 12 so that the positive charge charged on the surface of the thin film on the substrate is appropriately neutralized. Can be applied.

つまり、DCマイナス電圧の矩形パルスが基板ホルダ11に印加されている間は、プラズマの作用によりプラスに帯電した蒸発材料を積極的に基板側に引き込むことができる。一方、矩形パルスが印加されていない間は、基板上の薄膜表面に帯電したプラス電荷をプラズマ中の電子によって中和できる。   That is, while a rectangular pulse of DC negative voltage is applied to the substrate holder 11, the evaporation material charged positively by the action of plasma can be positively drawn to the substrate side. On the other hand, the positive charge charged on the surface of the thin film on the substrate can be neutralized by the electrons in the plasma while the rectangular pulse is not applied.

また、回転軸11の本体部11Aでの一定周期の回転によって、回転軸11の受電部11Bが、第1送電ブラシ21とも周期的な電気接続を取れる。よって、本実施形態の給電機構110では、上記回転周期に基づいて断続的にRF電力を基板ホルダ12に印加することができる。これにより、RF電力によるプラズマを真空槽13内の適所に形成できる。   In addition, the power receiving unit 11B of the rotating shaft 11 can be periodically connected to the first power transmission brush 21 by rotating the rotating shaft 11 at the main body 11A at a constant cycle. Therefore, in the power feeding mechanism 110 of the present embodiment, RF power can be intermittently applied to the substrate holder 12 based on the rotation period. Thereby, the plasma by RF electric power can be formed in the appropriate place in the vacuum chamber 13.

なお、上記RF電力の印加時間は、本体部11Aの回転周期(回転速度)や第1送電ブラシ21の形状(例えば、第1送電ブラシ21の内面50Aの長さ)などにより適宜、設定するとよい。これにより、RF電力によるプラズマが消失しない程度の短時間だけ、受電部11Bと第1送電ブラシ21との間の電気接続が切れるよう、所望のRF電力を基板ホルダ12に印加できる。   The application time of the RF power may be appropriately set depending on the rotation period (rotation speed) of the main body 11A, the shape of the first power transmission brush 21 (for example, the length of the inner surface 50A of the first power transmission brush 21), and the like. . Accordingly, desired RF power can be applied to the substrate holder 12 so that the electrical connection between the power receiving unit 11B and the first power transmission brush 21 is cut for a short time that does not cause the plasma generated by the RF power to disappear.

次に、本実施形態の真空処理装置100の動作例について概説する。   Next, an operation example of the vacuum processing apparatus 100 of this embodiment will be outlined.

まず、真空槽13内の基板ホルダ12に基板がセットされ、蒸発源16の容器15に蒸発用の材料が格納され、真空槽13内を排気装置(図示せず)により所定の真空度にまで減圧される。   First, the substrate is set on the substrate holder 12 in the vacuum chamber 13, the evaporation material is stored in the container 15 of the evaporation source 16, and the inside of the vacuum chamber 13 is brought to a predetermined degree of vacuum by an exhaust device (not shown). Depressurized.

次いで、回転機構120のモータ18Aの駆動により、回転軸11の本体部11Aが基板ホルダ12とともに一定周期で回転する。   Next, by driving the motor 18 </ b> A of the rotation mechanism 120, the main body portion 11 </ b> A of the rotation shaft 11 rotates with the substrate holder 12 at a constant period.

また、真空槽13内に放電ガス(アルゴンガス)を導きながら、RF電源31およびDC電源33の作動により、給電機構110による基板ホルダ12への給電が行われる。   In addition, the power supply mechanism 110 supplies power to the substrate holder 12 by operating the RF power supply 31 and the DC power supply 33 while introducing the discharge gas (argon gas) into the vacuum chamber 13.

そして、蒸発源16では、容器15内の材料の、高周波コイル14および電源17を用いた高周波誘導加熱が行われ、材料が蒸発する。   In the evaporation source 16, the material in the container 15 is subjected to high frequency induction heating using the high frequency coil 14 and the power source 17, and the material is evaporated.

すると、プラズマとの間の電離作用によってプラスに帯電した蒸発材料は、RF電力のセルフバイアス(マイナス電圧)が作る電界によって基板に引き付けられ、これにより、当該材料からなる緻密な薄膜が、基板に強く付着される。   Then, the vaporized material positively charged by the ionizing action with the plasma is attracted to the substrate by the electric field generated by the RF power self-bias (negative voltage), so that a dense thin film made of the material is applied to the substrate. Strongly attached.

このとき、回転軸11の本体部11Aの一定周期での回転により、受電部11Bの側面11Cが第1送電ブラシ21の内面50Aを断続的に摺動する間、基板ホルダ12へのRF電力の印加が行われ、これにより、基板ホルダ12の近傍でのプラズマが適切に形成される。   At this time, while the side surface 11C of the power receiving unit 11B slides intermittently on the inner surface 50A of the first power transmission brush 21 due to the rotation of the main body 11A of the rotating shaft 11 at a constant cycle, the RF power to the substrate holder 12 is reduced. Application is performed, whereby plasma in the vicinity of the substrate holder 12 is appropriately formed.

また、回転軸11の本体部11Aの一定周期での回転により、受電部11Bの側面11Cが第2送電ブラシ22の内面50Aを断続的に摺動する間、基板ホルダ12へのDCマイナス電圧の矩形パルスの印加が行われ、これにより、RF電力のセルフバイアスが安定に保たれる。   Moreover, while the side surface 11C of the power receiving unit 11B slides intermittently on the inner surface 50A of the second power transmission brush 22 due to the rotation of the main body 11A of the rotating shaft 11 at a constant cycle, the DC negative voltage applied to the substrate holder 12 is reduced. A rectangular pulse is applied, and thereby the RF power self-bias is kept stable.

更に、矩形パルスが基板ホルダ12に印加されていない間は、基板ホルダ12の基板上の薄膜表面に帯電したプラス電荷を適切に中和できる。   Furthermore, while the rectangular pulse is not applied to the substrate holder 12, the positive charge charged on the surface of the thin film on the substrate of the substrate holder 12 can be appropriately neutralized.

以上のとおり、本実施形態の給電機構110は、基板ホルダ12に電気的に接続された回転軸11と、RF電源31のRF電力が印加される第1送電ブラシ21と、DC電源33のDC電圧が印加される第2送電ブラシ22と、を備える。   As described above, the power supply mechanism 110 of the present embodiment includes the rotating shaft 11 that is electrically connected to the substrate holder 12, the first power transmission brush 21 to which the RF power of the RF power supply 31 is applied, and the DC of the DC power supply 33. A second power transmission brush 22 to which a voltage is applied.

そして、本実施形態の給電機構110では、回転軸11の本体部11Aの回転によって、第1送電ブラシ21と回転軸11(受電部11B)との間の断続的な摺動による回転軸11へのRF電力の印加、および、第2送電ブラシ22と回転軸11(受電部11B)との間の断続的な摺動による回転軸11とDC電圧の印加が行われ、これにより、基板ホルダ12の近傍でのプラズマ形成、RF電力のセルフバイアスの安定化、および、基板上の薄膜表面に帯電したプラス電荷の中和を行うことができる。   And in the electric power feeding mechanism 110 of this embodiment, to the rotating shaft 11 by the intermittent sliding between the 1st power transmission brush 21 and the rotating shaft 11 (power receiving part 11B) by rotation of the main-body part 11A of the rotating shaft 11. And the DC voltage is applied to the rotating shaft 11 by intermittent sliding between the second power transmission brush 22 and the rotating shaft 11 (power receiving unit 11B). Can be formed, the RF power self-bias can be stabilized, and the positive charge charged on the surface of the thin film on the substrate can be neutralized.

特に、本実施形態の給電機構110では、回転軸11の本体部11Aの一定の回転周期での回転を上手く利用することにより、従来のDCパルス電源に代えて、単純な構造のDC電源33を用いて、DCマイナス電圧の矩形パルスを基板ホルダ12に印加できる。よって、本実施形態の給電機構110は、簡易な電源系用いて薄膜表面に帯電したプラス電荷を中和できるという従来例と比較した有利な効果を奏する。   In particular, in the power supply mechanism 110 of the present embodiment, a DC power supply 33 having a simple structure can be used instead of the conventional DC pulse power supply by making good use of the rotation of the main body 11A of the rotating shaft 11 at a constant rotation cycle. In use, a rectangular pulse of a DC negative voltage can be applied to the substrate holder 12. Therefore, the power supply mechanism 110 according to the present embodiment has an advantageous effect compared with the conventional example in which the positive charge charged on the surface of the thin film can be neutralized using a simple power supply system.

(第2実施形態)
図4は、本発明の第2実施形態の給電機構の一構成例を示した図である。図4(a)は、給電機構を本体部の中心軸が延びる方向から見た図であり、図4(b)は、給電機構の電源系を示したブロック図である。
(Second Embodiment)
FIG. 4 is a diagram illustrating a configuration example of the power feeding mechanism according to the second embodiment of the present invention. 4A is a view of the power feeding mechanism as viewed from the direction in which the central axis of the main body extends, and FIG. 4B is a block diagram illustrating a power supply system of the power feeding mechanism.

なお、本実施形態の真空処理装置では、給電機構110Aおよびその電源系以外の構成は、第1実施形態の真空処理装置100の構成と同じである。よって、両者に共通する構成の説明を省略する場合がある。   In the vacuum processing apparatus of the present embodiment, the configuration other than the power feeding mechanism 110A and its power supply system is the same as the configuration of the vacuum processing apparatus 100 of the first embodiment. Therefore, description of the configuration common to both may be omitted.

本実施形態の給電機構110Aでは、図4(a)に示すように、第2送電ブラシ122が、互いに絶縁された複数(ここでは、4個)の円弧状(正確には、長さが全円周の半分より小さい劣弧状)のサブブラシ122A、122B、122C、122Dに分割されている。   In the power feeding mechanism 110A of the present embodiment, as shown in FIG. 4A, the second power transmission brush 122 has a plurality of arcuate shapes (here, four) that are insulated from each other (exactly, the length is the entire length). It is divided into sub-brushes 122A, 122B, 122C and 122D having a sub-arc shape smaller than half of the circumference.

このようなサブブラシ122A、122B、122C、122Dの集合体としての第2送電ブラシ122および第1送電ブラシ21は、互いの端面が対向するように配されて送電ブラシの対150を構成している。   The second power transmission brush 122 and the first power transmission brush 21 as an assembly of such sub brushes 122A, 122B, 122C, and 122D are arranged so that their end faces face each other, thereby constituting a pair 150 of power transmission brushes. .

本実施形態の給電機構110Aでは、送電ブラシの対150を本体部11Aの中心軸200が延びる方向から見た場合、送電ブラシの対150の内面50Bに沿った仮想円400を回転軸11の本体部11Aと同軸状に描くことができる。そして、回転軸11の受電部11Bの側面11Cが、送電ブラシの対50の内面50Bに接触するよう、受電部11Bは、本体部11Aの中心軸200から半径方向に偏倚して配されている。   In the power feeding mechanism 110 </ b> A of this embodiment, when the power transmission brush pair 150 is viewed from the direction in which the central axis 200 of the main body portion 11 </ b> A extends, the virtual circle 400 along the inner surface 50 </ b> B of the power transmission brush pair 150 is It can be drawn coaxially with the part 11A. Then, the power receiving unit 11B is arranged in a radially offset manner from the central axis 200 of the main body 11A so that the side surface 11C of the power receiving unit 11B of the rotating shaft 11 contacts the inner surface 50B of the pair 50 of power transmission brushes. .

よって、本体部11Aがその中心軸200周りに回転すると、本体部11Aの中心軸200から偏倚した位置の受電部11Bが、本体部11Aの回転に基づいて、中心軸200を中心とする円運動を行う。すると、受電部11Bの側面11Cが送電ブラシの対50の内面50Bを摺動することができる。   Therefore, when the main body part 11A rotates around the central axis 200, the power receiving part 11B at a position deviated from the central axis 200 of the main body part 11A causes a circular motion around the central axis 200 based on the rotation of the main body part 11A. I do. Then, the side surface 11C of the power receiving unit 11B can slide on the inner surface 50B of the pair 50 of power transmission brushes.

また、図4(b)に示すように、DC電源133のマイナス電圧側の端子が、ローパスフィルタ132を介してサブブラシ122Aに接続され、DC電源133のプラス電圧側の端子が接地されている。また、DC電源233のプラス電圧側の端子が、ローパスフィルタ232を介してサブブラシ122Bに接続され、DC電源233のマイナス電圧側の端子が接地されている。また、DC電源333のマイナス電圧側の端子が、ローパスフィルタ332を介してサブブラシ122Cに接続され、DC電源333のプラス電圧側の端子が接地されている。また、DC電源433のプラス電圧側の端子が、ローパスフィルタ432を介してサブブラシ122Dに接続され、DC電源433のマイナス電圧側の端子が接地されている。   Further, as shown in FIG. 4B, the negative voltage side terminal of the DC power supply 133 is connected to the sub brush 122A via the low pass filter 132, and the positive voltage side terminal of the DC power supply 133 is grounded. Further, the positive voltage side terminal of the DC power source 233 is connected to the sub brush 122B via the low pass filter 232, and the negative voltage side terminal of the DC power source 233 is grounded. Further, the negative voltage side terminal of the DC power source 333 is connected to the sub brush 122C via the low pass filter 332, and the positive voltage side terminal of the DC power source 333 is grounded. Further, the positive voltage side terminal of the DC power source 433 is connected to the sub brush 122D via the low pass filter 432, and the negative voltage side terminal of the DC power source 433 is grounded.

このようにして、隣接するサブブラシ122A、122B、122C、122D同士は、極性が異なるDC電圧が印加される。   In this way, DC voltages having different polarities are applied to the adjacent sub brushes 122A, 122B, 122C, and 122D.

なお、RF電源31の端子は、第1実施形態の給電機構110と同様に、マッチング回路30を介して第1送電ブラシ21に接続されている。   Note that the terminals of the RF power source 31 are connected to the first power transmission brush 21 via the matching circuit 30 in the same manner as the power supply mechanism 110 of the first embodiment.

以上の構成により、回転軸11の本体部11Aでの一定周期の回転によって、回転軸11の受電部11Bが、第2送電ブラシ122(サブブラシ122A、122B、122C、122D)との間の周期的な電気接続を取れる。   With the above configuration, the power receiving unit 11B of the rotating shaft 11 is periodically rotated with the second power transmission brush 122 (sub-brushes 122A, 122B, 122C, 122D) due to the rotation of the rotating shaft 11 in the main body portion 11A. You can make an electrical connection.

よって、本実施形態の給電機構110Aでは、単純な構造のDC電源33を用いて、DCマイナス電圧の矩形パルスおよびDCプラス電圧の矩形パルスを交互に、上記回転周期に基づいて基板ホルダ12に印加することができる。   Therefore, in the power supply mechanism 110A of this embodiment, a DC power source 33 having a simple structure is used to alternately apply a DC negative voltage rectangular pulse and a DC positive voltage rectangular pulse to the substrate holder 12 based on the rotation period. can do.

なお、上記矩形パルスの周期は、本体部11Aの回転周期(回転速度)や第2送電ブラシ122の形状(例えば、第2送電ブラシ122の分割数)により適宜、設定するとよい。これにより、イオンプレーティング法による基板ホルダ12の基板上の薄膜形成を行いながら、当該基板上の薄膜の表面に帯電したプラス電荷が適切に中和されるよう、所望の矩形パルスを基板ホルダ12に印加できる。   Note that the period of the rectangular pulse may be appropriately set according to the rotation period (rotational speed) of the main body 11A and the shape of the second power transmission brush 122 (for example, the number of divisions of the second power transmission brush 122). Thus, while forming a thin film on the substrate of the substrate holder 12 by the ion plating method, a desired rectangular pulse is applied to the substrate holder 12 so that the positive charge charged on the surface of the thin film on the substrate is appropriately neutralized. Can be applied.

つまり、DCマイナス電圧の矩形パルスが基板ホルダ11に印加されている間は、プラズマの作用によりプラスに帯電した蒸発材料を積極的に基板側に引き込むことができる。一方、DCプラス電圧の矩形パルスが印加されている間は、プラズマ中の電子を積極的に基板側に引き込むことができるので、基板上の薄膜表面に帯電したプラス電荷を電子によって中和できる。   That is, while a rectangular pulse of DC negative voltage is applied to the substrate holder 11, the evaporation material charged positively by the action of plasma can be positively drawn to the substrate side. On the other hand, while the DC positive voltage rectangular pulse is applied, electrons in the plasma can be actively drawn to the substrate side, so that the positive charge charged on the surface of the thin film on the substrate can be neutralized by the electrons.

以上のとおり、本実施形態の給電機構110Aでは、第2送電ブラシ122が、互いに絶縁された複数のサブブラシ122A、122B、122C、122Dに分割されており、隣接するサブブラシ122A、122B、122C、122D同士は、極性が異なるDC電圧が印加されている。   As described above, in the power feeding mechanism 110A of the present embodiment, the second power transmission brush 122 is divided into a plurality of sub brushes 122A, 122B, 122C, and 122D that are insulated from each other, and the adjacent sub brushes 122A, 122B, 122C, and 122D. DC voltages having different polarities are applied to each other.

そして、本実施形態の給電機構110Aでは、回転軸11の本体部11Aの回転によって、第1送電ブラシ21と回転軸11との間の断続的な摺動による回転軸11へのRF電力の印加、および、第2送電ブラシ122と回転軸11との間の断続的な摺動による回転軸11へのDC電圧が行われ、これにより、基板ホルダ12の近傍でのプラズマ形成、RF電力のセルフバイアスの安定化、および、基板上の薄膜表面に帯電したプラス電荷の中和を行うことができる。   In the power feeding mechanism 110 </ b> A of the present embodiment, application of RF power to the rotating shaft 11 due to intermittent sliding between the first power transmission brush 21 and the rotating shaft 11 is performed by the rotation of the main body portion 11 </ b> A of the rotating shaft 11. And DC voltage is applied to the rotating shaft 11 by intermittent sliding between the second power transmission brush 122 and the rotating shaft 11, thereby generating plasma in the vicinity of the substrate holder 12 and RF power self. It is possible to stabilize the bias and neutralize the positive charge charged on the surface of the thin film on the substrate.

特に、本実施形態の給電機構110Aでは、回転軸11の本体部11Aの一定の回転周期での回転を上手く利用することにより、従来のDCパルス電源に代えて、単純な構造のDC電源33を用いて、DCマイナス電圧の矩形パルスおよびDCプラス電圧の矩形パルスを交互に、基板ホルダ12に印加できる。よって、本実施形態の給電機構110Aは、簡易な電源系を用いて薄膜表面に帯電したプラス電荷を中和できるという従来例と比較した有利な効果を奏する。   In particular, in the power supply mechanism 110A of the present embodiment, a DC power supply 33 having a simple structure can be used instead of the conventional DC pulse power supply by making good use of the rotation of the main body 11A of the rotating shaft 11 at a constant rotation cycle. The rectangular pulse of DC negative voltage and the rectangular pulse of DC positive voltage can be alternately applied to the substrate holder 12. Therefore, the power supply mechanism 110A according to the present embodiment has an advantageous effect compared to the conventional example in which the positive charge charged on the surface of the thin film can be neutralized using a simple power supply system.

(第1変形例)
第1実施形態の給電機構110では(第2実施形態の給電機構110Aでも同じ)、円環状の絶縁板23、24によって送電ブラシの対50を挟み込むことにより、送電ブラシの対50を保持する構成が例示されている。
(First modification)
In the power supply mechanism 110 of the first embodiment (the same applies to the power supply mechanism 110A of the second embodiment), the power transmission brush pair 50 is held by sandwiching the power transmission brush pair 50 between the annular insulating plates 23 and 24. Is illustrated.

しかしながら、送電ブラシの対50の保持構造はこれに限らない。例えば、図5に示すように、第1送電ブラシ21の端面と第2送電ブラシ22の端面との間の空隙を埋める絶縁部材25が配置され、これにより、送電ブラシの対50を保持するように構成してもよい。   However, the holding structure of the power transmission brush pair 50 is not limited to this. For example, as shown in FIG. 5, an insulating member 25 that fills the gap between the end face of the first power transmission brush 21 and the end face of the second power transmission brush 22 is arranged, so that the pair 50 of power transmission brushes is held. You may comprise.

本変形例の給電機構では、送電ブラシの対50を本体部11A(図2参照)の中心軸200(図2参照)が延びる方向から見た場合、送電ブラシの対50の内面50Cに沿った仮想円を回転軸11の本体部11Aと同軸状に描くことができる。よって、回転軸11の本体部11Aの中心軸200から偏倚した位置の受電部11B(図2参照)が、その中心軸200周りの回転に基づいて、中心軸200を中心とする円運動を行うことにより、受電部11Bの側面11C(図3参照)が送電ブラシの対50の内面50Cを摺動することができる。   In the power feeding mechanism of the present modification, when the power transmission brush pair 50 is viewed from the direction in which the central axis 200 (see FIG. 2) of the main body 11A (see FIG. 2) extends, the inner surface 50C of the power transmission brush pair 50 is aligned. A virtual circle can be drawn coaxially with the main body 11 </ b> A of the rotating shaft 11. Therefore, the power receiving unit 11B (see FIG. 2) at a position deviated from the central axis 200 of the main body part 11A of the rotary shaft 11 performs a circular motion around the central axis 200 based on the rotation around the central axis 200. Accordingly, the side surface 11C (see FIG. 3) of the power receiving unit 11B can slide on the inner surface 50C of the pair 50 of the power transmission brush.

(第2変形例)
第2実施形態の給電機構110Aでは、第2送電ブラシ122を分割する例を述べたが、これに限らない。第2送電ブラシ122の分割とともに、第1送電ブラシ21を分割してもよい。
(Second modification)
In the power supply mechanism 110A of the second embodiment, the example in which the second power transmission brush 122 is divided has been described, but the present invention is not limited to this. The first power transmission brush 21 may be divided together with the division of the second power transmission brush 122.

以上の構成により、第1送電ブラシの円弧状のサブブラシと第2送電ブラシの円弧状のサブブラシとの間の適宜の配置の組合せにより、回転軸21の本体部11Aの回転によって、基板ホルダ12に様々な形態のRF電力やDC電圧を印加できる。   With the above configuration, the substrate holder 12 is rotated by the rotation of the main body portion 11A of the rotary shaft 21 by a combination of appropriate arrangements between the arc-shaped sub brush of the first power transmission brush and the arc-shaped sub brush of the second power transmission brush. Various forms of RF power and DC voltage can be applied.

例えば、本体部11Aの回転によって、DCプラス電圧→DCマイナス電圧→RF電力→DCプラス電圧→DCマイナス電圧→RF電力・・・の如く、RF電力やDC電圧を印加することもできる。   For example, RF power or DC voltage can be applied by rotating the main body 11A, such as DC plus voltage → DC minus voltage → RF power → DC plus voltage → DC minus voltage → RF power.

(第3変形例)
第1実施形態の給電機構110では(第2実施形態の給電機構110Aでも同じ)、受電部11Bと本体部11Aと、が一体になっている回転軸11が例示されているが、これに限らない。
(Third Modification)
In the power supply mechanism 110 of the first embodiment (the same applies to the power supply mechanism 110A of the second embodiment), the rotating shaft 11 in which the power receiving unit 11B and the main body unit 11A are integrated is illustrated, but the present invention is not limited thereto. Absent.

例えば、受電部11Bを本体部11Aと同一形状の絶縁性の円柱部材に、受電部11Bの側面11Cのみが露出するように埋め込み、両者を適宜の固定手段(ねじ止めなど)を用いて締結してもよい。   For example, the power receiving portion 11B is embedded in an insulating cylindrical member having the same shape as the main body portion 11A so that only the side surface 11C of the power receiving portion 11B is exposed, and both are fastened by using appropriate fixing means (such as screwing). May be.

(第4変形例)
第1実施形態の給電機構110では(第2実施形態の給電機構110Aでも同じ)、プラス電荷に帯電した蒸発材料を例示したが、蒸発材料の種類によっては、プラズマの作用によりマイナス電荷を帯電した材料がある。本明細書に記載の技術は、このような材料にも適用できる。
(Fourth modification)
In the power supply mechanism 110 of the first embodiment (the same applies to the power supply mechanism 110A of the second embodiment), an evaporating material charged with a positive charge is illustrated. However, depending on the type of evaporating material, a negative charge is charged by the action of plasma. There are materials. The techniques described herein can also be applied to such materials.

但し、マイナス電荷に帯電した材料からなる薄膜を基板にイオンプレーティング法を用いて形成する場合、以上に述べたDC電源の電圧が逆極性になる。   However, when a thin film made of a negatively charged material is formed on a substrate using an ion plating method, the voltage of the DC power source described above has a reverse polarity.

(第5変形例)
第1実施形態の給電機構110では(第2実施形態の給電機構110Aでも同じ)、第1送電ブラシ21と回転軸11との間も、第2送電ブラシ22と回転軸11との間も、回転軸11の受電部11Bを介して断続的に摺動させる例を述べたが、これに限らない。
(5th modification)
In the power supply mechanism 110 of the first embodiment (the same applies to the power supply mechanism 110A of the second embodiment), between the first power transmission brush 21 and the rotary shaft 11, between the second power transmission brush 22 and the rotary shaft 11, Although the example of sliding intermittently via the power receiving unit 11B of the rotating shaft 11 has been described, the present invention is not limited thereto.

少なくとも、第2送電ブラシ22と回転軸11との間を断続的に摺動させることにより、単純な構造の直流電源を用いて、直流パルスを基板ホルダに印加でき、簡易な電源系用いて薄膜表面に帯電したプラス電荷を中和できるという従来例と比較した有利な効果を奏する。つまり、回転軸11の本体部11Aも受電部として機能させ、第1送電ブラシ21と回転軸11との間を、本体部11Aを介して常時、摺動させてもよい。   At least by intermittently sliding between the second power transmission brush 22 and the rotating shaft 11, a DC pulse can be applied to the substrate holder using a DC power source with a simple structure, and a thin film using a simple power source system There is an advantageous effect compared with the conventional example that the positive charge charged on the surface can be neutralized. That is, the main body portion 11A of the rotating shaft 11 may also function as a power receiving portion, and the first power transmission brush 21 and the rotating shaft 11 may always be slid through the main body portion 11A.

本発明によれば、RF電源を用いて基板ホルダにRF電力を印加するとともに、単純な構造のDC電源を用いて基板ホルダにDCパルスを印加することができる給電機構が得られる。   According to the present invention, it is possible to obtain a power feeding mechanism that can apply RF power to a substrate holder using an RF power source and can apply a DC pulse to the substrate holder using a DC power source having a simple structure.

よって、本発明は、例えば、イオンプレーティング装置の給電機構として利用できる。   Therefore, the present invention can be used as a power feeding mechanism of an ion plating apparatus, for example.

11 回転軸
11A 本体部
11B 受電部
11C 側面
12 基板ホルダ
13 真空槽
14 高周波コイル
15 容器
16 蒸発源
17 電源
18A モータ
18B 回転軸受
18C ベルト
18D プーリ
21 第1送電ブラシ
22、122 第2送電ブラシ
23、24 絶縁板
25 絶縁部材
30 マッチング回路
31 RF電源
31A、31B RF電源の端子
32、132、232、332、432 ローパスフィルタ
33、133、233、333、433 DC電源
33A、33B DC電源の端子
50、150 送電ブラシの対
50A、50B、50C 内面
100 真空処理装置
110 給電機構
120 回転機構
122A、122B、122C、122D サブブラシ
200 中心軸
300、400 仮想円
11 Rotating shaft 11A Body portion 11B Power receiving portion 11C Side surface 12 Substrate holder 13 Vacuum tank 14 High-frequency coil 15 Container 16 Evaporation source 17 Power source 18A Motor 18B Rotary bearing 18C Belt 18D Pulley 21 First power transmission brush 22, 122 Second power transmission brush 23, 24 Insulating plate 25 Insulating member 30 Matching circuit 31 RF power supply 31A, 31B RF power supply terminal 32, 132, 232, 332, 432 Low pass filter 33, 133, 233, 333, 433 DC power supply 33A, 33B DC power supply terminal 50, 150 Power transmission brush pair 50A, 50B, 50C Inner surface 100 Vacuum processing device 110 Power feeding mechanism 120 Rotating mechanism 122A, 122B, 122C, 122D Sub brush 200 Central axis 300, 400 Virtual circle

Claims (9)

基板ホルダに電気的に接続された回転軸と、
高周波電源の高周波電力が印加される第1送電ブラシと、
直流電源の直流電圧が印加される第2送電ブラシと、
を備え、
前記回転軸の回転によって、前記第1送電ブラシと前記回転軸との間の摺動による前記回転軸への前記高周波電力の印加、および、前記第2送電ブラシと前記回転軸との間の断続的な摺動による前記回転軸への前記直流電圧の印加が行われる給電機構。
A rotating shaft electrically connected to the substrate holder;
A first power transmission brush to which high-frequency power of a high-frequency power source is applied;
A second power transmission brush to which a DC voltage of a DC power supply is applied;
With
Application of the high-frequency power to the rotating shaft by sliding between the first power transmission brush and the rotating shaft and rotation between the second power transmitting brush and the rotating shaft by rotation of the rotating shaft. A power feeding mechanism in which the DC voltage is applied to the rotating shaft by sliding.
前記第1送電ブラシと前記回転軸との間の摺動が断続的に行われる請求項1に記載の給電機構。   The power feeding mechanism according to claim 1, wherein sliding between the first power transmission brush and the rotating shaft is intermittently performed. 円弧状の前記第1送電ブラシおよび円弧状の前記第2送電ブラシが、互いの端面が対向するように配されて送電ブラシの対を構成している請求項2に記載の給電機構。   3. The power feeding mechanism according to claim 2, wherein the arc-shaped first power transmission brush and the arc-shaped second power transmission brush are arranged such that their end faces face each other to constitute a pair of power transmission brushes. 前記回転軸は、円柱状の本体部と、前記本体部に設けられた受電部と、を備え、
前記受電部は、前記本体部の中心軸周りの回転に基づいて、前記第1送電ブラシとの間の接続状態、および、第2送電ブラシとの間の接続状態を取ることができる請求項3に記載の給電機構。
The rotating shaft includes a columnar main body, and a power receiving unit provided in the main body,
The power receiving unit can take a connection state with the first power transmission brush and a connection state with the second power transmission brush based on rotation around the central axis of the main body unit. The power feeding mechanism described in 1.
前記送電ブラシの対を前記本体部の中心軸が延びる方向から見た場合、前記送電ブラシの対の内面に沿った仮想円を前記回転軸の本体部と同軸状に描くことができ、
前記本体部の中心軸から偏倚した位置の前記受電部が、前記本体部の中心軸周りの回転に基づいて、前記中心軸を中心とする円運動を行うことにより、前記受電部の側面が前記送電ブラシの対の内面を摺動している請求項4に記載の給電機構。
When the pair of power transmission brushes is viewed from the direction in which the central axis of the main body part extends, a virtual circle along the inner surface of the pair of power transmission brushes can be drawn coaxially with the main body part of the rotating shaft,
The power receiving unit at a position deviated from the central axis of the main body performs a circular motion around the central axis based on rotation around the central axis of the main body, so that the side surface of the power receiving unit is The power feeding mechanism according to claim 4, wherein the power feeding mechanism slides on an inner surface of a pair of power transmission brushes.
前記送電ブラシの対を挟む一対の円環状の絶縁板を備える請求項5に記載の給電機構。   The power feeding mechanism according to claim 5, further comprising a pair of annular insulating plates sandwiching the pair of power transmission brushes. 前記第1送電ブラシの端面と前記第2送電ブラシの端面との間の空隙を埋める絶縁部材を備える請求項5に記載の給電機構。   The power feeding mechanism according to claim 5, further comprising an insulating member that fills a gap between an end surface of the first power transmission brush and an end surface of the second power transmission brush. 前記第2送電ブラシは、互いに絶縁された複数のサブブラシに分割されており、隣接する前記サブブラシ同士は、極性が異なる前記直流電圧が印加されている請求項1乃至7のいずれかに記載の給電機構。   The power supply according to any one of claims 1 to 7, wherein the second power transmission brush is divided into a plurality of sub-brushes insulated from each other, and the adjacent sub-brushes are applied with the DC voltage having different polarities. mechanism. 請求項1乃至8のいずれかに記載の給電機構と、
前記給電機構に前記高周波電力を出力する高周波電源と、
前記給電機構に前記直流電圧を出力する直流電源と、
前記給電機構の回転軸に支持された基板ホルダを内部に配している真空槽と、
前記基板ホルダに対置している蒸発源と、
を備える真空処理装置。

A power feeding mechanism according to any one of claims 1 to 8,
A high-frequency power source for outputting the high-frequency power to the power feeding mechanism;
A DC power supply that outputs the DC voltage to the power supply mechanism;
A vacuum chamber in which a substrate holder supported by a rotating shaft of the power feeding mechanism is disposed;
An evaporation source facing the substrate holder;
A vacuum processing apparatus comprising:

JP2009182085A 2009-08-05 2009-08-05 Power supply mechanism and vacuum processing apparatus Active JP5342364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009182085A JP5342364B2 (en) 2009-08-05 2009-08-05 Power supply mechanism and vacuum processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009182085A JP5342364B2 (en) 2009-08-05 2009-08-05 Power supply mechanism and vacuum processing apparatus

Publications (2)

Publication Number Publication Date
JP2011032560A JP2011032560A (en) 2011-02-17
JP5342364B2 true JP5342364B2 (en) 2013-11-13

Family

ID=43761922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009182085A Active JP5342364B2 (en) 2009-08-05 2009-08-05 Power supply mechanism and vacuum processing apparatus

Country Status (1)

Country Link
JP (1) JP5342364B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022047890A (en) * 2020-09-14 2022-03-25 株式会社シンクロン Power supply apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138346A (en) * 1991-11-15 1993-06-01 Nippon Steel Corp Vacuum arc processor
JP2001181831A (en) * 1999-12-27 2001-07-03 Shin Meiwa Ind Co Ltd Ion machining apparatus, and electricity supply structure for ion machining
JP2003188115A (en) * 2001-12-17 2003-07-04 Shin Meiwa Ind Co Ltd Method and apparatus for semiconductor wiring formation, method and apparatus for manufacturing semiconductor device, and wafer
JP2004300484A (en) * 2003-03-28 2004-10-28 Shin Meiwa Ind Co Ltd Vacuum film-forming apparatus
ATE426690T1 (en) * 2003-07-04 2009-04-15 Bekaert Advanced Coatings ROTATING TUBULAR SPUTTER TARGET ARRANGEMENT
JPWO2008120445A1 (en) * 2007-03-29 2010-07-15 新明和工業株式会社 Sensor mounting structure and vacuum deposition system
JP4881335B2 (en) * 2008-02-26 2012-02-22 日本放送協会 Sputtering equipment

Also Published As

Publication number Publication date
JP2011032560A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
KR101175843B1 (en) Sputtering apparatus
EP3195344B1 (en) Apparatus and method for virtual cathode deposition (vcd) for thin film manufacturing
JP6533511B2 (en) Film forming method and film forming apparatus
US20130081761A1 (en) Radical passing device and substrate processing apparatus
JP2013524015A (en) Cylindrical rotating magnetoelectric sputtering cathode device and method for depositing material using radio frequency radiation
JP2006310101A (en) Coaxial magnetized plasma production device and film forming device using coaxial magnetized plasma production device
RU2008152022A (en) ELECTROSTATIC ENGINE
JP2007510258A (en) Plasma immersion ion implantation using conductive mesh
JP2011179120A (en) Apparatus and method of physical vapor deposition with multi-point clamp
US8834685B2 (en) Sputtering apparatus and sputtering method
KR102192566B1 (en) Sputter deposition source, sputter deposition apparatus, and method of depositing a layer on a substrate
JP5342364B2 (en) Power supply mechanism and vacuum processing apparatus
KR101956722B1 (en) Radio frequency (RF) -sputter deposition sources, deposition apparatus, and method of operation thereof
JP5924872B2 (en) Method for forming insulating nitride layer by plasma generator and plasma generator
CN114107920B (en) Sputtering coating device
EP3770947B1 (en) Power feeding mechanism, rotating base apparatus, and semiconductor processing device
US20140262769A1 (en) Substrate holder apparatus and vacuum processing apparatus
JP2006228681A (en) Ion generator and static eliminator
JP5822133B2 (en) Mask member of inductively coupled plasma processing apparatus
US4938859A (en) Ion bombardment device with high frequency
JP2009235581A (en) High-frequency sputtering apparatus
JP2003183829A (en) Ion working apparatus
JP2004018899A (en) Evaporation source and film-formation equipment
JP2007154224A (en) Sputtering method and sputtering apparatus
US10699885B2 (en) Dual power feed rotary sputtering cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R150 Certificate of patent or registration of utility model

Ref document number: 5342364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250