JP2022047890A - Power supply apparatus - Google Patents

Power supply apparatus Download PDF

Info

Publication number
JP2022047890A
JP2022047890A JP2020153921A JP2020153921A JP2022047890A JP 2022047890 A JP2022047890 A JP 2022047890A JP 2020153921 A JP2020153921 A JP 2020153921A JP 2020153921 A JP2020153921 A JP 2020153921A JP 2022047890 A JP2022047890 A JP 2022047890A
Authority
JP
Japan
Prior art keywords
substrate
surface treatment
rotating body
power supply
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020153921A
Other languages
Japanese (ja)
Other versions
JP2022047890A5 (en
Inventor
嘉規 大胡
Yoshinori Daiko
貴昭 青山
Takaaki Aoyama
充祐 宮内
Mitsusuke Miyauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shincron Co Ltd
Original Assignee
Shincron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shincron Co Ltd filed Critical Shincron Co Ltd
Priority to JP2020153921A priority Critical patent/JP2022047890A/en
Priority to PCT/JP2021/028079 priority patent/WO2022054446A1/en
Priority to TW110130434A priority patent/TWI793727B/en
Publication of JP2022047890A publication Critical patent/JP2022047890A/en
Publication of JP2022047890A5 publication Critical patent/JP2022047890A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power

Abstract

To provide a power supply apparatus 31 capable of enhancing the power density of a substrate S to be treated to increase power efficiency when sequentially treating a plurality of substrates S in surface treatment performed to the substrates S having applied voltage, and a surface treatment machine 1 using the same.SOLUTION: A power supply apparatus 31 used for a surface treatment machine 1 for sequentially subjecting a plurality of substrates S to surface treatment and attached to a rotor 22 for supplying electric power to the substrates S supplies electric power supplied from a power supply 32 to the substrates S held on the rotor 22 and selectively switches power supply and non-power supply by the rotation angle of the rotor 22.SELECTED DRAWING: Figure 1

Description

本発明は、特に真空雰囲気で基板の表面処理をする表面処理機に用いて好ましい給電装置、及びこれを用いた表面処理機に関するものである。 The present invention relates to a power feeding device that is preferable for a surface treatment machine that performs surface treatment of a substrate in a vacuum atmosphere, and a surface treatment machine that uses the power feeding device.

真空室、基板位置選択機構、及び電源を備える成膜装置であって、前記真空室は、スパッタ成膜源を有する成膜領域と、反応ガス源を有する反応領域とを備え、前記基板位置選択機構により、基板の位置を成膜領域とするか反応領域とするかが選択可能であり、前記電源は、基板に対して高周波バイアス電力の供給する成膜装置を用いて、前記成膜領域にて金属薄膜を堆積し、前記反応領域にて金属薄膜を化合物膜に変換する際に、堆積工程と変換工程の両工程に渡って、継続して、基板に高周波バイアス電圧を印加する技術が知られている(特許文献1)。こうすることで、自己バイアスにより基板が負電位となり、反応ガス中の反応種を含むイオンが基板に誘引され、金属薄膜へ確実に付着する。また、正イオンが保持するエネルギーを、金属薄膜の化合物膜への変換に利用でき、化合物の生成反応が促進される。さらに、イオンを引き込むことで反応性が高くなり、成膜速度を向上させることができる。 A film forming apparatus including a vacuum chamber, a substrate position selection mechanism, and a power source, wherein the vacuum chamber includes a film forming region having a sputter film forming source and a reaction region having a reaction gas source, and the substrate position selection. Depending on the mechanism, it is possible to select whether the position of the substrate is the film forming region or the reaction region, and the power supply is applied to the film forming region by using a film forming apparatus that supplies high frequency bias power to the substrate. When a metal thin film is deposited and the metal thin film is converted into a compound film in the reaction region, a technique of continuously applying a high-frequency bias voltage to the substrate is known throughout both the deposition step and the conversion step. (Patent Document 1). By doing so, the substrate becomes a negative potential due to self-bias, and ions containing the reaction species in the reaction gas are attracted to the substrate and surely adhere to the metal thin film. In addition, the energy held by the cations can be used for conversion of the metal thin film into a compound film, and the compound formation reaction is promoted. Further, by drawing in ions, the reactivity is increased and the film forming speed can be improved.

特許第4613015号Patent No. 4613015

上記従来技術では、基板への給電と非給電を、回転ドラムと電源の間に設けられたスイッチで切り替えることができるが、複数の基板を順次処理する場合には、回転ドラムに保持された複数の基板に同時に電圧を印加することになる。そのため、複数の基板にスパッタリングにより順次薄膜を形成する際に、薄膜形成の処理を行う基板のみならず、処理待ち又は処理後の基板にも電力を供給することになる。この場合に、供給する電力が一定であると、基板の単位面積当たりに供給される電力、すなわち電力密度が下がり、電力効率が低下する。その結果、電力を供給することで得られる表面処理の効果が弱まるという問題がある。 In the above-mentioned conventional technique, power supply to the board and non-power supply can be switched by a switch provided between the rotating drum and the power supply, but when processing a plurality of boards sequentially, a plurality of pieces held by the rotating drum. A voltage will be applied to the substrate at the same time. Therefore, when a thin film is sequentially formed on a plurality of substrates by sputtering, electric power is supplied not only to the substrate on which the thin film formation process is performed but also to the substrate waiting for the process or after the process. In this case, if the power to be supplied is constant, the power supplied per unit area of the substrate, that is, the power density is lowered, and the power efficiency is lowered. As a result, there is a problem that the effect of the surface treatment obtained by supplying electric power is weakened.

本発明が解決しようとする課題は、バイアススパッタリングなどの、電圧を印加した基板に対して行う表面処理において、複数の基板を順次処理をする場合に、処理される基板の電力密度を高め、電力効率を上げることができる給電装置、及びこれを用いた表面処理機を提供することである。 The problem to be solved by the present invention is to increase the power density of the substrate to be processed and to increase the power when a plurality of substrates are sequentially processed in the surface treatment performed on the substrate to which a voltage is applied, such as bias sputtering. It is an object of the present invention to provide a power feeding device capable of increasing efficiency and a surface treatment machine using the power feeding device.

本発明は、複数の基板に順次表面処理をする表面処理機に用いる給電装置であって、基板に電力を供給する回転体に直接又は間接的に取り付けられ、電源から供給される電力を前記回転体に保持された基板に供給し、前記回転体の回転位置によって、給電と非給電とを選択的に切り替える表面処理機用給電装置によって上記課題を解決する。 The present invention is a power feeding device used for a surface treatment machine that sequentially performs surface treatment on a plurality of substrates, and is directly or indirectly attached to a rotating body that supplies power to the substrates, and the power supplied from the power source is used for the rotation. The above problem is solved by a power supply device for a surface treatment machine that supplies power to a substrate held on the body and selectively switches between power supply and non-power supply according to the rotation position of the rotating body.

上記発明において、表面処理機用給電装置は、非接触給電により、前記電源から前記回転体に電力を供給することが好ましい。 In the above invention, it is preferable that the power feeding device for the surface treatment machine supplies electric power from the power source to the rotating body by non-contact power feeding.

上記発明において、表面処理機用給電装置は、絶縁体及び複数の導体を備え、前記複数の導体は、前記絶縁体の間に、前記回転体の回転方向に沿って離散的に配置され、所定の回転位置で前記電源と順次接続することが好ましい。 In the above invention, the power feeding device for a surface treatment machine includes an insulator and a plurality of conductors, and the plurality of conductors are discretely arranged between the insulators along the rotation direction of the rotating body, and are predetermined. It is preferable to sequentially connect to the power supply at the rotation position of.

上記発明において、平面視したときに給電装置が円形であり、前記複数の導体が外周部で前記電源と接続し、前記外周部の両端と回転体の回転中心とが成す、回転体の回転方向の角度が、前記基板に表面処理をする時間と、前記基板に電力を供給する時間とが等しくなる角度であることが好ましい。 In the above invention, the power feeding device is circular when viewed in a plan view, the plurality of conductors are connected to the power source at the outer peripheral portion, and both ends of the outer peripheral portion and the rotation center of the rotating body form a rotation direction of the rotating body. It is preferable that the angle of is equal to the time for surface-treating the substrate and the time for supplying power to the substrate.

上記発明において、前記複数の導体は、複数の前記電源と順次接続することが好ましい。 In the above invention, it is preferable that the plurality of conductors are sequentially connected to the plurality of power sources.

また、本発明は、上記給電装置と、少なくとも前記回転体の一部を真空雰囲気に保持する筐体と、前記基板を保持し、電力を供給するために前記回転体に設けられた複数のホルダと、前記複数のホルダと前記複数の導体とを接続する複数の導線と、を備える表面処理機によって上記課題を解決する。 Further, in the present invention, the power feeding device, a housing for holding at least a part of the rotating body in a vacuum atmosphere, and a plurality of holders provided on the rotating body for holding the substrate and supplying electric power. The above problem is solved by a surface treatment machine provided with a plurality of conductors connecting the plurality of holders and the plurality of conductors.

上記発明において、導体の数が前記ホルダの数と等しく、導体が前記ホルダに一対一で接続していることが好ましい。 In the above invention, it is preferable that the number of conductors is equal to the number of the holders and the conductors are connected to the holders on a one-to-one basis.

本発明によれば、電圧を印加した基板に対して行う表面処理において、複数の基板を順次処理をする場合に、処理を行う基板に対して選択的に電力を供給することができる。これにより、処理される基板の電力密度を高め、電力効率を上げることができる。 According to the present invention, in the surface treatment performed on a substrate to which a voltage is applied, when a plurality of substrates are sequentially treated, electric power can be selectively supplied to the substrate to be treated. As a result, the power density of the substrate to be processed can be increased and the power efficiency can be improved.

本発明に係る給電装置を含む表面処理機の第1実施形態を示す正面図である。It is a front view which shows 1st Embodiment of the surface treatment machine which includes the power feeding device which concerns on this invention. 図1に示す表面処理機の平面図である。It is a top view of the surface treatment machine shown in FIG. 図1に示す給電装置の平面図である。It is a top view of the power feeding device shown in FIG. 図1に示す回転体のAA線に沿う断面図である。FIG. 3 is a cross-sectional view taken along the line AA of the rotating body shown in FIG. 図1の表面処理機を用いた基板の表面処理の工程を示す平面図(その1)である。FIG. 1 is a plan view (No. 1) showing a process of surface treatment of a substrate using the surface treatment machine of FIG. 1. 図1の表面処理機を用いた基板の表面処理の工程を示す平面図(その2)である。FIG. 2 is a plan view (No. 2) showing a process of surface treatment of a substrate using the surface treatment machine of FIG. 1. 図1の表面処理機を用いた基板の表面処理の工程を示す平面図(その3)である。FIG. 3 is a plan view (No. 3) showing a process of surface treatment of a substrate using the surface treatment machine of FIG. 1. 図1の表面処理機を用いた基板の表面処理の工程を示す平面図(その4)である。FIG. 4 is a plan view (No. 4) showing a process of surface treatment of a substrate using the surface treatment machine of FIG. 1. 図1の表面処理機を用いた基板の表面処理の工程を示す平面図(その5)である。FIG. 5 is a plan view (No. 5) showing a process of surface treatment of a substrate using the surface treatment machine of FIG. 1. 本発明に係る給電装置を含む表面処理機の第2実施形態を示す正面図である。It is a front view which shows the 2nd Embodiment of the surface treatment machine which includes the power feeding device which concerns on this invention. 図6に示す表面処理機の平面図である。It is a top view of the surface treatment machine shown in FIG. 図6に示す給電装置の平面図である。It is a top view of the power feeding device shown in FIG.

以下、本発明の実施形態を図面に基づいて説明する。なお、以下に説明する実施形態はあくまで例示であり、本発明を限定するものではなく、適宜の範囲で改変することができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the embodiments described below are merely examples, and the present invention is not limited thereto, and modifications can be made to an appropriate extent.

[第1実施形態]
図1は、本発明に係る給電装置を含む表面処理機の第1実施形態を示す正面図である。本実施形態の表面処理機1は、基板Sに対して、真空雰囲気にて各種の表面処理を行うための装置である。基板Sとしては、樹脂やプラスチックなどの有機物、ガラスやセラミックスなどの無機物、シリコンなどの半導体、及び銅合金やニッケル、チタンなどの金属のうち少なくとも1つを含む基板を用いることができる。また、基板Sの形状は、表面処理機1にて表面処理を行うことができる範囲内の大きさであれば、円形、矩形、その他適宜の形状とすることができる。
[First Embodiment]
FIG. 1 is a front view showing a first embodiment of a surface treatment machine including a power feeding device according to the present invention. The surface treatment machine 1 of the present embodiment is a device for performing various surface treatments on the substrate S in a vacuum atmosphere. As the substrate S, a substrate containing at least one of an organic substance such as resin and plastic, an inorganic substance such as glass and ceramics, a semiconductor such as silicon, and a metal such as a copper alloy, nickel, and titanium can be used. Further, the shape of the substrate S can be a circle, a rectangle, or any other appropriate shape as long as the size is within the range in which the surface treatment can be performed by the surface treatment machine 1.

表面処理機1にて行う表面処理としては、たとえば化学蒸着法(CVD)又はスパッタリングなどの物理蒸着法(PVD)による成膜、プラズマエッチング、及びプラズマを用いたアッシング(灰化)を例示することができる。図1に示す表面処理機1では、表面処理として、プラズマ発生装置11を用いた基板Sの表面の洗浄処理と、スパッタリング装置12及び13を用いた、スパッタリングによる基板Sの表面への薄膜形成処理を、複数の基板Sに対して順次行う。 Examples of the surface treatment performed by the surface treatment machine 1 include film formation by a chemical vapor deposition method (CVD) or a physical vapor deposition method (PVD) such as sputtering, plasma etching, and ashing (ashing) using plasma. Can be done. In the surface treatment machine 1 shown in FIG. 1, as surface treatment, a cleaning treatment of the surface of the substrate S using the plasma generator 11 and a thin film forming treatment on the surface of the substrate S by sputtering using the sputtering devices 12 and 13 are performed. Is sequentially performed for a plurality of substrates S.

本実施形態の洗浄処理は、超音波やプラズマを用いた物理的洗浄であり、特に、高密度プラズマを用いたプラズマ処理により、基板Sの表面を洗浄することを含む。ただし、物理的洗浄に加えて、洗剤、酸、又はアルカリなどを用いた化学的洗浄を基板Sに別途行ってもよい。一方、薄膜形成処理に用いるスパッタリングとしては、マグネトロンスパッタ、リアクティブスパッタ又はバイアススパッタなどの適宜のスパッタ方式を用いることができる。第1実施形態では、基板Sに対する表面処理として、プラズマ発生装置11で発生させた高密度プラズマを用いる、プラズマ処理による基板Sの洗浄処理と、スパッタリング装置12を用いる、2極スパッタリング方式による薄膜形成処理と、スパッタリング装置13を用いる、2極スパッタリング方式のバイアススパッタによる薄膜形成処理とを行う。 The cleaning treatment of the present embodiment is physical cleaning using ultrasonic waves or plasma, and particularly includes cleaning the surface of the substrate S by plasma treatment using high-density plasma. However, in addition to the physical cleaning, a chemical cleaning using a detergent, an acid, an alkali or the like may be separately performed on the substrate S. On the other hand, as the sputtering used for the thin film forming process, an appropriate sputtering method such as magnetron sputtering, reactive sputtering or bias sputtering can be used. In the first embodiment, as the surface treatment of the substrate S, a cleaning treatment of the substrate S by plasma treatment using high-density plasma generated by the plasma generator 11 and a thin film formation by a bipolar sputtering method using a sputtering apparatus 12 are performed. The treatment and the thin film forming treatment by the bias sputtering of the bipolar sputtering method using the sputtering apparatus 13 are performed.

これらの表面処理が行われる間、基板Sは、回転体22のホルダHに保持される。回転体22は、基板Sを保持するためのホルダHを複数備える上部221と、この上部221から垂下する軸状の下部222とを含んで構成され、これら上部221と下部222は一体的に回転する。図1に示す回転体22では、上部221はカルーセル式の回転ドラムであり、複数のホルダHが上部221の側面に設けられている。図1に示すホルダHは、機械的に基板Sを保持する。たとえば、ホルダHに備えられたクランプで基板Sを把持する、又はホルダHに備えられた突起部に基板Sを係合させることで、ホルダHは基板Sを保持する。また、ホルダHは、表面処理のために基板Sに電圧を印加することができ、第1実施形態では、少なくとも、プラズマ発生装置11によるプラズマエッチング、つまり洗浄処理と、スパッタリング装置13によるバイアススパッタとにおいて、基板Sにバイアス電圧を印加する。さらに、ホルダHは、回転体22と基板Sとの間を絶縁するために、絶縁体を備えていてもよい。なお、当該絶縁体は、ホルダHと一体である必要はなく、ホルダHから取り外せてもよい。絶縁体がホルダHから取り外しできる場合は、ホルダHに基板Sを搭載するときに、あわせて絶縁体をホルダHに取り付けてもよい。 While these surface treatments are performed, the substrate S is held by the holder H of the rotating body 22. The rotating body 22 is configured to include an upper portion 221 having a plurality of holders H for holding the substrate S, and a shaft-shaped lower portion 222 hanging from the upper portion 221. The upper portion 221 and the lower portion 222 are integrally rotated. do. In the rotating body 22 shown in FIG. 1, the upper portion 221 is a carousel type rotating drum, and a plurality of holders H are provided on the side surface of the upper portion 221. The holder H shown in FIG. 1 mechanically holds the substrate S. For example, the holder H holds the substrate S by gripping the substrate S with a clamp provided on the holder H or engaging the substrate S with a protrusion provided on the holder H. Further, the holder H can apply a voltage to the substrate S for surface treatment, and in the first embodiment, at least plasma etching by the plasma generator 11, that is, cleaning treatment and bias sputtering by the sputtering apparatus 13 are performed. In, a bias voltage is applied to the substrate S. Further, the holder H may be provided with an insulator in order to insulate between the rotating body 22 and the substrate S. The insulator does not have to be integrated with the holder H and may be removed from the holder H. If the insulator can be removed from the holder H, the insulator may be attached to the holder H when the substrate S is mounted on the holder H.

回転体22は、回転体22の中心部を貫通しているシャフト42に取り付けられており、シャフト42が回転すると、シャフト42と共に回転する。シャフト42は、一端が駆動装置41に接続され、他端は固定部43に回転可能に取り付けられている。駆動装置41は、電動機(モータ)、滑車、ベルト及び歯車などを備え、たとえば1rpm~200rpmの回転速度でシャフト42を回転させることで、回転体22を回転させる。駆動装置41によるシャフト42の回転は、連続的な定速回転であってもよく、ステッピングモータのような、所定の回転角度(たとえば45°、90°、180°など)ごとに回転と停止を繰り返す間欠的な回転であってもよい。以下においては、回転体22を定速回転させる例を説明する。 The rotating body 22 is attached to a shaft 42 penetrating the central portion of the rotating body 22, and when the shaft 42 rotates, it rotates together with the shaft 42. One end of the shaft 42 is connected to the drive device 41, and the other end is rotatably attached to the fixed portion 43. The drive device 41 includes an electric motor (motor), a pulley, a belt, gears, and the like, and rotates the rotating body 22 by rotating the shaft 42 at a rotation speed of, for example, 1 rpm to 200 rpm. The rotation of the shaft 42 by the drive device 41 may be continuous constant speed rotation, and rotation and stop are performed at predetermined rotation angles (for example, 45 °, 90 °, 180 °, etc.) such as a stepping motor. It may be an intermittent rotation that repeats. In the following, an example of rotating the rotating body 22 at a constant speed will be described.

基板Sの洗浄処理及び薄膜形成処理は、たとえば真空ポンプを用いて真空雰囲気に保たれた筐体21内で行われる。図1に示す表面処理機1では、回転体22の上部221は、筐体21内に設けられ、筐体21と回転体22の下部222との間は、Oリングシール、ウィルソンシール、磁気流体シール又はベローズシールなどのシール23により封止されている。なお、真空とは、通常の大気圧より低い圧力の気体で満たされた空間内の状態のことをいう(日本産業規格JIS)が、本実施形態の表面処理機1にて実現される筐体21内の真空度は、処理内容に応じて適宜設定され、たとえば100kPa~100Paの低真空から0.1Pa~10-5Paの高真空など、あらゆる真空度に適用することができる。また、図1に示す表面処理機1では、回転体22の上部221を筐体21内に設けたが、回転体22の一部だけでなく、回転体22の全部を、筐体21内に配置してもよいし、これに加えて、給電装置31及び/又は駆動装置41を、筐体21内に配置してもよい。 The cleaning process and the thin film forming process of the substrate S are performed in the housing 21 kept in a vacuum atmosphere by using, for example, a vacuum pump. In the surface treatment machine 1 shown in FIG. 1, the upper portion 221 of the rotating body 22 is provided in the housing 21, and an O-ring seal, a Wilson seal, and a magnetic fluid are provided between the housing 21 and the lower portion 222 of the rotating body 22. It is sealed by a seal 23 such as a seal or a bellows seal. The vacuum refers to a state in a space filled with a gas having a pressure lower than the normal atmospheric pressure (Japanese Industrial Standards JIS), but the housing realized by the surface treatment machine 1 of the present embodiment. The degree of vacuum in 21 is appropriately set according to the processing content, and can be applied to any degree of vacuum, for example, from a low vacuum of 100 kPa to 100 Pa to a high vacuum of 0.1 Pa to 10-5 Pa. Further, in the surface treatment machine 1 shown in FIG. 1, the upper portion 221 of the rotating body 22 is provided in the housing 21, but not only a part of the rotating body 22 but the entire rotating body 22 is placed in the housing 21. The power feeding device 31 and / or the driving device 41 may be arranged in the housing 21.

図2は、図1に示す表面処理機1の平面図である。表面処理機1では、図2に示すように、筐体21の内部が4つの領域R1~R4に区切られており、領域R1では処理済みの基板Sの取り出しと未処理の基板Sの搬入が行われ、領域R2では基板Sの表面の洗浄処理が行われ、領域R3ではスパッタリングによる薄膜形成処理が行われ、そして領域R4ではバイアススパッタによる薄膜形成処理が行われる。各領域R1~R4は、図2に破線で示す仕切り壁211により区切られており、各領域R1~R4における処理が、他の領域の処理に影響を及ぼさないようになっている。また、各領域R1~R4における圧力及び温度は、各領域R1~R4に独立の制御システムを設けることで、独立に制御することができる。以下、領域R1~R4における基板Sに対する処理について、それぞれ説明する。 FIG. 2 is a plan view of the surface treatment machine 1 shown in FIG. In the surface treatment machine 1, as shown in FIG. 2, the inside of the housing 21 is divided into four regions R1 to R4, and in the region R1, the processed substrate S is taken out and the unprocessed substrate S is carried in. In the region R2, the surface of the substrate S is cleaned, in the region R3, a thin film forming treatment by sputtering is performed, and in the region R4, a thin film forming treatment by bias sputtering is performed. Each region R1 to R4 is separated by a partition wall 211 shown by a broken line in FIG. 2, so that the processing in each region R1 to R4 does not affect the processing in other regions. Further, the pressure and temperature in each region R1 to R4 can be controlled independently by providing an independent control system in each region R1 to R4. Hereinafter, the processing for the substrate S in the regions R1 to R4 will be described.

領域R1は、全ての薄膜形成処理が完了した基板Sを表面処理機1の外部へ取り出し、同時に、空になったホルダHに、まだ表面処理がされてない基板Sを搭載するための領域である。領域R1にて、処理済みの基板Sを未処理の基板Sと交換することで、表面処理機1は、連続的に基板Sの表面処理を行うことができる。基板Sの取り出しと搬入は、筐体21の側壁面に設けられた開口部O(図2に端部E1及びE2を示す)を介して行う。なお、筐体21は、開口部Oを介して、図示しないロードロック室などの気密を維持できる設備と連通し、これにより、基板Sを筐体21から取り出す際にも、筐体21内の真空雰囲気は維持される。 The region R1 is a region for taking out the substrate S for which all the thin film forming treatments have been completed to the outside of the surface treatment machine 1, and at the same time, mounting the substrate S which has not been surface-treated on the empty holder H. be. By replacing the treated substrate S with the untreated substrate S in the region R1, the surface treatment machine 1 can continuously perform the surface treatment of the substrate S. The substrate S is taken out and carried in through the opening O (the ends E1 and E2 are shown in FIG. 2) provided on the side wall surface of the housing 21. The housing 21 communicates with equipment that can maintain airtightness, such as a load lock chamber (not shown), through the opening O, whereby the substrate S can be taken out from the housing 21 in the housing 21. The vacuum atmosphere is maintained.

領域R2は、プラズマ発生装置11を用いた基板Sの洗浄処理を行うための領域である。すなわち、薄膜形成処理をする基板Sの表面に、プラズマ発生装置11により発生させたプラズマの粒子を入射させることで、たとえば基板Sの表面に付着した有機物をアッシングによって分解し、薄膜を形成する基板Sの表面から異物を除去する。これにより、基板Sの表面を清浄にし、緻密な薄膜の形成を促進する。また、本実施形態の洗浄処理では、基板Sにバイアス電圧を印加しているため、アッシングに加えて、プラズマエッチングによって基板Sの表面の酸化層が除去でき、これにより、基板Sの表面に形成される薄膜にアンカー効果が発現する。プラズマエッチングを行うために、領域R2には、たとえばアルゴン(Ar)ガスのような不活性ガスを導入し、さらに、基板Sが熱によって損傷しないように、基板Sの温度を水冷などで適宜制御する。基板Sに電圧を印加する際には、たとえば周波数400kHzの交流電源を用いる。なお、洗浄処理におけるバイアス電圧の印加、及びそれに伴うプラズマエッチングは必須ではなく、バイアス電圧を印加せずにアッシングのみの洗浄処理を行ってもよい。 The region R2 is a region for cleaning the substrate S using the plasma generator 11. That is, by injecting plasma particles generated by the plasma generator 11 onto the surface of the substrate S to be thin-film formed, for example, organic substances adhering to the surface of the substrate S are decomposed by ashing to form a thin film. Remove foreign matter from the surface of S. This cleans the surface of the substrate S and promotes the formation of a dense thin film. Further, in the cleaning process of the present embodiment, since the bias voltage is applied to the substrate S, the oxide layer on the surface of the substrate S can be removed by plasma etching in addition to ashing, thereby forming on the surface of the substrate S. Anchor effect appears on the thin film. In order to perform plasma etching, an inert gas such as argon (Ar) gas is introduced into the region R2, and the temperature of the substrate S is appropriately controlled by water cooling or the like so that the substrate S is not damaged by heat. do. When applying a voltage to the substrate S, for example, an AC power supply having a frequency of 400 kHz is used. It should be noted that the application of the bias voltage in the cleaning process and the plasma etching accompanying the application of the bias voltage are not indispensable, and the cleaning process of only ashing may be performed without applying the bias voltage.

領域R3は、スパッタリング装置12を用いた薄膜形成処理を行うための領域である。スパッタリング装置12は、少なくとも成膜用のスパッタリングターゲット121と、スパッタリングターゲット121を支持するバッキングプレート122とを備える。スパッタリングターゲット121としては、アルミニウム、銀、チタン、ニッケルなどの金属、二酸化チタンなどの酸化物、窒化チタンなどの窒化物、炭化チタン、炭化ケイ素、炭化タングステンなどの炭化物、硫化亜鉛などの硫化物、及びフッ素樹脂などの樹脂のうち少なくとも1つを含むターゲットを用いることができる。また、スパッタリングターゲットの形状は特に限定されず、平板型、円筒型など、任意の形状でよい。スパッタリングを行うために、領域R3には、たとえばアルゴン、酸素、又は窒素のような放電ガスを導入し、さらに、基板Sが熱によって損傷しないように、基板Sの温度を水冷などで適宜制御する。 The region R3 is a region for performing a thin film forming process using the sputtering apparatus 12. The sputtering apparatus 12 includes at least a sputtering target 121 for film formation and a backing plate 122 that supports the sputtering target 121. The sputtering target 121 includes metals such as aluminum, silver, titanium and nickel, oxides such as titanium dioxide, nitrides such as titanium nitride, carbides such as titanium carbide, silicon carbide and tungsten carbide, and sulfides such as zinc sulfide. And a target containing at least one of a resin such as a fluororesin can be used. The shape of the sputtering target is not particularly limited, and may be any shape such as a flat plate type or a cylindrical type. In order to perform sputtering, a discharge gas such as argon, oxygen, or nitrogen is introduced into the region R3, and the temperature of the substrate S is appropriately controlled by water cooling or the like so that the substrate S is not damaged by heat. ..

領域R4は、基板Sにバイアス電圧を印加したうえで、スパッタリング装置13を用いてバイアススパッタを行い、基板Sの表面に薄膜を形成するための領域である。バイアススパッタにおいて基板に印加する電圧は、たとえば直流電源(DC)であれば、スパッタリングに用いる陽極に対して-500V~500Vの範囲で適宜の値を設定することができる。また、スパッタリング装置12と同様に、スパッタリング装置13は、少なくともスパッタリングターゲット131とバッキングプレート132とを備える。スパッタリングターゲット131には、スパッタリングターゲット121と同様に金属、酸化物、窒化物、炭化物、硫化物及び樹脂のうち少なくとも1つを含むターゲットを用いることができるが、スパッタリングターゲット131は、スパッタリングターゲット121と同じターゲットでもよいし、異なるターゲットであってもよい。なお、領域R4の環境は、領域R3と同様に、スパッタリング装置13を用いたバイアススパッタによる薄膜形成が行える適宜の条件に保持する。 The region R4 is a region for forming a thin film on the surface of the substrate S by applying a bias voltage to the substrate S and then performing bias sputtering using the sputtering apparatus 13. The voltage applied to the substrate in bias sputtering can be set to an appropriate value in the range of −500V to 500V with respect to the anode used for sputtering, for example, in the case of a direct current power supply (DC). Further, like the sputtering device 12, the sputtering device 13 includes at least a sputtering target 131 and a backing plate 132. As the sputtering target 131, a target containing at least one of a metal, an oxide, a nitride, a carbide, a sulfide and a resin can be used as in the sputtering target 121, but the sputtering target 131 may be a target containing the sputtering target 121. It may be the same target or different targets. The environment of the region R4 is maintained under appropriate conditions so that the thin film can be formed by bias sputtering using the sputtering apparatus 13, as in the region R3.

仕切り壁211により4個の領域R1~R4に区切られた筐体21の中心部には、回転体22の上部221が設けられ、回転ドラム形状の上部221の中心部をシャフト42が貫通している。シャフト42は、駆動装置41により点Cを中心に矢印Dの方向に回転し、上部221を含む回転体22は、シャフト42と共に、時計回りの方向(つまり矢印Dの方向)に回転する。回転体22の上部221は、その側面に、反時計回りにH1~H4の4個のホルダHを備え、基板S1~S4を保持するとともに、各ホルダH1~H4には、給電用の導線33a~33dが接続されている。本実施形態の表面処理機1では、シャフト42を介して、駆動装置41で回転体22を点C周りに、矢印Dの方向に回転させることで、複数の基板S1~S4について、基板S1→S2→S3→S4の順で、順次処理を行う。 An upper portion 221 of the rotating body 22 is provided in the central portion of the housing 21 divided into four regions R1 to R4 by the partition wall 211, and the shaft 42 penetrates the central portion of the upper portion 221 having a rotating drum shape. There is. The shaft 42 is rotated by the drive device 41 in the direction of arrow D about the point C, and the rotating body 22 including the upper portion 221 is rotated in the clockwise direction (that is, in the direction of arrow D) together with the shaft 42. The upper portion 221 of the rotating body 22 is provided with four holders H of H1 to H4 counterclockwise on its side surface, holds the substrates S1 to S4, and is connected to the power feeding conductors 33a in the holders H1 to H4. ~ 33d are connected. In the surface treatment machine 1 of the present embodiment, the rotating body 22 is rotated around the point C by the drive device 41 in the direction of the arrow D via the shaft 42, so that the plurality of substrates S1 to S4 can be changed from the substrate S1 to the substrate S1. Sequential processing is performed in the order of S2 → S3 → S4.

回転体22の上部221は、ホルダH1~H4に基板Sを保持した状態で、領域R1~R4を画定する仕切り壁211と接触することなくシャフト42と共に定速回転し、領域R1→R2→R3→R4→R1→R2→・・・の順に、基板Sを順次搬送する。こうすることで、各基板S1~S4について、洗浄処理(領域R2)→薄膜形成処理(領域R3)→薄膜形成処理(領域R4)→洗浄処理(領域R2)→・・・の順に、繰り返し表面処理を行う。各基板S1~S4の表面処理の一例として、たとえば図2の状況では、各ホルダH1~H4に基板S1~S4が保持されており、領域R1では、ホルダH1に保持された基板S1に表面処理は行わない一方、領域R2では、ホルダH4に保持された基板S4に表面の洗浄処理を行い、領域R3では、ホルダH3に保持された基板S3に薄膜形成処理を行い、領域R4では、ホルダH2に保持された基板S2にバイアススパッタによる薄膜形成処理を行う。 The upper portion 221 of the rotating body 22 rotates at a constant speed together with the shaft 42 without contacting the partition wall 211 defining the regions R1 to R4 with the substrate S held by the holders H1 to H4, and the regions R1 → R2 → R3. → R4 → R1 → R2 → ... The substrate S is sequentially conveyed. By doing so, for each substrate S1 to S4, the surface is repeated in the order of cleaning treatment (region R2) → thin film forming treatment (region R3) → thin film forming treatment (region R4) → cleaning treatment (region R2) → ... Perform processing. As an example of the surface treatment of the substrates S1 to S4, for example, in the situation of FIG. 2, the substrates S1 to S4 are held in the holders H1 to H4, and in the region R1, the surface treatment is applied to the substrate S1 held in the holder H1. On the other hand, in the region R2, the substrate S4 held in the holder H4 is subjected to surface cleaning treatment, in the region R3, the substrate S3 held in the holder H3 is subjected to a thin film forming treatment, and in the region R4, the holder H2 is performed. The substrate S2 held in the above is subjected to a thin film forming process by bias sputtering.

こうして、洗浄処理と薄膜形成処理を繰り返し、全ての基板S1~S4について表面処理が完了した後、回転体22の定速回転を停止し、処理済みの基板S1~S4を、開口部Oを介して表面処理機1から取り出する。これと同時に、空になったホルダH1~H4に、まだ表面処理がなされていない基板Sを搭載する。たとえば、図2に示すように、領域R1にて表面処理の完了した基板S1をホルダH1から取り外し、開口部Oを介して表面処理機1から取り出した後に、ホルダH1に未処理の基板S5を搭載する。基板S5を搭載した後は、回転体22を所定の角度(たとえば90°)だけ回転させて、表面処理の完了した基板S2をホルダH2から取り外し、開口部Oを介して表面処理機1から取り出した後に、ホルダH2に未処理の基板S6を搭載する。基板S3及びS4も同様にして表面処理機1から取り出し、ホルダH3及びH4に、それぞれ未処理の基板S7及びS8を搭載する。そして、ホルダH1~H4に基板S5~S8が搭載されて準備が完了すると、回転体22を再び定速回転させ、領域R1→R2→R3→R4→R1→R2→・・・の順に、基板Sを順次搬送し、各基板S5~S8について、洗浄処理(領域R2)→薄膜形成処理(領域R3)→薄膜形成処理(領域R4)→洗浄処理(領域R2)→・・・の順に、繰り返し表面処理を行う。 In this way, the cleaning treatment and the thin film forming treatment are repeated, and after the surface treatment of all the substrates S1 to S4 is completed, the constant speed rotation of the rotating body 22 is stopped, and the treated substrates S1 to S4 are passed through the opening O. And take it out from the surface treatment machine 1. At the same time, the substrates S that have not been surface-treated are mounted on the empty holders H1 to H4. For example, as shown in FIG. 2, the substrate S1 whose surface treatment has been completed in the region R1 is removed from the holder H1 and taken out from the surface treatment machine 1 through the opening O, and then the untreated substrate S5 is placed in the holder H1. Mount. After mounting the substrate S5, the rotating body 22 is rotated by a predetermined angle (for example, 90 °), the surface-treated substrate S2 is removed from the holder H2, and the substrate S2 is taken out from the surface treatment machine 1 through the opening O. After that, the unprocessed substrate S6 is mounted on the holder H2. The substrates S3 and S4 are also taken out from the surface treatment machine 1 in the same manner, and the untreated substrates S7 and S8 are mounted on the holders H3 and H4, respectively. Then, when the substrates S5 to S8 are mounted on the holders H1 to H4 and the preparation is completed, the rotating body 22 is rotated at a constant speed again, and the substrates are rotated in the order of regions R1 → R2 → R3 → R4 → R1 → R2 → ... S is sequentially conveyed, and the cleaning process (region R2) → thin film forming process (region R3) → thin film forming process (region R4) → cleaning process (region R2) → ... Is repeated for each substrate S5 to S8. Perform surface treatment.

表面処理機1は、回転体22の上部221を回転させることで、複数の基板Sを処理が行われる領域Rに順次搬送するが、図2の例であれば、上部221は、1rpm~200rpmの範囲内の回転速度で常に回転し続ける。またこれに代えて、所定角度(たとえば90°)だけ回転した後、各領域R1~R4での処理が完了するまで回転せずに停止し、各領域R1~R4での処理が完了した後に、再度、所定角度だけ回転して停止してもよい。このような上部221の回転は、たとえば、駆動装置41にステッパー電動機を用いてシャフト42を回転することで実現できる。なお、図2に示す回転体22は4個のホルダHを備えるが、ホルダHの数は特に限定されず、回転体22においてホルダHを配置できる部分の面積と、処理する基板Sの大きさとから、適宜の値を設定することができる。 The surface treatment machine 1 sequentially conveys a plurality of substrates S to the region R where processing is performed by rotating the upper portion 221 of the rotating body 22, but in the example of FIG. 2, the upper portion 221 is 1 rpm to 200 rpm. It keeps rotating at a rotation speed within the range of. Instead of this, after rotating by a predetermined angle (for example, 90 °), it stops without rotating until the processing in each region R1 to R4 is completed, and after the processing in each region R1 to R4 is completed, It may rotate again by a predetermined angle and stop. Such rotation of the upper portion 221 can be realized, for example, by rotating the shaft 42 by using a stepper motor for the drive device 41. The rotating body 22 shown in FIG. 2 includes four holders H, but the number of holders H is not particularly limited, and the area of the portion of the rotating body 22 on which the holder H can be arranged and the size of the substrate S to be processed are used. Therefore, an appropriate value can be set.

図1に戻り、回転体22に保持された基板Sにバイアス電圧を印加するための電力は、給電装置31を介して、電源32から供給される。給電装置31と電源32との電気的な接続手段(電気接点)としては、ブラシ34を用いることができる。ブラシ34は、導線など適宜の手段により電源32に接続している。電源32は、たとえば50Hz~400MHzの交流電源、特に30kHz~300kHzの長波(LF)又は10kHz~100MHzの高周波(RF)の周波数を有する交流電源のほか、直流電源(DC)、又はこれらを重畳させたものであってもよい。また、交流電源の波形は、正弦波、矩形波、鋸波、三角波のいずれか、又はこれらの組み合わせであってもよい。一方ブラシ34としては、たとえば金属ブラシ又はカーボンブラシを用いることができる。また、ブラシ34に替えてスリップリングを用いることもできる。なお、給電装置31とブラシ34は必ずしも接触していなくともよく、たとえば、給電装置31とブラシ34との間を1~2,000μm離し、非接触方式の給電としてもよい。 Returning to FIG. 1, the electric power for applying the bias voltage to the substrate S held by the rotating body 22 is supplied from the power supply 32 via the power feeding device 31. A brush 34 can be used as an electrical connection means (electric contact) between the power supply device 31 and the power supply 32. The brush 34 is connected to the power supply 32 by an appropriate means such as a conducting wire. The power supply 32 is, for example, an AC power supply having a frequency of 50 Hz to 400 MHz, particularly a long wave (LF) of 30 kHz to 300 kHz or an AC power supply having a high frequency (RF) frequency of 10 kHz to 100 MHz, a direct current power supply (DC), or a direct current power source (DC) or superimposition thereof. It may be a new one. Further, the waveform of the AC power supply may be any of a sine wave, a square wave, a sawtooth wave, a triangular wave, or a combination thereof. On the other hand, as the brush 34, for example, a metal brush or a carbon brush can be used. Further, a slip ring can be used instead of the brush 34. The feeding device 31 and the brush 34 do not necessarily have to be in contact with each other. For example, the feeding device 31 and the brush 34 may be separated from each other by 1 to 2,000 μm to provide a non-contact type feeding.

本実施形態の給電装置31は、図1に示すようにシャフト42に取り付けられており、シャフト42の回転に伴い、回転体22の回転方向における給電装置31の位置、つまり給電装置31の回転位置によって、給電と非給電とを選択的に切り替えることができる。これにより、プラズマ発生装置11による基板Sの洗浄処理、及びスパッタリング装置13によるバイアススパッタといった、基板Sにバイアス電圧を印加して行う表面処理において、当該表面処理を行う基板Sのみに選択的に電圧を印加し、あるいは、当該表面処理を行う基板Sを保持するホルダHのみに、選択的に電力を供給することができる。その結果、表面処理を行わない基板Sにも一様にバイアス電圧を印加する場合と比較して、より少ない電力で基板Sに対し同じ表面処理を行うことができる。なお、本発明の給電装置31は、シャフト42に取り付けることができるほか、回転体22の下部222などのように回転体22に直接取り付けてもよい。 The power feeding device 31 of the present embodiment is attached to the shaft 42 as shown in FIG. 1, and the position of the power feeding device 31 in the rotation direction of the rotating body 22 as the shaft 42 rotates, that is, the rotation position of the power feeding device 31. Allows you to selectively switch between power supply and non-power supply. As a result, in the surface treatment performed by applying the bias voltage to the substrate S, such as the cleaning treatment of the substrate S by the plasma generator 11 and the bias sputtering by the sputtering apparatus 13, the voltage is selectively applied only to the substrate S to be subjected to the surface treatment. Is applied, or power can be selectively supplied only to the holder H that holds the substrate S on which the surface treatment is performed. As a result, the same surface treatment can be performed on the substrate S with less power as compared with the case where the bias voltage is uniformly applied to the substrate S without the surface treatment. The power feeding device 31 of the present invention can be attached to the shaft 42, or may be directly attached to the rotating body 22 such as the lower part 222 of the rotating body 22.

給電装置31は、絶縁体311と複数の導体312とを有し、複数の導体312は、絶縁体311により互いに絶縁され、複数の導線33によりホルダHと電気的に接続されている。絶縁体311としては、アルミナ、石英などのセラミックス、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂、ポリエーテルエーテルケトン(PEEK)などのエンジニアリングプラスチックをはじめ、ポリエチレン、ポリプロピレン、ポリ塩化ビニルなどを用いることができる。また、導体312同士の間に空気層又は真空層を設けることで、絶縁体311の代わりにすることもできる。一方、導体312としては、アルミニウム、アルミ合金、銅、銅合金、金、銀、白金などの金属、又はカーボンを用いることができる。 The power feeding device 31 has an insulator 311 and a plurality of conductors 312, and the plurality of conductors 312 are insulated from each other by the insulator 311 and electrically connected to the holder H by a plurality of conductor wires 33. As the insulator 311, use ceramics such as alumina and quartz, fluororesin such as polytetrafluoroethylene (PTFE), engineering plastics such as polyetheretherketone (PEEK), polyethylene, polypropylene, polyvinyl chloride and the like. Can be done. Further, by providing an air layer or a vacuum layer between the conductors 312, it can be used instead of the insulator 311. On the other hand, as the conductor 312, a metal such as aluminum, an aluminum alloy, copper, a copper alloy, gold, silver, or platinum, or carbon can be used.

図3は、給電装置31の平面図である。図3に示す給電装置31は、平面視したときに円形であり、複数の導体312として、導体312a~312dの4個の導体を有し、それらが反時計回りに、円周方向に等配4点で配置されている。導体312a~312dは、絶縁体311により互いに絶縁されている。また、導体312a~312dにはそれぞれ導線33a~33dが電気的に接続されており、これによりホルダHへ電力を供給し、基板Sに電圧を印加することができる。ここで、導線33により接続される導体312とホルダHとの対応関係は特に限定されないが、たとえば図3の給電装置31では、導体312a、312b、312c、312dは、それぞれ、図2に示すホルダH1、ホルダH2、ホルダH3、ホルダH4に対応している。すなわち、導体312aは導線33aを介してホルダH1と、導体312bは導線33bを介してホルダH2と、導体312cは導線33cを介してホルダH3と、そして導体312dは導線33dを介してホルダH4と接続し、複数の導体312の数が複数のホルダHの数と等しく、それらが一対一で接続している。またこれに代えて、複数の導体312の数が複数のホルダHの数より少なくてもよく、1つの導体312に対して、2又はそれ以上のホルダHが接続していてもよい。なお、導体312の数は特に限定されず、ホルダHの数に対して適宜の数とすることができ、また、絶縁体311及び導体312の形状は、図3に示す形状に限定されず、円形や矩形などの適宜の形状とすることができる。 FIG. 3 is a plan view of the power feeding device 31. The power feeding device 31 shown in FIG. 3 is circular when viewed in a plan view, and has four conductors 312a to 312d as a plurality of conductors 312, which are evenly distributed counterclockwise and in the circumferential direction. It is arranged at 4 points. The conductors 312a to 312d are insulated from each other by the insulator 311. Further, the conductors 33a to 33d are electrically connected to the conductors 312a to 312d, respectively, whereby electric power can be supplied to the holder H and a voltage can be applied to the substrate S. Here, the correspondence between the conductor 312 connected by the conductor 33 and the holder H is not particularly limited. For example, in the power feeding device 31 of FIG. 3, the conductors 312a, 312b, 312c, and 312d are the holders shown in FIG. 2, respectively. It corresponds to H1, holder H2, holder H3, and holder H4. That is, the conductor 312a is the holder H1 via the conductor 33a, the conductor 312b is the holder H2 via the conductor 33b, the conductor 312c is the holder H3 via the conductor 33c, and the conductor 312d is the holder H4 via the conductor 33d. Connected, the number of the plurality of conductors 312 is equal to the number of the plurality of holders H, and they are connected one-to-one. Alternatively, the number of the plurality of conductors 312 may be smaller than the number of the plurality of holders H, and two or more holders H may be connected to one conductor 312. The number of conductors 312 is not particularly limited and may be an appropriate number with respect to the number of holders H, and the shapes of the insulator 311 and the conductors 312 are not limited to the shapes shown in FIG. It can have an appropriate shape such as a circle or a rectangle.

本実施形態の表面処理機1において、ブラシ34の数及び配置は特に限定されず、表面処理機1で行う表面処理に応じて、適宜に配置することができる。第1実施形態の表面処理機1では、図3のように平面視したときに右側に位置するブラシ34aと、左側に位置するブラシ34bの2個のブラシを用いて、給電装置31と電源32を接続している。なお、図3に示すブラシ34a及び34bはどちらも電源32に接続されているが、複数のブラシ34を用いる場合に、ブラシ34が全て同じ電源32に接続されている必要はなく、各ブラシ34が異なる電源32に接続していてもよいし、一部のブラシ34が他のブラシ34と異なる電源32と接続していてもよい。各ブラシ34が電圧、電力、又は周波数などの構成が異なる電源と接続することで、表面処理ごとに、電圧、電力、及び/又は周波数を制御することができる。 In the surface treatment machine 1 of the present embodiment, the number and arrangement of the brushes 34 are not particularly limited, and can be appropriately arranged according to the surface treatment performed by the surface treatment machine 1. In the surface treatment machine 1 of the first embodiment, the power feeding device 31 and the power supply 32 are used by using two brushes, a brush 34a located on the right side and a brush 34b located on the left side when viewed in a plan view as shown in FIG. Is connected. Both the brushes 34a and 34b shown in FIG. 3 are connected to the power supply 32, but when a plurality of brushes 34 are used, it is not necessary that all the brushes 34 are connected to the same power supply 32, and each brush 34 does not need to be connected to the same power supply 32. May be connected to a different power source 32, or some brushes 34 may be connected to a different power source 32 than the other brushes 34. By connecting each brush 34 to a power source having a different configuration such as voltage, power, or frequency, the voltage, power, and / or frequency can be controlled for each surface treatment.

本実施形態の給電装置31は、シャフト42に取り付けられており、シャフト42が点Cを中心に矢印Dの方向に回転すると、シャフト42と共に矢印Dの方向に回転する。給電装置31が回転する際には、導体312に接続している導線33も共に回転する。これに対して、電源32及びブラシ34はシャフト42と分離されて位置が固定されているので、給電装置31と共に回転しない。そのため、給電装置31が矢印Dの方向に回転するにしたがって、ブラシ34aは、導体312a→絶縁体311→導体312b→絶縁体311→導体312c→絶縁体311→導体312d→絶縁体311→導体312a→絶縁体311→導体312b・・・の順に、絶縁体311と複数の導体312に交互に、接触することになる。同様に、ブラシ34bは、導体312c→絶縁体311→導体312d→絶縁体311→導体312a→絶縁体311→導体312b→絶縁体311→導体312c→絶縁体311→導体312d・・・の順に、絶縁体311と複数の導体312とに、順次接触することになる。 The power feeding device 31 of the present embodiment is attached to the shaft 42, and when the shaft 42 rotates in the direction of the arrow D about the point C, it rotates in the direction of the arrow D together with the shaft 42. When the power feeding device 31 rotates, the conductor 33 connected to the conductor 312 also rotates. On the other hand, since the power supply 32 and the brush 34 are separated from the shaft 42 and their positions are fixed, they do not rotate together with the power feeding device 31. Therefore, as the power feeding device 31 rotates in the direction of the arrow D, the brush 34a has the conductor 312a → insulator 311 → conductor 312b → insulator 311 → conductor 312c → insulator 311 → conductor 312d → insulator 311 → conductor 312a. → Insulator 311 → Conductor 312b ... The insulator 311 and the plurality of conductors 312 are alternately in contact with each other. Similarly, the brush 34b has a conductor 312c → an insulator 311 → a conductor 312d → an insulator 311 → a conductor 312a → an insulator 311 → a conductor 312b → an insulator 311 → a conductor 312c → an insulator 311 → a conductor 312d .... The insulator 311 and the plurality of conductors 312 will be in contact with each other in sequence.

このように、シャフト42の回転方向における回転位置によって、ブラシ34a及び34bと接触する導体312が切り替わることで、給電装置31は、給電するホルダH、さらには電圧を印加する基板Sを切り替えることができる。図3に示す給電装置31の場合は、導体312とホルダHとの対応関係に鑑みて、給電装置31が矢印Dの方向に回転するにつれて、ホルダH1及びH3→ホルダH2及びH4→ホルダH1及びH3→ホルダH2及びH4→ホルダH1及びH3→・・・の順に給電するホルダHが切り替わる。また、複数の導体312を絶縁体311で互いに絶縁することで、たとえば導体312aがブラシ34aと接続している間は、他の導体312b~312dとブラシ34aが接続することはなく、電源32と接続したホルダH及び基板Sのみに対して給電することができる。さらに、ブラシ34a及び34bは、導体312と接触しない間は絶縁体311と接触しているので、ホルダHが不必要に電源32と接続して給電状態とならない。なお、図3に示す給電装置では、絶縁体311の外周部とブラシ34a及び34bが接触するが、たとえば導体312a~312dの外周部を半径方向に延ばす、又は絶縁体311の外周部を半径方向にへこませることによって、絶縁体311の外周部とブラシ34a及び34bが接触しないようにしてもよい。この場合には、導体312a~312dのそれぞれの間に設けられた空気層が絶縁体となる。 In this way, the conductor 312 in contact with the brushes 34a and 34b is switched depending on the rotation position of the shaft 42 in the rotation direction, so that the power supply device 31 can switch the holder H for power supply and the substrate S for applying voltage. can. In the case of the power feeding device 31 shown in FIG. 3, in view of the correspondence between the conductor 312 and the holder H, as the power feeding device 31 rotates in the direction of the arrow D, the holders H1 and H3 → holder H2 and H4 → holder H1 and The holder H for supplying power is switched in the order of H3 → holder H2 and H4 → holder H1 and H3 → .... Further, by insulating the plurality of conductors 312 from each other with the insulator 311, for example, while the conductor 312a is connected to the brush 34a, the other conductors 312b to 312d and the brush 34a are not connected to the power supply 32. Power can be supplied only to the connected holder H and the substrate S. Further, since the brushes 34a and 34b are in contact with the insulator 311 while they are not in contact with the conductor 312, the holder H is unnecessarily connected to the power supply 32 to prevent the power supply state. In the power feeding device shown in FIG. 3, the outer peripheral portions of the insulator 311 come into contact with the brushes 34a and 34b. For example, the outer peripheral portions of the conductors 312a to 312d are extended in the radial direction, or the outer peripheral portion of the insulator 311 is radially extended. The outer peripheral portion of the insulator 311 may be prevented from coming into contact with the brushes 34a and 34b by denting the insulator. In this case, the air layer provided between the conductors 312a to 312d serves as an insulator.

ここで、図2に示す領域R2にて洗浄処理が、領域R4にてバイアススパッタが行われるところ、たとえば、図2のホルダH1と図3の導体312aの回転方向Dにおける位置、及び図2のホルダH3及び図3の導体312cの回転方向Dにおける位置が対応していれば、基板S1に洗浄処理を、基板S3にバイアススパッタをそれぞれ行う間、基板S1及びS3に選択的に電圧を印加することができる。さらに、導体312a~312dは互いに絶縁体311で絶縁されているため、基板S1及びS3にバイアス電圧を印加している間、基板S2及びS4には電圧が印加されない。つまり、回転方向Dにおいて、基板S1に洗浄処理が行われる位置と、基板S1を保持しているホルダH1の位置と、ホルダH1と接続している導体312aがブラシ34aと接する位置を対応させれば、本実施形態の給電装置31を用いることで、洗浄処理を行う基板S1に対して選択的に電圧を印加することができる。また、回転方向Dにおいて、基板S3に洗浄処理が行われる位置と、基板S3を保持しているホルダH3の位置と、ホルダH3と接続している導体312cがブラシ34bと接する位置を対応させれば、本実施形態の給電装置31を用いることで、バイアススパッタによる薄膜形成処理を行う基板S3に対して、選択的に電圧を印加することができる。これは、導体312bとホルダH2、導体312dとホルダH4についても同様である。 Here, where the cleaning process is performed in the region R2 shown in FIG. 2 and the bias sputtering is performed in the region R4, for example, the positions of the holder H1 in FIG. 2 and the conductor 312a in FIG. 3 in the rotation direction D, and FIG. If the positions of the holder H3 and the conductor 312c of FIG. 3 correspond to each other in the rotation direction D, a voltage is selectively applied to the substrates S1 and S3 while the substrate S1 is subjected to the cleaning process and the substrate S3 is subjected to the bias sputtering. be able to. Further, since the conductors 312a to 312d are insulated from each other by the insulator 311, no voltage is applied to the substrates S2 and S4 while the bias voltage is applied to the substrates S1 and S3. That is, in the rotation direction D, the position where the cleaning process is performed on the substrate S1 and the position of the holder H1 holding the substrate S1 and the position where the conductor 312a connected to the holder H1 comes into contact with the brush 34a can be made to correspond to each other. For example, by using the power feeding device 31 of the present embodiment, it is possible to selectively apply a voltage to the substrate S1 to be cleaned. Further, in the rotation direction D, the position where the cleaning process is performed on the substrate S3, the position of the holder H3 holding the substrate S3, and the position where the conductor 312c connected to the holder H3 comes into contact with the brush 34b can be made to correspond to each other. For example, by using the power feeding device 31 of the present embodiment, it is possible to selectively apply a voltage to the substrate S3 that is subjected to the thin film forming process by bias sputtering. This also applies to the conductor 312b and the holder H2, and the conductor 312d and the holder H4.

本実施形態の表面処理機1では、シャフト42の回転速度と、給電装置31の導体312の外周部の長さL1とを調整することで、ホルダHに給電する時間を制御することができる。図3の給電装置31であれば、給電装置31の外周部の全周長さをLとし、導体33aの外周部の端部Aを回転位置の始点とすると、端部Aから始まる回転位置0~Lの間において、L1a~L1dの位置(つまり外周部L1a~L1dの長さ)を調整することで、ホルダHに給電する時間を制御することができる。またこれに代えて、本実施形態の表面処理機1では、シャフト42の回転速度と、導体312の外周部の両端と回転体22の回転中心Cとが成す、回転体22の回転方向Dの角度θ1とを調整することで、ホルダHに給電する時間を制御することができる。図3の給電装置31であれば、導体33aの外周部の端部Aを回転位置の始点とすると、端部Aから始まる回転角度0°~360°の間において、導体312a~312dの各外周部の両端と回転体22の回転中心Cとが成す、回転体22の回転方向Dの角度θ1a~θ1dを調整することで、ホルダHに給電する時間を制御することができる。たとえば、ホルダH1に保持された基板S1について洗浄処理する場合に、設定されたシャフト42の回転速度と、洗浄処理に必要な時間とを用いて、ホルダH1に給電する時間と、基板S1の洗浄処理に要する時間とが等しくなるように、導体312aの外周部の長さL1a又は角度θ1aを設定することができる。これは、他の導体312b~312dの外周部の長さL1b~L1d及び角度θ1b~θ1d、並びにバイアススパッタによる薄膜形成処理についても同様である。 In the surface treatment machine 1 of the present embodiment, the time for feeding the holder H can be controlled by adjusting the rotation speed of the shaft 42 and the length L1 of the outer peripheral portion of the conductor 312 of the feeding device 31. In the case of the power feeding device 31 of FIG. 3, assuming that the entire peripheral length of the outer peripheral portion of the feeding device 31 is L and the end portion A of the outer peripheral portion of the conductor 33a is the starting point of the rotation position, the rotation position 0 starting from the end portion A. By adjusting the positions of L1a to L1d (that is, the lengths of the outer peripheral portions L1a to L1d) between 1 and L, the time for supplying power to the holder H can be controlled. Instead of this, in the surface treatment machine 1 of the present embodiment, the rotation speed of the shaft 42, both ends of the outer peripheral portion of the conductor 312, and the rotation center C of the rotating body 22 form the rotation direction D of the rotating body 22. By adjusting the angle θ1, the time for supplying power to the holder H can be controlled. In the case of the power feeding device 31 of FIG. 3, assuming that the end A of the outer peripheral portion of the conductor 33a is the starting point of the rotation position, the outer circumferences of the conductors 312a to 312d are provided between the rotation angles of 0 ° and 360 ° starting from the end portion A. By adjusting the angles θ1a to θ1d of the rotation direction D of the rotating body 22 formed by both ends of the portion and the rotation center C of the rotating body 22, the time for supplying power to the holder H can be controlled. For example, when cleaning the substrate S1 held in the holder H1, the time for supplying power to the holder H1 and the cleaning of the substrate S1 using the set rotation speed of the shaft 42 and the time required for the cleaning process. The length L1a or the angle θ1a of the outer peripheral portion of the conductor 312a can be set so that the time required for the processing is equal to each other. This also applies to the lengths L1b to L1d and angles θ1b to θ1d of the outer peripheral portions of the other conductors 312b to 312d, and the thin film forming treatment by bias sputtering.

さらに、図3に示す給電装置31では、導体312の外周部の長さL1a、L1b、L1c及びL1dは等しいが、これらの長さは互いに異なっていてもよく、表面処理機1で行う表面処理の工程、特に工程の数及びその所要時間に応じて、導体312ごとに適宜の長さとすることができる。同様に、導体312a~312dの各外周部の両端と回転体22の回転中心Cとが成す、回転体22の回転方向Dの角度θ1a、θ1b、θ1c及びθ1dは等しいが、これらの角度は互いに異なっていてもよく、表面処理機1で行う表面処理の工程、特に工程の数及びその所要時間に応じて、導体312ごとに適宜の角度とすることができる。つまり、長さL1a~L1d及び角度θ1a~θ1dは互いに異なってもよく、複数の導体312が、回転体22の回転方向Dに沿って、給電装置31の外周部に絶縁体311を挟んで離散的に配置されていればよい。これにより、表面処理の工程ごとに、バイアス電圧を印加する時間を制御することができる。 Further, in the power feeding device 31 shown in FIG. 3, the lengths L1a, L1b, L1c and L1d of the outer peripheral portion of the conductor 312 are the same, but these lengths may be different from each other, and the surface treatment performed by the surface treatment machine 1 is performed. Depending on the number of steps, particularly the number of steps and the required time thereof, the length of each conductor 312 can be appropriately set. Similarly, the angles θ1a, θ1b, θ1c and θ1d of the rotation direction D of the rotating body 22 formed by both ends of each outer peripheral portion of the conductors 312a to 312d and the rotation center C of the rotating body 22 are equal, but these angles are equal to each other. It may be different, and the angle may be appropriate for each conductor 312 depending on the surface treatment step performed by the surface treatment machine 1, particularly the number of steps and the required time thereof. That is, the lengths L1a to L1d and the angles θ1a to θ1d may be different from each other, and the plurality of conductors 312 are dispersed along the rotation direction D of the rotating body 22 with the insulator 311 sandwiched in the outer peripheral portion of the power feeding device 31. It suffices if they are arranged in a targeted manner. This makes it possible to control the time for applying the bias voltage for each surface treatment step.

また、絶縁体311についても、導体312aと312bとの間の外周部長さL2a、導体312bと312cとの間の外周部長さL2b、導体312cと312dとの間の外周部長さL2c、及び導体312dと312aとの間の外周部長さL2dを、表面処理機1で行う表面処理の工程に応じて、適宜設定することができる。同様に、導体312aと312bとの間の外周部の両端と回転体22の回転中心Cとが成す、回転体22の回転方向Dの角度θ2a、導体312bと312cとの間の外周部の両端と回転体22の回転中心Cとが成す、回転体22の回転方向Dの角度θ2b、導体312cと312dとの間の外周部の両端と回転体22の回転中心Cとが成す、回転体22の回転方向Dの角度θ2c、及び導体312dと312aとの間の外周部の両端と回転体22の回転中心Cとが成す、回転体22の回転方向Dの角度θ2dを表面処理機1で行う表面処理の工程に応じて、適宜設定することができる。図3に示す給電装置31では、長さL2a、L2b、L2c及びL2dは等しいが、長さL2a~L2dは、互いに異なってもよい。同様に、角度θ2a、θ2b、θ2c及びθ2dは等しいが、角度θ2a~θ2dは、互いに異なってもよい。 Further, regarding the insulator 311 as well, the outer peripheral portion length L2a between the conductors 312a and 312b, the outer peripheral portion length L2b between the conductors 312b and 312c, the outer peripheral portion length L2c between the conductors 312c and 312d, and the conductor 312d The outer peripheral portion length L2d between the and 312a can be appropriately set according to the surface treatment step performed by the surface treatment machine 1. Similarly, the angle θ2a of the rotation direction D of the rotating body 22 formed by both ends of the outer peripheral portion between the conductors 312a and 312b and the rotation center C of the rotating body 22, and both ends of the outer peripheral portion between the conductors 312b and 312c. The rotating body 22 formed by the rotation center C of the rotating body 22 and the angle θ2b of the rotation direction D of the rotating body 22, both ends of the outer peripheral portion between the conductors 312c and 312d, and the rotation center C of the rotating body 22. The surface processing machine 1 performs the angle θ2d of the rotation direction D of the rotating body 22 formed by the angle θ2c of the rotation direction D of the above, and the rotation center C of the rotating body 22 and both ends of the outer peripheral portion between the conductors 312d and 312a. It can be appropriately set according to the surface treatment process. In the power feeding device 31 shown in FIG. 3, the lengths L2a, L2b, L2c and L2d are the same, but the lengths L2a to L2d may be different from each other. Similarly, the angles θ2a, θ2b, θ2c and θ2d are equal, but the angles θ2a to θ2d may be different from each other.

なお、複数の導体312の外周部の長さL1及び絶縁体311の外周部の長さL2を設定するときは、給電装置31とブラシ34aとが接する部分の長さL3a、及び給電装置31とブラシ34bとが接する部分の長さL3bの長さを考慮する。同様に、角度θ1及び角度θ2を設定するときは、給電装置31とブラシ34aとが接する部分と、回転体22の回転中心Cとが成す、回転体22の回転方向Dの角度θ3a、及び給電装置31とブラシ34bとが接する部分と、回転体22の回転中心Cとが成す、回転体22の回転方向Dの角度θ3bを考慮する。 When setting the length L1 of the outer peripheral portion of the plurality of conductors 312 and the length L2 of the outer peripheral portion of the insulator 311, the length L3a of the portion where the power feeding device 31 and the brush 34a are in contact with each other and the power feeding device 31. Consider the length of the portion L3b in contact with the brush 34b. Similarly, when the angle θ1 and the angle θ2 are set, the angle θ3a in the rotation direction D of the rotating body 22 formed by the portion where the power feeding device 31 and the brush 34a are in contact with each other and the rotation center C of the rotating body 22 and the power feeding. Consider the angle θ3b of the rotation direction D of the rotating body 22 formed by the portion where the device 31 and the brush 34b are in contact with each other and the rotation center C of the rotating body 22.

給電装置31の導体312とホルダHとを接続する導線33は、回転体22の外側に配置してもよいが、導線33の長さを短くし、プラズマなどを用いる表面処理が導線33に与える影響を抑制するために、導線33の少なくとも一部を回転体22の内部に配置することがより好ましい。回転体22内の導線33の配置の一例を、図4を用いて説明する。 The conductor 33 connecting the conductor 312 of the power feeding device 31 and the holder H may be arranged outside the rotating body 22, but the length of the conductor 33 is shortened and surface treatment using plasma or the like is applied to the conductor 33. It is more preferable to arrange at least a part of the conducting wire 33 inside the rotating body 22 in order to suppress the influence. An example of the arrangement of the conducting wire 33 in the rotating body 22 will be described with reference to FIG.

図4は、回転体22の下部222のA-A線(図1参照)に沿う断面図である。図1に示す表面処理機1では、図4に示すように、導線33a~33dがシャフト42の回転軸に対して平行、つまりA-A線に対して垂直に配置されている。導線33a~33dは、接続されている給電装置31がシャフト42と共に回転すると、同様に、点Cを回転中心として矢印Dの向きに回転する。ここで、回転体22内で複数の導線同士が接続すると、表面処理を行う基板が保持されたホルダHのみに選択的に給電することができなくなるため、導線33a~33dと回転体22との間には絶縁体35が設けられている。この絶縁体35としては、絶縁体311と同じ材料を用いることができる。すなわち、セラミックス、フッ素樹脂、及びポリエチレン、ポリプロピレン、ポリ塩化ビニルなどの樹脂である。また、複数の導線33と回転体22内との間に空気層又は真空層を設けることで、導線33同士を絶縁してもよい。 FIG. 4 is a cross-sectional view taken along the line AA (see FIG. 1) of the lower portion 222 of the rotating body 22. In the surface treatment machine 1 shown in FIG. 1, as shown in FIG. 4, the conducting wires 33a to 33d are arranged parallel to the rotation axis of the shaft 42, that is, perpendicular to the AA line. When the connected power feeding device 31 rotates together with the shaft 42, the conductors 33a to 33d also rotate in the direction of the arrow D with the point C as the center of rotation. Here, if a plurality of conductors are connected to each other in the rotating body 22, it becomes impossible to selectively supply power only to the holder H in which the substrate to be surface-treated is held. Therefore, the conductors 33a to 33d and the rotating body 22 An insulator 35 is provided between them. As the insulator 35, the same material as the insulator 311 can be used. That is, ceramics, fluororesins, and resins such as polyethylene, polypropylene, and polyvinyl chloride. Further, the conductors 33 may be insulated from each other by providing an air layer or a vacuum layer between the plurality of conductors 33 and the inside of the rotating body 22.

次に、図5A~5Eを参照しながら、表面処理機1における基板Sの表面処理の工程を説明する。図5A~5Eは、図1に示す表面処理機1を用いた基板Sに対する表面処理の工程を示す平面図である。図5A~5Eの(A)は、図2と同じく、図1に示す表面処理機1の平面図であり、各工程における基板Sの処理を示している。ただし、図5A~5Eの(A)では、説明のために、筐体21の図示は省略してある。一方、図5A~5Eの(B)は、(A)に示した基板Sの処理工程における、給電装置31及びブラシ34の平面図である。 Next, the surface treatment process of the substrate S in the surface treatment machine 1 will be described with reference to FIGS. 5A to 5E. 5A to 5E are plan views showing a step of surface treatment for the substrate S using the surface treatment machine 1 shown in FIG. 1. 5A to 5E are plan views of the surface treatment machine 1 shown in FIG. 1 as in FIG. 2, and show the processing of the substrate S in each step. However, in (A) of FIGS. 5A to 5E, the illustration of the housing 21 is omitted for the sake of explanation. On the other hand, (B) of FIGS. 5A to 5E is a plan view of the power feeding device 31 and the brush 34 in the processing step of the substrate S shown in (A).

図5Aは、基板Sに対する表面処理工程の初期状態を示す。すなわち、図5A(A)に示すように、ホルダH1~H4に、それぞれ基板S1~S4が搭載されており、基板S1は領域R1に、基板S2は領域R4に、基板S3は領域R3に、そして基板S4は領域R2に位置している。以下、回転体22の上部221が時計回りに定速回転を開始した場合、ホルダH1に保持された基板S1がどのように表面処理されるかを説明する。 FIG. 5A shows the initial state of the surface treatment process for the substrate S. That is, as shown in FIG. 5A (A), the substrates S1 to S4 are mounted on the holders H1 to H4, respectively, the substrate S1 is in the region R1, the substrate S2 is in the region R4, and the substrate S3 is in the region R3. The substrate S4 is located in the region R2. Hereinafter, how the substrate S1 held by the holder H1 is surface-treated when the upper portion 221 of the rotating body 22 starts rotating at a constant speed clockwise will be described.

図5Aにおいて、給電装置31は、図5A(B)に示す配置にあり、ホルダH1と導通する導体312aは、ブラシ34a及び34bと接していない。そのため、ホルダH1には、バイアス電力が供給されていないので、領域R1に位置する基板S1に対しては、プラズマ表面処理は行われない。 In FIG. 5A, the power feeding device 31 is in the arrangement shown in FIG. 5A (B), and the conductor 312a conducting with the holder H1 is not in contact with the brushes 34a and 34b. Therefore, since the bias power is not supplied to the holder H1, the plasma surface treatment is not performed on the substrate S1 located in the region R1.

図5Bは、基板S1に対する表面処理の第1工程を示す。図5Aに示す状態から回転体22が回転中心Cに対して時計回りに角度α1だけ回転し、図5B(A)に示すように、ホルダH1に保持された基板S1が領域R1から領域R2に搬送されると、給電装置31は、図5B(B)に示す配置になる。その結果、ブラシ34aと導体312aが接続することで、導線33aを介してホルダH1に電力が供給される。これにより、ホルダH1に保持された基板S1にバイアス電圧が印加され、プラズマ発生装置11を用いたバイアスエッチングが行われる。 FIG. 5B shows the first step of surface treatment for the substrate S1. From the state shown in FIG. 5A, the rotating body 22 rotates clockwise with respect to the center of rotation C by an angle α1, and as shown in FIG. 5B (A), the substrate S1 held by the holder H1 moves from the area R1 to the area R2. When transported, the power feeding device 31 has the arrangement shown in FIG. 5B (B). As a result, by connecting the brush 34a and the conductor 312a, electric power is supplied to the holder H1 via the conducting wire 33a. As a result, a bias voltage is applied to the substrate S1 held in the holder H1, and bias etching using the plasma generator 11 is performed.

図5Cは、基板S1に対する表面処理の第2工程を示す。図5Bに示す状態から回転体22が回転中心Cに対して時計回りに角度α2だけ回転し、図5C(A)に示すように、ホルダH1に保持された基板S1が領域R2から領域R3に搬送されると、給電装置31は、図5C(B)に示す配置になる。その結果、ホルダH1と導通する導体312aは、ブラシ34aにも34bにも接していないため、当該ホルダH1には電力が供給されない。したがって、領域R3に搬送された基板S1には電圧が印加されず、バイアス電圧が印加されない状態で、スパッタリング装置12を用いた薄膜形成処理が行われる。 FIG. 5C shows a second step of surface treatment for the substrate S1. From the state shown in FIG. 5B, the rotating body 22 rotates clockwise with respect to the center of rotation C by an angle α2, and as shown in FIG. 5C (A), the substrate S1 held by the holder H1 moves from the area R2 to the area R3. When transported, the power feeding device 31 has the arrangement shown in FIG. 5C (B). As a result, since the conductor 312a conducting with the holder H1 is not in contact with the brush 34a or 34b, power is not supplied to the holder H1. Therefore, the thin film forming process using the sputtering apparatus 12 is performed in a state where no voltage is applied to the substrate S1 conveyed to the region R3 and no bias voltage is applied.

図5Dは、基板S1に対する表面処理の第3工程を示す。図5Cに示す状態から回転体22が回転中心Cに対して時計回りに角度α3だけ回転し、図5D(A)に示すように、ホルダH1に保持された基板S1が領域R3から領域R4に搬送されると、給電装置31は、図5D(B)に示す配置になる。その結果、ブラシ34bと導体312aが接続することで、導線33aを介してホルダH1に電力が供給される。これにより、ホルダH1に保持された基板S1にバイアス電圧が印加され、スパッタリング装置13を用いた、バイアススパッタによる薄膜形成処理が基板S1に対して行われる。 FIG. 5D shows a third step of surface treatment for the substrate S1. From the state shown in FIG. 5C, the rotating body 22 rotates clockwise with respect to the center of rotation C by an angle α3, and as shown in FIG. 5D (A), the substrate S1 held by the holder H1 moves from the area R3 to the area R4. When transported, the power feeding device 31 has the arrangement shown in FIG. 5D (B). As a result, by connecting the brush 34b and the conductor 312a, electric power is supplied to the holder H1 via the conducting wire 33a. As a result, a bias voltage is applied to the substrate S1 held in the holder H1, and a thin film forming process by bias sputtering using the sputtering apparatus 13 is performed on the substrate S1.

図5Eは、基板S1に対する表面処理の第4工程を示す。図5Dに示す状態から回転体22が回転中心Cに対して時計回りに角度α4だけ回転し、図5E(A)に示すように、ホルダH1に保持された基板S1が領域R4から領域R1に搬送されると、給電装置31の配置は、図5Aに示す初期状態に戻る。基板Sの表面処理は上述の第1工程~第4工程で1つのサイクルを形成し、各基板S1~S4の表面処理が完了するまで、表面処理機1にて当該サイクルを繰り返す。 FIG. 5E shows a fourth step of surface treatment for the substrate S1. From the state shown in FIG. 5D, the rotating body 22 rotates clockwise with respect to the center of rotation C by an angle α4, and as shown in FIG. 5E (A), the substrate S1 held by the holder H1 moves from the region R4 to the region R1. When transported, the arrangement of the power feeding device 31 returns to the initial state shown in FIG. 5A. The surface treatment of the substrate S forms one cycle in the above-mentioned first step to the fourth step, and the cycle is repeated by the surface treatment machine 1 until the surface treatment of each of the substrates S1 to S4 is completed.

このように、本実施形態の給電装置31を用いることで、表面処理において基板Sに電圧を印加する必要がある場合、つまり基板Sが領域R2又はR4に位置する場合のみに、当該基板Sを保持するホルダHに選択的に給電し、当該基板Sに選択的に電圧を印加することができる。一方、表面処理において基板Sに電圧を印加する必要がない場合、つまり基板Sが領域R1又はR3に位置する場合には、本実施形態の給電装置31は、当該基板Sを保持するホルダHについて、選択的に非給電とすることができる。その結果、ホルダH1~H4の全てに一様に給電する場合と比較して、より少ない電力で基板Sに対し同様の表面処理の効果を得ることができる。 As described above, by using the power feeding device 31 of the present embodiment, the substrate S can be used only when it is necessary to apply a voltage to the substrate S in the surface treatment, that is, when the substrate S is located in the region R2 or R4. It is possible to selectively supply power to the holder H to be held and selectively apply a voltage to the substrate S. On the other hand, when it is not necessary to apply a voltage to the substrate S in the surface treatment, that is, when the substrate S is located in the region R1 or R3, the power feeding device 31 of the present embodiment has the holder H for holding the substrate S. , Can be selectively unpowered. As a result, it is possible to obtain the same surface treatment effect on the substrate S with less power as compared with the case where all of the holders H1 to H4 are uniformly fed.

[第2実施形態]
図6は、本発明に係る給電装置31を含む表面処理機1の第2実施形態を示す正面図である。第1実施形態の表面処理機1と異なり、第2実施形態の表面処理機1は、回転体22の上部221が回転ドラムではなく平板であり、ホルダHは、回転体22の上部の上面に設けられている。図6のホルダHは凹部であり、凹部の上に基板Sを載置できるようになっている。ただし、ホルダHは凹部に限られず、たとえば回転体22の上部の上面に少なくとも1つのピンを設けて、当該ピンにより基板Sを支持してもよいし、回転体22の上部の上面に設けた少なくとも1つのクランプなどを用いて基板Sを把持してもよい。
[Second Embodiment]
FIG. 6 is a front view showing a second embodiment of the surface treatment machine 1 including the power feeding device 31 according to the present invention. Unlike the surface treatment machine 1 of the first embodiment, in the surface treatment machine 1 of the second embodiment, the upper portion 221 of the rotating body 22 is not a rotating drum but a flat plate, and the holder H is placed on the upper surface of the upper portion of the rotating body 22. It is provided. The holder H in FIG. 6 is a recess, and the substrate S can be placed on the recess. However, the holder H is not limited to the recess, and for example, at least one pin may be provided on the upper surface of the upper portion of the rotating body 22 to support the substrate S by the pin, or the holder H may be provided on the upper surface of the upper portion of the rotating body 22. The substrate S may be gripped by using at least one clamp or the like.

また、第1実施形態の表面処理機1では、プラズマ発生装置11及びスパッタリング装置12、13は筐体21の側面に配置されていたが、第2実施形態の表面処理機1では、これらの装置は、筐体21の上面に配置されている。それぞれの装置からは鉛直方向に仕切り壁211が延びており、プラズマ発生装置11を用いた洗浄処理、及びスパッタリング装置12、13を用いた薄膜形成処理が、他の装置の処理に影響を及ぼさないようになっている。ここで、第1実施形態では、スパッタリング装置13による薄膜形成処理はバイアススパッタ方式であったが、第2実施形態では、スパッタリング装置13による薄膜形成処理において、基板Sにバイアス電圧を印加しない。 Further, in the surface treatment machine 1 of the first embodiment, the plasma generator 11 and the sputtering devices 12 and 13 are arranged on the side surface of the housing 21, but in the surface treatment machine 1 of the second embodiment, these devices are arranged. Is arranged on the upper surface of the housing 21. A partition wall 211 extends in the vertical direction from each device, and the cleaning process using the plasma generator 11 and the thin film forming process using the sputtering devices 12 and 13 do not affect the processes of the other devices. It has become like. Here, in the first embodiment, the thin film forming process by the sputtering apparatus 13 is a bias sputtering method, but in the second embodiment, the bias voltage is not applied to the substrate S in the thin film forming process by the sputtering apparatus 13.

加えて、給電装置31と電源32との接続箇所は、接点Pの1点のみとなっている。接点Pにおける給電装置31と電源32との電気的な接続には、非接触給電方式を用いる。非接触給電の方式は特に限定されず、基板Sに、洗浄処理又は薄膜形成処理といった表面処理に必要な電圧を印加できる適宜の方式を用いることができる。非接触給電により、給電装置31とブラシ34との接触による摩耗紛の発生を抑制することができる。さらに、第1実施形態の表面処理機1では、回転体22は、シャフト42を介して間接的に駆動装置41に直接取り付けられていたが、第2実施形態の表面処理機1にはシャフト42が存在せず、回転体22の下部222からさらに垂下する軸状の軸部223により、回転体22が駆動装置41に直接取り付けられている。 In addition, the power supply device 31 and the power supply 32 are connected to only one point of the contact P. A non-contact power feeding method is used for the electrical connection between the power feeding device 31 and the power supply 32 at the contact P. The non-contact power feeding method is not particularly limited, and an appropriate method capable of applying a voltage required for surface treatment such as a cleaning treatment or a thin film forming treatment to the substrate S can be used. The non-contact power supply can suppress the generation of wear powder due to the contact between the power supply device 31 and the brush 34. Further, in the surface treatment machine 1 of the first embodiment, the rotating body 22 is indirectly directly attached to the drive device 41 via the shaft 42, but the surface treatment machine 1 of the second embodiment has the shaft 42. 22 does not exist, and the rotating body 22 is directly attached to the drive device 41 by a shaft-shaped shaft portion 223 that further hangs from the lower portion 222 of the rotating body 22.

図7は、図6に示す表面処理機1の平面図である。図7に示すように、回転体22の上部221は平面視で円形とされ、反時計回りに、H1~H8の8個のホルダHを備えている。基板Sの表面処理に用いるプラズマ発生装置11及びスパッタリング装置12、13は、図7にて破線で示されており、破線の枠11内に含まれている基板Sに対して洗浄処理が、破線の枠12又は13内に含まれている基板Sに対して薄膜形成処理が行われる。たとえば、図7においてホルダH1~H8のそれぞれに基板S1~S8が保持されていたとすると、破線の枠11内に含まれている基板S8に対して、ホルダH8を介してバイアス電圧が印加され、プラズマ発生装置11により生じたプラズマの粒子を入射させて、基板S8の表面を洗浄する。また、破線の枠12内に含まれている基板S6、及び破線の枠13内に含まれている基板S4に対して、それぞれ、スパッタリング装置12、13による薄膜形成処理が行われる。 FIG. 7 is a plan view of the surface treatment machine 1 shown in FIG. As shown in FIG. 7, the upper portion 221 of the rotating body 22 is circular in a plan view, and is provided with eight holders H of H1 to H8 in a counterclockwise direction. The plasma generator 11 and the sputtering devices 12 and 13 used for the surface treatment of the substrate S are shown by a broken line in FIG. 7, and the cleaning treatment is performed on the substrate S included in the frame 11 of the broken line. A thin film forming process is performed on the substrate S contained in the frame 12 or 13. For example, assuming that the substrates S1 to S8 are held in the holders H1 to H8 in FIG. 7, a bias voltage is applied to the substrates S8 included in the broken line frame 11 via the holder H8. The surface of the substrate S8 is cleaned by incident the plasma particles generated by the plasma generator 11. Further, the substrate S6 contained in the broken line frame 12 and the substrate S4 contained in the broken line frame 13 are subjected to thin film forming processing by the sputtering devices 12 and 13, respectively.

第2実施形態の表面処理機1では、回転体22を、点Cを中心に矢印Dの方向(つまり時計回りの方向)に回転させることで、複数の基板S1~S8について、基板S1→S2→S3→S4→S5→S6→S7→S8の順で、順次洗浄処理と薄膜形成処理を行う。回転体22の回転には、駆動装置41(図6に図示)を用いる。薄膜形成処理が完了した基板Sは、筐体21の側壁面に設けられた開口部O(図2に端部E1及びE2を示す)から取り出す。そして、空になったホルダHに、表面処理が完了した基板Sの代わりに、また表面処理がされてない基板Sを載置する。こうすることで、連続的に基板Sの表面処理を行うことができる。なお、筐体21は、開口部Oを通じて、図示していないロードロック室などの気密を維持できる設備と連通し、これにより、基板Sを筐体21から取り出す際にも、筐体21内の真空雰囲気は維持される。 In the surface treatment machine 1 of the second embodiment, the rotating body 22 is rotated around the point C in the direction of the arrow D (that is, in the clockwise direction), so that the plurality of substrates S1 to S8 are subjected to the substrate S1 → S2. → S3 → S4 → S5 → S6 → S7 → S8, in that order, the cleaning process and the thin film forming process are performed. A drive device 41 (shown in FIG. 6) is used for the rotation of the rotating body 22. The substrate S for which the thin film forming process has been completed is taken out from the opening O (the ends E1 and E2 are shown in FIG. 2) provided on the side wall surface of the housing 21. Then, the substrate S that has not been surface-treated is placed on the empty holder H in place of the substrate S that has been surface-treated. By doing so, the surface treatment of the substrate S can be continuously performed. The housing 21 communicates with equipment that can maintain airtightness, such as a load lock chamber (not shown), through the opening O, whereby the substrate S can be taken out from the housing 21 in the housing 21. The vacuum atmosphere is maintained.

図8は、図6に示す給電装置31の平面図である。図6に示す給電装置31は、平面視したときに円形の形状であり、複数の導体312として、導体312a~312hの8個の導体を有し、それらが反時計回りに、円周方向に等配8点で配置されている。導体312a~312hは、絶縁体311により互いに絶縁されている。また、導体312a~312hにはそれぞれ導線33a~33hが電気的に接続されており、これによりホルダHへ電力を供給し、基板Sにバイアス電圧を印加することができる。図8の給電装置では、導体312aは導線33aを介してホルダH1と、導体312bは導線33bを介してホルダH2と、導体312cは導線33cを介してホルダH3と、導体312dは導線33dを介してホルダH4と、導体312eは導線33eを介してホルダH5と、導体312fは導線33fを介してホルダH6と、導体312gは導線33gを介してホルダH7と、そして導体312hは導線33hを介してホルダH8と接続し、複数の導体312の数が複数のホルダHの数と等しく、それらが一対一で接続している。なお、ホルダHの数と導体312の数は異なっていてもよく、一つの導体312に対して複数のホルダHが接続されていてもよい。また、一部のホルダHは導体312と接続していなくてもよく、この場合には、導体312と接続していないホルダHに保持された基板Sには、電圧が印加されない。 FIG. 8 is a plan view of the power feeding device 31 shown in FIG. The power feeding device 31 shown in FIG. 6 has a circular shape when viewed in a plan view, and has eight conductors 312a to 312h as a plurality of conductors 312, which are counterclockwise and circumferentially. It is arranged with 8 points of equal distribution. The conductors 312a to 312h are insulated from each other by the insulator 311. Further, the conductors 33a to 33h are electrically connected to the conductors 312a to 312h, respectively, whereby electric power can be supplied to the holder H and a bias voltage can be applied to the substrate S. In the power feeding device of FIG. 8, the conductor 312a is the holder H1 via the conductor 33a, the conductor 312b is the holder H2 via the conductor 33b, the conductor 312c is the holder H3 via the conductor 33c, and the conductor 312d is via the conductor 33d. The holder H4, the conductor 312e is the holder H5 via the conductor 33e, the conductor 312f is the holder H6 via the conductor 33f, the conductor 312g is the holder H7 via the conductor 33g, and the conductor 312h is via the conductor 33h. It is connected to the holder H8, the number of the plurality of conductors 312 is equal to the number of the plurality of holders H, and they are connected one-to-one. The number of holders H and the number of conductors 312 may be different, and a plurality of holders H may be connected to one conductor 312. Further, a part of the holder H does not have to be connected to the conductor 312, and in this case, no voltage is applied to the substrate S held by the holder H which is not connected to the conductor 312.

給電装置31は、回転体22の軸部223に取り付けられており、回転体22が点Cを中心に矢印Dの方向に回転すると、回転体22と共に回転する。給電装置31が回転する際には、導体312に接続している導線33も共に回転する。これに対して、電源32及び接点Pは回転体22と分離しており、給電装置31と共に回転することはない。そのため、給電装置31が矢印Dの方向に回転するにつれて、接点Pは、導体312a→絶縁体311→導体312b→絶縁体311→導体312c→絶縁体311→導体312d→絶縁体311→導体312e→絶縁体311→導体312f→絶縁体311→導体312g→絶縁体311→導体312h→絶縁体311→導体312a→絶縁体311→導体312b→・・・の順に、絶縁体311と複数の導体312とに順次接触することになる。 The power feeding device 31 is attached to the shaft portion 223 of the rotating body 22, and when the rotating body 22 rotates in the direction of the arrow D about the point C, it rotates together with the rotating body 22. When the power feeding device 31 rotates, the conductor 33 connected to the conductor 312 also rotates. On the other hand, the power supply 32 and the contact P are separated from the rotating body 22 and do not rotate together with the power feeding device 31. Therefore, as the power feeding device 31 rotates in the direction of the arrow D, the contact P becomes the conductor 312a → insulator 311 → conductor 312b → insulator 311 → conductor 312c → insulator 311 → conductor 312d → insulator 311 → conductor 312e →. Insulator 311 → Conductor 312f → Insulator 311 → Conductor 312g → Insulator 311 → Conductor 312h → Insulator 311 → Conductor 312a → Insulator 311 → Conductor 312b → ... Will be in contact with each other in sequence.

このように、回転体22の回転方向における給電装置31の位置と共に、接点Pと接触する導体312が切り替わることで、給電装置31は、給電するホルダH、さらにはバイアス電圧を印加する基板Sを切り替えることができる。図8に示す給電装置31の場合は、導体312とホルダHとの対応関係に鑑みて、給電装置31が矢印Dの方向に回転するにつれて、ホルダH1→H2→H3→H4→H5→H6→H7→H8→H1→H2→・・・の順に給電するホルダHが切り替わる。また、複数の導体312を絶縁体311で互いに絶縁することで、たとえば導体312aが接点Pを介して電源32と接続している間は、他の導体312b~312hと電源32が接続することはなく、電源32と接続したホルダH及び基板Sのみに対して給電することができる。さらに、接点Pは、導体312と接触しない間は絶縁体311と接触しているので、ホルダHが不必要に電源32と接続して給電状態とならない。 In this way, the conductor 312 in contact with the contact P is switched along with the position of the power feeding device 31 in the rotation direction of the rotating body 22, so that the power feeding device 31 uses the holder H to supply power and the substrate S to which the bias voltage is applied. You can switch. In the case of the power feeding device 31 shown in FIG. 8, in view of the correspondence between the conductor 312 and the holder H, as the power feeding device 31 rotates in the direction of the arrow D, the holder H1 → H2 → H3 → H4 → H5 → H6 → The holder H that supplies power is switched in the order of H7 → H8 → H1 → H2 → .... Further, by insulating the plurality of conductors 312 from each other with the insulator 311, for example, while the conductor 312a is connected to the power supply 32 via the contact P, the power supply 32 can be connected to the other conductors 312b to 312h. Instead, power can be supplied only to the holder H and the board S connected to the power supply 32. Further, since the contact P is in contact with the insulator 311 while it is not in contact with the conductor 312, the holder H is unnecessarily connected to the power supply 32 to prevent the power supply state.

ここで、上述のとおり、図7に示す破線の枠11に含まれている基板Sについて洗浄処理が行われるところ、たとえば、図7に示すホルダH1の回転方向Dにおける位置と、図8に示す導体312aの回転方向Dにおける位置とが対応していれば、基板S1に洗浄処理を行う間、基板S1にバイアス電圧を印加することができる。さらに、導体312a~312hは互いに絶縁体311で絶縁されているため、基板S1にバイアス電圧を印加している間、他の基板S2~S8には電圧が印加されていない。つまり、回転方向Dにおいて、基板S1に洗浄処理が行われる位置と、基板S1を保持しているホルダH1の位置と、ホルダH1と接続している導体312aが接点Pと接する位置を対応させれば、本実施形態の給電装置31を用いることで、洗浄処理を行う基板S1に対して選択的に電圧を印加することができる。これは、他の導体312b~312h及びホルダH2~H8についても同様である。 Here, as described above, where the substrate S included in the broken line frame 11 shown in FIG. 7 is cleaned, for example, the position of the holder H1 shown in FIG. 7 in the rotation direction D and the position shown in FIG. 8 are shown in FIG. If the position of the conductor 312a in the rotation direction D corresponds to the position, the bias voltage can be applied to the substrate S1 while the substrate S1 is cleaned. Further, since the conductors 312a to 312h are insulated from each other by the insulator 311, no voltage is applied to the other substrates S2 to S8 while the bias voltage is applied to the substrate S1. That is, in the rotation direction D, the position where the cleaning process is performed on the substrate S1 and the position of the holder H1 holding the substrate S1 and the position where the conductor 312a connected to the holder H1 comes into contact with the contact P can be made to correspond to each other. For example, by using the power feeding device 31 of the present embodiment, it is possible to selectively apply a voltage to the substrate S1 to be cleaned. This also applies to the other conductors 312b to 312h and the holders H2 to H8.

また、第1実施形態に係る給電装置31と同様に、第2実施形態に係る給電装置31では、回転体22の回転速度と、給電装置31の導体312の外周部の長さL1とを調整することで、ホルダHに給電する時間を制御することができる。図8の給電装置31であれば、給電装置31の外周部の全周長さをLとし、導体33aの外周部の端部Aを回転位置の始点とすると、端部Aから始まる回転位置0~Lの間において、L1a~L1hの位置(つまり外周部L1a~L1hの長さ)を調整することで、ホルダHに給電する時間を制御することができる。またこれに代えて、第2実施形態に係る給電装置31では、回転体22の回転速度と角度θ1とを調整することで、ホルダHに給電する時間を制御することができる。図8の給電装置31であれば、導体33aの外周部の端部Aを回転位置の始点とすると、端部Aから始まる回転角度0°~360°の間において、導体312a~312hの各外周部の両端と回転体22の回転中心Cとが成す、回転体22の回転方向Dの角度θ1a~θ1hを調整することで、ホルダHに給電する時間を制御することができる。たとえば、ホルダH1に保持された基板S1について洗浄処理する場合に、設定された回転体22の回転速度と、洗浄処理に必要な時間とを用いて、ホルダH1に給電する時間と、基板S1の洗浄処理に要する時間とが等しくなるように、導体312aの外周部の長さL1a、又は角度θ1aを設定することができる。さらに、第1実施形態に係る給電装置31と同様に、導体312の外周部の長さL1a~L1h及び角度θ1a~θ1h、並びに絶縁体311の外周部長さL2a~L2h及び角度θ2a~θ2hを、表面処理機1で行う表面処理の工程、特に工程の数及びその所要時間に応じて適宜の長さとすることができる。 Further, similarly to the power feeding device 31 according to the first embodiment, in the power feeding device 31 according to the second embodiment, the rotation speed of the rotating body 22 and the length L1 of the outer peripheral portion of the conductor 312 of the feeding device 31 are adjusted. By doing so, it is possible to control the time for supplying power to the holder H. In the case of the power feeding device 31 of FIG. 8, assuming that the entire peripheral length of the outer peripheral portion of the feeding device 31 is L and the end portion A of the outer peripheral portion of the conductor 33a is the starting point of the rotation position, the rotation position 0 starting from the end portion A. By adjusting the positions of L1a to L1h (that is, the lengths of the outer peripheral portions L1a to L1h) between 1 and L, the time for supplying power to the holder H can be controlled. Alternatively, in the power feeding device 31 according to the second embodiment, the time for supplying power to the holder H can be controlled by adjusting the rotation speed of the rotating body 22 and the angle θ1. In the case of the power feeding device 31 of FIG. 8, assuming that the end A of the outer peripheral portion of the conductor 33a is the starting point of the rotation position, the outer circumferences of the conductors 312a to 312h are provided between the rotation angles of 0 ° and 360 ° starting from the end portion A. By adjusting the angles θ1a to θ1h of the rotation direction D of the rotating body 22 formed by both ends of the portion and the rotation center C of the rotating body 22, the time for supplying power to the holder H can be controlled. For example, when the substrate S1 held in the holder H1 is cleaned, the time for supplying power to the holder H1 and the time required for the cleaning process using the set rotation speed of the rotating body 22 and the time required for the cleaning process and the time required for the substrate S1 are supplied. The length L1a or the angle θ1a of the outer peripheral portion of the conductor 312a can be set so that the time required for the cleaning process is equal to each other. Further, similarly to the power feeding device 31 according to the first embodiment, the lengths L1a to L1h and the angles θ1a to θ1h of the outer peripheral portion of the conductor 312, and the outer peripheral portion lengths L2a to L2h and the angles θ2a to θ2h of the insulator 311 are set. The length may be appropriate depending on the number of surface treatment steps performed by the surface treatment machine 1, particularly the number of steps and the required time thereof.

[本発明の実施態様]
以上のとおり、本実施形態の給電装置31によれば、表面処理機1にて複数の基板Sに順次表面処理をする際に、基板Sに電力を供給する回転体22に直接又は間接的に取り付けられ、電源32から供給される電力を回転体22に保持された基板Sに供給し、回転体22の回転方向における回転位置によって、給電と非給電とを選択的に切り替えることができる。これにより、基板Sに電圧を印加して表面処理を行う場合に、当該表面処理を行う基板Sのみに選択的に電力を供給することができ、その結果として、表面処理を行わない基板S、及び電圧を印加しないで表面処理を行う基板Sにも一様に電力を供給する場合と比較して、より少ない電力で同様の表面処理を行うことができる。
[Embodiments of the present invention]
As described above, according to the power feeding device 31 of the present embodiment, when the surface treatment machine 1 sequentially performs surface treatment on a plurality of substrates S, the rotating body 22 that supplies electric power to the substrates S is directly or indirectly treated. The electric power attached and supplied from the power supply 32 is supplied to the substrate S held by the rotating body 22, and power feeding and non-power feeding can be selectively switched depending on the rotation position of the rotating body 22 in the rotation direction. As a result, when a voltage is applied to the substrate S to perform surface treatment, power can be selectively supplied only to the substrate S to be surface-treated, and as a result, the substrate S not to be surface-treated, And, as compared with the case where power is uniformly supplied to the substrate S to be surface-treated without applying a voltage, the same surface treatment can be performed with less power.

また、本実施形態の給電装置31によれば、非接触給電により、電源32から回転体22に電力を供給することができる。これにより、表面処理機1に給電のための配線を設置する必要がなくなる。さらに、給電装置31とブラシ34との接触による摩耗紛(ダスト)の発生を抑制することができ、装置を清浄に保つことができる。 Further, according to the power feeding device 31 of the present embodiment, electric power can be supplied from the power supply 32 to the rotating body 22 by non-contact power feeding. This eliminates the need to install wiring for power supply in the surface treatment machine 1. Further, it is possible to suppress the generation of wear dust due to the contact between the power feeding device 31 and the brush 34, and the device can be kept clean.

また、本実施形態の給電装置31によれば、絶縁体311及び複数の導体312を備え、複数の導体312は、回転体22の回転方向に沿って離散的に配置され、所定の回転位置で電源32と順次接続することができる。これにより、回転体22又はシャフト42の回転に伴い、電圧を印加する必要のある基板Sのみに選択的に電力を供給することができる。またこれに加えて、複数の導体312同士を絶縁体311で絶縁することで、導体312ごとに接続する電源32の種類を変えることもできる。 Further, according to the power feeding device 31 of the present embodiment, the insulator 311 and the plurality of conductors 312 are provided, and the plurality of conductors 312 are discretely arranged along the rotation direction of the rotating body 22 at a predetermined rotation position. It can be sequentially connected to the power supply 32. As a result, electric power can be selectively supplied only to the substrate S to which a voltage needs to be applied as the rotating body 22 or the shaft 42 rotates. In addition to this, by insulating the plurality of conductors 312 with the insulator 311, it is possible to change the type of the power supply 32 connected to each conductor 312.

また、本実施形態の給電装置31によれば、平面視したときに給電装置31の形状が円形であり、複数の導体312が外周部で電源32と接続し、前記外周部の両端と回転体の回転中心とが成す、回転体の回転方向の角度が、基板に表面処理をする時間と、基板に電力を供給する時間とが等しくなる角度とすることができる。これにより、基板Sへの不要な電力供給を回避することができる。 Further, according to the power feeding device 31 of the present embodiment, the shape of the power feeding device 31 is circular when viewed in a plan view, and a plurality of conductors 312 are connected to the power supply 32 at the outer peripheral portion, and both ends of the outer peripheral portion and the rotating body. The angle in the rotation direction of the rotating body formed by the center of rotation of the above can be set so that the time for surface treatment on the substrate and the time for supplying power to the substrate are equal to each other. This makes it possible to avoid unnecessary power supply to the substrate S.

また、本実施形態の給電装置31によれば、複数の導体312は、複数の電源32と順次接続することができる。表面処理ごとに電圧、電力、及び/又は周波数の異なる電源32を用いることで、表面処理ごとにバイアス電圧及び/又は供給電力を制御することができる。 Further, according to the power feeding device 31 of the present embodiment, the plurality of conductors 312 can be sequentially connected to the plurality of power sources 32. By using the power supply 32 having a different voltage, power, and / or frequency for each surface treatment, the bias voltage and / or the supply power can be controlled for each surface treatment.

また、本実施形態の給電装置31を用いた表面処理機1によれば、少なくとも回転体22の一部を真空雰囲気に保持するための筐体21を備え、回転体22は、基板Sを保持し、電圧を印加するための複数のホルダHを備え、さらに、複数のホルダHと複数の導体312とを接続する複数の導線33を備えることができる。これにより、回転体22のホルダHに保持された基板Sに対して、真空雰囲気で表面処理を行うことができる。 Further, according to the surface treatment machine 1 using the power feeding device 31 of the present embodiment, the housing 21 for holding at least a part of the rotating body 22 in a vacuum atmosphere is provided, and the rotating body 22 holds the substrate S. However, a plurality of holders H for applying a voltage can be provided, and a plurality of conductors 33 for connecting the plurality of holders H and the plurality of conductors 312 can be provided. As a result, the surface treatment of the substrate S held by the holder H of the rotating body 22 can be performed in a vacuum atmosphere.

また、本実施形態の給電装置31を用いた表面処理機1によれば、導体312の数がホルダHの数と等しく、導体312がホルダHに一対一で接続している。これにより、回転体22又はシャフト42の回転に伴い、電圧を印加する必要のある基板Sのみに選択的に電力を供給することができる。 Further, according to the surface treatment machine 1 using the power feeding device 31 of the present embodiment, the number of conductors 312 is equal to the number of holders H, and the conductors 312 are connected to the holder H on a one-to-one basis. As a result, electric power can be selectively supplied only to the substrate S to which a voltage needs to be applied as the rotating body 22 or the shaft 42 rotates.

1…表面処理機
11…プラズマ発生装置
12、13…スパッタリング装置
121、131…スパッタリングターゲット
122、132…バッキングプレート
21…筐体
211…仕切り壁
22…回転体
221…上部
222…下部
223…軸部
23…シール
31…給電装置
311…絶縁体
312、312a、312b、312c、312d、312e、312f、312g、312h…導体
32…電源
33、33a、33b、33c、33d、33e、33f、33g、33h…導線
34、34a、34b…ブラシ
35…絶縁体
41…駆動装置
42…シャフト
43…固定部
A…回転位置の始点
C…回転中心
D…回転方向
E1、E2…端部
H、H1、H2、H3、H4、H5、H6、H7、H8…ホルダ
L1、L1a、L1b、L1c、L1d、L1e、L1f、L1g、L1h…導体の外周部の長さ
L2a、L2b、L2c、L2d、L2e、L2f、L2g、L2h…絶縁体の外周部の長さ
O…開口部
P…接点
R1…第1領域
R2…第2領域
R3…第3領域
R4…第4領域
S、S1、S2、S3、S4、S5、S6、S7、S8…基板
α1、α2、α3、α4…回転角度
θ1a、θ1b、θ1c、θ1d、θ1e、θ1f、θ1g、θ1h…角度(導体)
θ2a、θ2b、θ2c、θ2d、θ2e、θ2f、θ2g、θ2h…角度(絶縁体)
θ3a、θ3b…角度(ブラシ)
1 ... Surface treatment machine 11 ... Plasma generator 12, 13 ... Sputtering device 121, 131 ... Sputtering target 122, 132 ... Backing plate 21 ... Housing 211 ... Partition wall 22 ... Rotating body 221 ... Upper 222 ... Lower 223 ... Shaft 23 ... Seal 31 ... Power supply device 311 ... Insulator 312, 312a, 312b, 312c, 312d, 312e, 312f, 312g, 312h ... Conductor 32 ... Power supply 33, 33a, 33b, 33c, 33d, 33e, 33f, 33g, 33h ... Conductor wires 34, 34a, 34b ... Brush 35 ... Insulator 41 ... Driver 42 ... Shaft 43 ... Fixed part A ... Start point C of rotation position ... Rotation center D ... Rotation direction E1, E2 ... Ends H, H1, H2, H3, H4, H5, H6, H7, H8 ... Holders L1, L1a, L1b, L1c, L1d, L1e, L1f, L1g, L1h ... Lengths of the outer peripheral portion of the conductor L2a, L2b, L2c, L2d, L2e, L2f, L2g, L2h ... Length of outer peripheral portion of insulator O ... Opening P ... Contact R1 ... First region R2 ... Second region R3 ... Third region R4 ... Fourth region S, S1, S2, S3, S4, S5 , S6, S7, S8 ... Substrate α1, α2, α3, α4 ... Rotation angle θ1a, θ1b, θ1c, θ1d, θ1e, θ1f, θ1g, θ1h ... Angle (conductor)
θ2a, θ2b, θ2c, θ2d, θ2e, θ2f, θ2g, θ2h ... Angle (insulator)
θ3a, θ3b ... Angle (brush)

Claims (7)

複数の基板に順次表面処理をする表面処理機に用いる給電装置であって、
基板に電力を供給する回転体に直接又は間接的に取り付けられ、電源から供給される電力を前記回転体に保持された基板に供給し、
前記回転体の回転方向における回転位置によって、給電と非給電とを選択的に切り替える、表面処理機用給電装置。
A power supply device used in a surface treatment machine that sequentially surface-treats a plurality of substrates.
It is attached directly or indirectly to the rotating body that supplies electric power to the substrate, and the electric power supplied from the power source is supplied to the substrate held by the rotating body.
A power supply device for a surface treatment machine that selectively switches between power supply and non-power supply according to the rotation position of the rotating body in the rotation direction.
非接触給電により、前記電源から前記回転体に電力を供給する、請求項1に記載の表面処理機用給電装置。 The power supply device for a surface treatment machine according to claim 1, wherein electric power is supplied from the power source to the rotating body by non-contact power supply. 絶縁体及び複数の導体を備え、
前記複数の導体は、前記絶縁体の間に、前記回転体の回転方向に沿って離散的に配置され、所定の回転位置で前記電源と順次接続する、請求項1又は2に記載の表面処理機用給電装置。
Equipped with insulators and multiple conductors,
The surface treatment according to claim 1 or 2, wherein the plurality of conductors are discretely arranged between the insulators along the rotation direction of the rotating body and are sequentially connected to the power supply at a predetermined rotation position. Power supply device for machines.
平面視したときに円形であり、
前記複数の導体が外周部で前記電源と接続し、
前記外周部の両端と回転体の回転中心とが成す、回転体の回転方向の角度が、前記基板に表面処理をする時間と、前記基板に電力を供給する時間とが等しくなる角度である、請求項3に記載の表面処理機用給電装置。
It is circular when viewed in a plan view,
The plurality of conductors are connected to the power supply at the outer peripheral portion,
The angle in the rotation direction of the rotating body formed by both ends of the outer peripheral portion and the rotation center of the rotating body is an angle at which the time for surface treatment on the substrate and the time for supplying power to the substrate are equal to each other. The power supply device for a surface treatment machine according to claim 3.
前記複数の導体は、複数の電源と順次接続する、請求項3又は4に記載の表面処理機用給電装置。 The power supply device for a surface treatment machine according to claim 3 or 4, wherein the plurality of conductors are sequentially connected to a plurality of power sources. 請求項1~5のいずれか一項に記載の給電装置と、
少なくとも前記回転体の一部を真空雰囲気に保持する筐体と、
前記基板を保持し、電力を供給するために前記回転体に設けられた複数のホルダと、
前記複数のホルダと前記複数の導体とを接続する複数の導線と、を備える、表面処理機。
The power supply device according to any one of claims 1 to 5.
A housing that holds at least a part of the rotating body in a vacuum atmosphere,
A plurality of holders provided on the rotating body for holding the substrate and supplying electric power, and
A surface treatment machine comprising a plurality of conductors connecting the plurality of holders and the plurality of conductors.
導体の数が前記ホルダの数と等しく、導体が前記ホルダに一対一で接続している、請求項6に記載の表面処理機。 The surface treatment machine according to claim 6, wherein the number of conductors is equal to the number of the holders, and the conductors are connected to the holders on a one-to-one basis.
JP2020153921A 2020-09-14 2020-09-14 Power supply apparatus Pending JP2022047890A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020153921A JP2022047890A (en) 2020-09-14 2020-09-14 Power supply apparatus
PCT/JP2021/028079 WO2022054446A1 (en) 2020-09-14 2021-07-29 Power supply device
TW110130434A TWI793727B (en) 2020-09-14 2021-08-18 Power supply device and surface treatment machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020153921A JP2022047890A (en) 2020-09-14 2020-09-14 Power supply apparatus

Publications (2)

Publication Number Publication Date
JP2022047890A true JP2022047890A (en) 2022-03-25
JP2022047890A5 JP2022047890A5 (en) 2022-04-01

Family

ID=80632517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020153921A Pending JP2022047890A (en) 2020-09-14 2020-09-14 Power supply apparatus

Country Status (3)

Country Link
JP (1) JP2022047890A (en)
TW (1) TWI793727B (en)
WO (1) WO2022054446A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204304A (en) * 2002-12-25 2004-07-22 Shincron:Kk Thin film manufacturing method and sputtering apparatus
JP2011032560A (en) * 2009-08-05 2011-02-17 Shinmaywa Industries Ltd Power feeding mechanism and vacuum treatment device
JP2014135464A (en) * 2012-06-15 2014-07-24 Tokyo Electron Ltd Deposition device, substrate processing device and deposition method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5764246B1 (en) * 2014-09-24 2015-08-19 株式会社日立国際電気 Substrate processing apparatus, gas introduction shaft and gas supply plate
WO2018230883A1 (en) * 2017-06-16 2018-12-20 주성엔지니어링(주) Substrate processing apparatus and rotary electric connector for vacuum
JP7233339B2 (en) * 2018-08-30 2023-03-06 芝浦メカトロニクス株式会社 Plasma processing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204304A (en) * 2002-12-25 2004-07-22 Shincron:Kk Thin film manufacturing method and sputtering apparatus
JP2011032560A (en) * 2009-08-05 2011-02-17 Shinmaywa Industries Ltd Power feeding mechanism and vacuum treatment device
JP2014135464A (en) * 2012-06-15 2014-07-24 Tokyo Electron Ltd Deposition device, substrate processing device and deposition method

Also Published As

Publication number Publication date
TW202229592A (en) 2022-08-01
WO2022054446A1 (en) 2022-03-17
TWI793727B (en) 2023-02-21

Similar Documents

Publication Publication Date Title
WO2013005435A1 (en) Vacuum film formation device
JP5580760B2 (en) Physical vapor deposition apparatus and method using multi-point clamp
EP0664347A2 (en) Apparatus for depositing a uniform layer of material on a substrate
JP3989553B2 (en) Bulk material vacuum deposition system
CN1438692A (en) Semiconductor wiring formation method and apparatus, device making method and apparatus and wafer
JP2011179119A (en) Apparatus and method of physical vapor deposition with heat diffuser
JPH04323375A (en) Method and device for forming coating layer on surface of working material
WO2013018319A1 (en) Plasma cvd device
TW201921446A (en) Microwave reactor for deposition or treatment of carbon compounds
JPH10275694A (en) Plasma processing device and processing method
WO2022054446A1 (en) Power supply device
KR101956722B1 (en) Radio frequency (RF) -sputter deposition sources, deposition apparatus, and method of operation thereof
US9885107B2 (en) Method for continuously forming noble metal film and method for continuously manufacturing electronic component
TW201738957A (en) Plasma processing device
JP5634962B2 (en) Vacuum deposition system
KR100628607B1 (en) Method for cleaning a film forming device
JP2000328248A (en) Method for cleaning thin film forming apparatus and thin film forming apparatus
JP2004162138A (en) Plasma assisted sputtering film-forming apparatus
CN107709605B (en) Vacuum arc film forming apparatus and film forming method
JP5634954B2 (en) Plasma CVD equipment
JP3229251B2 (en) CVD equipment
JP4541014B2 (en) Plasma assisted sputter deposition system
JP2003183829A (en) Ion working apparatus
JP2000328269A (en) Dry etching device
US20230407458A1 (en) Film formation apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220322

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230815