JP5341715B2 - Ion adsorption apparatus and method for removing ionic substances - Google Patents

Ion adsorption apparatus and method for removing ionic substances Download PDF

Info

Publication number
JP5341715B2
JP5341715B2 JP2009255804A JP2009255804A JP5341715B2 JP 5341715 B2 JP5341715 B2 JP 5341715B2 JP 2009255804 A JP2009255804 A JP 2009255804A JP 2009255804 A JP2009255804 A JP 2009255804A JP 5341715 B2 JP5341715 B2 JP 5341715B2
Authority
JP
Japan
Prior art keywords
ion
current collector
ion adsorption
electrolyte
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009255804A
Other languages
Japanese (ja)
Other versions
JP2011098312A (en
Inventor
秀治 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2009255804A priority Critical patent/JP5341715B2/en
Publication of JP2011098312A publication Critical patent/JP2011098312A/en
Application granted granted Critical
Publication of JP5341715B2 publication Critical patent/JP5341715B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for removing ionic substance which can exhibit sufficient ion removing power by means of self electric power generation without requiring large equipment, does not cause secondary contamination due to solvent and facilitates the treatment of a material to be adsorbed, and to provide a method of removing ionic substance using the device for removing ionic substance. <P>SOLUTION: The ion adsorption device includes an electrode made of an collector in which a semiconductor photocatalytic film and an electrolyte adsorptive conductive material are tightly adhered to each other. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、光エネルギーを利用した自己発電型イオン吸着装置及びこれを用いたイオン性物質の除去方法に関する。本イオン吸着装置は、浄水などの用途に利用できる。   The present invention relates to a self-powered ion adsorption device using light energy and a method for removing an ionic substance using the same. This ion adsorption device can be used for purposes such as water purification.

近年、排水中に含まれる様々な物質が、環境汚染を引き起こすことが問題になっている。従来、排出時の濃度を低下させることで、環境汚染の低減が図られてきたが、最終的に排出される物質を低減させることが重要であり、排出規制は明らかにその方向に向かっていると言っても過言ではない。   In recent years, it has become a problem that various substances contained in wastewater cause environmental pollution. Conventionally, environmental pollution has been reduced by lowering the concentration at the time of discharge, but it is important to reduce the final discharged substances, and emission regulations are clearly moving in that direction It is no exaggeration to say.

溶液中に含まれるイオン性物質の除去方法として、イオンが高濃度の場合は、適切な金属イオンや陰イオン、例えば、アルカリ土類金属イオンや炭酸イオンを加え不溶性の塩を形成し、濾別により不溶性の塩を除去して溶液中に含まれる陰イオン濃度を低減させる方法が一般的である。しかしながら、不溶性の塩とはいえ、溶解性を全く持たないものはなく、また、溶液中の組成成分によっては、不溶性とならない場合もあり、必ずしもイオン濃度を十分に低下できない。   As a method for removing ionic substances contained in the solution, when the concentration of ions is high, an appropriate metal ion or anion, for example, an alkaline earth metal ion or carbonate ion, is added to form an insoluble salt, which is filtered In general, a method for reducing the concentration of anions contained in a solution by removing insoluble salts is generally used. However, although it is an insoluble salt, there is no salt that does not have solubility at all, and depending on the composition component in the solution, it may not be insoluble, and the ion concentration cannot be sufficiently reduced.

これまで、溶液中に含まれるイオンを低濃度化する方法として、活性炭などの多孔性物質を使用した物理吸着による方法(特許文献1参照)、イオン交換樹脂を使用した化学吸着による方法(特許文献2参照)が知られている。また、電解吸着を用いて水中の金属汚染物質を除去する方法についても、イオン交換樹脂などと組み合わせるか、単独の電気化学的除去工程を用いる方法が知られている(特許文献3参照)。   Conventionally, as a method for reducing the concentration of ions contained in a solution, a method by physical adsorption using a porous material such as activated carbon (see Patent Document 1), a method by chemical adsorption using an ion exchange resin (Patent Document) 2) is known. As a method of removing metal contaminants in water using electrolytic adsorption, a method of combining with an ion exchange resin or the like or using a single electrochemical removal step is known (see Patent Document 3).

一方、電気化学的にイオン性物質を除去する方法として、平板形状の通液型電気二重層コンデンサを用いた液体の処理方法が知られている(特許文献4参照)。さらに、集電極表面へのスケールの堆積を防止する観点から活性炭層に垂直に通液して脱塩する方法も提案されている(特許文献5参照)。   On the other hand, as a method for electrochemically removing an ionic substance, a liquid processing method using a flat plate-shaped liquid passing type electric double layer capacitor is known (see Patent Document 4). Furthermore, from the viewpoint of preventing the deposition of scale on the surface of the collector electrode, a method of desalting by passing the liquid vertically through the activated carbon layer has been proposed (see Patent Document 5).

特開2003−112917号公報JP 2003-1112917 A 特開平11―235594号公報JP 11-235594 A 特開平6−121978号公報JP-A-6-121978 特開平6−325983号公報JP-A-6-325983 特開2004−97915号公報JP 2004-97915 A

しかしながら、活性炭などの多孔性物質では、イオン性物質だけを優先的に吸着することはできず、その他の物質まで吸着し、イオン性物質の吸着率が低下し、実際の吸着能力を発揮できない。イオン交換樹脂などの化学吸着では、イオン交換樹脂のイオン交換基の脱落など耐久性が低いことによるコスト高に加え、分解した樹脂成分による汚染にも留意しなければならないなどの問題がある。また、特許文献3に開示されている方法では、イオン交換樹脂などと組み合わせる煩雑さがあることに加え、十分な除去能力を発揮しているとは言い難い。そして、特許文献4に開示された方法では、時間の経過とともに、集電極表面へのスケールの堆積が避けがたい。   However, with porous materials such as activated carbon, it is not possible to preferentially adsorb only ionic substances, and other substances are adsorbed, the adsorption rate of ionic substances decreases, and the actual adsorption ability cannot be exhibited. In the chemical adsorption of ion exchange resins, there are problems such as high costs due to low durability such as removal of ion exchange groups of the ion exchange resin and attention to contamination due to decomposed resin components. Moreover, in the method disclosed in Patent Document 3, it is difficult to say that sufficient removal capability is exhibited in addition to the complexity of combining with an ion exchange resin or the like. In the method disclosed in Patent Document 4, it is difficult to avoid the deposition of scale on the surface of the collector electrode as time passes.

一方、特許文献5に開示された方法は、集電極表面へのスケールの堆積を防止するものであり、その点では効果を発揮することが期待される。しかしながら、この方式では、電気エネルギーを他から供給することが必要であり、設備的に大きく、複雑な機構を必要とする問題点がある。したがって、本発明の目的は、大きな設備を必要とせず、自己発電により充分なイオン除去能力を発揮し、溶媒の二次汚染が無く、吸着物の処理が容易なイオン性物質の除去装置とそれを用いたイオン性物質の除去方法を提供することにある。   On the other hand, the method disclosed in Patent Document 5 prevents the deposition of scale on the surface of the collector electrode, and is expected to be effective in that respect. However, in this method, it is necessary to supply electric energy from other sources, and there is a problem in that it is large in equipment and requires a complicated mechanism. Therefore, an object of the present invention is to remove an ionic substance that does not require a large facility, exhibits sufficient ion removal capability by self-power generation, has no secondary contamination of the solvent, and can easily treat the adsorbate. It is an object of the present invention to provide a method for removing an ionic substance using the above.

本発明者は、鋭意検討により本発明を完成させた。本発明によれば、以下のものが提供される。   The present inventor has completed the present invention through intensive studies. According to the present invention, the following is provided.

[1] 半導体光触媒膜と電解質吸着性導電材が密着した集電体からなる電極を含んでなるイオン吸着装置。
[2] [1]記載のイオン吸着装置を用いるイオン性物質の除去方法。
[3] 太陽光を用いて電力を供給する[2]記載のイオン性物質の除去方法。
[4] イオン吸着装置のイオン除去能力低下時に、放電または逆電圧印加により吸着イオンを放出することによってイオン除去能力を回復する[2]または[3]記載のイオン性物質の除去方法。
[1] An ion adsorption apparatus including an electrode made of a current collector in which a semiconductor photocatalyst film and an electrolyte adsorbing conductive material are in close contact.
[2] A method for removing an ionic substance using the ion adsorption apparatus according to [1].
[3] The method for removing an ionic substance according to [2], wherein electric power is supplied using sunlight.
[4] The method for removing an ionic substance according to [2] or [3], wherein the ion removal capability is recovered by discharging adsorbed ions by discharging or applying a reverse voltage when the ion removal capability of the ion adsorption apparatus is reduced.

本発明によれば、イオン吸着装置において光励起される半導体光触媒と一体化した電極を用いることにより前述した目的を達成することができる。   According to the present invention, the above-described object can be achieved by using an electrode integrated with a semiconductor photocatalyst that is photoexcited in an ion adsorption apparatus.

太陽電池を用いたイオン吸着システムの概略を示す図である。It is a figure which shows the outline of the ion adsorption system using a solar cell. 本発明のイオン吸着装置の一例を示す図である。It is a figure which shows an example of the ion adsorption apparatus of this invention. 本発明のイオン吸着装置の他の例を示す図である。It is a figure which shows the other example of the ion adsorption apparatus of this invention.

本発明で用いられる半導体光触媒としては、特に限定されるものではなく、酸化チタン、酸化亜鉛、酸化鉄、酸化スズ、酸化タングステンなどが挙げられる。好適なものとしては、酸化チタン、酸化亜鉛、酸化タングステンなどが挙げられ、価格、経済性からより好適には酸化チタン、酸化亜鉛である。酸化物からなる半導体光触媒を採用することにより、高純度の材料を使用せずにイオン吸着装置を製造でき、工業的に有利である。これらは、単独で用いることも出来るし、複合して用いることもできる。複合の態様としては、例えば、2種以上の半導体光触媒を混合して使用すること、単独の半導体光触媒の層を複数種用意して積層構造とすることなどが挙げられる。また、本発明では、発電部分とイオン吸着器が合一化されているため、図1に示すような太陽電池1とイオン吸着器2を組み合わせたシステムより構造が簡単であり、使用する部材が少ないという利点に加え、光発電部分に、透明電極を使用しないため、高価な貴金属、希少金属を使用することがないこと、更に、イオンが溶解した溶液のpHにより透明電極の劣化が進むなどの問題点も解消できるメリットを有している。   The semiconductor photocatalyst used in the present invention is not particularly limited, and examples thereof include titanium oxide, zinc oxide, iron oxide, tin oxide, and tungsten oxide. Preferable examples include titanium oxide, zinc oxide, tungsten oxide and the like, and titanium oxide and zinc oxide are more preferable from the viewpoint of cost and economy. By employing a semiconductor photocatalyst made of an oxide, an ion adsorption device can be manufactured without using a high-purity material, which is industrially advantageous. These can be used alone or in combination. Examples of the composite mode include use of a mixture of two or more semiconductor photocatalysts and preparation of a plurality of single semiconductor photocatalyst layers to form a laminated structure. Further, in the present invention, since the power generation part and the ion adsorber are united, the structure is simpler than the system combining the solar cell 1 and the ion adsorber 2 as shown in FIG. In addition to the advantage of being less, since no transparent electrode is used in the photovoltaic part, there is no need to use expensive noble metals or rare metals, and further, the degradation of the transparent electrode proceeds due to the pH of the solution in which ions are dissolved. It has the merit that the problem can be solved.

光励起による電荷分離効率および価格の観点からは、酸化チタンを使用することが好ましい。酸化チタンとしては、2価から4価までのチタン酸化物を用いることができる。これらは単独で用いても、複合して用いてもよい。電気伝導性の観点からは、3価から4価の酸化チタンを用いることがより好ましい。   From the viewpoint of charge separation efficiency by photoexcitation and cost, it is preferable to use titanium oxide. As the titanium oxide, divalent to tetravalent titanium oxides can be used. These may be used alone or in combination. From the viewpoint of electrical conductivity, it is more preferable to use trivalent to tetravalent titanium oxide.

半導体光触媒の成膜方法としては、特に制限されるものではなく、集電体との密着性が得られる方法であれば良い。例えば、半導体光触媒のゾル溶液を塗布し、加熱することで密着化させることもできるし、セラミックをプラズマ溶射、アーク溶射などの方法で成膜時に半導体光触媒に変えながら、成膜することもできる。また、半導体光触媒をそのまま膜化するコールドスプレー法などによって成膜することも可能である。これらは単独の方法で成膜しても、複数を組み合わせて、積層膜とすることも可能である。   The method for forming the semiconductor photocatalyst is not particularly limited as long as it is a method capable of obtaining adhesion with the current collector. For example, a semiconductor photocatalyst sol solution can be applied and heated to make it adhere, or a ceramic can be formed by changing to a semiconductor photocatalyst during film formation by a method such as plasma spraying or arc spraying. It is also possible to form a film by a cold spray method in which a semiconductor photocatalyst is formed as it is. These may be formed by a single method or may be combined to form a laminated film.

半導体光触媒膜の厚さ方向の抵抗(シート抵抗)は、0.1〜1000Ω/□の範囲内であることが光発電による電流を効率よく利用する上で好ましい。   The resistance (sheet resistance) in the thickness direction of the semiconductor photocatalyst film is preferably in the range of 0.1 to 1000 Ω / □ in order to efficiently use the current generated by photovoltaic power generation.

集電体の材質としても、特に制限されず、アルミニウム、鉄、ニッケル、白金、銀、金、銅、モリブデンなどの金属集電体、炭素電極などの非金属集電体を用いることができる。   The material of the current collector is not particularly limited, and a metal current collector such as aluminum, iron, nickel, platinum, silver, gold, copper, and molybdenum, and a non-metal current collector such as a carbon electrode can be used.

集電体の形状としても特に限定されるものではなく、薄膜状、板状、棒状であっても構わない。光電池として面積を確保するため、薄膜状、板状であることが好ましい。   The shape of the current collector is not particularly limited, and may be a thin film shape, a plate shape, or a rod shape. In order to secure an area as a photovoltaic cell, a thin film or a plate is preferable.

本発明で用いられる電解質吸着性導電材としては、特に限定されるものではなく、前述した半導体光触媒、炭素材などを使用することができる。炭素材としては、グラファイト、活性炭などを使用することができる。表面積、導電性、価格を考慮して、活性炭成型体を使用することが好ましい。   The electrolyte adsorptive conductive material used in the present invention is not particularly limited, and the above-described semiconductor photocatalyst, carbon material, and the like can be used. As the carbon material, graphite, activated carbon or the like can be used. In consideration of the surface area, conductivity, and price, it is preferable to use an activated carbon molded body.

活性炭成型体としては、繊維状活性炭から成る不織布、織布、フェルトでも良いし、活性炭微粉をケッチェンブラック、アセチレンブラックなどのカーボンブラック系導電材と共に、PTFEなどをバインダーとして用いて、シート状に成型したものを用いても構わない。活性炭の表面積は、イオンの吸着面積なので蓄電容量に影響する。すなわち、活性炭の表面積は、大きいほど良いが、大きいほど活性炭の電気伝導度が下がる。活性炭の表面積は、400〜5000m2/gであることが好ましい。 The activated carbon molded body may be a nonwoven fabric made of fibrous activated carbon, woven fabric, or felt, and the activated carbon fine powder is made into a sheet using PTFE or the like as a binder together with a carbon black-based conductive material such as ketjen black or acetylene black. You may use what was shape | molded. The surface area of the activated carbon affects the storage capacity because it is an ion adsorption area. That is, the larger the surface area of the activated carbon, the better, but the larger the surface area, the lower the electrical conductivity of the activated carbon. The surface area of the activated carbon is preferably 400 to 5000 m 2 / g.

接着の方法は特に制限されるものではないが、導電性を損なわない方法を用いることが必要である。そこで、集電体への圧着、集電体へのアーク溶射、プラズマ溶射などの溶射による接着などの方法を用いることもできるし、導電性接着剤を用いることもできる。カーボンテープなどの導電性テープによって接着しても構わない。更に、電解質吸着性導電材上に、アーク溶射、プラズマ溶射などの方法で、集電体を作製して密着性を持たせることも可能である。集電体との密着性、導電性材料層の細孔を塞がないなどの観点から、導電性接着剤や導電性テープを用いることが好ましい。導電性接着剤としては、カーボン、銀、ポリアニリンなどの導電性物質を、アクリル樹脂、フェノール樹脂、エポキシ樹脂などの熱硬化性樹脂材料中に分散させたペーストを用いることができるが、接着時の界面抵抗、通電使用時の劣化性から、導電性物質としては、グラファイト粉末、グラッフェン、カーボンブラック(たとえば、ケッチェンブラック、アセチレンブラック)などのカーボン材料を分散させたペーストを用いることが好ましい。更に、分散ペーストの溶媒としては、ブチロラクトン、N-メチルピロリドンなどの水溶性の有機溶媒、水を用いることができるが、導電性材料層への残留、接着剤硬化時に、導電性材料の細孔閉塞などを起こさない水の使用が好ましい。   The bonding method is not particularly limited, but it is necessary to use a method that does not impair the conductivity. Therefore, a method such as pressure bonding to the current collector, arc spraying to the current collector, adhesion by thermal spraying such as plasma spraying, or the like can be used, or a conductive adhesive can also be used. You may adhere | attach with electroconductive tapes, such as a carbon tape. Furthermore, a current collector can be produced on the electrolyte-adsorbing conductive material by an arc spraying method, a plasma spraying method, or the like to provide adhesion. From the standpoint of adhesion to the current collector and not blocking the pores of the conductive material layer, it is preferable to use a conductive adhesive or a conductive tape. As the conductive adhesive, a paste in which a conductive substance such as carbon, silver, or polyaniline is dispersed in a thermosetting resin material such as an acrylic resin, a phenol resin, or an epoxy resin can be used. From the viewpoint of interfacial resistance and deterioration during energization, it is preferable to use a paste in which a carbon material such as graphite powder, graphene, or carbon black (for example, ketjen black or acetylene black) is dispersed. Further, as a solvent for the dispersion paste, a water-soluble organic solvent such as butyrolactone and N-methylpyrrolidone, water can be used. The use of water that does not cause blockage is preferred.

本発明では、イオン吸着装置をコンパクトにするために、電極間に絶縁性のセパレータを置き、複数の電極をセパレータを介して、密着させることができる。   In the present invention, in order to make the ion adsorption apparatus compact, an insulating separator is placed between the electrodes, and a plurality of electrodes can be brought into close contact with each other via the separator.

セパレータの材料としては、イオン透過性で親水性であれば特に制限されるものではないが、繊維シート材料、多微孔性ポリマー膜状シート材料、粒子含有シート材料などを使用することができる。通液性や、伸縮性を考慮すると、繊維シート材料又は粒子含有シート材料を使用することが好ましく、フェルト状、紙状のものが好ましい。   The material of the separator is not particularly limited as long as it is ion-permeable and hydrophilic, and a fiber sheet material, a multi-porous polymer film-like sheet material, a particle-containing sheet material, and the like can be used. In consideration of liquid permeability and stretchability, it is preferable to use a fiber sheet material or a particle-containing sheet material, and a felt-like or paper-like one is preferred.

セパレータを構成する素材としては、セルロース、テンセル、ポリビニルアルコール、エチレンポリビニルアルコール共重合体などの水酸基含有高分子素材などを使用することができる。また、ポリエチレン、ポリプロピレンなどの撥水性素材を、フッ素、プラズマ、発煙硫酸などで浸水処理した親水性材料、ポリアクリル酸、ポリメタクリル酸などの親水性官能基を有する素材を用いることもできる。分離するイオンが必要以上に吸着し、イオンの透過性が低下したり、素材の柔軟性を損なうことを避けるなどを考慮して、水酸基含有高分子素材を選択したものを使用することが好ましい。   As a material constituting the separator, a hydroxyl group-containing polymer material such as cellulose, tencel, polyvinyl alcohol, and ethylene polyvinyl alcohol copolymer can be used. In addition, a hydrophilic material obtained by immersing a water-repellent material such as polyethylene or polypropylene with fluorine, plasma, fuming sulfuric acid, or the like, or a material having a hydrophilic functional group such as polyacrylic acid or polymethacrylic acid can be used. It is preferable to use a material selected from a hydroxyl group-containing polymer material in consideration of the fact that ions to be separated are adsorbed more than necessary, and the ion permeability is lowered and the flexibility of the material is avoided.

本発明のイオン吸着装置の概略を図2に示す。本発明のイオン吸着装置は、半導体光触媒膜11と電解質吸着性導電材13が密着した集電体12からなる光発電電極14を必須の構成要素として含んでなる。図2では集電体12はメッシュから構成されており、電極の重量を低減するように工夫がなされている。本発明のイオン吸着装置では、太陽光などの光10を受けた半導体光触媒膜11から電子が放出され、この電子は集電体12へと移動する。この結果として、半導体光触媒膜11の表面は正に帯電し、電解質吸着性導電材13は負に帯電するので、ハウジング15内に存在する電解質の内、陰イオンは半導体光触媒膜11の表面に付着し、陽イオンは電解質吸着性導電材13の表面に付着する。集電体12を他の集電体(対極)16と導線などの負荷17を介して接続することで電子が集電体(対極)16に移動する。この場合、半導体光触媒膜11と電解質吸着性導電材13が密着した集電体12からなる光発電電極14には陰イオンが付着し、集電体(対極)16には陽イオンが付着する。図3はさらに集電体16にも電解質吸着性導電材18を密着させた態様を示す図である。図3の態様は、両極に電解質吸着性導電材が密着しているので、電解質の吸着効率が非常に高い。   An outline of the ion adsorption apparatus of the present invention is shown in FIG. The ion adsorption apparatus of the present invention includes a photovoltaic electrode 14 composed of a current collector 12 in which a semiconductor photocatalyst film 11 and an electrolyte adsorbing conductive material 13 are in close contact as an essential component. In FIG. 2, the current collector 12 is composed of a mesh, and is devised to reduce the weight of the electrode. In the ion adsorption apparatus of the present invention, electrons are emitted from the semiconductor photocatalyst film 11 that has received the light 10 such as sunlight, and the electrons move to the current collector 12. As a result, the surface of the semiconductor photocatalyst film 11 is positively charged and the electrolyte-adsorbing conductive material 13 is negatively charged. Therefore, among the electrolytes present in the housing 15, anions adhere to the surface of the semiconductor photocatalyst film 11. Then, the cation adheres to the surface of the electrolyte adsorptive conductive material 13. By connecting the current collector 12 to another current collector (counter electrode) 16 via a load 17 such as a conducting wire, electrons move to the current collector (counter electrode) 16. In this case, negative ions adhere to the photovoltaic electrode 14 formed of the current collector 12 in which the semiconductor photocatalyst film 11 and the electrolyte adsorbing conductive material 13 are in close contact, and positive ions adhere to the current collector (counter electrode) 16. FIG. 3 is a view showing an aspect in which the electrolyte adsorbing conductive material 18 is further adhered to the current collector 16. In the embodiment of FIG. 3, the electrolyte adsorbing conductive material is in close contact with both electrodes, so that the electrolyte adsorption efficiency is very high.

また以上の説明からわかるように、本発明のイオン吸着装置では、対極は必須の構成要素ではない。   As can be seen from the above description, the counter electrode is not an essential component in the ion adsorption apparatus of the present invention.

本発明のイオン性物質除去装置によれば、カチオン性成分として、リチウム、ナトリウム、カリウムなどのアルカリ金属イオン、マグネシウム、カルシウム、バリウムなどのアルカリ土類金属イオン、アルミニウム、ガリウム、インジウムなどの典型金属イオン、ニッケル、銅、鉄、コバルト、亜鉛、パラジウム、白金、金、銀、ロジウム、ルテニウム、オスミウム、イリジウムなどの遷移金属イオン、セリウム、プラセオジム、ツリウム、テルビウム、ユーロピウムなどの希土類金属イオン、などの金属イオン種、およびこれらの金属を含むカチオン性錯体、アンモニウム、ホスホニウムなどの有機カチオン化合物を吸着除去することができる。   According to the ionic substance removing device of the present invention, as a cationic component, alkali metal ions such as lithium, sodium and potassium, alkaline earth metal ions such as magnesium, calcium and barium, and typical metals such as aluminum, gallium and indium Transition metal ions such as ions, nickel, copper, iron, cobalt, zinc, palladium, platinum, gold, silver, rhodium, ruthenium, osmium, iridium, rare earth metal ions such as cerium, praseodymium, thulium, terbium, europium, etc. It is possible to adsorb and remove metal ion species and organic cationic compounds such as cationic complexes containing these metals, ammonium and phosphonium.

また、アニオン成分として、塩素、臭素、ヨウ素などのハロゲンイオン、硫酸、亜硫酸、硝酸、燐酸、亜燐酸、硼酸、塩素酸、次亜塩素酸などの鉱酸イオン、テトラフルオロボラン、ヘキサフルオロボラン、テトラフルオロホスフィンなどの錯体イオンなどを吸着除去することができる。カチオン成分を含む液体とアニオン成分を含む液体の混合物でも適用することができる。   In addition, as anion components, halogen ions such as chlorine, bromine and iodine, sulfuric acid, sulfurous acid, nitric acid, phosphoric acid, phosphorous acid, mineral acid ions such as boric acid, chloric acid and hypochlorous acid, tetrafluoroborane, hexafluoroborane, Complex ions such as tetrafluorophosphine can be removed by adsorption. A mixture of a liquid containing a cationic component and a liquid containing an anionic component can also be applied.

本発明によるイオン吸着装置は、イオンを吸着除去したい溶液を密封容器中に収めた形であるいはビーカーなどの開放された容器中に収めた形で使用してもよいし、イオンを吸着除去したい溶液の流路内に設置した形で使用してもよい。   The ion adsorption apparatus according to the present invention may be used in a form in which a solution for removing ions by adsorption is contained in a sealed container or in an open container such as a beaker, or a solution for removing ions by adsorption. You may use it in the form installed in the flow path.

以下に実施例を挙げ、本発明をより詳細に説明するが、本発明が以下の実施例に限定されるものではない。   The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the following examples.

実施例1
3mm厚の銅板に、平均粒径2μmの東邦チタニウム製ルチル酸化チタン粒子を使用した粒子速度450m/Sの大気圧プラズマ溶射により、半導体光触媒膜として膜厚100μmの酸化チタン膜を成膜した。このとき、膜厚方向の抵抗は、30Ω/□であった。この銅板を30mm角に切り出し、溶射面を20mm角とした。この溶射面の反対側に電解質吸着性導電材として活性炭布(クラレケミカル社製 クラクティブCH)20mm角を導電性カーボンテープ(応研商事社製#15-1095 導電性カーボン両面テープ)により接着し光励起発電極とした。溶射されていない銅板を同様に切り出し、活性炭布(クラレケミカル製 クラクティブCH)20mm角を導電性カーボンテープ(応研商事社製#15-1095 導電性カーボン両面テープ)により接着し、吸着電極(対極)を得た。両銅板の間にろ紙(アドバンテック5A)を挟み、お互いが接触しないように設置した。両極を銅線で配線し、50gの12.7重量%塩化ナトリウム水溶液(ナトリウムイオン濃度5.0重量%)に浸け、太陽光の下で、3時間静置した。静置後の塩化ナトリウム水溶液のナトリウムイオン濃度を陽イオンクロマトグラフィーにより求めたところ、2.1重量%であることがわかった。この結果より、本装置がイオン吸着装置として機能したことがわかる。
Example 1
A titanium oxide film having a film thickness of 100 μm was formed as a semiconductor photocatalyst film by atmospheric pressure plasma spraying at a particle speed of 450 m / S using Toho titanium rutile titanium oxide particles having an average particle diameter of 2 μm on a 3 mm thick copper plate. At this time, the resistance in the film thickness direction was 30Ω / □. This copper plate was cut into a 30 mm square and the sprayed surface was a 20 mm square. Photoexcitation by adhering a 20mm square activated carbon cloth (Kuraray Chemical Co., Ltd., Cractive CH) as an electrolyte-adsorbing conductive material to the opposite side of this sprayed surface with a conductive carbon tape ( # 15-1095 conductive carbon double-sided tape manufactured by Oken Shoji Co., Ltd.). It was set as the emitting electrode. Cut the copper plate that was not sprayed in the same way, and bonded 20mm square of activated carbon cloth (Kuraray Chemical's Cractive CH) with conductive carbon tape (# 15-1095 conductive carbon double-sided tape manufactured by Oken Shoji Co., Ltd.) ) Filter paper (Advantech 5A) was sandwiched between both copper plates, and they were placed so that they did not touch each other. Both electrodes were wired with a copper wire, immersed in 50 g of a 12.7 wt% sodium chloride aqueous solution (sodium ion concentration 5.0 wt%), and allowed to stand under sunlight for 3 hours. When the sodium ion concentration of the aqueous sodium chloride solution after standing was determined by cation chromatography, it was found to be 2.1% by weight. From this result, it can be seen that this apparatus functions as an ion adsorption apparatus.

実施例2
塩化ナトリウム水溶液を1.3重量%水酸化マグネシウム水溶液(マグネシウムイオン濃度0.5重量%)に代えた以外は実施例1と同様に行い、陽イオンクロマトグラフィーによりマグネシウムイオン濃度が0.1重量%に低下していることを観測した。
Example 2
The same procedure as in Example 1 was performed except that the sodium chloride aqueous solution was replaced with a 1.3 wt% magnesium hydroxide aqueous solution (magnesium ion concentration 0.5 wt%), and the magnesium ion concentration was 0.1 wt% by cation chromatography. Observed that it has declined.

実施例3
塩化ナトリウム水溶液を硼酸ナトリウム10水和物を300℃で焼成して得た硼酸ナトリウム無水物の1400ppm水溶液(ナトリウムイオン濃度320ppm、硼酸イオン濃度1080ppm)に代えた以外は実施例1と同様に行い、陽イオンクロマトグラフィーによりナトリウムイオン濃度が19ppm、陰イオンクロマトグラフィーにより硼酸イオン濃度が27ppmであることを観測した。
Example 3
The same procedure as in Example 1 was conducted except that the sodium chloride aqueous solution was replaced with a 1400 ppm aqueous solution of sodium borate anhydride obtained by calcining sodium borate decahydrate at 300 ° C. (sodium ion concentration 320 ppm, borate ion concentration 1080 ppm). It was observed that the sodium ion concentration was 19 ppm by cation chromatography and the borate ion concentration was 27 ppm by anion chromatography.

比較例1
半導体光触媒膜を敷設しなかった以外は実施例1と同様に行ったが、太陽光の下で3時間静置後のナトリウムイオン濃度は4.8重量%であった。
Comparative Example 1
The same procedure as in Example 1 was carried out except that the semiconductor photocatalyst film was not laid, but the sodium ion concentration after standing for 3 hours under sunlight was 4.8% by weight.

比較例2
半導体光触媒膜を敷設しなかった以外は実施例2と同様に行ったが、太陽光の下で3時間静置後のマグネシウムイオン濃度は0.4重量%であった。
Comparative Example 2
The same procedure as in Example 2 was conducted except that the semiconductor photocatalyst film was not laid, but the magnesium ion concentration after standing for 3 hours under sunlight was 0.4% by weight.

比較例3
半導体光触媒膜を敷設しなかった以外は実施例3と同様に行ったが、太陽光の下で3時間静置後のナトリウムイオン濃度は195ppm、硼酸イオン濃度は960ppmであった。
Comparative Example 3
The same procedure as in Example 3 was performed except that the semiconductor photocatalyst film was not laid, but the sodium ion concentration after standing for 3 hours under sunlight was 195 ppm, and the borate ion concentration was 960 ppm.

実施例4
3mm厚の銅板に、平均粒径0.1μmの石原産業株式会社製アナターゼ酸化チタン粒子を使用した粒子速度450m/Sの大気圧プラズマ溶射により、膜厚100μmの酸化チタン膜を成膜した。このとき、膜厚方向の抵抗は、27Ω/□であった。この銅板を30mm角に切り出し、溶射面を20mm角とした。この溶射面の反対側に活性炭布(クラレケミカル社製 クラクティブCH)20mm角を導電性カーボンテープ(応研商事社製#15-1095 導電性カーボン両面テープ)により接着し光励起発電極とした。溶射されていない銅板を同様に切り出し、活性炭布(クラレケミカル製 クラクティブCH)20mm角を導電性カーボンテープ(応研商事社製#15-1095 導電性カーボン両面テープ)により接着し、吸着電極(対極)を得た。両銅板の間にろ紙(アドバンテック5A)を挟み、お互いが接触しないように設置した。両極を銅線で配線し、50gの12.7重量%塩化ナトリウム水溶液(ナトリウムイオン濃度5.0重量%)に浸け、太陽光の下で、3時間静置した。静置後の塩化ナトリウム水溶液のナトリウムイオン濃度を陽イオンクロマトグラフィーにより求めたところ、1.7重量%であることがわかった。この結果より、本装置がイオン吸着装置として機能したことがわかる。
Example 4
A titanium oxide film having a thickness of 100 μm was formed on a 3 mm thick copper plate by atmospheric pressure plasma spraying at a particle speed of 450 m / S using anatase titanium oxide particles manufactured by Ishihara Sangyo Co., Ltd. having an average particle size of 0.1 μm. At this time, the resistance in the film thickness direction was 27Ω / □. This copper plate was cut into a 30 mm square and the sprayed surface was a 20 mm square. On the opposite side of the sprayed surface, an activated carbon cloth (Kuraray Chemical Co., Ltd., Clastic CH) 20 mm square was adhered with a conductive carbon tape (Oken Shoji Co., Ltd. # 15-1095 conductive carbon double-sided tape) to form a photo-excited electrode. Cut the copper plate that was not sprayed in the same way, and bonded 20mm square of activated carbon cloth (Kuraray Chemical's Cractive CH) with conductive carbon tape (# 15-1095 conductive carbon double-sided tape manufactured by Oken Shoji Co., Ltd.) ) Filter paper (Advantech 5A) was sandwiched between both copper plates, and they were placed so that they did not touch each other. Both electrodes were wired with a copper wire, immersed in 50 g of a 12.7 wt% sodium chloride aqueous solution (sodium ion concentration 5.0 wt%), and allowed to stand under sunlight for 3 hours. When the sodium ion concentration of the aqueous sodium chloride solution after standing was determined by cation chromatography, it was found to be 1.7% by weight. From this result, it can be seen that this apparatus functions as an ion adsorption apparatus.

比較例4
3mm厚の銅板に、平均粒径0.1μmの石原産業株式会社製アナターゼ酸化チタン粒子をポリテトラフルオロエチレン(三井・デュポンフルオロケミカルズ製、テフロン(登録商標)6J)と質量比で、95:5で混合し、混練、延伸し、厚さ100μmの酸化チタンシートとして、導電性カーボンテープ(応研商事社製#15-1095 導電性カーボン両面テープ)により接着した。このとき、膜厚方向の抵抗は、23000Ω/□であった。この銅板を30mm角に切り出した。この酸化チタン含有樹脂層の反対側に活性炭布(クラレケミカル社製 クラクティブCH)20mm角を導電性カーボンテープ(応研商事社製#15-1095 導電性カーボン両面テープ)により接着し、光励起発電極とした。溶射されていない銅板を同様に切り出し、活性炭布(クラレケミカル製 クラクティブCH)20mm角を導電性カーボンテープ(応研商事社製#15-1095 導電性カーボン両面テープ)により接着し、吸着電極を得た。両銅板の間にろ紙(アドバンテック5A)を挟み、お互いが接触しないように設置した。両極を銅線で配線し、50gの12.7重量%塩化ナトリウム水溶液(ナトリウムイオン濃度5.0重量%)に浸け、太陽光の下で、3時間静置した。静置後の塩化ナトリウム水溶液のナトリウムイオン濃度を陽イオンクロマトグラフィーにより求めたところ、4.8重量%であることがわかった。この結果より、半導体光触媒膜に換えて酸化チタン粒子と樹脂との混合物の層を使用した場合には、酸化チタンと集電体との間の密着性が十分でなく、導電性が著しく低く、色素などの増感剤を存在させないと、イオン吸着装置としての機能が発揮できないことがわかった。
Comparative Example 4
On a 3 mm thick copper plate, anatase titanium oxide particles manufactured by Ishihara Sangyo Co., Ltd. with an average particle size of 0.1 μm and polytetrafluoroethylene (manufactured by Mitsui DuPont Fluorochemicals, Teflon (registered trademark) 6J) in mass ratio of 95: 5 Were mixed, kneaded and stretched, and bonded as a 100 μm thick titanium oxide sheet with conductive carbon tape (# 15-1095 conductive carbon double-sided tape manufactured by Oken Shoji Co., Ltd.). At this time, the resistance in the film thickness direction was 23000 Ω / □. This copper plate was cut into 30 mm square. A 20 mm square activated carbon cloth (Kuraray Chemical Co., Ltd., Cractive CH) is bonded to the opposite side of this titanium oxide-containing resin layer with a conductive carbon tape (# 15-1095 conductive carbon double-sided tape, manufactured by Oken Shoji Co., Ltd.) It was. Cut the unsprayed copper plate in the same way, and bond 20 mm square of activated carbon cloth (Kuraray Chemical's Cractive CH) with conductive carbon tape (# 15-1095 conductive carbon double-sided tape manufactured by Oken Shoji Co., Ltd.) to obtain an adsorption electrode. It was. Filter paper (Advantech 5A) was sandwiched between both copper plates, and they were placed so that they did not touch each other. Both electrodes were wired with a copper wire, immersed in 50 g of a 12.7 wt% sodium chloride aqueous solution (sodium ion concentration 5.0 wt%), and allowed to stand under sunlight for 3 hours. When the sodium ion concentration of the aqueous sodium chloride solution after standing was determined by cation chromatography, it was found to be 4.8% by weight. From this result, when using a layer of a mixture of titanium oxide particles and resin instead of the semiconductor photocatalyst film, the adhesion between the titanium oxide and the current collector is not sufficient, the conductivity is remarkably low, It was found that the function as an ion adsorption device cannot be exhibited unless a sensitizer such as a dye is present.

1 太陽電池
2 イオン吸着器
10 太陽光などの光
11 半導体光触媒膜
12 集電体
13 電解質吸着性導電材
14 光発電電極
15 ハウジング
16 集電体(対極)
17 導線などの負荷
18 電解質吸着性導電材
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Ion adsorber 10 Light, such as sunlight 11 Semiconductor photocatalyst film | membrane 12 Current collector 13 Electrolyte adsorptive conductive material 14 Photovoltaic electrode 15 Housing 16 Current collector (counter electrode)
17 Loads such as conducting wires 18 Electrolytic adsorptive conductive material

Claims (5)

集電体と、当該集電体の一側面に密着させた半導体光触媒膜と、当該集電体の他方の側面に密着させた電解質吸着性導電材と、からなる光励起発電極を含んでなる、溶液中のイオンを吸着する自己発電型イオン吸着装置。 Comprising a photo-excited emission electrode comprising a current collector, a semiconductor photocatalyst film adhered to one side surface of the current collector, and an electrolyte-adsorbing conductive material adhered to the other side surface of the current collector . Self-powered ion adsorption device that adsorbs ions in solution . さらに、対極を含む、請求項1に記載の自己発電型イオン吸着装置。The self-power generation ion adsorption device according to claim 1, further comprising a counter electrode. 前記対極は、集電体と、当該集電体の少なくとも一側面に電解質吸着性導電材を密着させてなる吸着電極である、請求項2に記載の自己発電型イオン吸着装置。The self-power generation type ion adsorption apparatus according to claim 2, wherein the counter electrode is an adsorption electrode formed by bringing a current collector and an electrolyte-adsorbing conductive material into close contact with at least one side surface of the current collector. 請求項1〜3のいずれかに記載の自己発電型イオン吸着装置を用いるイオン性物質の除去方法。 A method for removing an ionic substance using the self-powered ion adsorption apparatus according to any one of claims 1 to 3 . 前記自己発電型イオン吸着装置のイオン除去能力低下時に、放電または逆電圧印加により、前記半導体光触媒膜又は電解質吸着性導電材に吸着されたイオンを放出することによって、イオン除去能力を回復する、請求項に記載のイオン性物質の除去方法。 The ion removal ability is recovered by releasing ions adsorbed on the semiconductor photocatalyst film or the electrolyte-adsorbing conductive material by discharging or applying a reverse voltage when the ion removal ability of the self-powered ion adsorption device is reduced. Item 5. A method for removing an ionic substance according to Item 4 .
JP2009255804A 2009-11-09 2009-11-09 Ion adsorption apparatus and method for removing ionic substances Expired - Fee Related JP5341715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009255804A JP5341715B2 (en) 2009-11-09 2009-11-09 Ion adsorption apparatus and method for removing ionic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009255804A JP5341715B2 (en) 2009-11-09 2009-11-09 Ion adsorption apparatus and method for removing ionic substances

Publications (2)

Publication Number Publication Date
JP2011098312A JP2011098312A (en) 2011-05-19
JP5341715B2 true JP5341715B2 (en) 2013-11-13

Family

ID=44189944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009255804A Expired - Fee Related JP5341715B2 (en) 2009-11-09 2009-11-09 Ion adsorption apparatus and method for removing ionic substances

Country Status (1)

Country Link
JP (1) JP5341715B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559200B1 (en) * 2013-05-13 2015-10-15 제주대학교 산학협력단 Apparatus and method for waste-water treatment using dielectric barrier discharge
CN115074555B (en) * 2021-03-16 2024-03-08 有研稀土高技术有限公司 Rare earth purification method based on macroporous ion imprinting adsorption membrane
CN113354104A (en) * 2021-07-01 2021-09-07 云南华谱量子材料有限公司 Ecological system suitable for deepwater environment restoration and construction method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277064A (en) * 1998-03-27 1999-10-12 Konica Corp Fixed bed type three-dimensional electrode, fixed bed type three dimensional electrode electrolytic bath, and water treatment method
JP2000015260A (en) * 1998-07-02 2000-01-18 Masanori Tashiro Water treatment apparatus
JP2002346556A (en) * 1999-06-21 2002-12-03 Mitsui Eng & Shipbuild Co Ltd Method for rapid sterilizaton and activation of water and equipment therefor
JP2002192180A (en) * 2000-12-27 2002-07-10 Asupu:Kk Cleaning material
JP2002355672A (en) * 2001-05-31 2002-12-10 Sanyo Electric Co Ltd Method and device for water treatment
JP2003200164A (en) * 2001-12-28 2003-07-15 Yukin Kagi Kofun Yugenkoshi Winding and liquid passing type condenser for removing charged matter from liquid and liquid treatment apparatus
JP2003200166A (en) * 2002-01-08 2003-07-15 Kurita Water Ind Ltd Operation method for liquid passing type electric double- layered condenser desalting apparatus
JP2003275598A (en) * 2002-03-25 2003-09-30 Central Res Inst Of Electric Power Ind Photocatalytic apparatus and irradiation method for photocatalyst
JP2003285066A (en) * 2002-03-27 2003-10-07 Luxon Energy Devices Corp Pure water apparatus with energy recovery
KR101176807B1 (en) * 2003-11-10 2012-08-24 데이진 가부시키가이샤 Carbon fiber nonwoven fabric,and production method and use thereof
JP4852696B2 (en) * 2005-04-18 2012-01-11 国立大学法人東京工業大学 Titanium oxide thin film, photocatalytic material including titanium oxide thin film, method for producing the same, photocatalytic water purification device, and water purification method utilizing photocatalytic reaction
JP2007209954A (en) * 2006-02-13 2007-08-23 Sumitomo Titanium Corp Photocatalyst-type antifouling device
JP4962958B2 (en) * 2007-07-27 2012-06-27 国立大学法人弘前大学 Visible light responsive photocatalyst
JP4461271B2 (en) * 2008-03-25 2010-05-12 有限会社ターナープロセス Portable hardness adjustment device for adjusting the hardness of drinking water
JP2010064045A (en) * 2008-09-12 2010-03-25 Kanagawa Acad Of Sci & Technol Hybrid type water purifying apparatus and water purifying method using the same

Also Published As

Publication number Publication date
JP2011098312A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
JP5667577B2 (en) Ion exchange device and method for regenerating the ion exchange material
TWI536414B (en) Bipolar electrode and supercapacitor desalination device, and methods of manufacture
US10297861B2 (en) Anion conducting material and cell
TWI471459B (en) Electrolysis unit and electrolytic cell
KR102093443B1 (en) Capacitive deionization apparatus and methods of treating fluid using the same
JP6006493B2 (en) Supercapacitor and manufacturing method thereof
US20120199486A1 (en) Ion-Selective Capacitive Deionization Composite Electrode, and Method for Manufacturing a Module
AU2017212260A1 (en) Lithium-selective permeable membrane, lithium recovery device, lithium recovery method and hydrogen production method
Ntakirutimana et al. Editors’ Choice—Review—Activated carbon electrode design: Engineering tradeoff with respect to capacitive deionization performance
JP3893740B2 (en) Electrolytic capacitor type desalting apparatus and desalting method
KR20100064633A (en) Electrode for capacitive deionization, and capacitive deionization device and electric double layer capacitor having same
JP5341715B2 (en) Ion adsorption apparatus and method for removing ionic substances
Luo et al. Electrochemically triggered iodide-vacancy BiOI film for selective extraction of iodide ion from aqueous solutions
JP5342468B2 (en) Liquid-flowing capacitor and method of operating the same
CN102689937A (en) Regenerable filter unit for removing metal, regenerable filter system including same, and method of operating regenerable filter system
KR101526246B1 (en) Composite Electrode For Water Treatment And Method For Manufacturing The Same And Water Treatment System
JP5438471B2 (en) Photovoltaic cell and photovoltaic battery
JP2003200166A (en) Operation method for liquid passing type electric double- layered condenser desalting apparatus
CN105392926A (en) Porous electrically conductive member for use in water electrolysis, and functional water generator equipped with same
JP2015051421A (en) Electrodialyzer for seawater or the like composed of carbon electrode
CN113398763A (en) Regeneration method and separation device
JP7327341B2 (en) Separator for reaction cell and reaction cell using it
JP2017021925A (en) Positive electrode for metal air-battery and metal air-battery
JP4276736B2 (en) Electric double layer capacitor
JP2021159889A (en) Chemical reaction apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130808

R150 Certificate of patent or registration of utility model

Ref document number: 5341715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees