JP5336332B2 - Gramineae plant growth control method - Google Patents

Gramineae plant growth control method Download PDF

Info

Publication number
JP5336332B2
JP5336332B2 JP2009266318A JP2009266318A JP5336332B2 JP 5336332 B2 JP5336332 B2 JP 5336332B2 JP 2009266318 A JP2009266318 A JP 2009266318A JP 2009266318 A JP2009266318 A JP 2009266318A JP 5336332 B2 JP5336332 B2 JP 5336332B2
Authority
JP
Japan
Prior art keywords
light
day
period
hd3a
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009266318A
Other languages
Japanese (ja)
Other versions
JP2011109925A (en
Inventor
内田  哲也
芳昭 建入
仁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2009266318A priority Critical patent/JP5336332B2/en
Publication of JP2011109925A publication Critical patent/JP2011109925A/en
Application granted granted Critical
Publication of JP5336332B2 publication Critical patent/JP5336332B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は、イネ科植物の育成制御方法、特に人工光のみを植物に照射する環境におけるイネ科植物の育成制御方法に関する。   The present invention relates to a method for controlling the growth of gramineous plants, and particularly to a method for controlling the growth of gramineous plants in an environment where only artificial light is irradiated to the plants.

通常の一般水田におけるイネ栽培は基本的に1年に1回行う1期作であることから、1作当たりの収穫量を増やすことが重要である。しかし、光照射や温度などの栽培条件を制御できる完全閉鎖系環境でのイネ栽培は、1年に数回栽培を行う多期作が可能であるため、年間を通しての収穫量を増大させることが重要となってくる。そして年間収穫量を増大させる方法としては、1作当たりの栽培期間を短くすること、及び1作当たりの収穫量を増やすことが考えられる。   Since rice cultivation in ordinary general paddy fields is basically a one-year cropping performed once a year, it is important to increase the yield per crop. However, rice cultivation in a completely closed system environment that can control cultivation conditions such as light irradiation and temperature, etc., can increase the yield throughout the year because multi-period cropping can be done several times a year. It becomes important. As a method for increasing the annual yield, it is conceivable to shorten the cultivation period per crop and to increase the harvest per crop.

特許文献1には、完全制御型光植物工場における植物育成用の光照射手段において、特定の複数の光質照射時期を含むことを特徴とする植物育成光の照射方法及び照射装置が開示されており、これにより収穫時期を早めることができると記載されている。しかしながら、特許文献1に記載の発明は主に収穫量と無関係の草花の栽培期間を短縮するための方法であり、年間収穫量を増やすための方法ではない。   Patent Document 1 discloses an irradiation method and an irradiation apparatus for plant growth light characterized by including a plurality of specific light quality irradiation periods in light irradiation means for plant growth in a fully controlled light plant factory. It is described that the harvesting time can be advanced by this. However, the invention described in Patent Document 1 is mainly a method for shortening the cultivation period of plants and flowers unrelated to the yield, and is not a method for increasing the annual yield.

また、特許文献2には、人工光として青色光のみまたは青色光に加え遠赤色光を照射する光源手段を備えた、人工光を用いたイネ科植物の育苗装置が開示されており、これにより育苗時における定植後の花芽分化を促進し、育成期間を短縮することができると記載されている。しかしながら、特許文献2に記載の発明は主に品種改良における世代促進を実現するための方法であり、収穫量については記載されていない。   Patent Document 2 discloses a grass seedling raising apparatus using artificial light, which includes light source means for irradiating only blue light or artificial light with far red light in addition to blue light. It describes that flower bud differentiation after planting at the time of raising seedling can be promoted and the growing period can be shortened. However, the invention described in Patent Document 2 is a method for realizing generation promotion mainly in breed improvement, and the yield is not described.

さらに、栽培光波長操作によるイネの収穫日数を短縮する技術として、エンド・オブ・デイ(End of day;EOD)処理が知られている。これは栽培期間を通じて明期終了直後に短時間の遠赤色光照射を行うものであり、これによりイネの出穂・収穫までの日数が短縮されると考えられている。しかしその一方で、EOD処理によって、一穂当たりの籾数や分げつ数が減少することから、収穫量はかえって減少してしまうという欠点がある。   Furthermore, an end-of-day (EOD) process is known as a technique for shortening the number of rice harvest days by cultivating light wavelength manipulation. This is a short-time irradiation of far-red light immediately after the end of the light period throughout the cultivation period, which is thought to reduce the number of days until heading and harvesting of rice. However, on the other hand, the EOD treatment has a drawback in that the yield is reduced because the number of pods and tillers per ear is reduced.

一方、イネHd3a遺伝子は花芽形成に関連するとされており、Hd3a遺伝子の導入や発現制御により植物の開花時期を改変し得ることが知られている(特許文献3)。   On the other hand, the rice Hd3a gene is considered to be related to flower bud formation, and it is known that the flowering time of plants can be modified by introduction and expression control of the Hd3a gene (Patent Document 3).

特開2001−57816号公報JP 2001-57816 A 特開2002−345337号公報JP 2002-345337 A 特開2002−153283号公報JP 2002-153283 A

上述したように、これまで1作当たりの栽培期間を短縮する方法はいくつか知られているが、いずれの方法によっても年間収穫量の増加には至らなかった。そこで本発明は、イネ科植物の単位面積当たりの年間収穫量を増加させるため、1作当たりの栽培期間を短縮するとともに通常栽培期間における1作当たりの収穫量を維持できる、イネ科植物の育成制御方法を提供することを目的とする。   As described above, several methods for shortening the cultivation period per crop have been known so far, but none of the methods resulted in an increase in annual yield. Therefore, the present invention increases the annual yield per unit area of the gramineous plant, thereby shortening the cultivation period per crop and maintaining the harvest per crop in the normal cultivation period. An object is to provide a control method.

本発明者らは、上記課題を解決するため鋭意研究の結果、意外なことに、エンド・オブ・デイ(EOD)処理を、栽培の始めから終わりまでの通期ではなく、花芽形成関連遺伝子Hd3aの転写パターンを指標にした特定の期間のみに行うことで、栽培期間を短縮するとともにコメ収穫量の低下を抑えられることを見出し、本発明の完成に至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have surprisingly made end-of-day (EOD) treatment of the flower bud formation-related gene Hd3a, not the entire period from the beginning to the end of cultivation. It has been found that by performing only during a specific period using the transfer pattern as an index, the cultivation period can be shortened and a decrease in rice yield can be suppressed, and the present invention has been completed.

すなわち、本発明は、外部光を遮蔽して人工光のみを植物に照射して、明期及び暗期の光周期で植物を育成する方法において、植物におけるHd3a又はその相同遺伝子のmRNAの転写量がピークに達する日よりも13〜3日前の間のいずれの日から、該転写量がピークに達する日からピークに達する日の7日後までの間のいずれの日までの10〜15日間エンド・オブ・デイ処理を行い、該エンド・オブ・デイ処理は明期の終了直後に遠赤色光を60分間以内の照射時間で植物に照射することにより行う、イネ科植物の育成制御方法を提供する。本発明によれば、1作当たりの栽培期間を短縮するとともに通常栽培期間における1作当たりの収穫量を維持できることによって、単位面積当たりの年間収穫量を増加させることができる。   That is, the present invention relates to a method for cultivating a plant in a light period and a dark period by irradiating a plant with only artificial light while blocking external light, and the amount of Hd3a or its homologous gene mRNA in the plant. End of 10-15 days from any day between 13 to 3 days before the day when the transcription reaches the peak and any day between the day when the transcription amount reaches the peak and 7 days after the peak reaches Provided is a method for controlling the growth of gramineous plants, which is performed by irradiating the plant with far-red light within an irradiation time of 60 minutes or less immediately after the end of the light period. . According to the present invention, the annual harvest per unit area can be increased by shortening the cultivation period per crop and maintaining the harvest per crop in the normal cultivation period.

本発明は、また、エンド・オブ・デイ(EOD)処理期間を決めるため、植物におけるHd3a又はその相同遺伝子のmRNAの転写パターンをモニターしながら植物の育成を行う、上記イネ科植物の育成制御方法を提供する。栽培環境・条件が一定であれば、品種ごとに予めHd3a又はその相同遺伝子の転写パターンを明らかにしておくことにより、それに基づいて品種ごとにEOD処理開始時期及び終了時期を決定することができる。また、予めモニターしたものについても、さらにEOD処理とともにHd3a又はその相同遺伝子のmRNAの転写量をモニターしながら栽培することで、該転写量ピークをより正確に把握することができ、より正確かつ効果的な終了時期の決定が可能となる。   The present invention also provides a method for controlling the growth of the above gramineous plant, wherein the plant is grown while monitoring the transcription pattern of mRNA of Hd3a or a homologous gene thereof in the plant in order to determine an end-of-day (EOD) treatment period. I will provide a. If the cultivation environment and conditions are constant, the transcription pattern of Hd3a or a homologous gene thereof is clarified in advance for each variety, and based on this, the EOD treatment start time and end time can be determined for each variety. In addition, for those monitored in advance, by cultivating while monitoring the transcription amount of Hd3a or its homologous gene mRNA together with the EOD treatment, the transcription amount peak can be grasped more accurately and more accurately and effectively. It is possible to determine a specific end time.

本発明は、また、エンド・オブ・デイ(EOD)処理をHd3a又はその相同遺伝子のmRNAの転写量がピークに達する日又は減少に転じた直後に終了する、上記イネ科植物の育成制御方法を提供する。EOD照射を終了する時期が転写ピークを過ぎれば過ぎるほど、栽培期間の短縮及び収穫量の減少抑制効果が弱まる傾向があるため、EOD処理を転写ピークに達する日又は減少に転じた直後に終了することで、より効果的に1作当たりの栽培期間を短縮するとともに通常栽培期間における1作当たりの収穫量の減少を抑えることができる。   The present invention also provides a method for controlling the growth of the above gramineous plant, wherein the end-of-day (EOD) treatment is terminated on the day when the transcription amount of mRNA of Hd3a or a homologous gene thereof reaches a peak or immediately after it starts to decrease. provide. As the time when EOD irradiation ends passes the transcription peak, the cultivation period is shortened and the yield reduction effect tends to be weakened. Therefore, the EOD treatment ends on the day when it reaches the transcription peak or immediately after it starts to decrease. Thereby, while shortening the cultivation period per crop more effectively, the fall of the harvest amount per crop in a normal cultivation period can be suppressed.

本発明の方法によれば、エンド・オブ・デイ(EOD)処理を特定の期間のみに行うことで、栽培通期に渡ってEOD処理を行う場合に比べて、同程度に栽培期間を短縮できるだけでなく、1作当たりの収穫量の減少を抑え、その結果、単位面積当たりの年間収穫量を増加させることができる。また、EOD処理にかかる電気代も節約でき、コストダウンにも貢献する。   According to the method of the present invention, the end of day (EOD) treatment can be performed only during a specific period, so that the cultivation period can be shortened to the same extent as compared with the case where the EOD treatment is performed over the entire cultivation period. In addition, it is possible to suppress a decrease in the yield per crop and, as a result, increase the annual yield per unit area. In addition, the electricity cost for EOD processing can be saved, contributing to cost reduction.

栽培開始時期の違いによるHd3a転写パターンの変化をリアルタイムPCRによって分析した結果を示す図であり、縦軸は8月屋外栽培の23日目のHd3a遺伝子転写量を1とした時の相対量である。It is a figure which shows the result of having analyzed the change of the Hd3a transcription pattern by the difference in cultivation start time by real-time PCR, and a vertical axis | shaft is a relative amount when the Hd3a gene transcription amount of the 23rd day of August outdoor cultivation is set to 1. . 光植物工場栽培におけるイネのHd3a遺伝子転写パターンを電気泳動及びNIHイメージによって分析した結果を示す図である。It is a figure which shows the result of having analyzed the Hd3a gene transcription pattern of the rice in light plant factory cultivation by electrophoresis and NIH image.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

(人工光によるイネ科植物の育成方法)
人工光による育成方法とは、外部光を遮蔽して人工光のみを植物に照射して、明期及び暗期の光周期で植物を育成する方法である。人工光による育成は、通常行われている方法であればよく、安定した栽培が可能である観点から、完全制御型光植物工場(例えば、特許文献3に記載の育苗装置)を用いて育成することが好ましい。完全制御型光植物工場であれば、栽培条件が一定であるため、後述のHd3a又はその相同遺伝子の転写パターンのモニタリングは、一つの品種につき一回のみで足りるとの利点もある。
(Growing method of gramineous plants by artificial light)
The artificial light-growing method is a method of cultivating a plant with a light period and a light period of light period by irradiating the plant with only artificial light while blocking external light. The artificial light may be bred using a conventional method, and is grown using a fully-controlled light plant factory (for example, a seedling device described in Patent Document 3) from the viewpoint that stable cultivation is possible. It is preferable. In the case of a fully controlled light plant factory, since the cultivation conditions are constant, there is an advantage that monitoring of the transcription pattern of Hd3a or a homologous gene thereof described later is only required once for each variety.

照射する人工光としては、光合成ができれば特に限定されないが、特に光合成に有効とされる赤色光と青色光との組合せであることが好ましい。赤色光は波長が640〜690nmの光であり、例えば、波長ピークが680nmである赤色レーザ(LD)光を使用することができる。青色光は波長が420〜470nmの光であり、例えば、波長ピークが450nmである青色LED光を使用することができる。照射光量は赤色光と青色光との合計で300μmol/m/sec程度以上であればよく、好ましくは500μmol/m/sec以上である。 The artificial light to be irradiated is not particularly limited as long as photosynthesis can be performed, but a combination of red light and blue light particularly effective for photosynthesis is preferable. Red light is light having a wavelength of 640 to 690 nm. For example, red laser (LD) light having a wavelength peak of 680 nm can be used. Blue light is light having a wavelength of 420 to 470 nm. For example, blue LED light having a wavelength peak of 450 nm can be used. The amount of irradiation light should just be about 300 micromol / m < 2 > / sec or more in total of red light and blue light, Preferably it is 500 micromol / m < 2 > / sec or more.

本発明の育成制御方法によって育成するイネ科植物は、特に限定されないが、産業上利用性の観点から、収穫量を増やす需要のあるイネが好ましく、イネとしては、例えば、コシヒカリ、ササニシキ、あきたこまち等の品種が挙げられる。また、本発明の育成制御方法はHd3a又はその相同遺伝子を発現する他の短日植物にも応用できる。なお、温度・湿度、定植間隔、及び養液組成などの条件は、植物の種類によって当業者が適宜に選択することができる。   The Gramineae plant grown by the growth control method of the present invention is not particularly limited, but from the viewpoint of industrial availability, rice with a demand for increasing the yield is preferable. Examples of rice include Koshihikari, Sasanishiki, Akitakomachi Varieties. The growth control method of the present invention can also be applied to other short-day plants that express Hd3a or a homologous gene thereof. In addition, conditions, such as temperature / humidity, a fixed planting interval, and a nutrient solution composition, can be suitably selected by those skilled in the art depending on the type of plant.

(Hd3a又はその相同遺伝子のmRNAの転写パターンの測定)
Hd3a遺伝子は、イネにおいて花芽形成を誘導するとされる遺伝子であり、そのcDNAの全長は、540bpである(AB052944)。Hd3aの相同遺伝子とは、イネ以外の植物由来の花芽形成誘導遺伝子であって、Hd3a遺伝子がコードするHd3aタンパク質と高い相同性を有するタンパク質をコードする遺伝子をいう。イネにおいて、Hd3a遺伝子は特異的に葉で発現しているとの報告があるため、Hd3a又はその相同遺伝子のmRNAの転写量は植物の葉を用いて測定することが好ましい。
(Measurement of transcription pattern of mRNA of Hd3a or its homologous gene)
The Hd3a gene is a gene that induces flower bud formation in rice, and the total length of its cDNA is 540 bp (AB052944). The homologous gene of Hd3a is a gene that induces flower bud formation derived from plants other than rice and encodes a protein having high homology with the Hd3a protein encoded by the Hd3a gene. In rice, since there is a report that the Hd3a gene is specifically expressed in leaves, it is preferable to measure the transcription amount of mRNA of Hd3a or a homologous gene thereof using plant leaves.

mRNAの転写量の測定は、全RNAの抽出、及びHd3a又はその相同遺伝子のmRNAの定量によって行われる。全RNAの抽出は例えば市販の核酸抽出キットを用いて、Hd3a又はその相同遺伝子のmRNAの定量は例えばRT−PCR等の方法によって行われることができる。使用されるプライマーはHd3a又はその相同遺伝子の配列に従って当業者が適宜に設計することができ、RT−PCRの反応条件も配列の長さやプライマーによって当業者が適宜に決定することができる。定量に際して、内部標準として例えばユビキチン等が使用できる。   The amount of mRNA transcription is measured by extracting total RNA and quantifying mRNA of Hd3a or a homologous gene thereof. Extraction of total RNA can be performed, for example, using a commercially available nucleic acid extraction kit, and quantification of mRNA of Hd3a or a homologous gene thereof can be performed by a method such as RT-PCR. Primers to be used can be appropriately designed by those skilled in the art according to the sequence of Hd3a or a homologous gene thereof. RT-PCR reaction conditions can also be appropriately determined by those skilled in the art depending on the length of the sequence and the primers. For quantification, for example, ubiquitin can be used as an internal standard.

Hd3a又はその相同遺伝子のmRNAの転写パターンのモニタリングは、1〜7日に一回で葉の一部を採取して、分析することによって行う。そのうち、最も転写量の高い日を転写ピークに達する日とする。モニタリング期間は、植物の止め葉まで行えばよいが、転写ピークを判明した時点で終了してもよい。   Monitoring of the transcription pattern of mRNA of Hd3a or a homologous gene thereof is performed by collecting and analyzing a part of the leaf once every 1 to 7 days. Among them, the day with the highest transcription amount is defined as the day when the transcription peak is reached. The monitoring period may be up to the stop leaf of the plant, but may be terminated when the transcription peak is found.

初めて育成する品種については、Hd3a又はその相同遺伝子のmRNAの転写量をモニターしながら育成を行い、これに基づいてエンド・オブ・デイ(EOD)処理開始時期、終了時期、及び処理期間を決定する。同じ育成環境・条件であれば、決められたEOD処理条件に従って、育成制御することができる。すなわち、一つの品種につきモニタリングが一回のみで足りる。予めモニターした品種についても、さらにEOD処理とともに転写量をモニターしながら育成することがより好ましい。この場合、転写量ピークをより正確に把握することができ、より正確かつ効果的な終了時期の決定が可能となる。   For cultivars to be cultivated for the first time, breeding is performed while monitoring the transcription amount of mRNA of Hd3a or its homologous gene, and end-of-day (EOD) processing start time, end time, and processing period are determined based on this. . Under the same growth environment and conditions, it is possible to control the growth according to the determined EOD processing conditions. That is, only one monitoring is required for each variety. It is more preferable to cultivate the varieties monitored in advance while monitoring the transfer amount together with the EOD treatment. In this case, the transfer amount peak can be grasped more accurately, and a more accurate and effective end time can be determined.

(エンド・オブ・デイ処理)
本発明におけるエンド・オブ・デイ(EOD)処理は、明期の終了直後に遠赤色光を60分間以内の照射時間で植物に照射することにより行う。遠赤色(FR)光は波長が700〜800nmの光であり、例えば波長が730nmの遠赤色LED光を使用することができる。照射時間は60分以内であればよく、30分程度で十分である。照射強度は50〜300μWであることが好ましい。なお、明期の終了直後とは、明期の終了後30分以内をいう。
(End of Day processing)
End-of-day (EOD) treatment in the present invention is performed by irradiating a plant with far-red light for an irradiation time of 60 minutes or less immediately after the end of the light period. Far-red (FR) light is light having a wavelength of 700 to 800 nm. For example, far-red LED light having a wavelength of 730 nm can be used. The irradiation time may be within 60 minutes, and about 30 minutes is sufficient. The irradiation intensity is preferably 50 to 300 μW. The term “immediately after the end of the light period” means within 30 minutes after the end of the light period.

EOD処理により短日植物は栽培期間短縮効果が得られるが、そのうち特に収穫量が重要なイネに関して、栽培期間を短縮できるとともに1作当たりの収穫量の減少を抑えられる観点から、栽培通期ではなく、Hd3a又はその相同遺伝子のmRNAの転写量がピークに達する日よりも13〜3日前の間のいずれの日から、該転写量がピークに達する日からピークに達する日の7日後までの間のいずれの日までの10〜15日間エンド・オブ・デイ処理を行うことが好ましい。なお、転写量がピークに達する日よりも13〜3日前とは、転写ピークに達する日を0日として、その−13日〜−3日の間をいう。また、転写量がピークに達する日からピークに達する日の7日後までの間とは、転写ピークに達する日を0日として、その0日〜+7日の間をいう。   EOD treatment can shorten the cultivation period for short-day plants, but it is not a full-year cultivation period from the viewpoint of shortening the cultivation period and suppressing the reduction of the yield per crop, especially for rice, where the yield is important. From any day between 13 to 3 days before the day when the transcription amount of mRNA of Hd3a or a homologous gene reaches its peak, until 7 days after the day when the transcription amount reaches its peak It is preferable to perform the end-of-day treatment for 10 to 15 days until any day. In addition, 13 to 3 days before the day when the transcription amount reaches the peak means that the day when the transcription amount reaches the peak is 0 day, and is between -13 days and -3 days. Further, the period from the day when the transcription amount reaches the peak to 7 days after the peak is reached means that the day when the transcription peak is reached is defined as day 0, and is between 0 and +7 days.

EOD処理は、Hd3a又はその相同遺伝子のmRNAの転写量がピークに達する日又は減少に転じた直後に終了することが特に好ましい。これによれば、より高い栽培期間の短縮効果及び収穫量の維持効果が得られる。なお、転写量が減少に転じた直後とは、転写量がピークに達する日から2日以内をいう。転写量がピークに達する日の翌日のEOD処理を最後に終了することが好ましく、転写量がピークに達する日のEOD処理を最後に終了することが最も好ましい。また、EOD処理期間は10〜15日であればよく、好ましくは10〜14日間又は11〜14日間である。およそ15日間を超えた期間に渡ってEOD処理を行うと、収穫量の減少抑制効果が弱まる傾向がある。また、転写量がピークに達する日からおよそ1週間後以降にもEOD処理を続けると、栽培期間の短縮の効果及び収穫量の減少抑制効果が弱まる傾向がある。   The EOD treatment is particularly preferably terminated on the day when the transcription amount of mRNA of Hd3a or a homologous gene thereof reaches a peak or immediately after it starts to decrease. According to this, the shortening effect of the higher cultivation period and the maintenance effect of the yield can be obtained. The term “immediately after the transfer amount starts to decrease” means within 2 days from the day when the transfer amount reaches the peak. It is preferable to end the EOD process the day after the day when the transfer amount reaches the peak, and it is most preferable to end the EOD process the day after the transfer amount reaches the peak. The EOD treatment period may be 10 to 15 days, preferably 10 to 14 days or 11 to 14 days. When the EOD treatment is performed over a period exceeding about 15 days, the yield reduction suppressing effect tends to be weakened. Further, if the EOD treatment is continued after about one week from the day when the transcription amount reaches the peak, the effect of shortening the cultivation period and the effect of suppressing the decrease in the yield tend to be weakened.

以下、実施例を挙げて、本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(栽培例1 光植物工場におけるイネの栽培方法)
イネ(コシヒカリ)の種を4日間吸水させ発芽を誘導した。その後、ウレタンに播種して暗黒下で3日間栽培した後、表1に記載の育苗期用養液を加えて、赤色レーザ(LD)光(450μmol/m/secの光量)と青色LED光(50μmol/m/secの光量)の下に移し1週間栽培した。使用した赤色レーザ光の波長ピークは、680nmであり、青色LED光の波長ピークは450nmであった。その後11日間栽培したあと、30cm四方に10株程度で、畝間約7cm、株間約10cmで定植し、外部光を遮蔽して人工光のみを植物に照射する光植物工場において栽培した。赤色レーザ光(450μmol/m/secの光量)と青色LED光(50μmol/m/secの光量)の下で表1に記載の生育期用養液で栽培を行った。また、通期に渡って明期暗期の周期は12hrずつであった。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to these Examples.
(Cultivation example 1 Rice cultivation method in light plant factory)
Rice (Koshihikari) seeds were allowed to absorb water for 4 days to induce germination. Then, after seeding in urethane and cultivating in the dark for 3 days, the nutrient solution for the seedling period shown in Table 1 was added, and red laser (LD) light (450 μmol / m 2 / sec light amount) and blue LED light It moved under (50 micromol / m < 2 > / sec light quantity), and was cultivated for 1 week. The wavelength peak of the red laser light used was 680 nm, and the wavelength peak of the blue LED light was 450 nm. Then, after cultivating for 11 days, about 10 strains in 30 cm square, planted at about 7 cm between ridges and about 10 cm between strains, cultivated in a light plant factory that shields external light and irradiates only artificial light to plants. It was cultivated in nutrient solution for growing season in Table 1 under red laser light (450μmol / m quantity of 2 / sec) and the blue LED light (amount of 50μmol / m 2 / sec). Moreover, the period of the light period and dark period was 12 hr each over the full term.

Figure 0005336332
Figure 0005336332


(栽培例2 屋外におけるイネの栽培方法)
定植までは上記光植物工場内におけるイネの栽培方法と同条件で栽培した。その後、ハウスに移して、30cm四方に10株程度で、畝間約7cm、株間約10cmで定植し、太陽光の下、生育期用養液で栽培を行った。
(実施例1 屋外栽培イネにおけるHd3a遺伝子転写パターンの測定)
イネを栽培例2にしたがって栽培し、栽培期間中に葉の先端数cmを切り取り液体窒素で凍結保存した。その後凍結葉をコーンラージで粉砕し、QiagenのRNeasy Plant mini kitを用いてメーカープロトコールにしたがって全RNAを抽出した。
(Cultivation Example 2 Rice cultivation method outdoors)
Until the fixed planting, it was cultivated under the same conditions as the rice cultivation method in the light plant factory. Then, it moved to the house, planted about 10 strains in 30 cm square, about 7 cm between ridges, about 10 cm between vines, and cultivated with a nutrient solution for growing season under sunlight.
(Example 1 Measurement of Hd3a gene transcription pattern in outdoor-grown rice)
Rice was cultivated according to Cultivation Example 2, and several centimeters of leaf tips were cut during the cultivation period and stored frozen in liquid nitrogen. Thereafter, the frozen leaves were crushed with corn large, and total RNA was extracted using Qiagen's RNeasy Plant mini kit according to the manufacturer's protocol.

その後、PrimeScript RT−PCRキット(タカラバイオ)でHd3a RNAを増幅した。Hd3aの増幅には、以下のプライマーを使用した:
Hd3a−Forward:5’−GCTCACTATCATCATCCAGCATG−3’(配列番号1)
Hd3a−Reverse:5’−CCTTGCTCAGCTATTTAATTGCATAA−3’ (配列番号2)
なお、増幅用プライマーの設計には、Ishikawa R., et al. Plant Cell 17:3326−3336 (2005) Suppression of the floral activator Hd3a is the principal cause of the night break effect in riceを参考にした。
Then, Hd3a RNA was amplified with PrimeScript RT-PCR kit (Takara Bio). The following primers were used for Hd3a amplification:
Hd3a-Forward: 5′-GCTCACTACTCATCATCCAGCATG-3 ′ (SEQ ID NO: 1)
Hd3a-Reverse: 5′-CCTTGCTCAGCTATTTAATTGCATAA-3 ′ (SEQ ID NO: 2)
For the design of amplification primers, Ishikawa R. , Et al. Plant Cell 17: 3326-3336 (2005) Suppression of the full activator Hd3a is the principal cause of the light break effect in rice.

また、ユビキチンを内部標準とした。ユビキチンの増幅には、以下のプライマーを使用した:
Ubq−Forward:5’−AACCAGCTGAGGCCCAAGA−3’ (配列番号3)
Ubq− Reverse:5’−ACGATTGATTTAACCAGTCCATGA−3’ (配列番号4)
RT−PCRはまず、50℃、30分で逆転写反応を行い、94℃、2分で逆転写酵素の失活を行った。続いて、94℃・30秒、60℃・30秒、72℃・1分のサイクルを26回繰り返すことにより、目的核酸の増幅を行った。得られた増幅産物は、4%のアガロースゲル電気泳動により分析し、NIHイメージを用いて定量を行った。または、Applied Biosystems 7500 Real−Time PCR Systemを用いて、リアルタイムPCRによる定量を行った。
Ubiquitin was used as an internal standard. The following primers were used for ubiquitin amplification:
Ubq-Forward: 5′-AACCAGCTGAGGCCCAAGA-3 ′ (SEQ ID NO: 3)
Ubq-Reverse: 5′-ACGATTGATTTAACCAGTCCATGA-3 ′ (SEQ ID NO: 4)
In RT-PCR, first, reverse transcription was performed at 50 ° C. for 30 minutes, and reverse transcriptase was inactivated at 94 ° C. for 2 minutes. Subsequently, the target nucleic acid was amplified by repeating the cycle of 94 ° C. for 30 seconds, 60 ° C. for 30 seconds, 72 ° C. for 1 minute 26 times. The obtained amplification product was analyzed by 4% agarose gel electrophoresis, and quantified using an NIH image. Alternatively, quantification by real-time PCR was performed using an Applied Biosystems 7500 Real-Time PCR System.

リアルタイムPCRの結果を図1及び表2に示した。図1及び表2から、屋外でイネ栽培を行ったとき、異なる播種時期、すなわち、異なる日長・気温条件下においても、Hd3aの転写ピークまでの日数と出穂までの日数との間に相関関係があることが判明した。転写ピークを示す時期に、イネの花芽形成に関する重要な働きが植物体内で起きていることが予想された。   The results of real-time PCR are shown in FIG. From FIG. 1 and Table 2, when rice cultivation is conducted outdoors, there is a correlation between the number of days until the transcription peak of Hd3a and the number of days until heading even at different sowing times, that is, under different day length and temperature conditions. Turned out to be. It was predicted that an important function related to rice flower bud formation occurred in plants at the time of showing the transcription peak.

Figure 0005336332
Figure 0005336332

(実施例2 光植物工場栽培イネのHd3a転写パターンの測定)
イネ(コシヒカリ)を栽培例1にしたがって栽培した。栽培期間中に葉の先端数cmを切り取り液体窒素で凍結保存した。実施例1にしたがって、RNAを抽出して、RT−PCRを行った。得られた増幅産物は、4%のアガロースゲル電気泳動により分析し、NIHイメージによってHd3aの転写パターンを測定した。結果は図2に示した。
(実施例3 光植物工場栽培イネのEOD処理時期と収穫量との相関)
実施例2と同じ品種のイネを実施例2と同じ条件で栽培し、明期終了直後30分間に渡って、50〜60μWの強さで遠赤色(FR)LED光(波長ピーク:730nm)を照射してEOD処理を行った。サンプル毎にEOD処理を行う時期を変化させた時のイネの出穂日数及び単位面積当たりの収穫量を測定した(表3)。
(Example 2 Measurement of Hd3a transcription pattern of light plant factory cultivated rice)
Rice (Koshihikari) was cultivated according to cultivation example 1. During the cultivation period, several centimeters of leaf tips were cut and stored frozen in liquid nitrogen. According to Example 1, RNA was extracted and RT-PCR was performed. The obtained amplification product was analyzed by 4% agarose gel electrophoresis, and the transcription pattern of Hd3a was measured by NIH image. The results are shown in FIG.
(Example 3 Correlation between EOD treatment time and harvest amount of light plant factory cultivated rice)
Rice of the same variety as in Example 2 is cultivated under the same conditions as in Example 2, and far red (FR) LED light (wavelength peak: 730 nm) is emitted at an intensity of 50-60 μW for 30 minutes immediately after the end of the light period. Irradiated to perform EOD treatment. The number of rice heading days and the yield per unit area when changing the time of EOD treatment for each sample were measured (Table 3).

Figure 0005336332
Figure 0005336332

表3から、EOD処理を栽培通期に渡って行ったEODイネ(1)は、通常栽培イネ(EOD処理無し)に比べて出穂日数を13日も短縮できたが、収穫量が半分近くにまで減少してしまった。一方、EOD処理を行う期間をHd3aの転写ピーク(播種後28日目頃)付近の11〜14日間に限定することにより、出穂日数短縮と同時に収穫量の減少を抑えることが出来た(EODイネ(2)、(3))。その結果、光植物工場のように1年を通して複数回のイネ栽培を行う場合において、単位面積当たりの年間収穫量が最大で約17%増大する計算となる。   From Table 3, EOD rice (1), which had been subjected to EOD treatment over the entire cultivation period, was able to shorten the heading days by 13 days compared to normal cultivation rice (no EOD treatment), but the yield was nearly half. It has decreased. On the other hand, by limiting the period of EOD treatment to 11 to 14 days near the transcription peak of Hd3a (around 28 days after sowing), it was possible to reduce the number of heading days and suppress the decrease in yield (EOD rice). (2), (3)). As a result, when rice cultivation is performed a plurality of times throughout the year as in a light plant factory, the annual yield per unit area increases by about 17% at the maximum.

表3からは、また、照射の開始時期はHd3a遺伝子の転写ピークの13〜3日前が望ましく、終了時期は転写ピークに達する日から転写ピークに達する日から7日後までが望ましいことを判明した。また、EOD照射を終了する時期が転写ピークを過ぎれば過ぎるほど、出穂日数の長期化及び収穫量の減少が見られた(EODイネ(2)、(3)、(4))。このことから、遠赤色光の照射をHd3a遺伝子の転写ピークに達する時点、又は減少に転じた直後に終了したほうがより望ましいと考えられる。   From Table 3, it was also found that the irradiation start time is preferably 13 to 3 days before the transcription peak of the Hd3a gene, and the end time is preferably from the day when the transcription peak is reached to 7 days after the transcription peak is reached. In addition, as the time when EOD irradiation was terminated passed the transcription peak, the heading days were prolonged and the yield was reduced (EOD rice (2), (3), (4)). From this, it is considered that it is more desirable to end the irradiation of far-red light at the time when the transcription peak of the Hd3a gene is reached or immediately after it starts to decrease.

Claims (3)

外部光を遮蔽して人工光のみを植物に照射して、明期及び暗期の光周期で植物を育成する方法において、植物におけるHd3a又はその相同遺伝子のmRNAの転写量がピークに達する日よりも13〜3日前の間のいずれの日から、該転写量がピークに達する日からピークに達する日の7日後までの間のいずれの日までの10〜15日間エンド・オブ・デイ処理を行い、該エンド・オブ・デイ処理は明期の終了直後に遠赤色光を60分間以内の照射時間で植物に照射することにより行う、イネ科植物の育成制御方法。   In the method of cultivating plants with photoperiods of light period and dark period by irradiating plants with only artificial light while blocking external light, from the day when the transcription amount of Hd3a or its homologous gene mRNA in the plants reaches the peak The end-of-day treatment is performed for 10 to 15 days from any day between 13 to 3 days before and any day between the day when the transcription amount reaches the peak and 7 days after the peak. The end-of-day treatment is carried out by irradiating the plant with far-red light for an irradiation time of 60 minutes or less immediately after the end of the light period. エンド・オブ・デイ処理期間を決めるため、植物におけるHd3a又はその相同遺伝子のmRNAの転写パターンをモニターしながら植物の育成を行う、請求項1記載の方法。   The method according to claim 1, wherein the plant is grown while monitoring the transcription pattern of mRNA of Hd3a or a homologous gene thereof in the plant to determine the end-of-day treatment period. エンド・オブ・デイ処理をHd3a又はその相同遺伝子のmRNAの転写量がピークに達する日又は減少に転じた直後に終了する、請求項1又は2に記載の方法。
3. The method according to claim 1, wherein the end-of-day treatment is terminated on the day when the transcription amount of mRNA of Hd3a or a homologous gene thereof reaches a peak or immediately after it starts to decrease.
JP2009266318A 2009-11-24 2009-11-24 Gramineae plant growth control method Expired - Fee Related JP5336332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009266318A JP5336332B2 (en) 2009-11-24 2009-11-24 Gramineae plant growth control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009266318A JP5336332B2 (en) 2009-11-24 2009-11-24 Gramineae plant growth control method

Publications (2)

Publication Number Publication Date
JP2011109925A JP2011109925A (en) 2011-06-09
JP5336332B2 true JP5336332B2 (en) 2013-11-06

Family

ID=44232757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009266318A Expired - Fee Related JP5336332B2 (en) 2009-11-24 2009-11-24 Gramineae plant growth control method

Country Status (1)

Country Link
JP (1) JP5336332B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111248040A (en) * 2018-11-30 2020-06-09 广西惊人农业科技有限责任公司 Variety breeding method and cultivation method of ratoon rice

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874060B2 (en) * 2011-12-16 2016-03-01 パナソニックIpマネジメント株式会社 Plant breeding lighting device
JP6061124B2 (en) * 2012-05-01 2017-01-18 国立大学法人島根大学 How to control powdery mildew occurrence

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640786B2 (en) * 1985-12-23 1994-06-01 昌夫 松浦 Rice cultivation method
JP4015251B2 (en) * 1998-01-08 2007-11-28 浜松ホトニクス株式会社 Rice cultivation method
JP2001057816A (en) * 1999-08-19 2001-03-06 Kiyoji Suzuki Irradiation of light for raising plant and apparatus therefor
JP2002153283A (en) * 2000-11-24 2002-05-28 National Institute Of Agrobiological Sciences Hd3a GENE INDUCING ANTHESIS OF PLANT AND USE THEREOF
JP2002345337A (en) * 2001-03-22 2002-12-03 Hamamatsu Photonics Kk Seedling-growing device for plant of gramineae by using artificial light
RU2333245C2 (en) * 2003-07-17 2008-09-10 Адзиномото Ко., Инк. Methods for cultivating plants with improved growth rate under limited nitrogen level
JP2006094844A (en) * 2004-09-29 2006-04-13 Toshiro Umeki Apparatus and method for solution culture of rice plant
JP5051415B2 (en) * 2006-01-31 2012-10-17 独立行政法人科学技術振興機構 Method and kit for shortening plant breeding time
JP2008271952A (en) * 2007-03-30 2008-11-13 Hiroshima Univ Method for cultivating plant, and apparatus for cultivating plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111248040A (en) * 2018-11-30 2020-06-09 广西惊人农业科技有限责任公司 Variety breeding method and cultivation method of ratoon rice
CN111248040B (en) * 2018-11-30 2022-03-11 广西惊人农业科技有限责任公司 Variety breeding method and cultivation method of ratoon rice

Also Published As

Publication number Publication date
JP2011109925A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
Sønsteby et al. Functional growth analysis of ‘Sonata’strawberry plants grown under controlled temperature and daylength conditions
JP6300215B1 (en) Methods for enhancing plant properties
JP6418697B2 (en) Plant cultivation method
CN101711493B (en) Propagation of lily seedball by directly peeling scale
JP6296596B2 (en) Strawberry cultivation method
JP5336332B2 (en) Gramineae plant growth control method
CN105409541B (en) A kind of cucumber in solar-greenhouse high-efficient breeding method
Noh et al. Effect of heat treatment around the fruit set region on growth and yield of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai]
RU2487532C1 (en) Method of potato microclonal propagation
JP7325041B2 (en) Crop yield prediction method and device, crop cultivation device
CN102293148B (en) Method for carrying out sugarcane smut inoculation stress before sugarcane seedling field transplanting
CN105123176B (en) A kind of method for improving cabbage cenospecies &#39; visiting the spring &#39; hybrid seed yield and quality
JP2014168389A (en) Method for inhibiting leaf apex withered disease of lisianthus by controlling rhizosphere temperature
KR102624679B1 (en) Method for mass production of Cnidium officinale clones through slice culture
CN111418380B (en) Illumination culture method for promoting green stalk vegetable and Chinese cabbage heart to increase green
JP2006158262A (en) Cultivation method for plant
Kumar et al. Effect of nitrogen fertilizer on different attributes of gladiolus (Gladiolus grandiflorous L.) cv. American Beauty
Jiang Seasonal response of night-breaking on floral bud formation in red pitaya (Hylocereus sp.) in a noninductive period
Dhaliwal et al. Growth, yield, water use efficiency of wheat (Triticum aestivum) under different sowing dates, planting methods and irrigation treatments
Singh et al. Weed Management in Spaced Transplanted Sugarcane after wheat harvest for higher cane yield
Chow et al. Effects of nitrogen, potassium, calcium concentrations and solution temperatures on the growth and yield of strawberry cv. Redgauntlet in a nutrient film (NFT) hydroponic system
WO2023191038A1 (en) Environmental memory seed and use thereof
Chakrawal et al. Physioagronomic analysis of sugarcane (Saccharum spp. hybrid complex) varieties under different planting geometry
Saini et al. High day and night temperatures impact on cotton yield and quality—current status and future research direction
Sharma et al. Effect of planting periods on production potential of potato (Solanum tuberosum) varieties under aeroponics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130801

R150 Certificate of patent or registration of utility model

Ref document number: 5336332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees