JP5332527B2 - Reactor device - Google Patents

Reactor device Download PDF

Info

Publication number
JP5332527B2
JP5332527B2 JP2008291239A JP2008291239A JP5332527B2 JP 5332527 B2 JP5332527 B2 JP 5332527B2 JP 2008291239 A JP2008291239 A JP 2008291239A JP 2008291239 A JP2008291239 A JP 2008291239A JP 5332527 B2 JP5332527 B2 JP 5332527B2
Authority
JP
Japan
Prior art keywords
reactor
resin
opening
damping member
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008291239A
Other languages
Japanese (ja)
Other versions
JP2010118540A (en
Inventor
賢太郎 三田井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008291239A priority Critical patent/JP5332527B2/en
Publication of JP2010118540A publication Critical patent/JP2010118540A/en
Application granted granted Critical
Publication of JP5332527B2 publication Critical patent/JP5332527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reactor apparatus which secures damping property and heat dissipation, and prevents the overflow of resin by reliably filling a damping material up to a required range. <P>SOLUTION: The reactor apparatus 1 includes a reactor 4 having a coil 2 generating a magnetic flux by energization and a core 3 consisting of a magnetic powder mixed resin filled up in the inside and periphery of the coil 2, a case 9 having a housing 5 to house the reactor 4, and a resin 6 intervening in a gap between an interior side 5c of the housing 5 and the outer surface 4a of the reactor 4, wherein a pool 5f of the damping material is provided in the housing 5. By this arrangement, in the filling-up process of the resin 6, the resin 6 never overflows from the housing 5 even in a place where the resin 6 crawls up locally, the resin 6 becoming excessive here is charged to the place where it does not crawl up to a desired height, hence filling-up height becomes uniform, the gap equal or lower than the pool 5f is reliably filled up. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、リアクトル装置に関する。   The present invention relates to a reactor device.

従来、例えば、電気自動車やハイブリッド自動車等の動力源である交流モータに通電する駆動電流の生成に用いられるインバータ等の電力変換装置がある。   2. Description of the Related Art Conventionally, for example, there is a power conversion device such as an inverter that is used to generate a drive current for energizing an AC motor that is a power source of an electric vehicle or a hybrid vehicle.

この電力変換装置には、電力変換回路の一部を構成する半導体モジュールやこれを冷却する冷却器、更には、入力電圧を昇圧するための昇圧回路の一部を構成するリアクトル等が、一つのケース内に収納されている。   This power conversion device includes a semiconductor module that forms part of the power conversion circuit, a cooler that cools the semiconductor module, and a reactor that forms part of the boost circuit for boosting the input voltage. It is stored in the case.

上記リアクトルとして、例えば特許文献1に開示されているように、通電により磁束を発生するコイルと、このコイルの内側及び外周に充填された磁性粉末混合樹脂からなるコアとを有するものがある。このコアは、液状の磁性粉末混合樹脂を成形型に流し込んだ後、磁性粉末混合樹脂を加熱することにより固化して形成される。このとき、リアクトルの中心部にはボルト挿通孔を設けた孔付部材が埋設され、これを貫通するボルトによって、リアクトルは上記ケースに設けられたリアクトル用の収容部へ固定される。   As the reactor, for example, as disclosed in Patent Document 1, there is a reactor having a coil that generates a magnetic flux when energized and a core made of a magnetic powder mixed resin filled inside and outside the coil. The core is formed by pouring a liquid magnetic powder mixed resin into a mold and then solidifying the magnetic powder mixed resin by heating. At this time, a holed member provided with a bolt insertion hole is embedded in the center of the reactor, and the reactor is fixed to the reactor accommodating portion provided in the case by a bolt penetrating the hole.

ここで、上記収容部内側面とリアクトル外表面の隙間には、制振性、放熱性の観点から、コアとは異なる樹脂が充填される。樹脂を予めリアクトルのケース収容部の底面へ注入しておくことで、リアクトルを収容部へ挿入する際、樹脂はリアクトル底部に押し潰され、収容部内側面とリアクトル外表面の隙間を這い上がる。このようにして、樹脂の充填が行われる。
特開2008−198981号公報
Here, the gap between the inner side surface of the housing portion and the outer surface of the reactor is filled with a resin different from the core from the viewpoint of vibration damping and heat dissipation. By injecting the resin into the bottom surface of the case housing portion of the reactor in advance, when the reactor is inserted into the housing portion, the resin is crushed by the bottom of the reactor and crawls up the gap between the inner surface of the housing portion and the outer surface of the reactor. In this way, the resin is filled.
JP 2008-198981 A

しかし、製造上、上記の樹脂充填工程において、リアクトルと収容部内側面との隙間が狭いために、樹脂の開口部側端面が不均一となる懸念がある。そして、必要な範囲まで樹脂が充填されない場合、リアクトルの支持が不十分となって振動が十分に抑制されない可能性があるほか、リアクトルの放熱効率の悪化する可能性もある。また、樹脂が局所的に這い上がることで、樹脂が収容部から溢れ出す恐れもある。   However, in manufacturing, in the above resin filling step, since the gap between the reactor and the inner surface of the housing portion is narrow, there is a concern that the end surface on the opening side of the resin becomes non-uniform. If the resin is not filled to the required range, the support of the reactor may be insufficient and vibration may not be sufficiently suppressed, and the heat dissipation efficiency of the reactor may be deteriorated. Moreover, there is a possibility that the resin spills locally and the resin overflows from the accommodating portion.

本発明は、上記事情に基づいて成されたもので、その目的は、樹脂を必要な範囲まで確実に充填させることで、制振性、放熱性を確保し、且つ、樹脂の溢れ出しを防止したリアクトル装置の提供にある。
(請求項1の発明)
通電により磁束を発生するコイルとこのコイルの内側及び外周に充填された磁性粉末混合樹脂からなるコアとを有するリアクトルと、一方に開口部を有すると共に他方に底面を有するリアクトルを収容する収容部と、収容部の内側面とリアクトルの外表面との隙間に介在する制振部材と、を備えるリアクトル装置において、収容部の内側面は、リアクトルを制振部材を介して支持する支持部と、開口部側であって支持部よりもリアクトルの外表面との隙間が大きい制振部材溜り部と、支持部と制振部材溜り部との間に設けた段差部と、を有し、段差部は、コイルの端子側端面よりも開口部側、かつ、コアの開口部側端面よりも底面側に設けられ、制振部材溜り部は、コイルの端子側端面よりも開口部側に設けられており、制振部材は、段差部よりも開口部側まで充填されていることを特徴とする。
The present invention has been made based on the above circumstances, and its purpose is to reliably fill the resin to the required range to ensure vibration damping and heat dissipation and to prevent the resin from overflowing. To provide a reactor device.
(Invention of Claim 1)
A reactor having a coil that generates a magnetic flux when energized, and a core made of a magnetic powder mixed resin filled inside and on the outer periphery of the coil, and an accommodating portion that accommodates a reactor having an opening on one side and a bottom surface on the other. In the reactor device comprising a vibration damping member interposed in a gap between the inner side surface of the housing portion and the outer surface of the reactor, the inner side surface of the housing portion has a support portion that supports the reactor via the vibration damping member, and an opening. And a stepped portion provided between the support portion and the damping member reservoir, the stepped portion having a gap between the support portion and the outer surface of the reactor larger than the support portion. , Provided on the opening side from the terminal side end surface of the coil , and on the bottom side from the end side end surface of the core, and the damping member reservoir is provided on the opening side from the terminal side end surface of the coil. The damping member is a step Characterized in that it is filled to the remote opening side.

本発明によれば、収容部開口部に制振部材溜り部を形成することで、収容部内側面とリアクトル外表面の隙間に制振部材を充填する工程において、制振部材の開口部側端面の位置を均一にできる。即ち、制振部材が局所的に這い上がった場所では、余分な制振部材は溜り部に溜るため、収容部から溢れ出す恐れがない。また、制振部材が溜り部まで這い上がらなかった場所には、他所で余分となった制振部材が溜り部を周方向に伝って補填される。これによって、制振部材は均一に充填されるため、リアクトルが確実に収容部に支持されることで振動の伝達を抑制することができる。また、制振部材はリアクトルの熱をケースへ伝達する働きも有するため、放熱性を確保することができる。
差部は、コイルの端子側端面よりも開口部側に設けられていることを特徴とする。
According to the present invention, in the step of filling the damping member in the gap between the inner surface of the housing part and the outer surface of the reactor by forming the damping member reservoir in the opening of the housing part, the opening side end surface of the damping member The position can be made uniform. That is, in a place where the vibration damping member locally climbs up, the excess vibration damping member accumulates in the reservoir portion, so there is no possibility of overflowing from the accommodating portion. Further, in a place where the vibration damping member does not crawl up to the pool part, an extra vibration damping member in another place is transmitted along the circumferential direction of the pool part and compensated. Thereby, since the damping member is uniformly filled, the transmission of vibration can be suppressed by reliably supporting the reactor in the housing portion. Moreover, since the damping member also has a function of transmitting the heat of the reactor to the case, heat dissipation can be ensured.
Step difference unit is characterized in that provided in the opening portion than the terminal end face of the coil.

これによって、制振部材溜り部は発熱源であるコイルよりも開口部側に位置するため、収容部に溜り部を設けたことによって放熱性が悪化することはない。即ち、コイル付近の隙間は狭く、樹脂6の層が薄いため、コイルの熱を効率よくケースへ伝達させ、放熱することができる。
上述したリアクトル装置において、段差部は、リアクトルの端子側端面よりも底面側に設けられていることを特徴とする。
As a result, the damping member reservoir is positioned closer to the opening than the coil that is the heat generation source, so that the heat dissipation is not deteriorated by providing the reservoir in the housing. That is, since the gap near the coil is narrow and the resin 6 layer is thin, the heat of the coil can be efficiently transmitted to the case and radiated.
In the reactor device described above , the step portion is provided on the bottom surface side of the terminal side end surface of the reactor.

これによって、制振部材充填工程において、制振部材がリアクトルの端子側端面に流入することを防止できる。
(請求項の発明)
請求項1に記載のリアクトル装置において、段差部は、収容部の開口部側から底面側に向かって徐々に収容部の内周が小さくなる傾斜面からなることを特徴とする。
This can prevent the damping member from flowing into the terminal side end surface of the reactor in the damping member filling step.
(Invention of Claim 2 )
In Li Akutoru device according to claim 1, the step portion is characterized in that an inclined surface whose inner periphery decreases gradually accommodating portion toward the bottom surface side from the opening side of the housing portion.

収容部内側面の段差に傾斜をつけることで、リアクトルを収容部へ挿入する際、段差部に引っかかることがないため、リアクトルの組み付け工程を容易にできる。
(請求項の発明)
請求項1または2に載のリアクトル装置において、収容部の開口部は、リアクトルの端子側端面がこの開口部よりも底面側となるように設けられていることを特徴とする。
By inclining the step on the inner side surface of the housing portion, when the reactor is inserted into the housing portion, the step is not caught by the step portion, so that the reactor assembly process can be facilitated.
(Invention of Claim 3 )
In reactor apparatus for placing serial to claim 1 or 2, the opening of the accommodating portion, the terminal end face of the reactor is characterized in that is provided so as to be the bottom side of the opening.

これによって、制振部材充填工程において、局所的、一時的に制振部材がリアクトルの端子側端面よりも上へ這い上がった場合でも、制振部材が収容部外に溢れ出すことを確実に防止できる。
(請求項の発明)
請求項1〜に記載の何れかのリアクトル装置において、収容部は、略円筒形状を有することを特徴とする。
As a result, in the damping member filling process, even if the damping member locally and temporarily rises above the terminal-side end surface of the reactor, the damping member is surely prevented from overflowing outside the accommodating portion. it can.
(Invention of Claim 4 )
The reactor device according to any one of claims 1 to 3 , wherein the accommodating portion has a substantially cylindrical shape.

収容部を略円筒形状とすることで、制振部材充填工程において、予め収容部底面の中心に注入された制振部材は、リアクトル底面によって押しつぶされることによってリアクトル外表面に向かって均等に広がる。よって、制振部材を均一に充填し易い。
(請求項の発明)
請求項1〜に記載の何れかリアクトル装置において、制振部材は、ウレタンであることを特徴とする。
By making the housing part into a substantially cylindrical shape, the vibration damping member previously injected into the center of the bottom surface of the housing part in the damping member filling step is uniformly spread toward the outer surface of the reactor by being crushed by the bottom surface of the reactor. Therefore, it is easy to fill the damping member uniformly.
(Invention of Claim 5 )
The reactor device according to any one of claims 1 to 4 , wherein the damping member is urethane.

ウレタンは弾力性に優れるため、リアクトル装置の制振部材として用いるのに適すると共に、熱伝導性にも優れるため、リアクトルの放熱効率の向上にも貢献する。また、耐熱性にも優れるため、リアクトル通電時の高温環境下にも耐え、安定した制振効果を持続する。   Since urethane is excellent in elasticity, it is suitable for use as a vibration damping member of a reactor device, and also has excellent thermal conductivity, which contributes to improvement in the heat dissipation efficiency of the reactor. In addition, because of its excellent heat resistance, it can withstand the high temperature environment when the reactor is energized and maintain a stable damping effect.

本発明を実施するための最良の形態を以下の実施例により詳細に説明する。   The best mode for carrying out the present invention will be described in detail with reference to the following examples.

本発明に係るリアクトル装置の構成について説明する。
リアクトル装置1は、図1に示す様に、通電により磁束を発生するコイル2とこのコイル2の内側及び外周に充填された磁性粉末混合樹脂からなるコア3とを有するリアクトル4と、一方に開口部を有すると共に他方に底面を有するリアクトル4を収容する収容部5と、収容部5の内側面5cとリアクトル4の外表面4aとの隙間に介在する制振部材(本実施例では樹脂6)によって構成される。
The structure of the reactor apparatus which concerns on this invention is demonstrated.
As shown in FIG. 1, a reactor device 1 includes a reactor 4 having a coil 2 that generates a magnetic flux when energized, and a core 3 made of a magnetic powder mixed resin filled inside and outside the coil 2. And a damping member (resin 6 in the present embodiment) interposed in the gap between the accommodating portion 5 that accommodates the reactor 4 that has the bottom surface on the other side and the inner surface 5c of the accommodating portion 5 and the outer surface 4a of the reactor 4 Consists of.

コイル2は、板状の導体を螺旋状に巻き回してなり、図1に示す様に、その両端は螺旋状部から突出して一対の端子2aを形成している。   The coil 2 is formed by winding a plate-like conductor in a spiral shape, and as shown in FIG. 1, both ends thereof protrude from the spiral portion to form a pair of terminals 2a.

コア3は、図1に示す様に、磁性粉末を混合させた樹脂を硬化させてなり、コイル2全体を覆っている。こうすることで、コイル2の磁束は、透磁率の高い磁性粉末混合樹脂を通るため、コイル2のインダクタンス値を大きくすることができる。ここで、上記磁性粉末としては、例えば、フェライト粉末、鉄粉、珪素合金鉄粉等がある。また、上記樹脂として、例えば、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂を用いることもできるし、例えば、PPS樹脂、不飽和ポリエステル樹脂、ナイロン樹脂等を用いる場合には、射出成形によって磁性粉末混合樹脂を成形してコア3とすることができる。コア3は、略円筒形状とすることが好ましい。   As shown in FIG. 1, the core 3 is formed by curing a resin mixed with magnetic powder and covers the entire coil 2. By doing so, since the magnetic flux of the coil 2 passes through the magnetic powder mixed resin having a high magnetic permeability, the inductance value of the coil 2 can be increased. Here, examples of the magnetic powder include ferrite powder, iron powder, and silicon alloy iron powder. Further, as the resin, for example, a thermosetting resin such as an epoxy resin or a phenol resin can be used. For example, when a PPS resin, an unsaturated polyester resin, a nylon resin or the like is used, the magnetic powder is formed by injection molding. The mixed resin can be molded into the core 3. The core 3 is preferably substantially cylindrical.

リアクトル4は、図1に示す様に、コイル2とコア3からなり、コア3の内部にコイル2を有する構成となっている。また、コイル2の一対の端子2aはコア3から突出して設けられている。更に、コア3の内側においてリアクトル4を軸方向に貫通するように、例えばアルミニウムなどの金属材料からなる中芯7が埋設されている。この中芯7には、ボルト8を挿通するためのボルト挿通孔7aと、底面側に凹部7bが設けられている。   As shown in FIG. 1, the reactor 4 includes a coil 2 and a core 3, and the coil 2 is provided inside the core 3. Further, the pair of terminals 2 a of the coil 2 are provided so as to protrude from the core 3. Furthermore, a core 7 made of a metal material such as aluminum is embedded in the core 3 so as to penetrate the reactor 4 in the axial direction. The core 7 is provided with a bolt insertion hole 7a for inserting the bolt 8 and a recess 7b on the bottom side.

収容部5は、図1に示す様に、リアクトル4の形状に沿った形状(本例では略円柱形状)を有し、一方に開口部5bを有すると共に他方に底面5dを有する。収容部5の内側面5cは、図1に示す様に、リアクトル4を樹脂6を介して支持する支持部5eと、開口端側において支持部5eよりもリアクトル外表面4aとの隙間が大きい樹脂6の溜り部5fに分けられる。ここで、支持部5eと溜り部5fの間には段差が生じるが、この段差部5gは、コイルの端子側端面2bよりも開口部5b側で、且つ、リアクトル4の端子側端面4bより底面5c側に設けられると共に、開口端5b側から底面5c側に向かって徐々に収容部5の内周が小さくなるような傾斜面を形成している。そして、収容部5の開口部5bは、リアクトルの端子側端面4bが開口部5bよりも底面5c側となるように設けられている。また、底面5dには、開口部5b側に向かって突出したボス部5hが設けられ、その内部には雌ねじ部5iが形成されている。   As shown in FIG. 1, the accommodating portion 5 has a shape (substantially cylindrical shape in this example) along the shape of the reactor 4, and has an opening 5 b on one side and a bottom surface 5 d on the other side. As shown in FIG. 1, the inner surface 5 c of the housing portion 5 is a resin in which a gap between the support portion 5 e that supports the reactor 4 via the resin 6 and the reactor outer surface 4 a is larger than the support portion 5 e on the opening end side. 6 reservoirs 5f. Here, a step is generated between the support portion 5e and the reservoir portion 5f. The step portion 5g is closer to the opening portion 5b than the terminal-side end surface 2b of the coil and from the terminal-side end surface 4b of the reactor 4 to the bottom surface. In addition to being provided on the 5c side, an inclined surface is formed such that the inner periphery of the accommodating portion 5 gradually decreases from the opening end 5b side to the bottom surface 5c side. And the opening part 5b of the accommodating part 5 is provided so that the terminal side end surface 4b of a reactor may become the bottom face 5c side rather than the opening part 5b. Further, the bottom surface 5d is provided with a boss portion 5h protruding toward the opening 5b, and a female screw portion 5i is formed therein.

樹脂6は、例えばウレタンであり、図1に示す様に、収容部5の内側面5cとリアクトル4の外表面4aとの隙間に充填される。   The resin 6 is, for example, urethane, and is filled in a gap between the inner side surface 5c of the accommodating portion 5 and the outer surface 4a of the reactor 4 as shown in FIG.

以上の構成を有するリアクトル装置1は、図2に示す様に、ケース9の内部に設けられる。収容部5は、ケース9の内部であって、外形が直方体形状を有する枠体5aの内側に設けられる。ケース9は、インバータのケースであり、例えば、アルミニウム等の金属材料からなる。ケース9内には、リアクトル4の他に、電力変換回路の一部を構成する複数の半導体モジュールと、これを冷却する冷却器とからなる主回路部(図示せず)が収容されている。ここで、リアクトル4は、主回路部と電気的に接続され、また、外部の電源と電気的に接続されている。そして、リアクトル4は、電源から供給される直流電圧を昇圧して主回路部へ送る昇圧部の一部を構成している。   The reactor apparatus 1 having the above configuration is provided inside a case 9 as shown in FIG. The accommodating part 5 is provided inside the case 9 and inside the frame 5a having an outer shape of a rectangular parallelepiped shape. The case 9 is an inverter case and is made of a metal material such as aluminum. In the case 9, in addition to the reactor 4, a main circuit portion (not shown) including a plurality of semiconductor modules constituting a part of the power conversion circuit and a cooler for cooling the semiconductor modules is accommodated. Here, the reactor 4 is electrically connected to the main circuit unit and electrically connected to an external power source. The reactor 4 constitutes a part of a boosting unit that boosts a DC voltage supplied from a power source and sends it to the main circuit unit.

次に、本発明に係るリアクトル装置の製造方法について説明する。   Next, the manufacturing method of the reactor apparatus which concerns on this invention is demonstrated.

リアクトル4は、以下の成形工程によって成形される。   The reactor 4 is molded by the following molding process.

まず、図3(A)に示す様に、成形型10内の所定の位置にコイル2と中芯7を配置した後、液状の磁性粉末混合樹脂を成形型10に注入する。ここで、コイル2の一対の端子2aは、磁性粉末混合樹脂から突出するようにする。   First, as shown in FIG. 3A, after the coil 2 and the core 7 are arranged at predetermined positions in the mold 10, liquid magnetic powder mixed resin is injected into the mold 10. Here, the pair of terminals 2a of the coil 2 protrude from the magnetic powder mixed resin.

次いで、成形型10に配置したコイル2と磁性粉末混合樹脂とを、成形型10ごと硬化炉の中に投入し、所定時間、所定温度にて加熱する。これにより、磁性粉末混合樹脂が固化してコア3となり、リアクトル4が成形される。そして、成形型10内において成形、固化されたリアクトル4を、図3(B)に示す様に、成形型10から取り出す。   Next, the coil 2 and the magnetic powder mixed resin arranged in the mold 10 are put together with the mold 10 into a curing furnace and heated at a predetermined temperature for a predetermined time. As a result, the magnetic powder mixed resin is solidified to form the core 3 and the reactor 4 is formed. And the reactor 4 shape | molded and solidified in the shaping | molding die 10 is taken out from the shaping | molding die 10 as shown in FIG.3 (B).

制振部材としての樹脂6は、以下の充填工程によって充填される。   The resin 6 as the damping member is filled by the following filling process.

樹脂6は、図4に示す様に、リアクトル4を収容部5へ組み付ける前に予め収容部5の底面5dに注入される。リアクトル4は、その底部4cが樹脂6を押し潰しながら、中芯凹部7bと、収容部ボス部5hが係合するように収容部5へ挿入される。樹脂6は、収容部底面5d一帯に広がった後、リアクトル4が深く挿入されることでさらに押し広げられ、収容部内側面5cとリアクトル外表面4aの隙間を這い上がる。リアクトル4が収容部5の奥まで挿入されると、収容部5の支持部5eの隙間を這い上がった樹脂6は、局所的に収容部溜り部5fまで達する。ここで、収容部5の開口部5bは、リアクトル4の端子側端面4bが開口部5bよりも底面5c側となるように設けられているため、一時的にリアクトル4の端子側端面4bよりも高く這い上がった樹脂6が収容部5の外部へ溢れ出すことはなく、溜り部5fで溜る。ここで余分となった樹脂6は、樹脂6が収容部5の段差部5gまで這い上がっていない部分へ溜り部5fを周方向に伝って補填される。この結果、樹脂6の偏りはなくなり、収容部の支持部5eの隙間に均一に充填される。   As shown in FIG. 4, the resin 6 is injected into the bottom surface 5 d of the storage unit 5 in advance before the reactor 4 is assembled to the storage unit 5. The reactor 4 is inserted into the accommodating portion 5 so that the core recess portion 7b and the accommodating portion boss portion 5h are engaged while the bottom portion 4c crushes the resin 6. After the resin 6 spreads over the entire bottom surface 5d of the housing portion, the resin 4 is further expanded by being inserted deeply, and crawls up the gap between the housing inner side surface 5c and the reactor outer surface 4a. When the reactor 4 is inserted as far as the interior of the housing portion 5, the resin 6 scooping up the gap between the support portions 5e of the housing portion 5 locally reaches the housing portion reservoir 5f. Here, the opening 5b of the accommodating portion 5 is provided so that the terminal side end surface 4b of the reactor 4 is closer to the bottom surface 5c than the opening 5b, and thus temporarily than the terminal side end surface 4b of the reactor 4. The resin 6 that has been scooped up does not overflow to the outside of the housing portion 5 and accumulates in the reservoir portion 5f. Here, the excess resin 6 is supplemented to the portion where the resin 6 does not crawl up to the stepped portion 5g of the housing portion 5 along the collecting portion 5f in the circumferential direction. As a result, the unevenness of the resin 6 is eliminated, and the gap between the support portions 5e of the housing portion is uniformly filled.

充填工程後、リアクトル4は、図4に示す様に、中芯7に挿通するボルト8が、収容部5のボス部5hに形成された雌ねじ部5iに螺合することによって、収容部5へ固定される。
(実施例1の効果)
実施例1のリアクトル装置1において、収容部5には樹脂6の溜り部5fが形成されている。これにより、樹脂6の充填工程において、樹脂6が収容部5から溢れ出す恐れがなく、且つ、樹脂6を支持部5eの隙間に均一に充填することができる。このため、リアクトル4が確実に収容部5に支持されることで、振動の伝達を抑制することができる。また、樹脂6はリアクトル4の熱をケース9へ伝達する働きも有するため、放熱性を確保することができる。
After the filling step, as shown in FIG. 4, the reactor 4 is screwed into the housing portion 5 by the bolt 8 inserted through the core 7 being screwed into the female screw portion 5 i formed in the boss portion 5 h of the housing portion 5. Fixed.
(Effect of Example 1)
In the reactor device 1 according to the first embodiment, the storage portion 5 is formed with a reservoir portion 5f of the resin 6. Thereby, in the filling process of the resin 6, there is no fear that the resin 6 overflows from the housing part 5, and the resin 6 can be uniformly filled in the gaps of the support part 5e. For this reason, the reactor 4 is reliably supported by the accommodating part 5, and transmission of a vibration can be suppressed. Moreover, since the resin 6 also has a function of transmitting the heat of the reactor 4 to the case 9, heat dissipation can be ensured.

そして、段差部5gをコイル2の端子側端面2bよりも開口部5b側に設けることで、溜り部5fは発熱源であるコイル2よりも開口部5b側に位置するため、収容部5に溜り部5fを設けたことによって放熱性が悪化することはない。即ち、コイル2付近の隙間は狭く、樹脂6の層が薄いため、コイル2の熱を効率よくケース9へ伝達させ、放熱することができる。   Since the step portion 5g is provided closer to the opening 5b than the terminal-side end surface 2b of the coil 2, the reservoir 5f is located closer to the opening 5b than the coil 2 that is a heat source. The provision of the portion 5f does not deteriorate the heat dissipation. That is, since the gap near the coil 2 is narrow and the layer of the resin 6 is thin, the heat of the coil 2 can be efficiently transmitted to the case 9 to be radiated.

また、収容部支持部5eの隙間の幅は、図5に示す様に、収容部5とリアクトル4の寸法公差に依存するため、樹脂6の開口部5b側端面6aはバラつきが生じる。即ち、樹脂6の開口端5b側端面は、収容部支持部5eの隙間の幅が最小C1となるときに最高(H1)に、逆に、収容部支持部5eの隙間の幅が最大C2となるときに最低(H2)となる。そこで、収容部溜り部5fを、樹脂6の開口端5b側端面が最高になったときでもリアクトル4の端子側端面4bよりも底面6c側になるように(図5(A)参照))、また樹脂6の開口端5b側端面が最低になったときでも収容部5の支持部5eより開口端側になるような(図5(B)参照))大きさに設定することで、リアクトル装置の個体差によらず、適正な範囲に樹脂6を充填することができる。   Further, as shown in FIG. 5, the width of the gap between the accommodating portion support portion 5 e depends on the dimensional tolerance between the accommodating portion 5 and the reactor 4, and therefore the end surface 6 a on the opening 5 b side of the resin 6 varies. That is, the end surface on the opening end 5b side of the resin 6 is the highest (H1) when the width of the gap of the accommodating portion support portion 5e is the minimum C1, and conversely, the gap width of the accommodating portion support portion 5e is the maximum C2. Becomes the lowest (H2). Therefore, even when the end surface on the opening end 5b side of the resin 6 becomes the highest, the housing portion reservoir portion 5f is positioned closer to the bottom surface 6c than the terminal side end surface 4b of the reactor 4 (see FIG. 5A)). Moreover, even when the end surface on the opening end 5b side of the resin 6 is the lowest, the reactor device is set to a size that is closer to the opening end side than the support portion 5e of the housing portion 5 (see FIG. 5B). Regardless of the individual difference, the resin 6 can be filled in an appropriate range.

また、収容部内側面5cの段差部5gを斜面とすることで、収容部5のダイカスト加工において、金型から外しやすい。また、リアクトル4を収容部5へ挿入する際、段差部5gに引っかかることがないため、リアクトル4の組み付け工程を容易にできる。   Moreover, by making the level | step-difference part 5g of the accommodating part inner side surface 5c into a slope, it is easy to remove from a metal mold | die in the die-cast process of the accommodating part 5. FIG. Moreover, when inserting the reactor 4 in the accommodating part 5, since it does not catch on the level | step-difference part 5g, the assembly | attachment process of the reactor 4 can be made easy.

また、収容部5を略円筒形状とすることで、樹脂6充填工程において、予め収容部底面5dの中心に注入された樹脂6は、リアクトル底部4cによって押しつぶされることによってリアクトル外表面4aに向かって均等に広がる。よって、樹脂6を均一に充填し易い。   Moreover, by making the accommodating part 5 into a substantially cylindrical shape, in the resin 6 filling step, the resin 6 previously injected into the center of the accommodating part bottom surface 5d is crushed by the reactor bottom part 4c toward the reactor outer surface 4a. Spread evenly. Therefore, it is easy to fill the resin 6 uniformly.

また、本実施例で樹脂6に用いるウレタンは、弾力性に優れるため、リアクトル装置1の制振部材として用いるのに適すると共に、熱伝導性にも優れるため、リアクトル4の放熱効率の向上にも貢献する。また、耐熱性にも優れるため、リアクトル装置1通電時の高温環境下にも耐え、安定した制振効果を持続する。

(変形例)
実施例1のリアクトル装置1において、リアクトル4を収容部5へ固定する手段は、リアクトル上端面4bを押さえつけるバネなどを用いてもよい。この場合、中芯7は不要となる。また、収容部5の段差部5gは製造を容易にするために斜面としたが、直角となっていてもよい。また、樹脂6は、ウレタンの他に、シリコン等の弾力性、熱伝導性、耐熱性に優れる樹脂であっても良い。
In addition, since urethane used for the resin 6 in this embodiment is excellent in elasticity, it is suitable for use as a vibration damping member of the reactor device 1 and also has excellent thermal conductivity, so that the heat dissipation efficiency of the reactor 4 can be improved. To contribute. Moreover, since it is excellent also in heat resistance, it can endure the high temperature environment at the time of energization of the reactor apparatus 1, and the stable vibration suppression effect is maintained.

(Modification)
In the reactor device 1 according to the first embodiment, the means for fixing the reactor 4 to the housing portion 5 may be a spring that presses the reactor upper end surface 4b. In this case, the core 7 is not necessary. Further, the stepped portion 5g of the accommodating portion 5 is a slope for easy manufacturing, but may be a right angle. In addition to urethane, the resin 6 may be a resin excellent in elasticity, thermal conductivity, and heat resistance, such as silicon.

リアクトル装置の断面図である。It is sectional drawing of a reactor apparatus. ケース内に収容されるリアクトルを示す斜視説明図である。It is an isometric view explanatory drawing which shows the reactor accommodated in a case. リアクトルの成形方法を示す断面説明図である。It is sectional explanatory drawing which shows the shaping | molding method of a reactor. 制振部材充填工程を示す断面説明図である。It is sectional explanatory drawing which shows a damping member filling process. (A)制振部材充填高さが最大の場合、(B)制振部材充填高さが最低の場合におけるリアクトルの断面図である。(A) It is sectional drawing of a reactor in case the damping member filling height is the maximum, (B) When the damping member filling height is the minimum.

符号の説明Explanation of symbols

1 リアクトル装置
2 コイル
3 コア
4 リアクトル
5 収容部
5b 開口部
5c 内側面
5d 底部
5e 支持部
5f 溜り部
5g 段差部
7 制振部材
9 ケース
10 成形型
DESCRIPTION OF SYMBOLS 1 Reactor apparatus 2 Coil 3 Core 4 Reactor 5 Accommodating part 5b Opening part 5c Inner side surface 5d Bottom part 5e Support part 5f Reservoir part 5g Step part 7 Damping member 9 Case 10 Mold

Claims (5)

通電により磁束を発生するコイルとこのコイルの内側及び外周に充填された磁性粉末混合樹脂からなるコアとを有するリアクトルと、
一方に開口部を有すると共に他方に底面を有する前記リアクトルを収容する収容部と、
前記収容部の内側面と前記リアクトルの外表面との隙間に介在する制振部材と、を備えるリアクトル装置において、
前記収容部の内側面は、前記リアクトルを前記制振部材を介して支持する支持部と、開口部側であって前記支持部よりも前記リアクトルの外表面との隙間が大きい制振部材溜り
部と、前記支持部と前記制振部材溜り部との間に設けた段差部と、を有し、
前記段差部は、前記コイルの端子側端面よりも前記開口部側、かつ、前記コアの前記開口部側端面よりも前記底面側に設けられ、
前記制振部材溜り部は、前記コイルの端子側端面よりも前記開口部側に設けられており、
前記制振部材は、前記段差部よりも開口部側まで充填されていることを特徴とするリアクトル装置。
A reactor having a coil that generates magnetic flux when energized and a core made of a magnetic powder mixed resin filled inside and outside the coil;
An accommodating portion for accommodating the reactor having an opening on one side and a bottom surface on the other;
In a reactor device comprising a vibration damping member interposed in a gap between the inner side surface of the housing part and the outer surface of the reactor,
The inner surface of the housing portion has a damping member reservoir that has a gap between a support portion that supports the reactor via the damping member and an opening portion side that is larger than the outer surface of the reactor than the support portion. And a step part provided between the support part and the damping member reservoir part,
The stepped portion is provided on the opening side of the terminal side end surface of the coil and on the bottom side of the opening side end surface of the core ,
The damping member reservoir is provided closer to the opening than the terminal side end face of the coil,
The reactor device is characterized in that the vibration damping member is filled to the opening side of the stepped portion.
請求項1に記載のリアクトル装置において、
前記段差部は、前記収容部の開口部側から底面側に向かって徐々に前記収容部の内周が小さくなる傾斜面からなることを特徴とするリアクトル装置。
The reactor device according to claim 1,
The reactor is characterized in that the stepped portion is formed of an inclined surface in which the inner periphery of the housing portion gradually decreases from the opening side to the bottom surface side of the housing portion.
請求項1または2に記載のリアクトル装置において、
前記収容部の開口部は、前記リアクトルの端子側端面がこの開口部よりも底面側となるように設けられていることを特徴とするリアクトル装置。
The reactor device according to claim 1 or 2,
The reactor device is characterized in that the opening portion of the housing portion is provided such that a terminal side end surface of the reactor is closer to the bottom surface side than the opening portion.
請求項1〜3に記載の何れかリアクトル装置において、
前記収容部は、略円筒形状を有することを特徴とするリアクトル装置。
The reactor apparatus in any one of Claims 1-3 WHEREIN:
The reactor is characterized by having a substantially cylindrical shape.
請求項1〜4に記載の何れかリアクトル装置において、
前記制振部材は、ウレタンであることを特徴とするリアクトル装置。
In any reactor device of Claims 1-4,
The reactor device is characterized in that the damping member is urethane.
JP2008291239A 2008-11-13 2008-11-13 Reactor device Expired - Fee Related JP5332527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291239A JP5332527B2 (en) 2008-11-13 2008-11-13 Reactor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291239A JP5332527B2 (en) 2008-11-13 2008-11-13 Reactor device

Publications (2)

Publication Number Publication Date
JP2010118540A JP2010118540A (en) 2010-05-27
JP5332527B2 true JP5332527B2 (en) 2013-11-06

Family

ID=42306019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291239A Expired - Fee Related JP5332527B2 (en) 2008-11-13 2008-11-13 Reactor device

Country Status (1)

Country Link
JP (1) JP5332527B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945906B2 (en) * 2012-01-10 2016-07-05 住友電気工業株式会社 Reactor storage structure and power conversion device
JP6177521B2 (en) * 2012-12-11 2017-08-09 株式会社タムラ製作所 Reactor
JP6420563B2 (en) * 2014-04-09 2018-11-07 株式会社タムラ製作所 Reactor
JP6382557B2 (en) * 2014-04-09 2018-08-29 株式会社タムラ製作所 Reactor and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298969A (en) * 1976-02-13 1977-08-19 Automobile Antipollution Coil case
JPS5999418U (en) * 1982-12-24 1984-07-05 阪神エレクトリツク株式会社 molded ignition coil
JPS61158116A (en) * 1984-12-29 1986-07-17 Asahi Chem Ind Co Ltd Resin sealed transformer
JP3577092B2 (en) * 1993-02-05 2004-10-13 レシップ株式会社 Transformer
JP2006351719A (en) * 2005-06-14 2006-12-28 Sumitomo Electric Ind Ltd Reactor
JP4867889B2 (en) * 2007-01-18 2012-02-01 株式会社デンソー Power converter and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010118540A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
JP4867889B2 (en) Power converter and manufacturing method thereof
JP4921154B2 (en) Reactor and power conversion device incorporating the same
JP5267181B2 (en) Reactor
JP6384732B2 (en) Reactor
US10170235B2 (en) Reactor
JP5332527B2 (en) Reactor device
US9947461B2 (en) Reactor
CN103858187A (en) Reactor, coil component for reactor, converter, and power conversion device
CN104205261A (en) Reactor apparatus
US20190189339A1 (en) Reactor and method for manufacturing reactor
JP2009088007A (en) Reactor
JP5640507B2 (en) Reactor device
JP2015012147A (en) Reactor
JP2010166013A (en) Reactor
JP5609669B2 (en) Reactor device
US11495388B2 (en) Reactor
JP5157956B2 (en) Reactor
JP2017123733A (en) Electric connection box
JP2010165884A (en) Reactor
JP5440869B2 (en) Reactor
CN113841210A (en) Electric reactor
US11342113B2 (en) Reactor and method for manufacturing reactor
JP2010186803A (en) Reactor
WO2020105469A1 (en) Reactor
JP5310626B2 (en) Reactor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5332527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees