JP5332411B2 - Pulse power supply cooling system - Google Patents

Pulse power supply cooling system Download PDF

Info

Publication number
JP5332411B2
JP5332411B2 JP2008223063A JP2008223063A JP5332411B2 JP 5332411 B2 JP5332411 B2 JP 5332411B2 JP 2008223063 A JP2008223063 A JP 2008223063A JP 2008223063 A JP2008223063 A JP 2008223063A JP 5332411 B2 JP5332411 B2 JP 5332411B2
Authority
JP
Japan
Prior art keywords
insulating oil
oil
tank
power supply
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008223063A
Other languages
Japanese (ja)
Other versions
JP2010063195A (en
Inventor
栄二 笹本
直樹 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2008223063A priority Critical patent/JP5332411B2/en
Publication of JP2010063195A publication Critical patent/JP2010063195A/en
Application granted granted Critical
Publication of JP5332411B2 publication Critical patent/JP5332411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Lasers (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Description

本発明は、高い繰り返し周波数で狭幅の大電流・高電圧パルスを発生するパルス電源に係り、特にパルス電源を構成する主回路素子を絶縁油タンク内に浸漬させて冷却する冷却装置に関する。   The present invention relates to a pulse power source that generates a large current / high voltage pulse having a narrow width at a high repetition frequency, and more particularly to a cooling device that cools a main circuit element constituting the pulse power source by immersing it in an insulating oil tank.

エキシマレーザのレーザガス励起電源などに利用されるパルス電源は、例えば図4に示す主回路に構成される。パルス発生回路は、電力用の初段コンデンサC0を設け、この初段コンデンサC0を高圧充電器HDCにより初期充電しておき、半導体スイッチSWのオン制御で初段コンデンサC0から可飽和リアクトルSI0を介してパルストランスPTにパルス電流I0を発生させる。可飽和リアクトルSI0は、半導体スイッチSWの完全なオン後に飽和動作してパルス電流I0を発生させることにより、半導体スイッチSWの責務を軽減し、スイッチング損失を軽減する。 A pulse power source used for a laser gas excitation power source of an excimer laser is configured in a main circuit shown in FIG. 4, for example. The pulse generation circuit is provided with a first-stage capacitor C0 for power, and this first-stage capacitor C0 is initially charged by a high-voltage charger HDC. When the semiconductor switch SW is turned on, a pulse transformer is passed from the first-stage capacitor C0 via a saturable reactor SI0. A pulse current I 0 is generated in PT. Saturable reactor SI0 is, by generating the pulse current I 0 and saturation operation after fully on the semiconductor switch SW, to reduce the duty of the semiconductor switch SW, to reduce the switching losses.

パルストランスPTの二次側には磁気パルス圧縮回路が接続され、パルス電流I0はパルストランスPTで昇圧されてパルス電流I1となり、コンデンサC1を高圧充電し、このコンデンサC1の充電電圧で可飽和リアクトルSI1が磁気スイッチ動作することにより、磁気パルス圧縮した狭幅のパルス電流I2を図示の方向でコンデンサC2へ印加してコンデンサC2を高圧充電する。さらに、コンデンサC2の充電電圧で可飽和リアクトルSI2が磁気スイッチ動作することにより、更に狭幅のパルス電流I3が図示の方向に流れ、レーザヘッドのチャンバなどの負荷LHに狭幅・高電圧のパルス電流I3が繰り返し供給される。 A magnetic pulse compression circuit is connected to the secondary side of the pulse transformer PT, and the pulse current I 0 is boosted by the pulse transformer PT to become the pulse current I 1. The capacitor C 1 is charged with a high voltage, and the charge voltage of the capacitor C 1 is acceptable. by saturable reactor SI1 operate magnetic switch, high pressure charge the capacitor C2 is applied to the capacitor C2 magnetic pulse compressed narrow the pulse current I 2 in the illustrated direction. Further, the saturable reactor SI2 operates as a magnetic switch with the charging voltage of the capacitor C2, so that a further narrow pulse current I 3 flows in the direction shown in the figure, and the load LH such as the laser head chamber has a narrow and high voltage. The pulse current I 3 is repeatedly supplied.

ここで、可飽和リアクトルSI0〜SI2やパルストランスPTに使用されるコアには、巻線に流れる高繰り返しのパルス電流によるヒステリシス損及び渦電流損が発生し、温度が上昇する。又、半導体スイッチSWもスイッチング動作時の損失により発熱する。これらの発熱する主回路素子は冷却のために絶縁油内に浸漬される(半導体スイッチSWは油密タンク外で水冷又は風冷される場合もある。)。又、コンデンサC1,C2は、可飽和リアクトルSI0,SI1との間で狭幅のパルス電流を流せるよう近接配置するため、タンク内で一体的に配置される。このタンク内に収納する冷媒としては、絶縁油、フロリナートなどの絶縁性の高い液体が使われる。これら主回路素子を発熱による破損、性能劣化を防止するため、図4中に波線ブロックで示す絶縁油タンク内に主回路素子(SI0、SI1、SI2、PT、C1、C2)を収納してその冷却を行う。   Here, in the core used for the saturable reactors SI0 to SI2 and the pulse transformer PT, a hysteresis loss and an eddy current loss due to a high repetition pulse current flowing in the winding occur, and the temperature rises. Further, the semiconductor switch SW also generates heat due to loss during the switching operation. These heat generating main circuit elements are immersed in insulating oil for cooling (the semiconductor switch SW may be water-cooled or air-cooled outside the oil-tight tank). Capacitors C1 and C2 are arranged in a single unit in the tank because they are arranged close to each other so that a narrow pulse current can flow between saturable reactors SI0 and SI1. As the refrigerant stored in the tank, a highly insulating liquid such as insulating oil or fluorinate is used. In order to prevent these main circuit elements from being damaged by heat generation and performance deterioration, the main circuit elements (SI0, SI1, SI2, PT, C1, C2) are stored in an insulating oil tank indicated by a wavy line block in FIG. Cool down.

図5は従来のパルス電源の冷却装置の構成例を示し、モータ駆動のクロスフローファンを攪拌機とし、冷却装置の冷媒を兼ねた絶縁油を主回路素子とラジエータ間で循環(強制対流)させて主回路素子を冷却する(例えば、特許文献1、2参照)。図5において、タンク11はステンレスやアルミニウムなどの非磁性材により形成され、その内部には絶縁油12が収納され、タンク11内の上部には油面とフタ13との間に空気層が形成されて絶縁油の体積膨張を吸収可能にする。絶縁油12内にはパルス電源の主回路素子部14が浸漬されるとともに、その上位側部にはラジエータ15が平行して設けられ、ラジエータ15にはタンク11外から冷却水が通流される。ラジエータ15の下部にはクロスフローファン16が設けられ、このクロスフローファン16を磁気カップリング17を介してタンク11外のモータ18で駆動することで、絶縁油を主回路素子部14とラジエータ15間で循環させ、主回路素子部14を冷却する。この冷却方式は、絶縁油の流れは主回路素子部14に対し、クロスフローファン16の回転により縦方向に発生するので、タンク11内を均一に攪拌することができ、熱交換を促進して冷却効率を高めることができる。   FIG. 5 shows an example of the configuration of a conventional pulse power supply cooling device, in which a motor-driven crossflow fan is used as a stirrer, and insulating oil that also serves as a refrigerant for the cooling device is circulated (forced convection) between the main circuit element and the radiator. The main circuit element is cooled (for example, refer to Patent Documents 1 and 2). In FIG. 5, the tank 11 is formed of a nonmagnetic material such as stainless steel or aluminum, and the insulating oil 12 is housed inside the tank 11, and an air layer is formed between the oil surface and the lid 13 in the upper part of the tank 11. It is possible to absorb the volume expansion of the insulating oil. The main circuit element portion 14 of the pulse power supply is immersed in the insulating oil 12, and a radiator 15 is provided in parallel on the upper side portion thereof, and cooling water is passed through the radiator 15 from the outside of the tank 11. A cross flow fan 16 is provided below the radiator 15, and the cross flow fan 16 is driven by a motor 18 outside the tank 11 via a magnetic coupling 17, thereby insulating oil from the main circuit element unit 14 and the radiator 15. The main circuit element unit 14 is cooled. In this cooling method, since the flow of insulating oil is generated in the vertical direction by the rotation of the cross flow fan 16 with respect to the main circuit element unit 14, the inside of the tank 11 can be uniformly stirred, and heat exchange is promoted. Cooling efficiency can be increased.

図6はパルス電源の冷却装置の他の構成例を示し、モータ駆動の軸流ファンを攪拌機として絶縁油を主回路素子とラジエータ間で循環させて主回路素子を冷却する(例えば、特許文献1参照)。図6において、タンク11内の絶縁油12の下部に主回路素子部14を浸漬させ、その上部に平板状のラジエータ19を設ける。タンク11内の下部にファン20を設け、このファン20を磁気カップリング17を介してモータ18で駆動することで、絶縁油を主回路素子部14からラジエータ19に向けて循環させ、主回路素子部14を冷却する。
特開2001−136758号公報 特開2003−124550号公報
FIG. 6 shows another configuration example of a cooling device for a pulse power supply, and the main circuit element is cooled by circulating insulating oil between the main circuit element and the radiator using a motor-driven axial fan as a stirrer (for example, Patent Document 1). reference). In FIG. 6, the main circuit element part 14 is immersed in the lower part of the insulating oil 12 in the tank 11, and the flat radiator 19 is provided in the upper part. A fan 20 is provided in the lower part of the tank 11, and the fan 20 is driven by a motor 18 via a magnetic coupling 17, whereby insulating oil is circulated from the main circuit element unit 14 toward the radiator 19, and the main circuit element The part 14 is cooled.
JP 2001-136758 A JP 2003-124550 A

従来の冷却装置において、冷却効率を上げるためには、絶縁油を強制対流させる攪拌機の回転数を上げ、絶縁油の循環量を増大させることが考えられる。しかし、攪拌機の回転数を上げると、図7の(a)または(b)に示すように、油面が波打って絶縁油の中に気泡が巻き込まれてしまう。この巻き込まれた気泡が主回路素子の高圧部に循環されると、図7の(c)に示すように、絶縁耐圧の低い気泡で部分放電が発生し、絶縁油の劣化やパルストランス巻線部等の絶縁物を劣化させ、最終的には絶縁破壊を起こしてしまう。   In the conventional cooling device, in order to increase the cooling efficiency, it is conceivable to increase the number of circulations of the insulating oil by increasing the rotation speed of the stirrer forcing the insulating oil to convect. However, when the rotation speed of the stirrer is increased, the oil surface undulates and bubbles are trapped in the insulating oil as shown in FIG. 7 (a) or (b). When the entrained bubbles are circulated to the high-pressure part of the main circuit element, as shown in FIG. 7 (c), partial discharge occurs due to the bubbles with low withstand voltage, and deterioration of the insulating oil and pulse transformer windings occur. Insulators such as parts are deteriorated, and eventually dielectric breakdown occurs.

本発明の目的は、攪拌機の回転数を上げて絶縁油の循環量を増大させ、かつ絶縁油中に気泡が発生するのを防止できるパルス電源の冷却装置を提供することにある。   An object of the present invention is to provide a cooling device for a pulse power source that can increase the circulation rate of insulating oil by increasing the number of revolutions of a stirrer and prevent bubbles from being generated in the insulating oil.

本発明は、前記の課題を解決するため、絶縁油の油面または油面近傍に金属または絶縁物の防波板(または防波物)を設け、絶縁油の液面が波打つのを防波板で抑えるようにしたもので、以下の構造を特徴とする。   In order to solve the above-mentioned problems, the present invention is provided with a metal or insulating wave breaker plate (or wave breaker) on the oil surface of the insulating oil or in the vicinity of the oil surface to prevent the liquid surface of the insulating oil from wavy. It is made to hold down with a board, and has the following structures.

(1)タンク内に空気層を持たせて絶縁油を収納し、この絶縁油中にパルス電源の主回路素子部を浸漬させ、この主回路素子部とタンク外から冷却水が通流されるラジエータとの間に攪拌機で絶縁油を循環させるパルス電源の冷却装置において、
絶縁油に浮く金属または絶縁物の防波板を絶縁油の油面に位置させ防波板またはタンクのフタのうち一方にのみ固定されたスペーサを設け、油面とタンクのフタとの間の一部に隙間を設けた構造を特徴とする。
(1) A radiator in which an insulating layer is stored with an air layer in the tank, the main circuit element part of the pulse power supply is immersed in the insulating oil, and cooling water flows from the main circuit element part and the outside of the tank. In the pulse power supply cooling device that circulates the insulating oil with a stirrer between
A metal or insulating wave- breaking plate that floats on the insulating oil is positioned on the surface of the insulating oil, and a spacer is provided that is fixed only to one of the wave-proofing plate or the tank lid, and between the oil surface and the tank lid. It is characterized by a structure in which a gap is provided in a part.

(2)タンク内に空気層を持たせて絶縁油を収納し、この絶縁油中にパルス電源の主回路素子部を浸漬させ、この主回路素子部とタンク外から冷却水が通流されるラジエータとの間に攪拌機で絶縁油を循環させるパルス電源の冷却装置において、
金属または絶縁物の防波板をタンクの上下方向で可動できるようにして絶縁油の油面に浮かせ、油面とタンクのフタとの間の一部に隙間を設けた構造を特徴とする。
(2) A radiator in which an insulating layer is provided with an air layer in the tank, the main circuit element portion of the pulse power supply is immersed in the insulating oil, and cooling water flows from the main circuit element portion and the outside of the tank. In the pulse power supply cooling device that circulates the insulating oil with a stirrer between
The structure is characterized in that a metal or insulating wave-breaking plate is floated on the oil surface of the insulating oil so as to be movable in the vertical direction of the tank, and a gap is provided in part between the oil surface and the tank lid.

以上のとおり、本発明によれば、絶縁油の油面または油面近傍に金属または絶縁物の防波板(または防波物)を設け、絶縁油の液面が波打つのを防波板で抑えるようにしたため、攪拌機の回転数を上げて絶縁油の循環量を増大させ、かつ絶縁油中に気泡が発生するのを防止できる。   As described above, according to the present invention, a metal or insulating wave breaker (or wave breaker) is provided on or near the oil surface of the insulating oil, and the liquid level of the insulating oil is Since it is suppressed, it is possible to increase the circulation rate of the insulating oil by increasing the number of revolutions of the stirrer, and to prevent the generation of bubbles in the insulating oil.

<実施形態1>
図1は、本実施形態を示すパルス電源の冷却装置の構成図であり、(a)にクロスフローファンによる装置構成を、(b)に軸流ファンによる装置構成を示す。
<Embodiment 1>
FIG. 1 is a configuration diagram of a cooling apparatus for a pulse power source according to the present embodiment, in which (a) shows an apparatus configuration using a cross flow fan, and (b) shows an apparatus configuration using an axial fan.

同図が図5または図6と異なる部分は、金属または絶縁物の防波板(または防波物)21を絶縁油の油面または油面近傍に半固定で位置させた点にある。   5 differs from FIG. 5 or FIG. 6 in that a metal or insulating wave-breaking plate (or wave-blocking object) 21 is positioned semi-fixed on or near the oil surface of the insulating oil.

防波板21は、フタ13との間に複数箇所でスペーサ22を設けている。このスペーサ22は防波板21にのみ固定、またはフタ13にのみ固定され、防波板21が油面に浮いた状態または油面に一部が浸かった状態でフタ13に接触する高さ寸法にする。このスペーサ22の介在により、絶縁油の循環時に、攪拌機の強制対流によって防波板21が油面から持ち上げられるのを無くし、さらに油面が空気層に晒されるのを無くし、油面の波打ち発生および油内に気泡が発生するのを防止する。   The wave preventing plate 21 is provided with spacers 22 at a plurality of locations between the wave preventing plate 21 and the lid 13. The spacer 22 is fixed only to the wave preventing plate 21 or is fixed only to the lid 13, and the height dimension for contacting the lid 13 in a state where the wave preventing plate 21 floats on the oil surface or is partially immersed in the oil surface. To. By interposing the spacer 22, the insulating plate is prevented from being lifted from the oil surface by forced convection of the stirrer, and the oil surface is not exposed to the air layer. And prevents bubbles from forming in the oil.

なお、防波板21は、油面とフタ13との間を完全に仕切るものでなく、一部に隙間を設ける。これにより絶縁油の温度上昇によるその膨張分を空気層に逃がす。   The wave preventing plate 21 does not completely partition the oil surface and the lid 13 but provides a gap in part. As a result, the expansion due to the temperature rise of the insulating oil is released to the air layer.

このような装置構成により、攪拌機の回転数を上げるも、油面が波打って絶縁油の中に気泡が巻き込まれることがなくなり、気泡が主回路素子の高圧部に流れ込むことによる絶縁耐圧の低い気泡で部分放電が発生するのを防止できる。結果的に、攪拌機の回転数を上げて冷却効率を高め、しかも絶縁油中に気泡の発生を防止してその劣化やパルストランス巻線部等の絶縁物の劣化防止や絶縁破壊を防止できる。   With such an apparatus configuration, even if the number of revolutions of the stirrer is increased, the oil surface does not wave and bubbles are not caught in the insulating oil, and the insulation breakdown voltage is low due to the bubbles flowing into the high-pressure part of the main circuit element. Partial discharge can be prevented from occurring due to bubbles. As a result, the rotation speed of the stirrer can be increased to increase the cooling efficiency, and further, the generation of bubbles in the insulating oil can be prevented to prevent the deterioration thereof, the deterioration of insulators such as the pulse transformer winding part, and the insulation breakdown.

<実施形態2>
図2は、本実施形態を示すパルス電源の冷却装置の構成図であり、(a)にクロスフローファンによる装置構成を、(b)に軸流ファンによる装置構成を示す。
<Embodiment 2>
2A and 2B are configuration diagrams of a cooling device for a pulse power source according to the present embodiment, where FIG. 2A shows a device configuration using a cross flow fan, and FIG. 2B shows a device configuration using an axial fan.

同図が図5または図6と異なる部分は、金属または絶縁物の防波板(または防波物)23をタンクの上下方向で可動できるようにして絶縁油の油面に浮かせた点にある。   5 or 6 differs from FIG. 5 or FIG. 6 in that a metal or insulating wave preventing plate (or wave preventing object) 23 is floated on the surface of the insulating oil so as to be movable in the vertical direction of the tank. .

支持板24は、L字型の構造をもち、一端がフタ13またはタンク11の側面に固定され、他端のL字部に防波板23の両端面を載置して支持する構造とする。支持板24の高さ寸法は、少なくとも絶縁油の常温での油面に防波板23が接する値にする。   The support plate 24 has an L-shaped structure, one end is fixed to the side surface of the lid 13 or the tank 11, and both end surfaces of the wave preventing plate 23 are placed on and supported by the other L-shaped portion. . The height of the support plate 24 is set to a value at which the wave preventing plate 23 is in contact with at least the oil surface of the insulating oil at normal temperature.

なお、防波板21は、油面とフタ13との間を完全に仕切るものでなく、一部に隙間を設ける。これにより絶縁油の温度上昇による膨張分を空気層に逃がす。   The wave preventing plate 21 does not completely partition the oil surface and the lid 13 but provides a gap in part. Thereby, the expansion due to the temperature rise of the insulating oil is released to the air layer.

本実施形態によれば、防波板23はタンクの高さ方向に支持板24で可動式に支持され、常温での油面に防波板23を浮かせておくことができる。これにより、防波板23は油面に常時浮いた状態にすることができ、実施形態1と比べ、防波板(または防波物)が油面上昇に伴って浮上するため、主回路素子(発熱体)やラジエータ(吸熱体)の近傍の流路が大きく確保されて流速が大きくなり冷却効率が更に向上する。   According to the present embodiment, the wave preventing plate 23 is movably supported by the support plate 24 in the height direction of the tank, and the wave preventing plate 23 can be floated on the oil surface at normal temperature. As a result, the wave breaker plate 23 can always float on the oil surface, and the wave breaker plate (or wave breaker) floats as the oil level rises compared to the first embodiment. A large flow path in the vicinity of the (heating element) and the radiator (endothermic body) is secured to increase the flow velocity, further improving the cooling efficiency.

<実施形態3>
図3は、本実施形態を示すパルス電源の冷却装置の構成図であり、(a)にクロスフローファンによる装置構成の断面図を、(b)に側面図を示し、(c)に油面上昇時の形態を示す。
<Embodiment 3>
FIG. 3 is a configuration diagram of a cooling device for a pulse power source according to the present embodiment, where (a) shows a cross-sectional view of the device configuration using a crossflow fan, (b) shows a side view, and (c) shows an oil surface. The form at the time of ascent is shown.

同図が図5と異なる部分は、金属または絶縁物の防波板(または防波物)25を絶縁油の油面に接する高さ位置または油面近傍に一部が浸かる高さ位置で、防波板25とフタ13との間をフィン26で一体化した点にある。   5 is different from FIG. 5 in the height position where the metal or insulating wave blocking plate (or wave blocking object) 25 is in contact with the oil surface of the insulating oil, or the height position where a part of the oil surface is immersed. The point is that the fins 26 are integrated between the wave preventing plate 25 and the lid 13.

フィン26は、熱伝導性に優れる金属板を複数枚配列した構造とし、この金属板で形成する溝方向は絶縁油の循環方向と同じにした構造とする。   The fin 26 has a structure in which a plurality of metal plates having excellent heat conductivity are arranged, and a groove direction formed by the metal plates is the same as the circulation direction of the insulating oil.

なお、フタ13は熱伝導性に優れる金属製にされる。また、防波板25は、油面とフタ13との間を完全に仕切るものでなく、一部に隙間を設ける。これにより絶縁油の温度上昇による膨張分をフィン26で形成する空気層の溝に逃がす。   The lid 13 is made of a metal having excellent thermal conductivity. Further, the wave preventing plate 25 does not completely partition the oil surface and the lid 13 but provides a gap in part. As a result, the expansion due to the temperature rise of the insulating oil is released to the groove of the air layer formed by the fins 26.

本実施形態によれば、防波板25を金属としてフィン26とフタ13と一体化するため、防波板または防波物が放熱器の役割を兼ね、温度が最も高くなる絶縁油の最上部に接する防波板25からフィン26を介してフタ13側に効率良く放熱することができ、冷却効率を更に向上させることができる。特に、油面上昇時にフィン部に多くの油が流れるため放熱効果が大きくなる。   According to the present embodiment, since the wave preventing plate 25 is made of metal and integrated with the fin 26 and the lid 13, the wave preventing plate or the wave preventing object also serves as a radiator, and the uppermost portion of the insulating oil at which the temperature is highest. It is possible to efficiently dissipate heat to the lid 13 side through the fins 26 from the wave blocking plate 25 in contact with the heat shield plate 25, and the cooling efficiency can be further improved. In particular, since a large amount of oil flows through the fins when the oil level rises, the heat dissipation effect is increased.

実施形態1を示すパルス電源の冷却装置の構成図。1 is a configuration diagram of a pulse power supply cooling device according to Embodiment 1. FIG. 実施形態2を示すパルス電源の冷却装置の構成図。FIG. 5 is a configuration diagram of a cooling device for a pulse power source according to a second embodiment. 実施形態3を示すパルス電源の冷却装置の構成図。FIG. 6 is a configuration diagram of a cooling device for a pulse power supply according to a third embodiment. パルス電源の主回路の構成図。The block diagram of the main circuit of a pulse power supply. 従来のパルス電源の冷却装置の構成例。The structural example of the cooling device of the conventional pulse power supply. 従来のパルス電源の冷却装置の他の構成例。The other example of a structure of the cooling device of the conventional pulse power supply. 気泡発生と部分放電の説明図。Explanatory drawing of bubble generation and partial discharge.

符号の説明Explanation of symbols

11 タンク
12 絶縁油
13 フタ
14 回路素子部
15、19 ラジエータ
16 クロスフローファン
17 磁気カップリング
18 モータ
20 軸流ファン
21,23、25 防波板
22 スペーサ
24 支持板
26 フィン
DESCRIPTION OF SYMBOLS 11 Tank 12 Insulation oil 13 Cover 14 Circuit element part 15, 19 Radiator 16 Cross flow fan 17 Magnetic coupling 18 Motor 20 Axial fan 21, 23, 25 Wave barrier plate 22 Spacer 24 Support plate 26 Fin

Claims (2)

タンク内に空気層を持たせて絶縁油を収納し、この絶縁油中にパルス電源の主回路素子部を浸漬させ、この主回路素子部とタンク外から冷却水が通流されるラジエータとの間に攪拌機で絶縁油を循環させるパルス電源の冷却装置において、
絶縁油に浮く金属または絶縁物の防波板を絶縁油の油面に位置させ防波板またはタンクのフタのうち一方にのみ固定されたスペーサを設け、油面とタンクのフタとの間の一部に隙間を設けた構造を特徴とするパルス電源の冷却装置。
Insulating oil is stored in a tank with an air layer, and the main circuit element part of the pulse power supply is immersed in this insulating oil. Between the main circuit element part and the radiator through which cooling water flows from outside the tank In a pulse power supply cooling device that circulates insulating oil with a stirrer,
A metal or insulating wave- breaking plate that floats on the insulating oil is positioned on the surface of the insulating oil, and a spacer is provided that is fixed only to one of the wave-proofing plate or the tank lid, and between the oil surface and the tank lid. A cooling device for a pulsed power supply, characterized in that a gap is provided in a part of the pulse power supply.
タンク内に空気層を持たせて絶縁油を収納し、この絶縁油中にパルス電源の主回路素子部を浸漬させ、この主回路素子部とタンク外から冷却水が通流されるラジエータとの間に攪拌機で絶縁油を循環させるパルス電源の冷却装置において、
金属または絶縁物の防波板をタンクの上下方向で可動できるようにして絶縁油の油面に浮かせ、油面とタンクのフタとの間の一部に隙間を設けた構造を特徴とするパルス電源の冷却装置。
Insulating oil is stored in a tank with an air layer, and the main circuit element part of the pulse power supply is immersed in this insulating oil. Between the main circuit element part and the radiator through which cooling water flows from outside the tank In a pulse power supply cooling device that circulates insulating oil with a stirrer,
A pulse characterized by a structure in which a metal or insulating wave barrier is floated on the oil surface of the insulating oil so that it can move in the vertical direction of the tank, and a gap is provided in part between the oil surface and the tank lid Power supply cooling device.
JP2008223063A 2008-09-01 2008-09-01 Pulse power supply cooling system Active JP5332411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223063A JP5332411B2 (en) 2008-09-01 2008-09-01 Pulse power supply cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008223063A JP5332411B2 (en) 2008-09-01 2008-09-01 Pulse power supply cooling system

Publications (2)

Publication Number Publication Date
JP2010063195A JP2010063195A (en) 2010-03-18
JP5332411B2 true JP5332411B2 (en) 2013-11-06

Family

ID=42189389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223063A Active JP5332411B2 (en) 2008-09-01 2008-09-01 Pulse power supply cooling system

Country Status (1)

Country Link
JP (1) JP5332411B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217835B1 (en) * 2016-09-16 2017-10-25 富士通株式会社 Immersion cooling device
JP6217885B1 (en) 2016-09-16 2017-10-25 富士通株式会社 Immersion tank and apparatus having an immersion tank
JP6790855B2 (en) * 2017-01-18 2020-11-25 富士通株式会社 Immersion cooling system, immersion cooling system and electronic device cooling method
JP6237942B1 (en) * 2017-01-30 2017-11-29 富士通株式会社 Immersion cooling device
JP2019057631A (en) * 2017-09-21 2019-04-11 東芝産業機器システム株式会社 Liquid cooling-type electric apparatus
CN108258598B (en) * 2018-01-17 2019-06-07 浙江锐帆科技有限公司 Power distribution cabinet roof construction and power distribution cabinet cabinet top are every heat dissipating method
CN113922588B (en) * 2021-10-12 2023-01-20 臻驱科技(上海)有限公司 Copper bar oil cooling structure of electric drive system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283168U (en) * 1985-11-12 1987-05-27
JPH02224397A (en) * 1989-02-27 1990-09-06 Koufu Nippon Denki Kk Structure for cooling immersed power source
JP2000116273A (en) * 1998-10-12 2000-04-25 Taku Omizu Tank, system and method for transportation of living fish and shellfish
JP4101579B2 (en) * 2001-07-31 2008-06-18 ギガフォトン株式会社 High voltage pulse generator and discharge excitation gas laser device using the same.

Also Published As

Publication number Publication date
JP2010063195A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5332411B2 (en) Pulse power supply cooling system
US8081054B2 (en) Hyper-cooled liquid-filled transformer
KR20120118456A (en) Embedded cooling of wound electrical components
JP2006353014A (en) Power distribution equipment
JPWO2012108053A1 (en) Cooling device and power conversion device
JP6439725B2 (en) Temperature control device for magnetic circuit parts
JP2009081171A (en) Cubicle heat-radiation structure
WO2015019664A1 (en) Wind power generator system and method for carrying transformer into/out of same
US9466414B2 (en) Vibration stabilizer for enclosure cooling fins
KR101327409B1 (en) Piezo electric element type water cooling system of power transformer using self-vibrating
CN211455481U (en) High-efficient heat dissipation transformer
KR102323608B1 (en) Oil immersed transformer
CN211654493U (en) Power transformer shell with heat dissipation effect
CN215220453U (en) Heat dissipation device for high-frequency low-voltage transformer
JP4461003B2 (en) Coil cooling structure
TWI675384B (en) Static sensor
US20180051443A1 (en) Electric rotating device
JP6502423B2 (en) electromagnet
JP4969927B2 (en) DC high voltage generator
JP2020136519A (en) Semiconductor device
JP4101579B2 (en) High voltage pulse generator and discharge excitation gas laser device using the same.
CN220569516U (en) Oil tank structure of transformer
KR200498037Y1 (en) oil immersed type transformer
CN214279727U (en) Transformer that security is good
CN215342706U (en) Water-cooled laser power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5332411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150