JP2009081171A - Cubicle heat-radiation structure - Google Patents

Cubicle heat-radiation structure Download PDF

Info

Publication number
JP2009081171A
JP2009081171A JP2007247482A JP2007247482A JP2009081171A JP 2009081171 A JP2009081171 A JP 2009081171A JP 2007247482 A JP2007247482 A JP 2007247482A JP 2007247482 A JP2007247482 A JP 2007247482A JP 2009081171 A JP2009081171 A JP 2009081171A
Authority
JP
Japan
Prior art keywords
cubicle
container
heat
radiator
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007247482A
Other languages
Japanese (ja)
Inventor
Mitsuteru Onoi
光輝 尾ノ井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007247482A priority Critical patent/JP2009081171A/en
Publication of JP2009081171A publication Critical patent/JP2009081171A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cubicle heat-radiation structure capable of effectively radiating heat even when a clearance is small between cubicle walls and a heat radiator of an electric apparatus built in the cubicle. <P>SOLUTION: A cubicle heat-radiation structure includes, in the casing 1 that constitutes a cubicle, an electric apparatus 2 that has a heat radiator 6, wherein the heat radiator 6 is disposed opposite to the wall surfaces 1a of the casing 1 to radiate heat from the electric apparatus 2 to the outside. The heat radiator 6 comprises an upper header 7 horizontally protruding from the upper part of the container 4 of the electric apparatus 2, a lower header 8 horizontally protruding from the lower part of the container 4 and tilting upward halfway, and a plurality of heat radiation fins 9 vertically communicating between upper and lower headers. Air intake ports 10a and 10b are provided on the wall 1a of the adjacent casing 1 opposite to the lower header 8. An air outlet port 11 is provided on the adjacent wall 1a opposite to the upper header 7. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、キュービクル内に収容された電気機器の発熱を効率よく放熱させる、キュービクルの放熱構造に関するものである。   The present invention relates to a cubicle heat dissipation structure that efficiently dissipates heat generated by electrical equipment housed in a cubicle.

従来のキュービクル式受配電設備等において、キュービクル内の電気機器による発熱を外部に放出するために、筐体の内部と内外部とを独自に空気循環させて、筐体内で発生した熱を筐体外に放熱する技術が知られており、例えば、図7のような熱交換器構造が開示されている。(a)は側面断面図であり、(b)は(a)のb−bから見た熱交換器の平面断面図である。
図7において、密閉構造の筐体31内には内部を仕切る隔壁32を設け、電子機器等を収容する機器室33と熱交換器34を収容する熱交換室35とに隔成し、隔壁32には内気排気口36と内気吸気口37を設けている。電子機器等の発生熱により暖気化された機器室33側の内気38を、内気排気口36を通して熱交換器34に導入し、熱交換器34を通過させて熱交換を終え内気吸気口37から再び機器室33に戻して循環させている。熱交換器34は(b)の平面断面図に示すように、内気側の通路39と外気側の通路40が形成されており、熱交換室35では、外気吸気口41から取り入れた外気42を、外気側の通路40に導入し、内気38との間で熱交換を終えた外気42は排気口43から筐体31の外部に排出するようになっている。
In conventional cubicle type power distribution facilities, etc., in order to release the heat generated by the electrical equipment in the cubicle to the outside, the heat generated inside the casing is circulated by independently circulating the air inside and outside the casing. For example, a heat exchanger structure as shown in FIG. 7 is disclosed. (A) is side surface sectional drawing, (b) is a plane sectional view of the heat exchanger seen from bb of (a).
In FIG. 7, a partition wall 32 that partitions the inside is provided in a sealed casing 31, and the partition wall 32 is divided into a device chamber 33 that houses an electronic device or the like and a heat exchange chamber 35 that houses a heat exchanger 34. Are provided with an inside air exhaust port 36 and an inside air intake port 37. The inside air 38 on the side of the equipment chamber 33 that has been warmed by heat generated by electronic equipment or the like is introduced into the heat exchanger 34 through the inside air exhaust port 36, passes through the heat exchanger 34, finishes the heat exchange, and passes through the inside air intake port 37. It is returned to the equipment room 33 and circulated again. The heat exchanger 34 is formed with an inside air side passage 39 and an outside air side passage 40, as shown in the plane sectional view of FIG. 5B, and in the heat exchange chamber 35, the outside air 42 taken in from the outside air inlet 41 is received. The outside air 42 introduced into the passage 40 on the outside air side and having exchanged heat with the inside air 38 is discharged from the exhaust port 43 to the outside of the casing 31.

特開平11−145660号公報(第3頁、図4及び図5)JP-A-11-145660 (page 3, FIGS. 4 and 5)

キュービクルは、通常、設置場所や併設する他の機器との関連で大きさが規制され制約を受けるが、設置面積の縮小化のためには、できるだけコンパクトであることが望ましい。熱交換器を必要とするような電気機器を内蔵するキュービクルでは、必然的に電気機器が大型化するが、筐体の大きさの制約から、熱交換器とキュービクルの筐体壁面との隙間が極力抑えられることになる。
特許文献1に示すような従来の熱交換器構造では、熱交換器34と筐体31の壁面との間が狭くなると、壁面下部の外気吸気口41と熱交換器34との隙間も狭くなり、熱交換器34の下部の外気導入部となる吸気口41付近のスペースが狭くなるため、外気42が取り入れにくくなり、冷却効率が悪くなるという問題点があった。
キュービクルに内蔵する電気機器が、例えば変圧器のように大きな発熱を伴う機器の場合は、特に熱交換器である放熱器が大型化するので、キュービクルの大きさを抑えようとすれば、筐体壁面と放熱器の間隔が更に犠牲となり、冷却にとっては条件が厳しくなるという問題点があった。
The cubicle is usually restricted in size and restricted in relation to the installation location and other devices attached thereto, but it is desirable that the cubicle be as compact as possible in order to reduce the installation area. In cubicles with built-in electrical equipment that requires a heat exchanger, the size of the electrical equipment inevitably increases, but due to the size of the housing, there is a gap between the heat exchanger and the housing wall of the cubicle. It will be suppressed as much as possible.
In the conventional heat exchanger structure as shown in Patent Document 1, when the space between the heat exchanger 34 and the wall surface of the housing 31 is narrowed, the gap between the outside air inlet 41 and the heat exchanger 34 at the bottom of the wall surface is also narrowed. In addition, since the space near the intake port 41 that is the outside air introduction portion below the heat exchanger 34 is narrowed, it is difficult to take in the outside air 42 and cooling efficiency is deteriorated.
If the electrical equipment built into the cubicle is a device that generates a large amount of heat, such as a transformer, for example, the heat sink, which is a heat exchanger, will increase in size, so if you try to reduce the size of the cubicle, There was a problem that the space between the wall surface and the radiator was further sacrificed, and the conditions were severe for cooling.

この発明は、上記のような問題点を解消するためになされたもので、キュービクルの筐体の壁面と放熱器の隙間が小さい場合でも、放熱効果の優れたキュービクルの冷却構造を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a cubicle cooling structure having an excellent heat dissipation effect even when the gap between the wall surface of the cubicle casing and the radiator is small. And

この発明に係わるキュービクルの放熱構造は、本体機器と冷却媒体とを容器に収容し、冷却媒体を循環させて冷却させる放熱器を容器の外部に備えてなる電気機器が、キュービクルを構成する筐体の内部に収容され、放熱器が筐体の壁面に対向するように配置されて、電気機器からの発熱を筐体の外部に放散するように構成されたキュービクルの放熱構造において、放熱器は、容器の側面上部に連通して設けられ水平方向に突出する上部ヘッダーと、容器の側面下部に連通して設けられ水平方向に突出し途中から上方に傾斜するように屈曲した下部ヘッダーと、両ヘッダー間を垂直方向に連通させ冷却媒体の流路を形成する複数の放熱フィンとを備え、下部ヘッダーに対向する近傍の筐体の壁面に吸気口が設けられ、上部ヘッダーに対向する近傍の壁面に排気口が設けられたものである。   The cubicle heat dissipating structure according to the present invention is a housing in which a main unit device and a cooling medium are housed in a container, and an electric device including a heat radiator that circulates and cools the cooling medium is provided outside the container. In the heat dissipation structure of the cubicle configured to dissipate heat generated from the electrical equipment to the outside of the housing, the radiator is disposed so as to face the wall surface of the housing, An upper header that communicates with the upper part of the side of the container and protrudes in the horizontal direction, a lower header that communicates with the lower part of the side of the container and protrudes in the horizontal direction and is bent so as to incline upward from the middle, and between the headers A plurality of radiating fins that communicate with each other in the vertical direction to form a cooling medium flow path, and an air inlet is provided on the wall surface of the housing in the vicinity facing the lower header and faces the upper header One in which the exhaust port is provided on the wall of the neighbor.

また、放熱器は、容器の側面上部に連通して設けられ水平方向に突出する上部ヘッダーと、容器の側面下部に連通して設けられ水平方向に突出する下部ヘッダーと、両ヘッダー間を垂直方向に連通させ冷却媒体の流路を形成する複数の放熱フィンとを備えて、且つ、放熱フィンの長さが異なる2種類の放熱器で構成され、複数個の2種類の放熱器が、容器の側面に上部ヘッダーの高さを揃えて交互に配置され、下部ヘッダーに対向する近傍の筐体の壁面に吸気口が設けられ、上部ヘッダーに対向する近傍の壁面に排気口が設けられたものである。   In addition, the radiator is connected to the upper part of the side of the container and protrudes in the horizontal direction. The lower header is connected to the lower part of the side of the container and protrudes in the horizontal direction. A plurality of radiating fins that communicate with each other to form a flow path for the cooling medium, and the radiating fins have different lengths. The upper headers are alternately arranged on the side with the same height, and the inlet is provided on the wall of the housing near the lower header, and the exhaust is provided on the wall near the upper header. is there.

この発明のキュービクルの放熱構造によれば、電気機器の容器の側面下部に連通して設けた放熱器の下部ヘッダーを、水平方向に突出させ途中から上方に傾斜するように屈曲させて形成し、下部ヘッダーに対向する近傍の筐体の壁面に吸気口を設けたので、放熱器の下部側に、筐体の壁面に近づくにつれて広がるような空間が形成されるため、筐体の外部から吸気口を通じて取り入れた外気が、壁面から見て手前側から奥方向へ並んでいる放熱フィンの隙間に効率よく流入し、放熱器の冷却効率を向上させることができる。従って、筐体の壁面と放熱器の隙間が狭い場合でも、放熱効果の優れたキュービクルを提供することができる。   According to the cubicle heat dissipation structure of the present invention, the lower header of the radiator provided in communication with the lower part of the side surface of the container of the electrical equipment is formed by bending in a horizontal direction so as to incline upward from the middle, Since the air inlet is provided on the wall of the housing near the lower header, a space is formed on the lower side of the radiator that expands toward the wall of the housing. The outside air taken in through the air efficiently flows into the gaps between the radiating fins lined up from the near side when viewed from the wall surface, and the cooling efficiency of the radiator can be improved. Therefore, even when the gap between the wall surface of the housing and the radiator is narrow, it is possible to provide a cubicle having an excellent heat dissipation effect.

また、放熱器を、放熱フィンの長さが異なる2種類の放熱器で構成し、複数個の2種類の放熱器を、容器の側面に上部ヘッダーの高さを揃えて交互に配置し、下部ヘッダーに対向する近傍の筐体の壁面に吸気口を設けたので、吸気口から流入した外気は、放熱器の長さの差分で形成される下方の空間を経由して上方と両側の放熱器の放熱フィンの隙間に効率よく流入するため、放熱器の冷却効率向上させることができ、放熱効果の優れたキュービクルを提供できる。   In addition, the radiator is composed of two types of radiators with different radiating fin lengths, and a plurality of two types of radiators are arranged alternately with the height of the upper header aligned on the side of the container, Since the air inlet is provided on the wall of the housing near the header, the outside air that flows in from the air inlet passes through the lower space formed by the difference in the length of the radiator, and the radiator on the upper and both sides Therefore, the cooling efficiency of the radiator can be improved, and a cubicle having an excellent heat radiation effect can be provided.

実施の形態1.
図1はこの発明の実施の形態1によるキュービクルの冷却構造を示す側面断面図、図2は図1中に一点鎖線IIで示す放熱器の部分拡大断面図、図3は図1に太矢印IIIで示す方向から見た放熱器の正面図、また図4は図3中の矢印IV−IVで示す方向から見た放熱フィン1個のみの拡大断面図である。
Embodiment 1 FIG.
1 is a side sectional view showing a cooling structure of a cubicle according to Embodiment 1 of the present invention, FIG. 2 is a partially enlarged sectional view of a radiator indicated by a chain line II in FIG. 1, and FIG. 3 is a thick arrow III in FIG. FIG. 4 is an enlarged sectional view of only one radiating fin viewed from the direction indicated by the arrow IV-IV in FIG.

先ず、キュービクル全体の概要を説明する。キュービクルは、受配電設備等が筐体内にコンパクトに一括収容されたものであり、基本的に筐体と内部に収容された電気機器とで構成されている。本実施の形態では、電気機器として特に発熱量の多い変圧器を例に説明する。   First, an overview of the entire cubicle will be described. A cubicle is a package in which power distribution facilities and the like are housed compactly in a housing, and basically includes a housing and electrical equipment housed in the housing. In the present embodiment, a transformer having a particularly large calorific value will be described as an example of an electric device.

図1のように、キュービクルを構成する筐体1内に電気機器として変圧器2が収容されている。変圧器2は、鉄心,高低圧コイル及び配線部品等からなり電気機器の本体を構成する本体機器3と、それらを収容する容器4と、容器4内に封入された冷却媒体5を循環させ、本体機器3の発熱を放熱させる放熱器6とを備えている。放熱器6の詳細は後述する。冷却媒体5としては、変圧器の場合は発熱量が多いので、通常、絶縁油が用いられる。絶縁油は冷却媒体であると同時に鉄心,コイル等の本体機器3の相互間,又はそれらと容器4の間の絶縁の役目も担っている。   As shown in FIG. 1, a transformer 2 is accommodated as an electrical device in a housing 1 constituting a cubicle. The transformer 2 circulates a main body device 3 comprising an iron core, high and low voltage coils, wiring parts, and the like, constituting a main body of an electric device, a container 4 for housing them, and a cooling medium 5 sealed in the container 4, And a radiator 6 that dissipates heat generated by the main device 3. Details of the radiator 6 will be described later. As the cooling medium 5, in the case of a transformer, the amount of heat generated is large, and therefore insulating oil is usually used. Insulating oil is a cooling medium, and also plays a role of insulation between main equipments 3 such as iron cores and coils, or between them and the container 4.

なお、内蔵したコイルに電力を授受するために、容器4にはブッシング等が設けられているが、本発明の主要部ではないので、図示及び説明は省略する。
また、筐体1内には、変圧器2以外に計器類や他の機器類も収容されているが、これらも本発明の主要部ではないので図示及び説明は省略する。
In order to transmit and receive electric power to the built-in coil, the container 4 is provided with a bushing or the like, but since it is not a main part of the present invention, illustration and description are omitted.
In addition to the transformer 2, instruments and other devices are also housed in the housing 1, but these are not the main part of the present invention, so illustration and description are omitted.

キュービクルは、設置面積の縮小化のために、できるだけコンパクトであることが望ましい。電気機器として変圧器が収容されたキュービクルの場合では、放熱器を備えた変圧器が大きなスペースを占めるため、特に、コンパクト化の配慮が必要となる。また、変圧器は発熱量が多いので効率よく放熱を行う配慮も必要である。
放熱器6からの放熱を筐体1の外部に放出する必要上、通常、放熱器6は、図に示すように、容器4の一つ側面に集約して設けられている。筐体1をコンパクトにするために、変圧器2を筐体1内に配置するに当たっては、放熱器6の外面部を筐体1の壁面1aに対向させて、壁面1aの近傍に位置するように接近させて配置する。結果的に、放熱器6と壁面1aの隙間は狭く抑えられることになる。
The cubicle is desirably as compact as possible in order to reduce the installation area. In the case of a cubicle in which a transformer is accommodated as an electrical device, a transformer with a radiator occupies a large space. In addition, since the transformer generates a large amount of heat, consideration must be given to efficient heat dissipation.
Since it is necessary to release the heat radiation from the radiator 6 to the outside of the housing 1, the radiator 6 is usually provided on one side surface of the container 4 as shown in the figure. In order to make the casing 1 compact, the transformer 2 is arranged in the casing 1 so that the outer surface portion of the radiator 6 faces the wall surface 1a of the casing 1 and is positioned in the vicinity of the wall surface 1a. Place close to. As a result, the gap between the radiator 6 and the wall surface 1a is suppressed to be narrow.

次に、放熱器6の構造について説明する。
容器4の側面上部には、一端が容器4に連結され他端が水平方向に突出する上部ヘッダー7が設けられている。容器4の側面下部には、一端が容器4に連結され他端が水平方向に突出し途中から上方に傾斜するように屈曲した下部ヘッダー8が設けられている。そして、両ヘッダー7,8間を垂直方向に連通させ冷却媒体5の流路を形成する放熱フィン9が、両ヘッダー7,8の長手方向にほぼ等間隔で複数個、溶接等で固着されている。すなわち、放熱器6は上下のヘッダー7,8と放熱フィン9とで構成されている。
図2は、図1のII部分、すなわち、上部ヘッダー7と放熱フィン9の接合部の拡大断面図であり、図のように、冷却媒体5である絶縁油が上部ヘッダー7から各放熱フィン9の流路9bに流入するようになっている。
Next, the structure of the radiator 6 will be described.
An upper header 7 having one end connected to the container 4 and the other end protruding in the horizontal direction is provided on the upper side of the container 4. A lower header 8 having one end connected to the container 4 and the other end protruding in the horizontal direction and bent so as to incline upward from the middle is provided at the lower side of the container 4. A plurality of heat dissipating fins 9 that communicate with each other in the vertical direction between the headers 7 and 8 to form a flow path of the cooling medium 5 are fixed to the longitudinal direction of the headers 7 and 8 at substantially equal intervals by welding or the like. Yes. That is, the radiator 6 is composed of upper and lower headers 7 and 8 and heat radiating fins 9.
FIG. 2 is an enlarged cross-sectional view of a portion II in FIG. 1, that is, a joint portion between the upper header 7 and the radiating fin 9, and as shown in the figure, the insulating oil as the cooling medium 5 is discharged from the upper header 7 to each radiating fin 9. It flows into the flow path 9b.

図3は、放熱器6を図1の矢印III方向から見た正面図である。下部ヘッダー8は、筐体1の壁面1aに近づくに従って上方に傾斜するように屈曲しているので、放熱フィン9の長さは、壁面1aに近い側が一番短く、図3で紙面に垂直方向の奥行き方向に向かうに従って順次長さが長くなっている。この放熱器6が、放熱フィン9の幅面を壁面1aと並行に向けて、壁面1aと並行方向に複数個並んだ形となっている。
図3の矢印IV−IVから見た放熱フィン9の断面(1個分のみ示す)は、図4に示すようになっている。すなわち、2枚の薄鋼板9aの周囲と幅方向の数箇所(図では2箇所)をシーム溶接し、溶接していない部分を膨らませて冷却媒体5の流路9bとしている。なお、この放熱フィン9の構造は一例であり、この形状に限定するものではない。
FIG. 3 is a front view of the radiator 6 as seen from the direction of arrow III in FIG. Since the lower header 8 is bent so as to incline upward as it approaches the wall surface 1a of the housing 1, the length of the radiating fin 9 is shortest on the side close to the wall surface 1a, and is perpendicular to the paper surface in FIG. The length gradually increases in the depth direction. This heat radiator 6 has a shape in which a plurality of heat radiating fins 9 are arranged in parallel to the wall surface 1a with the width surface of the heat radiating fin 9 facing the wall surface 1a.
The cross section (only one piece is shown) of the radiation fin 9 seen from the arrow IV-IV in FIG. 3 is as shown in FIG. That is, the periphery of the two thin steel plates 9a and several places in the width direction (two places in the figure) are seam welded, and the unwelded part is expanded to form the flow path 9b of the cooling medium 5. In addition, the structure of this radiation fin 9 is an example, and is not limited to this shape.

次に、図1に戻り筐体1の通風口について説明する。放熱器6の下部ヘッダー8に対向する近傍の筐体1の壁面1aには、外気を筐体1内に取り入れるための吸気口が設けられている。図では、側面に吸気口10aを、下面に吸気口10bを設けたものを示しているが、いずれか一方のみでも良い。側面部に設ける吸気口10aの位置は、下部ヘッダー8の先端部より下方側にあるのが望ましい。
また、上部ヘッダー7に対向する近傍の壁面1aには、熱せられた筐体1内の空気を排出するための排気口11が設けられている。効率よい流路を形成するためには、排気口11の位置は、上部ヘッダー7より少し上方側にある方が望ましい。
排気口11の内側には、排気を促進させるためのファン12が設けられている。
Next, returning to FIG. 1, the ventilation port of the housing 1 will be described. An air inlet for taking outside air into the housing 1 is provided on the wall surface 1 a of the housing 1 in the vicinity of the radiator 6 facing the lower header 8. In the figure, the air inlet 10a is provided on the side surface and the air inlet 10b is provided on the lower surface, but only one of them may be provided. It is desirable that the position of the air inlet 10 a provided in the side surface portion is on the lower side than the tip portion of the lower header 8.
In addition, an exhaust port 11 for exhausting the heated air in the housing 1 is provided on the wall surface 1 a in the vicinity facing the upper header 7. In order to form an efficient flow path, it is desirable that the position of the exhaust port 11 be slightly above the upper header 7.
A fan 12 for promoting exhaust is provided inside the exhaust port 11.

また、筐体1の内部で、変圧器2の容器4側を収容する部分の空間と、放熱器6側を収容する部分の空間とを、隔壁13によって区画し、一方を機器室14,他方を熱交換室15としている。この場合、図のように、容器4の一面を隔壁13の一部として兼用しても良い。   Further, inside the housing 1, a space of a portion that accommodates the container 4 side of the transformer 2 and a space of a portion that accommodates the radiator 6 side are partitioned by a partition wall 13, one of which is an equipment room 14 and the other. Is the heat exchange chamber 15. In this case, one surface of the container 4 may be used as a part of the partition wall 13 as shown in the figure.

次に、動作について説明する。
本体機器3、すなわち変圧器の鉄心やコイルは、通電により温度上昇する。これにより、容器4内に封入された冷却媒体5(絶縁油)も温度上昇し、高温となった冷却媒体5は上部へ移動し、放熱器6の上部ヘッダー7から放熱フィン9に流入し、放熱フィン9で外部の空気と熱交換され冷却されて下方に流れる。そして、下部ヘッダー8を経由して容器4内に戻るような循環を繰り返す。
一方、熱交換室15側では、ファン12の作動により、吸気口10a,10bから外気が熱交換室15内へ流入し、排気口11から筐体1外へ排出されるような空気の流路が形成される。流入した冷たい(外気温の)空気が、上記の流路を通過する途中で放熱フィン9の表面と接触して熱交換し、冷却媒体5(絶縁油)の温度上昇を規定値以下になるようにしている。
Next, the operation will be described.
The temperature of the main device 3, that is, the iron core and coil of the transformer rises due to energization. Thereby, the temperature of the cooling medium 5 (insulating oil) enclosed in the container 4 also rises, and the high-temperature cooling medium 5 moves to the upper part and flows into the radiating fins 9 from the upper header 7 of the radiator 6. Heat is exchanged with the outside air by the heat radiating fins 9, is cooled, and flows downward. Then, circulation is repeated so as to return to the inside of the container 4 via the lower header 8.
On the other hand, on the heat exchange chamber 15 side, an air flow path in which outside air flows into the heat exchange chamber 15 from the intake ports 10a and 10b and is discharged from the exhaust port 11 to the outside of the housing 1 by the operation of the fan 12. Is formed. The inflowing cold (outside temperature) air contacts the surface of the heat radiating fins 9 in the course of passing through the flow path, and exchanges heat, so that the temperature rise of the cooling medium 5 (insulating oil) becomes a specified value or less. I have to.

ここで、本実施の形態の特徴とするところは、下部ヘッダー8を、先端側が壁面1aへ近づくにつれて上方に傾斜するように屈曲させて設け、これに合わせて放熱フィン9の長さを壁面1aへ近づくにつれて短くして放熱器6を構成した点である。こうすることで、放熱器6の下部側に、壁面1aに近づくにつれて広がるような空間16が形成される。下部ヘッダー8に対向する近傍の筐体1の壁面1aに吸気口10a,10bを設けているので、吸気口10a,10bは、この空間16に面することになるため、取り入れた外気は、壁面1aから見て手前側から奥方向へ並んでいる放熱フィン9の隙間に効率よく流入し、放熱器6の冷却効率を向上させることができる。   Here, the feature of the present embodiment is that the lower header 8 is provided to be bent so that the tip side is inclined upward as it approaches the wall surface 1a, and the length of the radiation fins 9 is adjusted to the wall surface 1a. It is the point which comprised the heat radiator 6 by shortening as it approached. By doing so, a space 16 is formed on the lower side of the radiator 6 so as to expand toward the wall surface 1a. Since the intake ports 10a and 10b are provided on the wall surface 1a of the housing 1 in the vicinity facing the lower header 8, the intake ports 10a and 10b face the space 16, so the outside air taken in The cooling efficiency of the radiator 6 can be improved by efficiently flowing into the gaps between the radiating fins 9 arranged in the rear direction from the near side as viewed from 1a.

この効果は変圧器2の容量が増えるほど大きい。なぜなら、変圧器2の容量が大きいほど全体の外径形状が大きくなり発熱量も大きくなる。しかしながら、キュービクルの筐体1は設置面積等の制約があるため、変圧器2の大きさに合わせて大きくすることはできな。そこで、放熱器6と筐体1の壁面1aとの離隔寸法は必要最小限に切り詰められることになるので、放熱器6の下部側に空間16がない場合は、吸気口からの外気が放熱フィン9の隙間に回り込みにくくなり、冷却効率が大きく低下する。   This effect increases as the capacity of the transformer 2 increases. This is because as the capacity of the transformer 2 increases, the overall outer diameter shape increases and the amount of heat generation also increases. However, the cubicle housing 1 cannot be enlarged according to the size of the transformer 2 because of the limitation of the installation area and the like. Therefore, the distance between the radiator 6 and the wall surface 1a of the housing 1 is cut to the minimum necessary. Therefore, when there is no space 16 on the lower side of the radiator 6, the outside air from the intake port is radiated by the radiation fins. It becomes difficult to go around the gap 9 and the cooling efficiency is greatly reduced.

なお、放熱フィン9の長さを壁面1aへ近づくにつれて短くしたことにより、(長い部分に合わせて)同じ長さにした場合に比較して放熱面積は減少するが、通常、放熱器において、冷却に寄与する割合は、温度上昇の差が大きいほど大きいので、冷却に寄与する割合の少ない放熱フィン下部前方側の一部を短くしたことによる冷却効率の低下より、本実施の形態の構造を採用することによる冷却効率向上の効果の方が大きくなる。   Although the heat radiation fin 9 is shortened as it approaches the wall surface 1a, the heat radiation area is reduced as compared with the case where the heat radiation fin 9 is made the same length (according to the long part). As the difference in temperature rise is larger, the ratio that contributes to cooling is larger. Therefore, the structure of this embodiment is adopted because the cooling efficiency is reduced by shortening the part on the front side of the lower part of the radiating fin that contributes less to cooling. The effect of improving the cooling efficiency by doing is greater.

上記までの説明では、排気口11の内側にファン12を設けたものについて説明したが、ファン12は必ずしも必要でない。電気機器の発熱量が小さい場合等ではファン12を省いても良い。
また、隔壁13も必ずしも必要ではない。但し、隔壁13がある方が、熱交換室15内に取り入れた外気を効率よく循環させることができる。また、隔壁13設けておけば、通電部分が多く露出している機器室14側と区画されているので、熱交換室15の保守点検の際に安全が確保できる。
また、筐体1の内部に収容する電気機器2として、変圧器の場合について説明したが、変成器,電圧調整器等の他の静止誘導機器でも同等であり、更に、静止誘導機器に限定することなく、発熱量が多く放熱器を備えた電気機器一般にも適用できる。
更に、冷却媒体は絶縁油としたが、例えば、絶縁性ガス等の気体でも良い。その場合は、本体機器側の流路の一部に冷却媒体を強制循環させるための循環手段を具備するのが望ましい。
In the above description, the fan 12 is provided inside the exhaust port 11. However, the fan 12 is not necessarily required. The fan 12 may be omitted when the calorific value of the electrical device is small.
Further, the partition wall 13 is not necessarily required. However, when the partition wall 13 is present, the outside air taken into the heat exchange chamber 15 can be circulated efficiently. Further, if the partition wall 13 is provided, it is partitioned from the equipment room 14 side where many energized portions are exposed, so safety can be ensured during maintenance inspection of the heat exchange chamber 15.
Moreover, although the case of the transformer was demonstrated as the electric equipment 2 accommodated in the inside of the housing | casing 1, it is equivalent also in other static induction apparatuses, such as a transformer and a voltage regulator, Furthermore, it restricts to a static induction apparatus. The present invention can be applied to general electric equipment having a large amount of heat generation and having a radiator.
Furthermore, although the cooling medium is an insulating oil, a gas such as an insulating gas may be used. In that case, it is desirable to provide a circulation means for forcibly circulating the cooling medium in a part of the flow path on the main device side.

以上のように、本実施の形態によれば、電気機器の放熱器は、容器の側面上部に連通して設けられ水平方向に突出する上部ヘッダーと、容器の側面下部に連通して設けられ水平方向に突出し途中から上方に傾斜するように屈曲した下部ヘッダーと、両ヘッダー間を垂直方向に連通させ冷却媒体の流路を形成する複数の放熱フィンとを備え、下部ヘッダーに対向する近傍の筐体の壁面に吸気口が設けられ、上部ヘッダーに対向する近傍の壁面に排気口が設けられているので、放熱器の下部側に、筐体の壁面に近づくにつれて広がるような空間が形成されるため、筐体の外部から吸気口を通じて取り入れた外気が、壁面から見て手前側から奥方向へ並んでいる放熱フィンの隙間に効率よく流入して放熱器の冷却効率を向上させることができる。従って、筐体の壁面と放熱器の隙間が狭い場合でも、放熱効果の優れたキュービクルを提供できる。   As described above, according to the present embodiment, the radiator of the electric device is provided in communication with the upper part of the side surface of the container and protrudes in the horizontal direction, and is provided in communication with the lower part of the side surface of the container. And a lower header that is bent so as to incline upward from the middle, and a plurality of radiating fins that communicate with each other in the vertical direction to form a cooling medium flow path. Since the intake port is provided on the wall surface of the body and the exhaust port is provided on the wall surface in the vicinity of the upper header, a space is formed on the lower side of the radiator so as to expand toward the wall surface of the housing. Therefore, the outside air taken in from the outside of the housing through the intake port can efficiently flow into the gaps between the radiating fins lined up from the near side as viewed from the wall surface, and the cooling efficiency of the radiator can be improved. Therefore, even when the gap between the wall surface of the housing and the radiator is narrow, it is possible to provide a cubicle having an excellent heat dissipation effect.

また、収容する電気機器を静止誘導機器とした場合は、他の機器に比べ発熱量が多く容積も大きいため、放熱器と筐体の壁面とがより接近し隙間が狭くなるので、放熱器の下部側に上記で説明したような空間を形成し、吸気口近傍に外気を取り入れる広いスペースを確保したことにより、冷却効率が低下するのを抑制する効果が大きい。   In addition, when the electrical equipment to be accommodated is a static induction device, it generates more heat and has a larger volume than other devices, so the heat sink and the wall surface of the housing are closer and the gap is narrower. By forming a space as described above on the lower side and securing a wide space for taking in outside air in the vicinity of the intake port, the effect of suppressing a decrease in cooling efficiency is great.

また、冷却媒体は絶縁油としたので、発熱量の大きい電気機器の場合でも、効率よく冷却することができる。   In addition, since the cooling medium is an insulating oil, it can be efficiently cooled even in the case of an electric device having a large calorific value.

また、筐体内を、放熱器を収容する空間と電気機器の容器を収容する空間とに隔壁により区画したので、放熱器を収容する熱交換室側に取り入れた外気を、効率よく放熱器外面に循環させることができる。また、熱交換室内には通電部分が露出しないので、熱交換室の保守点検の際の安全性を確保できる。   Moreover, since the inside of the housing is partitioned by a partition into a space for accommodating the radiator and a space for accommodating the container of the electric device, the outside air taken into the heat exchange chamber side that accommodates the radiator is efficiently transferred to the outer surface of the radiator. It can be circulated. In addition, since the energized portion is not exposed in the heat exchange chamber, safety during maintenance and inspection of the heat exchange chamber can be ensured.

また、吸気口から吸気した外気を強制的に排気するように排気口にファンを設けたので、外気の取り入れと排気がより促進されて、熱交換効率を高めることができる。   Further, since the fan is provided at the exhaust port so as to forcibly exhaust the outside air sucked from the intake port, the intake and exhaust of the outside air are further promoted, and the heat exchange efficiency can be enhanced.

実施の形態2.
図5はこの発明の実施の形態2によるキュービクルの冷却構造を示す側面断面図であり、図6は図5の太矢印VIで示す方向から見た放熱器の正面図である。実施の形態1の図1と同等部分は同一符号で示し説明は省略する。また、放熱器の放熱フィンの構造は実施の形態1の図2及び図4と同等なので説明は省略する。以下、相違点を中心に説明する。
Embodiment 2. FIG.
5 is a side sectional view showing a cubicle cooling structure according to Embodiment 2 of the present invention, and FIG. 6 is a front view of the radiator viewed from the direction indicated by thick arrow VI in FIG. Parts equivalent to those in FIG. 1 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. Further, since the structure of the radiating fin of the radiator is the same as that of FIG. 2 and FIG. Hereinafter, the difference will be mainly described.

図5及び図6に示すように、実施の形態1との主な相違点は、放熱器の形状である。放熱器は、全体の長さが異なる2種類の放熱器17,18で構成されている。それぞれの放熱器は、ヘッダーの形状は上部と下部で同じであり、上部ヘッダー19と下部ヘッダー20は共に一端が容器4の側面に連結され他端の先端側が水平方向に突出した形状となっている。そして、両ヘッダー19,20間を同じ長さの複数の放熱フィン21又は22によって連結している。
この2種類の放熱器17,18が、図5で容器4の奥行き方向、すなわち図面に垂直方向に、上部ヘッダー19の高さを揃えて交互に配置されている。
太矢印VIの方向から見た放熱器17,18の正面図は図6のようになっている。なお、図6では放熱器が5個の場合を示しているが、これに限定するものではない。
As shown in FIGS. 5 and 6, the main difference from the first embodiment is the shape of the radiator. The radiator is composed of two types of radiators 17 and 18 having different overall lengths. Each radiator has the same header shape at the top and bottom, and both the upper header 19 and the lower header 20 have one end connected to the side surface of the container 4 and the other end protruding in the horizontal direction. Yes. The headers 19 and 20 are connected by a plurality of radiating fins 21 or 22 having the same length.
These two types of radiators 17 and 18 are alternately arranged in the depth direction of the container 4 in FIG. 5, that is, in the direction perpendicular to the drawing, with the height of the upper header 19 aligned.
The front view of the heat radiators 17 and 18 seen from the direction of the thick arrow VI is as shown in FIG. Although FIG. 6 shows a case where there are five radiators, the present invention is not limited to this.

次に、動作について説明する。
通電により電気器本体3(鉄心及びコイル等)は温度上昇し、容器4内に封入された冷却媒体5(絶縁油)も温度上昇し、高温となった冷却媒体5は上方に移動し、放熱器17,18の上部ヘッダー19から放熱フィン21及び22に流入し、外部の空気と熱交換されて冷却され、下部ヘッダー20を経由して容器4内に戻るような循環を繰り返す。
一方、熱交換室15側では、ファン12の作動により、吸気口10a,10bから外気が筐体1の熱交換室15内へ流入し、排気口11から筐体1外へ排出されるような空気の流路が形成され、空気の流通過程で放熱フィン21,22の表面と接触して熱交換されて、冷却媒体5の温度上昇を規定値以下に抑えている。
なお、側面に設ける吸気口10aの位置は、短い方の放熱器18の下部ヘッダー20より下部側とするのが望ましい。
Next, the operation will be described.
Due to energization, the temperature of the electric body 3 (iron core, coil, etc.) rises, the temperature of the cooling medium 5 (insulating oil) enclosed in the container 4 also rises, and the high temperature of the cooling medium 5 moves upward to dissipate heat. The circulation is repeated from the upper header 19 of the chambers 17 and 18 to the heat radiation fins 21 and 22, cooled by being exchanged with external air and returned to the container 4 via the lower header 20.
On the other hand, on the heat exchange chamber 15 side, the operation of the fan 12 causes outside air to flow into the heat exchange chamber 15 of the housing 1 from the intake ports 10a and 10b and to be discharged out of the housing 1 from the exhaust port 11. An air flow path is formed, and heat exchange is performed in contact with the surfaces of the radiation fins 21 and 22 in the air circulation process, thereby suppressing the temperature rise of the cooling medium 5 to a specified value or less.
It should be noted that the position of the air inlet 10a provided on the side surface is desirably lower than the lower header 20 of the shorter radiator 18.

ここで、長さの異なる放熱器17,18を交互に配置したことにより、図6に矢印で示すように、吸気口10aからへ流入した外気は、放熱器17,18の長さの差分により、放熱器下部に形成された空間23を経由して、上方と両サイドの放熱器の放熱フィン21,22のそれぞれの隙間に効率よく流入させることができる。このため、放熱器17,18の冷却効率が向上する。
なお、この場合も、実施の形態1で説明したと同様に、放熱器が短くなった分だけ放熱面積は減少するが、空間23部からの回り込みによる冷却効率向上の方が勝っているので、全体として冷却効率の向上を期待できる。
Here, by arranging the radiators 17 and 18 having different lengths alternately, as shown by arrows in FIG. 6, the outside air flowing into the intake port 10 a is caused by the difference in the lengths of the radiators 17 and 18. Through the space 23 formed in the lower part of the radiator, it is possible to efficiently flow into the gaps between the radiator fins 21 and 22 of the radiators on the upper side and the both sides. For this reason, the cooling efficiency of the heat radiators 17 and 18 improves.
In this case as well, as described in the first embodiment, although the heat radiation area is reduced by the amount of the heatsink, the cooling efficiency improvement by the wraparound from the space 23 part is better. Overall improvement in cooling efficiency can be expected.

以上のように、本実施の形態によれば、電気機器の放熱器は、容器の側面上部に連通して設けられ水平方向に突出する上部ヘッダーと、容器の側面下部に連通して設けられ水平方向に突出する下部ヘッダーと、両ヘッダー間を垂直方向に連通させ冷却媒体の流路を形成する複数の放熱フィンとを備え、且つ、放熱フィンの長さが異なる2種類の放熱器で構成され、複数個の2種類の放熱器が、容器の側面に上部ヘッダーの高さを揃えて交互に配置され、下部ヘッダーに対向する近傍の筐体の壁面に吸気口が設けられ、上部ヘッダーに対向する近傍の壁面に排気口が設けられているので、吸気口からへ流入した外気は、放熱器の長さの差分で形成される下方の空間を経由して上方と両サイドの放熱器の放熱フィンの隙間に効率よく流入させることができるため、放熱器の冷却効率向上させることができる。従って、筐体の壁面と放熱器の隙間が狭い場合でも、放熱効果の優れたキュービクルを提供できる。   As described above, according to the present embodiment, the radiator of the electrical device is provided in communication with the upper part of the side surface of the container and protrudes in the horizontal direction, and is provided in communication with the lower part of the side surface of the container. It is composed of two types of radiators with a lower header projecting in the direction and a plurality of heat dissipating fins that communicate with each other in the vertical direction to form a flow path for the cooling medium, and the lengths of the heat dissipating fins are different. A plurality of two types of radiators are arranged alternately with the height of the upper header aligned on the side of the container, and an air inlet is provided on the wall surface of the housing near the lower header, facing the upper header Since the exhaust wall is provided in the wall near the outside, the outside air that has flowed in from the intake port passes through the lower space formed by the difference in the length of the radiator and dissipates heat from the upper and both radiators. Efficient flow into the fin gap Since it is, it is possible to improve the cooling efficiency of the radiator. Therefore, even when the gap between the wall surface of the housing and the radiator is narrow, it is possible to provide a cubicle having an excellent heat dissipation effect.

この発明の実施の形態1によるキュービクルの冷却構造を示す側面断面図である。It is side surface sectional drawing which shows the cooling structure of the cubicle by Embodiment 1 of this invention. 図1のII部の拡大断面図である。It is an expanded sectional view of the II section of FIG. 図1の矢印III方向から見た放熱器の正面図である。FIG. 3 is a front view of the radiator viewed from the direction of arrow III in FIG. 1. 図3のIV−IV方向から見た放熱フィンの断面図である。It is sectional drawing of the radiation fin seen from the IV-IV direction of FIG. この発明の実施の形態2によるキュービクルの冷却構造を示す側面断面図である。It is side surface sectional drawing which shows the cooling structure of the cubicle by Embodiment 2 of this invention. 図5の矢印VI方向から見た放熱器の正面図である。FIG. 6 is a front view of the radiator viewed from the direction of arrow VI in FIG. 5. 従来のキュービクルの熱交換器構造を示す側面断面図である。It is side surface sectional drawing which shows the heat exchanger structure of the conventional cubicle.

符号の説明Explanation of symbols

1 筐体 1a 壁面
2 変圧器(電気機器) 3 本体機器
4 容器 5 冷却媒体
6,17,18 放熱器 7,19 上部ヘッダー
8,20 下部ヘッダー 9,21,22 放熱フィン
9a 薄鋼板 9b 流路
10a,10b 吸気口 11 排気口
12 ファン 13 隔壁
14 機器室 15 熱交換室
16,23 空間。
DESCRIPTION OF SYMBOLS 1 Housing | casing 1a Wall surface 2 Transformer (electrical equipment) 3 Main body equipment 4 Container 5 Cooling medium 6,17,18 Radiator 7,19 Upper header 8,20 Lower header 9,21,22 Radiation fin 9a Thin steel plate 9b Flow path 10a, 10b Intake port 11 Exhaust port 12 Fan 13 Bulkhead 14 Equipment room 15 Heat exchange room 16, 23 Space.

Claims (6)

本体機器と冷却媒体とを容器に収容し、前記冷却媒体を循環させて冷却させる放熱器を前記容器の外部に備えてなる電気機器が、キュービクルを構成する筐体の内部に収容され、前記放熱器が前記筐体の壁面に対向するように配置されて、前記電気機器からの発熱を前記筐体の外部に放散するように構成されたキュービクルの放熱構造において、
前記放熱器は、前記容器の側面上部に連通して設けられ水平方向に突出する上部ヘッダーと、前記容器の側面下部に連通して設けられ水平方向に突出し途中から上方に傾斜するように屈曲した下部ヘッダーと、前記両ヘッダー間を垂直方向に連通させ前記冷却媒体の流路を形成する複数の放熱フィンとを備え、前記下部ヘッダーに対向する近傍の前記筐体の前記壁面に吸気口が設けられ、前記上部ヘッダーに対向する近傍の前記壁面に排気口が設けられていることを特徴とするキュービクルの放熱構造。
An electrical device that houses a main body device and a cooling medium in a container and includes a radiator that circulates and cools the cooling medium outside the container is housed inside a casing that forms a cubicle, and the heat dissipation In the heat dissipation structure of the cubicle configured to dissipate heat generated from the electrical device to the outside of the housing, the device is disposed so as to face the wall surface of the housing,
The radiator is provided to communicate with the upper part of the side surface of the container and protrudes in the horizontal direction, and is provided to communicate with the lower part of the side surface of the container and protrudes in the horizontal direction and is bent so as to incline upward from the middle. A lower header and a plurality of heat dissipating fins that vertically communicate between the headers to form a flow path for the cooling medium, and an air inlet is provided in the wall surface of the casing in the vicinity of the lower header A cubicle heat dissipation structure, wherein an exhaust port is provided in the wall surface in the vicinity of the upper header.
本体機器と冷却媒体とを容器に収容し、前記冷却媒体を循環させて冷却させる放熱器を前記容器の外部に備えてなる電気機器が、キュービクルを構成する筐体の内部に収容され、前記放熱器が前記筐体の壁面に対向するように配置されて、前記電気機器からの発熱を前記筐体の外部に放散するように構成されたキュービクルの放熱構造において、
前記放熱器は、前記容器の側面上部に連通して設けられ水平方向に突出する上部ヘッダーと、前記容器の側面下部に連通して設けられ水平方向に突出する下部ヘッダーと、前記両ヘッダー間を垂直方向に連通させ前記冷却媒体の流路を形成する複数の放熱フィンとを備え、且つ、前記放熱フィンの長さが異なる2種類の放熱器で構成され、
複数個の前記2種類の放熱器が、前記容器の側面に前記上部ヘッダーの高さを揃えて交互に配置され、前記下部ヘッダーに対向する近傍の前記筐体の前記壁面に吸気口が設けられ、前記上部ヘッダーに対向する近傍の前記壁面に排気口が設けられていることを特徴とするキュービクルの放熱構造。
An electrical device that houses a main body device and a cooling medium in a container and includes a radiator that circulates and cools the cooling medium outside the container is housed inside a casing that forms a cubicle, and the heat dissipation In the heat dissipation structure of the cubicle configured to dissipate heat generated from the electrical device to the outside of the housing, the device is disposed so as to face the wall surface of the housing,
The radiator is provided in communication with the upper part of the side surface of the container and protrudes in the horizontal direction. The lower header is provided in communication with the lower part of the side surface of the container and protrudes in the horizontal direction. A plurality of heat dissipating fins communicating with each other in the vertical direction to form a flow path of the cooling medium, and comprising two types of heat dissipators having different lengths of the heat dissipating fins,
A plurality of the two types of radiators are alternately arranged on the side surface of the container so that the height of the upper header is aligned, and an air inlet is provided on the wall surface of the casing in the vicinity facing the lower header. A heat dissipation structure for a cubicle, characterized in that an exhaust port is provided in the wall surface in the vicinity facing the upper header.
請求項1又は請求項2記載のキュービクルの放熱構造において、前記電気機器は静止誘導機器であることを特徴とするキュービクルの放熱構造。   The cubicle heat dissipation structure according to claim 1 or 2, wherein the electrical device is a stationary induction device. 請求項1〜請求項3のいずれか1項に記載のキュービクルの放熱構造において、前記冷却媒体は絶縁油であることを特徴とするキュービクルの放熱構造。   The cubicle heat dissipation structure according to any one of claims 1 to 3, wherein the cooling medium is an insulating oil. 請求項1〜請求項4のいずれか1項に記載のキュービクルの放熱構造において、前記筐体内で、前記放熱器を収容する空間と前記電気機器の前記容器を収容する空間とが隔壁により区画されていることを特徴とするキュービクルの放熱構造。   The cubicle heat dissipation structure according to any one of claims 1 to 4, wherein a space for accommodating the radiator and a space for accommodating the container of the electric device are partitioned by a partition in the housing. A cubicle heat dissipation structure characterized by 請求項1〜請求項5のいずれか1項に記載のキュービクルの放熱構造において、前記吸気口から吸気した外気を強制的に排気するように前記排気口にファンが設けられていることを特徴とするキュービクルの放熱構造。   The cubicle heat dissipation structure according to any one of claims 1 to 5, wherein a fan is provided at the exhaust port so as to forcibly exhaust the outside air sucked from the intake port. Cubicle heat dissipation structure.
JP2007247482A 2007-09-25 2007-09-25 Cubicle heat-radiation structure Withdrawn JP2009081171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007247482A JP2009081171A (en) 2007-09-25 2007-09-25 Cubicle heat-radiation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007247482A JP2009081171A (en) 2007-09-25 2007-09-25 Cubicle heat-radiation structure

Publications (1)

Publication Number Publication Date
JP2009081171A true JP2009081171A (en) 2009-04-16

Family

ID=40655734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007247482A Withdrawn JP2009081171A (en) 2007-09-25 2007-09-25 Cubicle heat-radiation structure

Country Status (1)

Country Link
JP (1) JP2009081171A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178444A (en) * 2011-02-25 2012-09-13 Toyo Electric Mfg Co Ltd Forced wind-cooling heat sink
JP2012200086A (en) * 2011-03-22 2012-10-18 Daihen Corp Ground installation type transformer device
KR101217725B1 (en) * 2011-05-27 2013-01-02 대보전력기술 주식회사 cooling system of transformer
KR200465728Y1 (en) 2011-08-08 2013-03-08 김은희 Improved radiate heat efficiency, the transformer housing
KR20210056423A (en) * 2018-10-19 2021-05-18 에이비비 파워 그리즈 스위처랜드 아게 Radiator for transformer with improved cooling
CN113345692A (en) * 2021-06-23 2021-09-03 湖南鸿业变压器有限公司 Rectifier transformer with monitoring function
WO2023132047A1 (en) * 2022-01-07 2023-07-13 株式会社東芝 Stationary inductor unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178444A (en) * 2011-02-25 2012-09-13 Toyo Electric Mfg Co Ltd Forced wind-cooling heat sink
JP2012200086A (en) * 2011-03-22 2012-10-18 Daihen Corp Ground installation type transformer device
KR101217725B1 (en) * 2011-05-27 2013-01-02 대보전력기술 주식회사 cooling system of transformer
KR200465728Y1 (en) 2011-08-08 2013-03-08 김은희 Improved radiate heat efficiency, the transformer housing
KR20210056423A (en) * 2018-10-19 2021-05-18 에이비비 파워 그리즈 스위처랜드 아게 Radiator for transformer with improved cooling
CN112912975A (en) * 2018-10-19 2021-06-04 Abb电网瑞士股份公司 Heat sink for a transformer with improved cooling
KR102561872B1 (en) * 2018-10-19 2023-07-31 히타치 에너지 스위처랜드 아게 Radiators for transformers with improved cooling
CN113345692A (en) * 2021-06-23 2021-09-03 湖南鸿业变压器有限公司 Rectifier transformer with monitoring function
WO2023132047A1 (en) * 2022-01-07 2023-07-13 株式会社東芝 Stationary inductor unit

Similar Documents

Publication Publication Date Title
US7687945B2 (en) Method and system for cooling a motor or motor enclosure
JP2009081171A (en) Cubicle heat-radiation structure
JP6072985B1 (en) Electronics
US9832909B2 (en) Electronic equipment cooling device and power converter having electronic equipment cooling device
JP2007288061A (en) Electronic equipment
JPWO2014147963A1 (en) Cooling device and power conversion device provided with the same
TWI363408B (en)
JP6447149B2 (en) Heat exchanger, cooling unit, and electronic equipment
KR20150077085A (en) Radiating apparatus for transformer
JP2006287017A (en) Cooling jacket
CN112885798B (en) Integrated phase change heat transfer element liquid cooling heat radiation module for server
KR101538093B1 (en) Oil immersed transformer
US7278467B2 (en) Liquid-cooled heat radiator kit
JP4955986B2 (en) X-ray generator
JP2006261215A (en) Heat dissipation structure of electronic apparatus
CN213991458U (en) Liquid cooling heat abstractor and have this liquid cooling heat abstractor&#39;s liquid cooling system
KR101163422B1 (en) Oil immersed transformer
JP4192826B2 (en) Reactor with cooler
WO2019120312A1 (en) Heat dissipation structure for electric motor
KR100769739B1 (en) transformer
KR102109169B1 (en) Transformer with improved safety
KR101679340B1 (en) Oil immersed transformer
JP5999028B2 (en) Power converter
KR200418682Y1 (en) transformer
CN219536639U (en) Heat radiation structure, heat radiation air duct and power electronic equipment of power electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091221

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100617