JP5332093B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP5332093B2
JP5332093B2 JP2006246153A JP2006246153A JP5332093B2 JP 5332093 B2 JP5332093 B2 JP 5332093B2 JP 2006246153 A JP2006246153 A JP 2006246153A JP 2006246153 A JP2006246153 A JP 2006246153A JP 5332093 B2 JP5332093 B2 JP 5332093B2
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
state
expansion mechanism
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006246153A
Other languages
Japanese (ja)
Other versions
JP2008064437A (en
JP2008064437A5 (en
Inventor
伸一 笠原
利行 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006246153A priority Critical patent/JP5332093B2/en
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to EP07806192.6A priority patent/EP2068093B1/en
Priority to ES07806192.6T priority patent/ES2685813T3/en
Priority to PCT/JP2007/066715 priority patent/WO2008032568A1/en
Priority to CN2007800334000A priority patent/CN101512246B/en
Priority to US12/439,752 priority patent/US20100050674A1/en
Publication of JP2008064437A publication Critical patent/JP2008064437A/en
Publication of JP2008064437A5 publication Critical patent/JP2008064437A5/ja
Application granted granted Critical
Publication of JP5332093B2 publication Critical patent/JP5332093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/191Pressures near an expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2102Temperatures at the outlet of the gas cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、冷凍装置、特に冷凍サイクル中に冷媒が超臨界状態となる冷凍装置に関する。   The present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus in which a refrigerant enters a supercritical state during a refrigeration cycle.

従来、圧縮機、放熱器、第1膨張弁、受液器、第2膨張弁、および蒸発器を順次接続した冷媒回路を備える冷凍装置が公に知られている(例えば、特許文献1参照)。
特開平10−115470号公報(第4頁第5欄第12行−第5頁第7欄第39行、図3)
Conventionally, a refrigeration apparatus including a refrigerant circuit in which a compressor, a radiator, a first expansion valve, a liquid receiver, a second expansion valve, and an evaporator are sequentially connected is publicly known (see, for example, Patent Document 1). .
JP-A-10-115470 (page 4, column 5, line 12-page 5, column 7, line 39, FIG. 3)

このような冷凍装置の冷媒回路に冷媒として二酸化炭素などの超臨界冷媒を採用した場合において、圧縮機の冷媒吐出側から第1膨張弁の冷媒流入側へ流れる冷媒(以下、高圧側冷媒という)が運転開始時から亜臨界状態となったり、放熱器に流入する冷媒の温度が低い場合などに高圧側冷媒が超臨界状態から亜臨界状態に遷移したりすることがある。高圧側冷媒がこのように亜臨界状態になっている状況において放熱器から流出する冷媒の過冷却が不十分である場合、第1膨張弁から流出する冷媒が気液二相状態になってしまい、受液器の冷媒液面制御が困難になる。   When a supercritical refrigerant such as carbon dioxide is employed as the refrigerant in the refrigerant circuit of such a refrigeration apparatus, the refrigerant flows from the refrigerant discharge side of the compressor to the refrigerant inflow side of the first expansion valve (hereinafter referred to as a high-pressure side refrigerant). May become a subcritical state from the start of operation, or when the temperature of the refrigerant flowing into the radiator is low, the high-pressure side refrigerant may transition from the supercritical state to the subcritical state. In the situation where the high-pressure side refrigerant is in the subcritical state, when the supercooling of the refrigerant flowing out from the radiator is insufficient, the refrigerant flowing out from the first expansion valve becomes a gas-liquid two-phase state. Therefore, it is difficult to control the liquid level of the liquid receiver.

本発明の課題は、上記のような冷凍装置において高圧側冷媒が亜臨界状態になった場合であっても安定した受液器の冷媒液面制御を可能とすることにある。   An object of the present invention is to enable stable liquid level control of a liquid receiver even when the high-pressure side refrigerant is in a subcritical state in the refrigeration apparatus as described above.

第1発明に係る冷凍装置は、圧縮機構、放熱器、第1膨張機構、受液器、第2膨張機構、蒸発器、制御部、第1温度検知部及び第2温度検知部を備える。圧縮機構は、冷媒を圧縮する。放熱器は、圧縮機構の冷媒吐出側に接続される。第1膨張機構は、放熱器の出口側に接続される。受液器は、第1膨張機構の冷媒流出側に接続される。第2膨張機構は、受液器の出口側に接続される。蒸発器は、第2膨張機構の冷媒流出側に接続されると共に圧縮機構の冷媒吸入側に接続される。制御部は、圧縮機構の冷媒吐出側から第1膨張機構の冷媒流入側へ流れる冷媒(以下、高圧側冷媒という)の状態が超臨界状態から亜臨界状態に遷移した場合に第1膨張機構による減圧の度合いを最小にする。第1温度検知部は、放熱器の第1特定領域に設けられる。なお、ここにいう「第1特定領域」とは、高圧側冷媒が亜臨界状態へ遷移した場合に高圧側冷媒が気液二相状態となる領域である。第2温度検知部は、放熱器の第1特定領域に設けられる。そして、制御部は、高圧側冷媒が超臨界状態のとき、第1膨張機構から流出する冷媒を飽和状態になるように前記第1電動膨張弁および前記第2電動膨張弁を制御する第1受液器液面制御を行う。また、制御部は、第1温度検知部によって検知される温度と第2温度検知部によって検知される温度との差が所定の閾値以下となった場合に高圧側冷媒が亜臨界状態へ遷移したと判断し、第1膨張機構による減圧の度合いを最小にし、第1膨張機構から流出する冷媒を飽和状態になるようにする第2受液器液面制御を行う。 The refrigeration apparatus according to the first invention includes a compression mechanism, a radiator, a first expansion mechanism, a liquid receiver, a second expansion mechanism, an evaporator, a control unit, a first temperature detection unit, and a second temperature detection unit. The compression mechanism compresses the refrigerant. The radiator is connected to the refrigerant discharge side of the compression mechanism. The first expansion mechanism is connected to the outlet side of the radiator. The liquid receiver is connected to the refrigerant outflow side of the first expansion mechanism. The second expansion mechanism is connected to the outlet side of the liquid receiver. The evaporator is connected to the refrigerant outflow side of the second expansion mechanism and to the refrigerant suction side of the compression mechanism. When the state of the refrigerant flowing from the refrigerant discharge side of the compression mechanism to the refrigerant inflow side of the first expansion mechanism (hereinafter referred to as a high-pressure side refrigerant) transitions from the supercritical state to the subcritical state, the control unit uses the first expansion mechanism. Minimize the degree of decompression. A 1st temperature detection part is provided in the 1st specific area | region of a heat radiator. Here, the “first specific region” is a region where the high-pressure side refrigerant is in a gas-liquid two-phase state when the high-pressure side refrigerant transitions to the subcritical state. The second temperature detection unit is provided in the first specific region of the radiator. The control unit controls the first electric expansion valve and the second electric expansion valve so that the refrigerant flowing out of the first expansion mechanism is saturated when the high-pressure side refrigerant is in a supercritical state. Perform liquid level control. In addition, when the difference between the temperature detected by the first temperature detection unit and the temperature detected by the second temperature detection unit is equal to or less than a predetermined threshold , the control unit makes a transition to the subcritical state. And the second liquid receiver liquid level control is performed so that the degree of decompression by the first expansion mechanism is minimized and the refrigerant flowing out of the first expansion mechanism is saturated .

この冷凍装置では、制御部が、高圧側冷媒の状態が超臨界状態から亜臨界状態になった場合に第1膨張機構による減圧の度合いを最小にする。このため、この冷凍装置では、高圧側冷媒が超臨界状態から亜臨界状態に遷移しても第1膨張機構から流出する媒を飽和状態にすることができる。したがって、この冷凍装置では、適切な膨張機構(膨張弁の場合は適切な最大開度を有する膨張弁)を選定すれば高圧側冷媒が超臨界状態から亜臨界状態に遷移した場合であっても第1膨張機構から流出する冷媒を飽和状態に近い状態とすることができる。よって、この冷凍装置では、高圧側冷媒が超臨界状態から亜臨界状態に遷移した場合であっても安定した受液器の冷媒液面制御を可能とすることができる。 In this refrigeration apparatus, the control unit minimizes the degree of decompression by the first expansion mechanism when the state of the high-pressure side refrigerant changes from the supercritical state to the subcritical state. Therefore, in this refrigeration system, the refrigerant high-pressure side refrigerant flows out from the transition and also the first expansion mechanism from the supercritical state to a subcritical state may be saturated. Therefore, in this refrigeration apparatus, even if a high-pressure refrigerant transits from a supercritical state to a subcritical state by selecting an appropriate expansion mechanism (an expansion valve having an appropriate maximum opening in the case of an expansion valve), The refrigerant flowing out from the first expansion mechanism can be brought into a state close to saturation. Therefore, in this refrigeration apparatus, stable liquid level control of the receiver is possible even when the high-pressure side refrigerant transitions from the supercritical state to the subcritical state.

また、この冷凍装置では、第1温度検知部によって検知される温度と第2温度検知部によって検知される温度との差が所定の閾値以下となった場合に、制御部が第1膨張機構による減圧の度合いを最小にする。このため、この冷凍装置では、高圧側冷媒が亜臨界状態にあるか否かを容易に判定することができる。   Further, in this refrigeration apparatus, when the difference between the temperature detected by the first temperature detection unit and the temperature detected by the second temperature detection unit is equal to or less than a predetermined threshold value, the control unit uses the first expansion mechanism. Minimize the degree of decompression. For this reason, in this refrigeration apparatus, it can be easily determined whether or not the high-pressure side refrigerant is in a subcritical state.

第2発明に係る冷凍装置は、第1発明に係る冷凍装置であって、第1膨張機構は、第1膨張弁である。そして、制御部は、圧縮機構の冷媒吐出側から第1膨張機構の冷媒流入側へ流れる冷媒の状態が超臨界状態から亜臨界状態に遷移した場合に第1膨張弁を全開にする。   A refrigeration apparatus according to a second aspect of the present invention is the refrigeration apparatus according to the first aspect of the present invention, wherein the first expansion mechanism is a first expansion valve. Then, the control unit fully opens the first expansion valve when the state of the refrigerant flowing from the refrigerant discharge side of the compression mechanism to the refrigerant inflow side of the first expansion mechanism transitions from the supercritical state to the subcritical state.

この冷凍装置では、制御部が、圧縮機構の冷媒吐出側から第1膨張機構の冷媒流入側へ流れる冷媒の状態が超臨界状態から亜臨界状態に遷移した場合に第1膨張弁を全開にする。このため、この冷凍装置では、高圧側冷媒が超臨界状態から亜臨界状態に遷移しても第1膨張弁から流出する冷媒を飽和状態に近づけることができる。したがって、この冷凍装置では、第1膨張弁として適切な最大開度を有する膨張弁を選定すれば高圧側冷媒が超臨界状態から亜臨界状態に遷移した場合であっても第1膨張機構から流出する冷媒を飽和状態に近い状態とすることができる。よって、この冷凍装置では、高圧側冷媒が超臨界状態から亜臨界状態に遷移した場合であっても安定した受液器の冷媒液面制御を可能とすることができる。   In this refrigeration apparatus, the control unit fully opens the first expansion valve when the state of the refrigerant flowing from the refrigerant discharge side of the compression mechanism to the refrigerant inflow side of the first expansion mechanism transitions from the supercritical state to the subcritical state. . For this reason, in this refrigeration apparatus, the refrigerant flowing out of the first expansion valve can be brought close to the saturated state even when the high-pressure side refrigerant transitions from the supercritical state to the subcritical state. Therefore, in this refrigeration system, if an expansion valve having an appropriate maximum opening is selected as the first expansion valve, the high-pressure refrigerant flows out of the first expansion mechanism even when the refrigerant transitions from the supercritical state to the subcritical state. The refrigerant to be made can be brought into a state close to saturation. Therefore, in this refrigeration apparatus, stable liquid level control of the receiver is possible even when the high-pressure side refrigerant transitions from the supercritical state to the subcritical state.

第3発明に係る冷凍装置は、圧縮機構、放熱器、第1膨張機構、受液器、第2膨張機構、蒸発器、制御部、第3温度検知部を備える。圧縮機構は、冷媒を圧縮する。放熱器は、圧縮機構の冷媒吐出側に接続される。第1膨張機構は、放熱器の出口側に接続される。受液器は、第1膨張機構の冷媒流出側に接続される。第2膨張機構は、受液器の出口側に接続される。蒸発器は、第2膨張機構の冷媒流出側に接続されると共に圧縮機構の冷媒吸入側に接続される。制御部は、圧縮機構の冷媒吐出側から第1膨張機構の冷媒流入側へ流れる冷媒(以下、高圧側冷媒という)の状態が超臨界状態から亜臨界状態に遷移した場合に第1膨張機構による減圧の度合いを最小にする。第3温度検知部は、放熱器の第2特定領域に設けられる。なお、ここにいう「第2特定領域」とは、高圧側冷媒が超臨界状態であるときに高圧側冷媒が臨界点温度以下にならない領域であって高圧側冷媒が亜臨界状態であるときに高圧側冷媒が飽和温度になる領域である。そして、制御部は、高圧側冷媒が超臨界状態のとき、第1膨張機構から流出する冷媒を飽和状態になるように前記第1電動膨張弁および前記第2電動膨張弁を制御する第1受液器液面制御を行う。また、制御部は、第3温度検知部によって検知される温度が冷媒の臨界点温度以下になった場合に、高圧側冷媒が亜臨界状態へ遷移したと判断し、第1膨張機構による減圧の度合いを最小にし、第1膨張機構から流出する冷媒を飽和状態になるようにする第2受液器液面制御を行う。 A refrigeration apparatus according to a third aspect includes a compression mechanism, a radiator, a first expansion mechanism, a liquid receiver, a second expansion mechanism, an evaporator, a control unit, and a third temperature detection unit. The compression mechanism compresses the refrigerant. The radiator is connected to the refrigerant discharge side of the compression mechanism. The first expansion mechanism is connected to the outlet side of the radiator. The liquid receiver is connected to the refrigerant outflow side of the first expansion mechanism. The second expansion mechanism is connected to the outlet side of the liquid receiver. The evaporator is connected to the refrigerant outflow side of the second expansion mechanism and to the refrigerant suction side of the compression mechanism. When the state of the refrigerant flowing from the refrigerant discharge side of the compression mechanism to the refrigerant inflow side of the first expansion mechanism (hereinafter referred to as a high-pressure side refrigerant) transitions from the supercritical state to the subcritical state, the control unit uses the first expansion mechanism. Minimize the degree of decompression. The third temperature detector is provided in the second specific region of the radiator. Here, the “second specific region” refers to a region where the high-pressure side refrigerant is not below the critical point temperature when the high-pressure side refrigerant is in the supercritical state and the high-pressure side refrigerant is in the subcritical state. This is the region where the high-pressure side refrigerant reaches the saturation temperature. The control unit controls the first electric expansion valve and the second electric expansion valve so that the refrigerant flowing out of the first expansion mechanism is saturated when the high-pressure side refrigerant is in a supercritical state. Perform liquid level control. In addition, the control unit determines that the high-pressure side refrigerant has transitioned to the subcritical state when the temperature detected by the third temperature detection unit is equal to or lower than the critical point temperature of the refrigerant, and reduces the decompression by the first expansion mechanism. Second liquid receiver liquid level control is performed to minimize the degree and to saturate the refrigerant flowing out of the first expansion mechanism .

この冷凍装置では、制御部が、高圧側冷媒の状態が超臨界状態から亜臨界状態になった場合に第1膨張機構による減圧の度合いを最小にする。このため、この冷凍装置では、高圧側冷媒が超臨界状態から亜臨界状態に遷移しても第1膨張機構から流出する冷媒を飽和状態になるようにすることができる。したがって、この冷凍装置では、適切な膨張機構(膨張弁の場合は適切な最大開度を有する膨張弁)を選定すれば高圧側冷媒が超臨界状態から亜臨界状態に遷移した場合であっても第1膨張機構から流出する冷媒を飽和状態に近い状態とすることができる。よって、この冷凍装置では、高圧側冷媒が超臨界状態から亜臨界状態に遷移した場合であっても安定した受液器の冷媒液面制御を可能とすることができる。   In this refrigeration apparatus, the control unit minimizes the degree of decompression by the first expansion mechanism when the state of the high-pressure side refrigerant changes from the supercritical state to the subcritical state. For this reason, in this refrigeration apparatus, the refrigerant flowing out of the first expansion mechanism can be saturated even when the high-pressure side refrigerant transitions from the supercritical state to the subcritical state. Therefore, in this refrigeration apparatus, even if a high-pressure refrigerant transits from a supercritical state to a subcritical state by selecting an appropriate expansion mechanism (an expansion valve having an appropriate maximum opening in the case of an expansion valve), The refrigerant flowing out from the first expansion mechanism can be brought into a state close to saturation. Therefore, in this refrigeration apparatus, stable liquid level control of the receiver is possible even when the high-pressure side refrigerant transitions from the supercritical state to the subcritical state.

また、この冷凍装置では、第3温度検知部によって検知される温度が冷媒の臨界点温度以下になった場合に、制御部が第1膨張機構による減圧の度合いを最小にする。このため、この冷凍装置では、高圧側冷媒が亜臨界状態にあるか否かを容易に判定することができる。   Further, in this refrigeration apparatus, when the temperature detected by the third temperature detection unit becomes equal to or lower than the critical point temperature of the refrigerant, the control unit minimizes the degree of decompression by the first expansion mechanism. For this reason, in this refrigeration apparatus, it can be easily determined whether or not the high-pressure side refrigerant is in a subcritical state.

第4発明に係る冷凍装置は、第3発明に係る冷凍装置であって、第1膨張機構は、第1膨張弁である。そして、制御部は、第3温度検知部によって検知される温度が冷媒の臨界点温度以下になった場合に第1膨張弁を全開にする。   A refrigeration apparatus according to a fourth aspect is the refrigeration apparatus according to the third aspect, wherein the first expansion mechanism is a first expansion valve. And a control part fully opens a 1st expansion valve, when the temperature detected by the 3rd temperature detection part becomes below the critical point temperature of a refrigerant | coolant.

この冷凍装置では、第3温度検知部によって検知される温度が冷媒の臨界点温度以下になった場合に、制御部が第1膨張弁を全開にする。このため、この冷凍装置では、高圧側冷媒が亜臨界状態にあるか否かを容易に判定することができる。   In this refrigeration apparatus, when the temperature detected by the third temperature detection unit becomes equal to or lower than the critical point temperature of the refrigerant, the control unit fully opens the first expansion valve. For this reason, in this refrigeration apparatus, it can be easily determined whether or not the high-pressure side refrigerant is in a subcritical state.

第1発明に係る冷凍装置では、高圧側冷媒が超臨界状態から亜臨界状態に遷移しても第1膨張機構から流出する冷媒を飽和状態に近づけることができる。したがって、この冷凍装置では、適切な膨張機構(膨張弁の場合は適切な最大開度を有する膨張弁)を選定すれば高圧側冷媒が超臨界状態から亜臨界状態に遷移した場合であっても第1膨張機構から流出する冷媒を飽和状態にすることができる。よって、この冷凍装置では、高圧側冷媒が超臨界状態から亜臨界状態に遷移した場合であっても安定した受液器の冷媒液面制御を可能とすることができる。また、第1温度検知部によって検知される温度と第2温度検知部によって検知される温度との差が所定の閾値以下となった場合に、制御部が第1膨張機構による減圧の度合いを最小にする。このため、この冷凍装置では、高圧側冷媒が亜臨界状態にあるか否かを容易に判定することができる。   In the refrigeration apparatus according to the first invention, the refrigerant flowing out of the first expansion mechanism can be brought close to the saturated state even when the high-pressure side refrigerant transits from the supercritical state to the subcritical state. Therefore, in this refrigeration apparatus, even if a high-pressure refrigerant transits from a supercritical state to a subcritical state by selecting an appropriate expansion mechanism (an expansion valve having an appropriate maximum opening in the case of an expansion valve), The refrigerant flowing out from the first expansion mechanism can be saturated. Therefore, in this refrigeration apparatus, stable liquid level control of the receiver is possible even when the high-pressure side refrigerant transitions from the supercritical state to the subcritical state. Further, when the difference between the temperature detected by the first temperature detection unit and the temperature detected by the second temperature detection unit is equal to or less than a predetermined threshold, the control unit minimizes the degree of decompression by the first expansion mechanism. To. For this reason, in this refrigeration apparatus, it can be easily determined whether or not the high-pressure side refrigerant is in a subcritical state.

第2発明に係る冷凍装置では、高圧側冷媒が超臨界状態から亜臨界状態に遷移しても第1膨張弁から流出する冷媒を飽和状態に近づけることができる。したがって、この冷凍装置では、第1膨張弁として適切な最大開度を有する膨張弁を選定すれば高圧側冷媒が超臨界状態から亜臨界状態に遷移した場合であっても第1膨張機構から流出する冷媒を飽和状態に近い状態とすることができる。よって、この冷凍装置では、高圧側冷媒が超臨界状態から亜臨界状態に遷移した場合であっても安定した受液器の冷媒液面制御を可能とすることができる。   In the refrigeration apparatus according to the second aspect of the invention, the refrigerant flowing out of the first expansion valve can be brought close to the saturated state even when the high-pressure side refrigerant transitions from the supercritical state to the subcritical state. Therefore, in this refrigeration system, if an expansion valve having an appropriate maximum opening is selected as the first expansion valve, the high-pressure refrigerant flows out of the first expansion mechanism even when the refrigerant transitions from the supercritical state to the subcritical state. The refrigerant to be made can be brought into a state close to saturation. Therefore, in this refrigeration apparatus, stable liquid level control of the receiver is possible even when the high-pressure side refrigerant transitions from the supercritical state to the subcritical state.

第3発明に係る冷凍装置では、高圧側冷媒が超臨界状態から亜臨界状態に遷移しても第1膨張機構から流出する冷媒を飽和状態に近づけることができる。したがって、この冷凍装置では、適切な膨張機構(膨張弁の場合は適切な最大開度を有する膨張弁)を選定すれば高圧側冷媒が超臨界状態から亜臨界状態に遷移した場合であっても第1膨張機構から流出する冷媒を飽和状態にすることができる。よって、この冷凍装置では、高圧側冷媒が超臨界状態から亜臨界状態に遷移した場合であっても安定した受液器の冷媒液面制御を可能とすることができる。また、第3温度検知部によって検知される温度が冷媒の臨界点温度以下になった場合に、制御部が第1膨張機構による減圧の度合いを最小にする。このため、この冷凍装置では、高圧側冷媒が亜臨界状態にあるか否かを容易に判定することができる。   In the refrigeration apparatus according to the third aspect of the invention, the refrigerant flowing out of the first expansion mechanism can be brought close to the saturated state even when the high-pressure side refrigerant transitions from the supercritical state to the subcritical state. Therefore, in this refrigeration apparatus, even if a high-pressure refrigerant transits from a supercritical state to a subcritical state by selecting an appropriate expansion mechanism (an expansion valve having an appropriate maximum opening in the case of an expansion valve), The refrigerant flowing out from the first expansion mechanism can be saturated. Therefore, in this refrigeration apparatus, stable liquid level control of the receiver is possible even when the high-pressure side refrigerant transitions from the supercritical state to the subcritical state. Further, when the temperature detected by the third temperature detection unit becomes equal to or lower than the critical point temperature of the refrigerant, the control unit minimizes the degree of pressure reduction by the first expansion mechanism. For this reason, in this refrigeration apparatus, it can be easily determined whether or not the high-pressure side refrigerant is in a subcritical state.

<空気調和装置の構成>
本発明の実施の形態に係る空気調和装置1の概略冷媒回路2を図1に示す。
<Configuration of air conditioner>
A schematic refrigerant circuit 2 of an air-conditioning apparatus 1 according to an embodiment of the present invention is shown in FIG.

この空気調和装置1は、二酸化炭素を冷媒として冷房運転および暖房運転が可能な空気調和装置であって、主に冷媒回路2、送風ファン26,32、制御装置23、高圧圧力センサ21、中間圧圧力センサ24、および温度センサ22等から構成されている。   This air conditioner 1 is an air conditioner that can perform cooling operation and heating operation using carbon dioxide as a refrigerant. The air conditioner 1 mainly includes a refrigerant circuit 2, blower fans 26 and 32, a control device 23, a high pressure sensor 21, an intermediate pressure. It consists of a pressure sensor 24, a temperature sensor 22, and the like.

冷媒回路2には主に、圧縮機11、四路切換弁12、室外熱交換器13、第1電動膨張弁15、受液器16、第2電動膨張弁17、および室内熱交換器31が配備されており、各装置は、図1に示されるように、冷媒配管を介して接続されている。   The refrigerant circuit 2 mainly includes a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 13, a first electric expansion valve 15, a liquid receiver 16, a second electric expansion valve 17, and an indoor heat exchanger 31. As shown in FIG. 1, each apparatus is connected via a refrigerant pipe.

そして、本実施の形態において、空気調和装置1は、分離型の空気調和装置であって、室内熱交換器31および室内ファン32を主に有する室内ユニット30と、圧縮機11、四路切換弁12、室外熱交換器13、第1電動膨張弁15、受液器16、第2電動膨張弁17、高圧圧力センサ21、温度センサ22、および制御装置23を主に有する室外ユニット10と、室内ユニット30の冷媒液等配管と室外ユニット10の冷媒液等配管とを接続する第1連絡配管41と、室内ユニット30の冷媒ガス等配管と室外ユニット10の冷媒ガス等配管とを接続する第2連絡配管42とから構成されているともいえる。なお、室外ユニット10の冷媒液等配管と第1連絡配管41とは室外ユニット10の第1閉鎖弁18を介して、室外ユニット10の冷媒ガス等配管と第2連絡配管42とは室外ユニット10の第2閉鎖弁19を介してそれぞれ接続されている。   And in this Embodiment, the air conditioning apparatus 1 is a separation-type air conditioning apparatus, Comprising: The indoor unit 30 which mainly has the indoor heat exchanger 31 and the indoor fan 32, the compressor 11, and a four-way switching valve 12, the outdoor heat exchanger 13, the first electric expansion valve 15, the liquid receiver 16, the second electric expansion valve 17, the high pressure sensor 21, the temperature sensor 22, and the outdoor unit 10 mainly including the control device 23, A first connection pipe 41 that connects the refrigerant liquid pipe of the unit 30 and the refrigerant liquid pipe of the outdoor unit 10, and a second connection pipe that connects the refrigerant gas pipe of the indoor unit 30 and the refrigerant gas pipe of the outdoor unit 10. It can be said that it is composed of the communication pipe 42. The refrigerant liquid piping of the outdoor unit 10 and the first communication pipe 41 are connected via the first shut-off valve 18 of the outdoor unit 10, and the refrigerant gas piping and the second communication pipe 42 of the outdoor unit 10 are connected to the outdoor unit 10. The second closing valves 19 are connected to each other.

(1)室内ユニット
室内ユニット30は、主に、室内熱交換器31および室内ファン32等を有している。
(1) Indoor unit The indoor unit 30 mainly includes an indoor heat exchanger 31 and an indoor fan 32.

室内熱交換器31は、空調室内の空気である室内空気と冷媒との間で熱交換をさせるための熱交換器である。   The indoor heat exchanger 31 is a heat exchanger for exchanging heat between indoor air, which is air in an air-conditioned room, and a refrigerant.

室内ファン32は、ユニット30内に空調室内の空気を取り込み、室内熱交換器31を介して冷媒と熱交換した後の空気である調和空気を再び空調室内への送り出すためファンである。   The indoor fan 32 is a fan for taking in the air in the air-conditioned room into the unit 30 and sending out conditioned air, which is air after heat exchange with the refrigerant via the indoor heat exchanger 31, to the air-conditioned room again.

そして、この室内ユニット30は、このような構成を採用することによって、冷房運転時には室内ファン32により内部に取り込んだ室内空気と室内熱交換器31を流れる液冷媒とを熱交換させて調和空気(冷気)を生成し、暖房運転時には室内ファン32により内部に取り込んだ室内空気と室内熱交換器31を流れる超臨界冷媒とを熱交換させて調和空気(暖気)を生成することが可能となっている。   By adopting such a configuration, the indoor unit 30 exchanges heat between the indoor air taken in by the indoor fan 32 and the liquid refrigerant flowing through the indoor heat exchanger 31 during the cooling operation, thereby conditioned air ( It is possible to generate conditioned air (warm air) by exchanging heat between the indoor air taken in by the indoor fan 32 and the supercritical refrigerant flowing through the indoor heat exchanger 31 during heating operation. Yes.

(2)室外ユニット
室外ユニット10は、主に、圧縮機11、四路切換弁12、室外熱交換器13、第1電動膨張弁15、受液器16、第2電動膨張弁17、室外ファン26、制御装置23、高圧圧力センサ21、中間圧圧力センサ24、および温度センサ22等を有している。
(2) Outdoor unit The outdoor unit 10 mainly includes a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 13, a first electric expansion valve 15, a liquid receiver 16, a second electric expansion valve 17, and an outdoor fan. 26, a control device 23, a high pressure sensor 21, an intermediate pressure sensor 24, a temperature sensor 22, and the like.

圧縮機11は、吸入管を流れる低圧のガス冷媒を吸入し、圧縮して超臨界状態とした後、吐出管に吐出するための装置である。   The compressor 11 is a device for sucking low-pressure gas refrigerant flowing through the suction pipe, compressing it into a supercritical state, and then discharging it to the discharge pipe.

四路切換弁12は、各運転に対応して、冷媒の流れ方向を切り換えるための弁であり、冷房運転時には圧縮機11の吐出側と室外熱交換器13の高温側とを接続するとともに圧縮機11の吸入側と室内熱交換器31のガス側とを接続し、暖房運転時には圧縮機11の吐出側と第2閉鎖弁19とを接続するとともに圧縮機11の吸入側と室外熱交換器13のガス側とを接続することが可能である。   The four-way switching valve 12 is a valve for switching the flow direction of the refrigerant corresponding to each operation. During the cooling operation, the four-way switching valve 12 connects the discharge side of the compressor 11 and the high temperature side of the outdoor heat exchanger 13 and compresses them. The suction side of the compressor 11 and the gas side of the indoor heat exchanger 31 are connected, and during the heating operation, the discharge side of the compressor 11 and the second shut-off valve 19 are connected and the suction side of the compressor 11 and the outdoor heat exchanger are connected. 13 gas sides can be connected.

室外熱交換器13は、冷房運転時において圧縮機11から吐出された高圧の超臨界冷媒を空調室外の空気を熱源として冷却させることが可能であり、暖房運転時には室内熱交換器31から戻る液冷媒を蒸発させることが可能である。   The outdoor heat exchanger 13 can cool the high-pressure supercritical refrigerant discharged from the compressor 11 during the cooling operation using air outside the air conditioning room as a heat source, and the liquid returned from the indoor heat exchanger 31 during the heating operation. It is possible to evaporate the refrigerant.

第1電動膨張弁15は、室外熱交換器13の低温側から流出する超臨界冷媒(冷房運転時)あるいは受液器16を通って流入する液冷媒(暖房運転時)を減圧するためのものである。   The first electric expansion valve 15 is for reducing the pressure of supercritical refrigerant (at the time of cooling operation) flowing out from the low temperature side of the outdoor heat exchanger 13 or liquid refrigerant (at the time of heating operation) flowing in through the receiver 16. It is.

受液器16は、運転モードや空調負荷に応じて余剰となる冷媒を貯蔵しておくためのものである。   The liquid receiver 16 is for storing a surplus refrigerant according to the operation mode and the air conditioning load.

第2電動膨張弁17は、受液器16を通って流入してくる液冷媒(冷房運転時)あるいは室内熱交換器31の低温側から流出する超臨界冷媒(暖房運転時)を減圧するためのものである。   The second electric expansion valve 17 depressurizes the liquid refrigerant flowing through the liquid receiver 16 (during cooling operation) or supercritical refrigerant flowing out from the low temperature side of the indoor heat exchanger 31 (during heating operation). belongs to.

室外ファン26は、ユニット10内に室外の空気を取り込み、室外熱交換器13を介して冷媒と熱交換した後の空気を排気するためファンである。   The outdoor fan 26 is a fan for taking in outdoor air into the unit 10 and exhausting the air after exchanging heat with the refrigerant via the outdoor heat exchanger 13.

高圧圧力センサ21は、圧縮機11の吐出側に設けられている。   The high pressure sensor 21 is provided on the discharge side of the compressor 11.

温度センサ22は、第1電動膨張弁15の室外熱交換器側に設けられている。   The temperature sensor 22 is provided on the outdoor heat exchanger side of the first electric expansion valve 15.

中間圧圧力センサ24は、第1電動膨張弁15と受液器16との間に設けられている。   The intermediate pressure sensor 24 is provided between the first electric expansion valve 15 and the liquid receiver 16.

制御装置23は、高圧圧力センサ21、中間圧圧力センサ24、温度センサ22、第1電動膨張弁15、および第2電動膨張弁17等に通信接続されており、温度センサ22から送られてくる温度情報や、高圧圧力センサ21から送られてくる高圧圧力情報、中間圧圧力センサ24から送られてくる中間圧圧力情報に基づいて第1電動膨張弁15および第2電動膨張弁17の開度を制御する。ここで、モリエ線図を利用して第1電動膨張弁15および第2電動膨張弁17の開度制御について詳述する。   The control device 23 is communicatively connected to the high pressure sensor 21, the intermediate pressure sensor 24, the temperature sensor 22, the first electric expansion valve 15, the second electric expansion valve 17, and the like, and is sent from the temperature sensor 22. The opening degree of the first electric expansion valve 15 and the second electric expansion valve 17 based on the temperature information, the high pressure information sent from the high pressure sensor 21, and the intermediate pressure information sent from the intermediate pressure sensor 24. To control. Here, the opening control of the first electric expansion valve 15 and the second electric expansion valve 17 will be described in detail using the Mollier diagram.

この制御装置23は、高圧圧力センサ21から送信される高圧圧力情報が臨界圧力以上である場合、圧縮機11の冷媒吐出側から第1電動膨張弁15の冷媒流入側へ流れる冷媒(以下、高圧側冷媒という)が超臨界状態であると判断し、第1受液器液面制御および過熱度制御を行う。本実施の形態に係る空気調和装置1には圧縮機11の吐出側に高圧圧力センサ21、第1電動膨張弁15の室外熱交換器側に温度センサ22が配置されているため、モリエ線図(図2参照)を利用して第1電動膨張弁15から流出する冷媒の飽和圧力を求めることができる。そこで、この空気調和装置1では、第1受液器液面制御時において、制御装置23が、第1電動膨張弁15から流出した冷媒が図2のD0点の状態になるように、つまり、中間圧圧力センサ24が示す値が上記で求められた飽和圧力と一致するように1電動膨張弁15と第2電動膨張弁17の開度を適宜調節にする。なお、図2において、A0→B0は圧縮行程を示し、B0→C0は冷却行程を示し、C0→D0は第1膨張行程(第1電動膨張弁15による減圧)を示し、D0→E0は第2膨張行程(第2電動膨張弁17による減圧)を示し、E0→A0は蒸発行程を示している。また、Kは臨界点を示し、Tmは等温線を示している。なお、このとき、同時に過熱度制御も行われているので、制御装置23は併せて第2電動膨張弁17の開度も制御する。なお、本実施の形態では、制御装置23は、中間圧圧力センサ24が示す圧力が{臨界圧力(MPa)−0.3(MPa)}の圧力以下となるように第1電動膨張弁15および第2電動膨張弁17を制御する。ここで、{臨界圧力(MPa)−0.3(MPa)}という圧力は、次のように決定されている。発明者の行った試験の結果から第1電動膨張弁15と第2電動膨張弁17との間の圧力(以下、中間圧力という)の制御は冷媒の場合で目標値から±0.1MPa以内の程度の範囲で制御できることが明らかとなっている。そして、中間圧力が臨界点近傍にならないようにするためには、安全率を3として中間圧力の目標値を臨界圧力(MPa)−0.3(MPa)とするのが好ましい。 When the high-pressure information transmitted from the high-pressure sensor 21 is equal to or higher than the critical pressure, the control device 23 is a refrigerant that flows from the refrigerant discharge side of the compressor 11 to the refrigerant inflow side of the first electric expansion valve 15 (hereinafter, high pressure). 1st receiver liquid level control and superheat degree control are performed. In the air conditioner 1 according to the present embodiment, the high pressure sensor 21 is disposed on the discharge side of the compressor 11 and the temperature sensor 22 is disposed on the outdoor heat exchanger side of the first electric expansion valve 15. The saturation pressure of the refrigerant flowing out from the first electric expansion valve 15 can be obtained using (see FIG. 2). Therefore, in this air conditioner 1, during the first liquid receiver liquid level control, the control device 23 causes the refrigerant flowing out of the first electric expansion valve 15 to be in the state of the point D 0 in FIG. The opening degrees of the first electric expansion valve 15 and the second electric expansion valve 17 are adjusted as appropriate so that the value indicated by the intermediate pressure sensor 24 matches the saturation pressure obtained above. In FIG. 2, A 0 → B 0 indicates a compression stroke, B 0 → C 0 indicates a cooling stroke, and C 0 → D 0 indicates a first expansion stroke (pressure reduction by the first electric expansion valve 15). D 0 → E 0 indicates the second expansion stroke (pressure reduction by the second electric expansion valve 17), and E 0 → A 0 indicates the evaporation stroke. K represents a critical point, and Tm represents an isotherm. At this time, since the superheat degree control is also performed at the same time, the control device 23 also controls the opening degree of the second electric expansion valve 17. In the present embodiment, the control device 23 uses the first electric expansion valve 15 and the pressure control device 24 so that the pressure indicated by the intermediate pressure sensor 24 is equal to or lower than the pressure of {critical pressure (MPa) -0.3 (MPa)}. The second electric expansion valve 17 is controlled. Here, the pressure of {critical pressure (MPa) -0.3 (MPa)} is determined as follows. From the result of the test conducted by the inventors, the pressure between the first electric expansion valve 15 and the second electric expansion valve 17 (hereinafter referred to as intermediate pressure) is controlled within ± 0.1 MPa from the target value in the case of refrigerant. It has become clear that it can be controlled within a range. In order to prevent the intermediate pressure from being close to the critical point, it is preferable that the safety factor is 3, and the target value of the intermediate pressure is critical pressure (MPa) −0.3 (MPa).

そして、ここで、高圧側冷媒が亜臨界状態になると、制御装置23は、過熱度制御を行う同時に第2受液器液面制御を行う。高圧側冷媒が亜臨界状態になると、冷凍サイクルは図3に実線で示されるような冷凍サイクルとなる。なお、図3において破線で示される冷凍サイクルは、図2に示される冷凍サイクル、つまり、高圧側冷媒が超臨界状態のときの冷凍サイクルである。図3から明らかなように、高圧側冷媒が亜臨界状態になると、圧力が著しく低下する。この状態で制御装置23が第1電動膨張弁15に対して第1受液器液面制御時と同一の開度を要求するとその冷凍サイクルは、A0→B1→C1→D1→E0→A0となり、第1電動膨張弁15から流出する冷媒が気液二相状態となり、実質的に受液器16内の貯蔵冷媒の液面を安定化することができなくなる。そこで、制御装置23は、高圧圧力センサ21から送信される高圧圧力情報が臨界圧力未満となった場合、つまり、高圧側冷媒が亜臨界状態となった場合、第1電動膨張弁15を全開状態とする第2受液器液面制御を行う。すると、その冷凍サイクルは、図4に実線で示される冷凍サイクルとなる。なお、図4において破線で示される冷凍サイクルは、図2に示される冷凍サイクル、つまり、高圧側冷媒が超臨界状態のときの冷凍サイクルである。すなわち、冷凍サイクルがA0→B 0 →C 0 →C 1 →D2→E0→A0となるため、第1電動膨張弁15から流出する冷媒は飽和状態に近い状態となる。この空気調和装置1では、冷房運転時においてこのような安定した受液器液面制御が実現されている。 Then, here, when the high-pressure side refrigerant is in a subcritical state, the control device 23 performs the second liquid receiver liquid level control simultaneously with the superheat degree control. When the high-pressure side refrigerant enters the subcritical state, the refrigeration cycle becomes a refrigeration cycle as shown by a solid line in FIG. 3 is a refrigeration cycle shown in FIG. 2, that is, a refrigeration cycle when the high-pressure refrigerant is in a supercritical state. As is apparent from FIG. 3, when the high-pressure side refrigerant is in a subcritical state, the pressure is significantly reduced. In this state, when the control device 23 requests the first electric expansion valve 15 to have the same opening degree as that during the first receiver liquid level control, the refrigeration cycle is A 0 → B 1 → C 1 → D 1 → From E 0 to A 0 , the refrigerant flowing out of the first electric expansion valve 15 enters a gas-liquid two-phase state, and the liquid level of the stored refrigerant in the liquid receiver 16 cannot be stabilized substantially. Therefore, when the high-pressure information transmitted from the high-pressure sensor 21 becomes less than the critical pressure, that is, when the high-pressure side refrigerant is in the subcritical state, the control device 23 opens the first electric expansion valve 15 in the fully open state. The second liquid receiver liquid level control is performed. Then, the refrigeration cycle is a refrigeration cycle indicated by a solid line in FIG. Note that the refrigeration cycle indicated by a broken line in FIG. 4 is the refrigeration cycle shown in FIG. 2, that is, the refrigeration cycle when the high-pressure side refrigerant is in a supercritical state. That is, since the refrigeration cycle is A 0 → B 0 → C 0 → C 1 → D 2 → E 0 → A 0 , the refrigerant flowing out from the first electric expansion valve 15 is in a state close to saturation. In the air conditioner 1, such stable liquid receiver liquid level control is realized during the cooling operation.

<空気調和装置の動作>
空気調和装置1の運転動作について、図1を用いて説明する。この空気調和装置1は、上述したように冷房運転および暖房運転を行うことが可能である。
<Operation of air conditioner>
The operation of the air conditioner 1 will be described with reference to FIG. As described above, the air conditioner 1 can perform a cooling operation and a heating operation.

(1)冷房運転
冷房運転時は、四路切換弁12が図1の実線で示される状態、すなわち、圧縮機11の吐出側が室外熱交換器13の高温側に接続され、かつ、圧縮機11の吸入側が第2閉鎖弁19に接続された状態となる。また、このとき、第1閉鎖弁18および第2閉鎖弁19は開状態とされる。
(1) Cooling operation During the cooling operation, the four-way switching valve 12 is in the state indicated by the solid line in FIG. 1, that is, the discharge side of the compressor 11 is connected to the high temperature side of the outdoor heat exchanger 13, and the compressor 11 The suction side is connected to the second closing valve 19. At this time, the first closing valve 18 and the second closing valve 19 are opened.

この冷媒回路2の状態で、圧縮機11を起動すると、ガス冷媒が、圧縮機11に吸入され、圧縮されて超臨界状態となった後、四路切換弁12を経由して室外熱交換器13に送られ、室外熱交換器13において冷却される。   When the compressor 11 is started in the state of the refrigerant circuit 2, the gas refrigerant is sucked into the compressor 11 and compressed to become a supercritical state, and then the outdoor heat exchanger via the four-way switching valve 12. 13 and is cooled in the outdoor heat exchanger 13.

そして、この冷却された超臨界冷媒は、第1電動膨張弁15に送られる。そして、第1電動膨張弁15に送られた超臨界冷媒は、減圧されて飽和状態とされた後に受液器16を経由して第2電動膨張弁17に送られる。第2電動膨張弁17に送られた飽和状態の冷媒は、減圧されて液冷媒となった後に第1閉鎖弁18を経由して室内熱交換器31に供給され、室内空気を冷却するとともに蒸発されてガス冷媒となる。   Then, the cooled supercritical refrigerant is sent to the first electric expansion valve 15. The supercritical refrigerant sent to the first electric expansion valve 15 is reduced in pressure and saturated, and then sent to the second electric expansion valve 17 via the liquid receiver 16. The saturated refrigerant sent to the second electric expansion valve 17 is reduced in pressure to become liquid refrigerant, and then supplied to the indoor heat exchanger 31 via the first closing valve 18 to cool and evaporate the indoor air. It becomes a gas refrigerant.

そして、そのガス冷媒は、第2閉鎖弁19、内部熱交換器14、および四路切換弁12を経由して、再び、圧縮機11に吸入される。このようにして、冷房運転が行われる。なお、制御装置23は、この冷房運転において上記制御を実行する。   Then, the gas refrigerant is sucked into the compressor 11 again via the second closing valve 19, the internal heat exchanger 14, and the four-way switching valve 12. In this way, the cooling operation is performed. In addition, the control apparatus 23 performs the said control in this cooling operation.

(2)暖房運転
暖房運転時は、四路切換弁12が図1の破線で示される状態、すなわち、圧縮機11の吐出側が第2閉鎖弁19に接続され、かつ、圧縮機11の吸入側が室外熱交換器13のガス側に接続された状態となっている。また、このとき、第1閉鎖弁18および第2閉鎖弁19は開状態とされる。
(2) Heating operation During the heating operation, the four-way switching valve 12 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 11 is connected to the second closing valve 19 and the suction side of the compressor 11 is It is in the state connected to the gas side of the outdoor heat exchanger 13. At this time, the first closing valve 18 and the second closing valve 19 are opened.

この冷媒回路2の状態で、圧縮機11を起動すると、ガス冷媒が、圧縮機11に吸入され、圧縮されて超臨界状態となった後、四路切換弁12、および第2閉鎖弁19を経由して室内熱交換器31に供給される。   When the compressor 11 is started in the state of the refrigerant circuit 2, the gas refrigerant is sucked into the compressor 11 and compressed to become a supercritical state, and then the four-way switching valve 12 and the second closing valve 19 are opened. It is supplied to the indoor heat exchanger 31 via.

そして、その超臨界冷媒は、室内熱交換器31において室内空気を加熱するとともに冷却される。冷却された超臨界冷媒は、第1閉鎖弁を通って第2電動膨張弁17に送られる。第2電動膨張弁17に送られた超臨界冷媒は、減圧されて飽和状態とされた後に受液器16を経由して第1電動膨張弁15に送られる。第1電動膨張弁15に送られた飽和状態の冷媒は、減圧されて液冷媒となった後に内熱交換器14を経由して室外熱交換器13に送られて、室外熱交換器13において蒸発されてガス冷媒となる。そして、このガス冷媒は、四路切換弁12を経由して、再び、圧縮機11に吸入される。このようにして、暖房運転が行われる。   Then, the supercritical refrigerant is cooled while heating the indoor air in the indoor heat exchanger 31. The cooled supercritical refrigerant is sent to the second electric expansion valve 17 through the first closing valve. The supercritical refrigerant sent to the second electric expansion valve 17 is decompressed and saturated, and then sent to the first electric expansion valve 15 via the liquid receiver 16. The saturated refrigerant sent to the first electric expansion valve 15 is reduced in pressure to become a liquid refrigerant, and then sent to the outdoor heat exchanger 13 via the internal heat exchanger 14, and in the outdoor heat exchanger 13. It is evaporated to become a gas refrigerant. Then, this gas refrigerant is sucked into the compressor 11 again via the four-way switching valve 12. In this way, the heating operation is performed.

<空気調和装置の特徴>
本実施の形態に係る空気調和装置1では、制御装置23が、高圧圧力センサ21から送信される高圧圧力情報が臨界圧力未満となった場合、つまり、高圧側冷媒が亜臨界状態となった場合、第1電動膨張弁15を全開状態とし、第1電動膨張弁15から流出する冷媒を飽和状態に近い状態にすることができる。このため、この空気調和装置1では、高圧側冷媒が亜臨界状態となっても安定した受液器液面制御を行うことができる。
<Characteristics of air conditioner>
In the air conditioning apparatus 1 according to the present embodiment, when the high-pressure pressure information transmitted from the high-pressure sensor 21 is less than the critical pressure, that is, when the high-pressure refrigerant enters the subcritical state. The first electric expansion valve 15 can be fully opened, and the refrigerant flowing out of the first electric expansion valve 15 can be brought into a state close to saturation. For this reason, in this air conditioner 1, stable liquid receiver liquid level control can be performed even when the high-pressure side refrigerant is in a subcritical state.

<変形例>
(A)
先の実施の形態では、本願発明が1台の室外ユニット10に対して1台の室内ユニット30が設けられるセパレート式の空気調和装置1に応用されたが、本願発明は図5に示される1台の室外ユニットに対して複数台の室内ユニットが設けられるマルチ式の空気調和装置101に応用されてもよい。なお、図5において、先の実施の形態に係る空気調和装置1の構成部品と同じ部品については同一の符号を用いている。また、図5において、符号102は冷媒回路を示し、符号110は室外ユニットを示し、符号130a,130bは室内ユニットを示し、符号31a,31bは室内熱交換器を示し、符号32a,32bは室内ファンを示し、符号33a,33bは第2電動膨張弁を示し、符号34a,34bは室内制御装置を示し、符号141,142は連絡配管を示している。なお、かかる場合、制御装置23は、室内制御装置34a,34bを介して第2電動膨張弁33a,33bを制御する。また、本変形例では第2電動膨張弁33a,33bが室内ユニット130a,130bに収容されたが、第2電動膨張弁33a,33bが室外ユニット110に収容されてもかまわない。
<Modification>
(A)
In the previous embodiment, the present invention was applied to the separate type air conditioner 1 in which one indoor unit 30 is provided for one outdoor unit 10, but the present invention is shown in FIG. The present invention may be applied to a multi-type air conditioner 101 in which a plurality of indoor units are provided for a single outdoor unit. In addition, in FIG. 5, the same code | symbol is used about the same component as the component of the air conditioning apparatus 1 which concerns on previous embodiment. In FIG. 5, reference numeral 102 indicates a refrigerant circuit, reference numeral 110 indicates an outdoor unit, reference numerals 130a and 130b indicate indoor units, reference numerals 31a and 31b indicate indoor heat exchangers, and reference numerals 32a and 32b indicate indoor units. A fan is shown, the code | symbols 33a and 33b show the 2nd electric expansion valve, the codes | symbols 34a and 34b show the indoor control apparatus, and the codes | symbols 141 and 142 show the connection piping. In such a case, the control device 23 controls the second electric expansion valves 33a and 33b via the indoor control devices 34a and 34b. In the present modification, the second electric expansion valves 33a and 33b are accommodated in the indoor units 130a and 130b. However, the second electric expansion valves 33a and 33b may be accommodated in the outdoor unit 110.

(B)
先の実施の形態に係る空気調和装置1では、特に言及していなかったが、受液器16と第2電動膨張弁17との間に過冷却熱交換器(内部熱交換器であってもよい)を設けてもよい。なお、かかる場合、第1受液器液面制御では、図6に示されるような冷凍サイクルが実現されるように制御装置23により第1電動膨張弁15の開度が制御される。なお、図6において、A0→B0は圧縮行程を示し、B0→C0は冷却行程を示し、C0→D0は第1膨張行程(第1電動膨張弁15による減圧)を示し、D0→F0は過冷却工程(過冷却熱交換器による冷却)を示し、F0→E3は第2膨張行程(第2電動膨張弁17による減圧)を示し、E3→A0は蒸発行程を示している。また、Kは臨界点を示し、Tmは等温線を示している。つまり、この第1受液器液面制御では、第1電動膨張弁15から流出する冷媒が飽和状態となるように制御装置23が第1電動膨張弁15の開度を制御する。
(B)
Although not particularly mentioned in the air conditioner 1 according to the previous embodiment, a supercooling heat exchanger (even if it is an internal heat exchanger) is provided between the liquid receiver 16 and the second electric expansion valve 17. May be provided. In such a case, in the first receiver liquid level control, the opening degree of the first electric expansion valve 15 is controlled by the control device 23 so that the refrigeration cycle as shown in FIG. 6 is realized. In FIG. 6, A 0 → B 0 indicates the compression stroke, B 0 → C 0 indicates the cooling stroke, and C 0 → D 0 indicates the first expansion stroke (pressure reduction by the first electric expansion valve 15). , D 0 → F 0 indicates a supercooling step (cooling by a supercooling heat exchanger), F 0 → E 3 indicates a second expansion stroke (pressure reduction by the second electric expansion valve 17), and E 3 → A 0 Indicates the evaporation process. K represents a critical point, and Tm represents an isotherm. That is, in the first liquid receiver liquid level control, the control device 23 controls the opening degree of the first electric expansion valve 15 so that the refrigerant flowing out from the first electric expansion valve 15 is saturated.

また、第2受液器液面制御では、冷凍サイクルは図7に実線で示されるような冷凍サイクルとなり、制御装置23がこの状態で第1電動膨張弁15に対して受液器液面制御時と同一の開度を要求するとその冷凍サイクルは、A0→B1→C1→D1→F1→E3→A0となり、第1電動膨張弁15から流出する冷媒が気液二相状態となり、実質的に受液器16内の貯蔵冷媒の液面を安定化することができなくなる。そこで、制御装置23は、高圧圧力センサ21から送信される高圧圧力情報が臨界圧力未満となった場合、つまり、高圧側冷媒が亜臨界状態となった場合、第1電動膨張弁15を全開状態とする。すると、その冷凍サイクルは、図8に実線で示される冷凍サイクルとなる。すなわち、冷凍サイクルがA0→B1→C1→D0→F0→E3→A0となるため、第1電動膨張弁15から流出する冷媒は飽和状態に近い状態となる。この空気調和装置1では、冷房運転時においてこのような安定した受液器液面制御が実現される。 Further, in the second liquid receiver liquid level control, the refrigeration cycle becomes a refrigeration cycle as shown by a solid line in FIG. 7, and the controller 23 controls the liquid receiver liquid level control with respect to the first electric expansion valve 15 in this state. When the same opening degree is requested, the refrigeration cycle becomes A 0 → B 1 → C 1 → D 1 → F 1 → E 3 → A 0 , and the refrigerant flowing out from the first electric expansion valve 15 is gas-liquid. As a result, it becomes impossible to stabilize the liquid level of the stored refrigerant in the liquid receiver 16. Therefore, when the high-pressure information transmitted from the high-pressure sensor 21 becomes less than the critical pressure, that is, when the high-pressure side refrigerant is in the subcritical state, the control device 23 opens the first electric expansion valve 15 in the fully open state. And Then, the refrigeration cycle becomes a refrigeration cycle indicated by a solid line in FIG. That is, since the refrigeration cycle is A 0 → B 1 → C 1 → D 0 → F 0 → E 3 → A 0 , the refrigerant flowing out of the first electric expansion valve 15 is in a state close to saturation. In the air conditioner 1, such a stable liquid receiver liquid level control is realized during the cooling operation.

(C)
先の実施の形態に係る空気調和装置1では、第1電動膨張弁15や、受液器16、第2電動膨張弁17などが室外ユニット10に配置されていたが、これらの配置は特に限定されない。例えば、第2電動膨張弁17が室内ユニット30に配置されていてもよい。
(C)
In the air conditioner 1 according to the previous embodiment, the first electric expansion valve 15, the liquid receiver 16, the second electric expansion valve 17, and the like are arranged in the outdoor unit 10, but these arrangements are particularly limited. Not. For example, the second electric expansion valve 17 may be disposed in the indoor unit 30.

(D)
先の実施の形態に係る空気調和装置1では、冷媒の減圧手段として電動膨張弁が採用されたが、これに代えて、膨張機などが採用されてもよい。
(D)
In the air-conditioning apparatus 1 according to the previous embodiment, the electric expansion valve is employed as the refrigerant decompression unit, but an expander or the like may be employed instead.

(E)
先の実施の形態に係る空気調和装置1では、特に言及していなかったが、受液器16と圧縮機11の吸入管と接続しガス抜き回路を形成してもよい。かかる場合、ガス抜き回路に電動膨張弁や電磁弁などを設けておくのが好ましい。
(E)
Although not particularly mentioned in the air conditioner 1 according to the previous embodiment, the venting circuit may be formed by connecting the liquid receiver 16 and the suction pipe of the compressor 11. In such a case, it is preferable to provide an electric expansion valve, an electromagnetic valve, or the like in the degassing circuit.

(F)
先の実施の形態に係る空気調和装置1では中間圧圧力センサ24が設けられたが、中間圧圧力センサ24を取り除いてもよい。かかる場合、第1受液器液面制御時において、例えば、予め、第1電動膨張弁15と第2電動膨張弁17の総開度を圧縮機11の吸入管における過熱度を変数として関数化しておくか或いはその総開度と過熱度との関係を表した制御テーブルを作成する等した上で、第1電動膨張弁15と第2電動膨張弁17の開度比を高圧圧力と第1電動膨張弁入口温度とを変数として関数化しておくこと等が考えられる。このようにすれば、第1電動膨張弁15と第2電動膨張弁17の開度は一義的に決定できる。
(F)
In the air conditioning apparatus 1 according to the previous embodiment, the intermediate pressure sensor 24 is provided, but the intermediate pressure sensor 24 may be removed. In such a case, at the time of the first liquid receiver liquid level control, for example, the total opening degree of the first electric expansion valve 15 and the second electric expansion valve 17 is previously functionalized with the degree of superheat in the suction pipe of the compressor 11 as a variable. Or by creating a control table representing the relationship between the total opening and the degree of superheat, the opening ratio of the first electric expansion valve 15 and the second electric expansion valve 17 is set to the high pressure and the first It can be considered that the electric expansion valve inlet temperature is made into a function as a variable. If it does in this way, the opening degree of the 1st electric expansion valve 15 and the 2nd electric expansion valve 17 can be determined uniquely.

(G)
先の実施の形態に係る空気調和装置1では、高圧側冷媒が超臨界状態から亜臨界状態へ遷移したことを高圧圧力センサ21によって検知した。しかし、高圧側冷媒が超臨界状態から亜臨界状態に遷移したことを検知する方法は他にも考えられる。例えば、高圧側冷媒が亜臨界状態へ遷移した場合に高圧側冷媒が気液二相状態となる領域、具体的には放熱器の伝熱管の特定領域に2本の温度センサを設置し、その2本の温度センサから得られる温度情報がほぼ一致すれば(例えば、それらの温度情報の差が所定の閾値以下となった場合にほぼ一致と判断する)高圧側冷媒が亜臨界状態に遷移したと判断することができる。また、例えば、高圧側冷媒が超臨界状態であるときに高圧側冷媒が臨界点温度以下にならない領域であって高圧側冷媒が亜臨界状態であるときに高圧側冷媒が飽和温度になる領域、具体的には放熱器の伝熱管の特定領域に温度センサを設置し、その温度センサから得られる温度情報が臨界点温度以下になったときに高圧側冷媒が亜臨界状態に遷移したと判断することができる。なお、かかる場合、温度センサは1本で十分である。
(G)
In the air conditioner 1 according to the previous embodiment, the high-pressure sensor 21 detects that the high-pressure side refrigerant has transitioned from the supercritical state to the subcritical state. However, there are other methods for detecting that the high-pressure refrigerant has transitioned from the supercritical state to the subcritical state. For example, two temperature sensors are installed in a region where the high-pressure refrigerant enters a gas-liquid two-phase state when the high-pressure refrigerant transitions to the subcritical state, specifically in a specific region of the heat transfer tube of the radiator, If the temperature information obtained from the two temperature sensors is almost the same (for example, it is judged that the temperature information is almost the same when the difference between the temperature information is equal to or less than a predetermined threshold), the high-pressure refrigerant has transitioned to the subcritical state It can be judged. Further, for example, a region where the high-pressure side refrigerant is not below the critical point temperature when the high-pressure side refrigerant is in the supercritical state, and a region where the high-pressure side refrigerant is at the saturation temperature when the high-pressure side refrigerant is in the subcritical state, Specifically, a temperature sensor is installed in a specific area of the heat exchanger tube of the radiator, and when the temperature information obtained from the temperature sensor falls below the critical point temperature, it is determined that the high-pressure side refrigerant has transitioned to the subcritical state. be able to. In such a case, one temperature sensor is sufficient.

本発明に係る冷凍装置は、安定した受液器の冷媒液面制御が可能となるという特徴を有し、特に二酸化炭素などを冷媒として採用した冷凍装置に有益である。   The refrigerating apparatus according to the present invention has a feature that the liquid level control of the liquid receiver can be stably performed, and is particularly useful for a refrigerating apparatus that employs carbon dioxide or the like as a refrigerant.

本発明の実施の形態に係る空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device concerning an embodiment of the invention. 本発明の実施の形態に係る空気調和装置において高圧側冷媒が超臨界状態であるときの第1電動膨張弁制御を説明するための図である。It is a figure for demonstrating 1st electric expansion valve control when the high pressure side refrigerant | coolant is a supercritical state in the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置において高圧側冷媒が亜臨界状態となったときの状態を説明するための図である。It is a figure for demonstrating a state when the high pressure side refrigerant | coolant will be in a subcritical state in the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置において高圧側冷媒が亜臨界状態となったときの第1電動膨張弁制御を説明するための図である。It is a figure for demonstrating 1st electric expansion valve control when the high pressure side refrigerant | coolant will be in a subcritical state in the air conditioning apparatus which concerns on embodiment of this invention. 変形例(A)に係る空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device concerning modification (A). 変形例(B)に係る空気調和装置において高圧側冷媒が超臨界状態であるときの第1電動膨張弁制御を説明するための図である。It is a figure for demonstrating 1st electric expansion valve control when the high pressure side refrigerant | coolant is a supercritical state in the air conditioning apparatus which concerns on a modification (B). 変形例(B)に係る空気調和装置において高圧側冷媒が亜臨界状態となったときの状態を説明するための図である。It is a figure for demonstrating a state when the high pressure side refrigerant | coolant will be in a subcritical state in the air conditioning apparatus which concerns on a modification (B). 変形例(B)に係る空気調和装置の制御装置において高圧側冷媒が亜臨界状態となったときの第1電動膨張弁制御を説明するための図である。It is a figure for demonstrating 1st electric expansion valve control when the high pressure side refrigerant | coolant will be in a subcritical state in the control apparatus of the air conditioning apparatus which concerns on a modified example (B).

1,101 空気調和装置(冷凍装置)
11 圧縮機(圧縮機構)
13 室外熱交換器
15 第1電動膨張弁(第1膨張機構)
16 受液器
17,33a,33b 第2電動膨張弁(第2膨張機構)
21 高圧圧力センサ(圧力検知部)
23 制御装置
31,31a,31b 室内熱交換器
1,101 Air conditioning equipment (refrigeration equipment)
11 Compressor (compression mechanism)
13 Outdoor Heat Exchanger 15 First Electric Expansion Valve (First Expansion Mechanism)
16 liquid receiver 17, 33a, 33b 2nd electric expansion valve (2nd expansion mechanism)
21 High pressure sensor (pressure detector)
23 control device 31, 31a, 31b indoor heat exchanger

Claims (4)

冷媒を圧縮するための圧縮機構(11)と、
前記圧縮機構の冷媒吐出側に接続される放熱器(13)と、
前記放熱器の出口側に接続される第1膨張機構(15)と、
前記第1膨張機構の冷媒流出側に接続される受液器(16)と、
前記受液器の出口側に接続される第2膨張機構(17,33a,33b)と、
前記第2膨張機構の冷媒流出側に接続されると共に前記圧縮機構の冷媒吸入側に接続される蒸発器(31,31a,31b)と、
前記圧縮機構の冷媒吐出側から前記第1膨張機構の冷媒流入側へ流れる冷媒の状態が超臨界状態から亜臨界状態に遷移した場合に前記第1膨張機構による減圧の度合いを最小にする制御部(23)と、
前記放熱器の第1特定領域に設けられる第1温度検知部と、
前記放熱器の前記第1特定領域に設けられる第2温度検知部と、
を備え、
前記第1特定領域は、高圧側冷媒が亜臨界状態へ遷移した場合に高圧側冷媒が気液二相状態となる領域であり、
前記制御部は、
高圧側冷媒が超臨界状態のとき、第1膨張機構から流出する冷媒を飽和状態になるように前記第1電動膨張弁および前記第2電動膨張弁を制御する第1受液器液面制御を行い、
前記第1温度検知部によって検知される温度と前記第2温度検知部によって検知される温度との差が所定の閾値以下となった場合に、高圧側冷媒が亜臨界状態へ遷移したと判断し、前記第1膨張機構による減圧の度合いを最小にする第2受液器液面制御を行う
冷凍装置(1,101)。
A compression mechanism (11) for compressing the refrigerant;
A radiator (13) connected to the refrigerant discharge side of the compression mechanism;
A first expansion mechanism (15) connected to the outlet side of the radiator;
A liquid receiver (16) connected to the refrigerant outflow side of the first expansion mechanism;
A second expansion mechanism (17, 33a, 33b) connected to the outlet side of the liquid receiver;
An evaporator (31, 31a, 31b) connected to the refrigerant outflow side of the second expansion mechanism and connected to the refrigerant suction side of the compression mechanism;
A control unit that minimizes the degree of decompression by the first expansion mechanism when the state of the refrigerant flowing from the refrigerant discharge side of the compression mechanism to the refrigerant inflow side of the first expansion mechanism transitions from a supercritical state to a subcritical state. (23)
A first temperature detector provided in a first specific region of the radiator;
A second temperature detector provided in the first specific region of the radiator;
With
The first specific region is a region where the high-pressure side refrigerant is in a gas-liquid two-phase state when the high-pressure side refrigerant transitions to the subcritical state,
The controller is
When the high-pressure side refrigerant is in a supercritical state, the first liquid receiver liquid level control is performed to control the first electric expansion valve and the second electric expansion valve so that the refrigerant flowing out from the first expansion mechanism is saturated. Done
When the difference between the temperature detected by the first temperature detector and the temperature detected by the second temperature detector is equal to or less than a predetermined threshold, it is determined that the high-pressure side refrigerant has transitioned to the subcritical state. performs second liquid receiver liquid level control to minimize the vacuum pressure of by the first expansion mechanism,
Refrigeration equipment (1, 101).
前記第1膨張機構は、第1膨張弁であり、
前記制御部は、前記第1温度検知部によって検知される温度と前記第2温度検知部によって検知される温度との差が所定の閾値以下となった場合に前記第1膨張弁を全開にする、
請求項1に記載の冷凍装置。
The first expansion mechanism is a first expansion valve;
The control unit fully opens the first expansion valve when a difference between a temperature detected by the first temperature detection unit and a temperature detected by the second temperature detection unit becomes a predetermined threshold value or less. ,
The refrigeration apparatus according to claim 1.
冷媒を圧縮するための圧縮機構(11)と、
前記圧縮機構の冷媒吐出側に接続される放熱器(13)と、
前記放熱器の出口側に接続される第1膨張機構(15)と、
前記第1膨張機構の冷媒流出側に接続される受液器(16)と、
前記受液器の出口側に接続される第2膨張機構(17,33a,33b)と、
前記第2膨張機構の冷媒流出側に接続されると共に前記圧縮機構の冷媒吸入側に接続される蒸発器(31,31a,31b)と、
前記圧縮機構の冷媒吐出側から前記第1膨張機構の冷媒流入側へ流れる冷媒の状態が超臨界状態から亜臨界状態に遷移した場合に前記第1膨張機構による減圧の度合いを最小にする制御部(23)と、
前記放熱器の第2特定領域に設けられる第3温度検知部と、
を備え、
前記第2特定領域は、高圧側冷媒が超臨界状態であるときに高圧側冷媒が臨界点温度以下にならない領域であって高圧側冷媒が亜臨界状態であるときに高圧側冷媒が飽和温度になる領域であり、
前記制御部は、
高圧側冷媒が超臨界状態のとき、第1膨張機構から流出する冷媒を飽和状態になるように前記第1電動膨張弁および前記第2電動膨張弁を制御する第1受液器液面制御を行い、
前記第3温度検知部によって検知される温度が前記冷媒の臨界点温度以下になった場合に、高圧側冷媒が亜臨界状態へ遷移したと判断し、前記第1膨張機構による減圧の度合いを最小にする第2受液器液面制御を行う
冷凍装置。
A compression mechanism (11) for compressing the refrigerant;
A radiator (13) connected to the refrigerant discharge side of the compression mechanism;
A first expansion mechanism (15) connected to the outlet side of the radiator;
A liquid receiver (16) connected to the refrigerant outflow side of the first expansion mechanism;
A second expansion mechanism (17, 33a, 33b) connected to the outlet side of the liquid receiver;
An evaporator (31, 31a, 31b) connected to the refrigerant outflow side of the second expansion mechanism and connected to the refrigerant suction side of the compression mechanism;
A control unit that minimizes the degree of decompression by the first expansion mechanism when the state of the refrigerant flowing from the refrigerant discharge side of the compression mechanism to the refrigerant inflow side of the first expansion mechanism transitions from a supercritical state to a subcritical state. (23)
A third temperature detector provided in a second specific region of the radiator;
With
The second specific region is a region where the high-pressure side refrigerant does not fall below a critical point temperature when the high-pressure side refrigerant is in a supercritical state, and when the high-pressure side refrigerant is in a subcritical state, the high-pressure side refrigerant reaches a saturation temperature. Is an area that
The controller is
When the high-pressure side refrigerant is in a supercritical state, the first liquid receiver liquid level control is performed to control the first electric expansion valve and the second electric expansion valve so that the refrigerant flowing out from the first expansion mechanism is saturated. Done
When the temperature detected by the third temperature detection unit is equal to or lower than the critical point temperature of the refrigerant, it is determined that the high-pressure side refrigerant has transitioned to the subcritical state, and the degree of decompression by the first expansion mechanism is minimized. The second liquid receiver liquid level control is performed .
Refrigeration equipment.
前記第1膨張機構は、第1膨張弁であり、
前記制御部は、前記第3温度検知部によって検知される温度が前記冷媒の臨界点温度以下になった場合に前記第1膨張弁を全開にする、
請求項3に記載の冷凍装置。
The first expansion mechanism is a first expansion valve;
The control unit fully opens the first expansion valve when the temperature detected by the third temperature detection unit is equal to or lower than the critical point temperature of the refrigerant.
The refrigeration apparatus according to claim 3.
JP2006246153A 2006-09-11 2006-09-11 Refrigeration equipment Active JP5332093B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006246153A JP5332093B2 (en) 2006-09-11 2006-09-11 Refrigeration equipment
ES07806192.6T ES2685813T3 (en) 2006-09-11 2007-08-29 Cooling device
PCT/JP2007/066715 WO2008032568A1 (en) 2006-09-11 2007-08-29 Refrigeration device
CN2007800334000A CN101512246B (en) 2006-09-11 2007-08-29 Refrigeration device
EP07806192.6A EP2068093B1 (en) 2006-09-11 2007-08-29 Refrigeration device
US12/439,752 US20100050674A1 (en) 2006-09-11 2007-08-29 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246153A JP5332093B2 (en) 2006-09-11 2006-09-11 Refrigeration equipment

Publications (3)

Publication Number Publication Date
JP2008064437A JP2008064437A (en) 2008-03-21
JP2008064437A5 JP2008064437A5 (en) 2009-05-07
JP5332093B2 true JP5332093B2 (en) 2013-11-06

Family

ID=39183631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246153A Active JP5332093B2 (en) 2006-09-11 2006-09-11 Refrigeration equipment

Country Status (6)

Country Link
US (1) US20100050674A1 (en)
EP (1) EP2068093B1 (en)
JP (1) JP5332093B2 (en)
CN (1) CN101512246B (en)
ES (1) ES2685813T3 (en)
WO (1) WO2008032568A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101749430B1 (en) * 2015-03-25 2017-06-20 한온시스템 주식회사 Control system and method for controlling for a r744 refrigerant circuit

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011099067A1 (en) 2010-02-10 2013-06-13 三菱電機株式会社 Refrigeration cycle equipment
DE102010042122B4 (en) * 2010-10-07 2019-02-28 Audi Ag Cooling device of a vehicle
JP2012243684A (en) * 2011-05-23 2012-12-10 Mitsubishi Motors Corp Air conditioning control device of battery pack
US9395112B2 (en) * 2011-07-05 2016-07-19 Danfoss A/S Method for controlling operation of a vapour compression system in a subcritical and a supercritical mode
EP2562491B1 (en) * 2011-08-24 2019-05-01 Mahle International GmbH Filling system for transferring refrigerant to a refrigeration system and method of operating a filling system
JP5851771B2 (en) * 2011-08-31 2016-02-03 三菱重工業株式会社 Supercritical cycle and heat pump water heater using the same
CN104344508B (en) * 2013-07-26 2017-06-30 广东美的制冷设备有限公司 The air-conditioning system and method for regulation refrigerant charging quantity and refrigerant circulation
CN106104170B (en) * 2014-03-17 2019-10-25 三菱电机株式会社 Refrigerating circulatory device
CN105371545B (en) * 2014-07-31 2017-10-13 青岛海尔空调器有限总公司 The refrigerant circulation amount adjustment method of air conditioner and its refrigeration system
WO2016046876A1 (en) * 2014-09-22 2016-03-31 三菱電機株式会社 Refrigeration cycle device
US20190360726A1 (en) * 2018-05-22 2019-11-28 General Electric Company Supercritical cooling system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3341500B2 (en) * 1994-11-25 2002-11-05 株式会社日立製作所 Refrigeration apparatus and operating method thereof
DE69732206T2 (en) * 1996-08-22 2005-12-22 Denso Corp., Kariya Refrigeration system of the vapor compression type
JP3813702B2 (en) 1996-08-22 2006-08-23 株式会社日本自動車部品総合研究所 Vapor compression refrigeration cycle
JPH10300248A (en) * 1997-04-30 1998-11-13 Matsushita Electric Ind Co Ltd Refrigerating cycle apparatus
JPH10318613A (en) * 1997-05-16 1998-12-04 Hitachi Ltd Freezing device
JP2000046420A (en) * 1998-07-31 2000-02-18 Zexel Corp Refrigeration cycle
JP2000346472A (en) * 1999-06-08 2000-12-15 Mitsubishi Heavy Ind Ltd Supercritical steam compression cycle
JP2001004235A (en) * 1999-06-22 2001-01-12 Sanden Corp Steam compression refrigeration cycle
JP2001133058A (en) * 1999-11-05 2001-05-18 Matsushita Electric Ind Co Ltd Refrigeration cycle
JP2001289537A (en) * 2000-04-10 2001-10-19 Mitsubishi Heavy Ind Ltd Pressure control valve
JP2002168536A (en) * 2000-11-29 2002-06-14 Mitsubishi Heavy Ind Ltd Air conditioner
WO2003019085A1 (en) * 2001-08-31 2003-03-06 Mærsk Container Industri A/S A vapour-compression-cycle device
JP2003265889A (en) * 2002-03-19 2003-09-24 Sanyo Electric Co Ltd Washing and drying machine
JP3841039B2 (en) * 2002-10-25 2006-11-01 株式会社デンソー Air conditioner for vehicles
JP4049769B2 (en) * 2004-08-12 2008-02-20 三洋電機株式会社 Refrigerant cycle equipment
JP2006112708A (en) * 2004-10-14 2006-04-27 Mitsubishi Electric Corp Refrigerating air conditioner
JP4379322B2 (en) * 2004-12-07 2009-12-09 富士電機ホールディングス株式会社 Vending machine cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101749430B1 (en) * 2015-03-25 2017-06-20 한온시스템 주식회사 Control system and method for controlling for a r744 refrigerant circuit

Also Published As

Publication number Publication date
EP2068093B1 (en) 2018-08-08
US20100050674A1 (en) 2010-03-04
EP2068093A1 (en) 2009-06-10
JP2008064437A (en) 2008-03-21
CN101512246B (en) 2010-08-18
EP2068093A4 (en) 2014-12-24
WO2008032568A1 (en) 2008-03-20
CN101512246A (en) 2009-08-19
ES2685813T3 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
JP5332093B2 (en) Refrigeration equipment
JP4973078B2 (en) Refrigeration equipment
JP5324749B2 (en) Refrigeration equipment
JP2008064437A5 (en)
JP5145674B2 (en) Refrigeration equipment
JP4811204B2 (en) Refrigeration equipment
JP2008064436A5 (en)
WO2011125111A1 (en) Air conditioning and hot-water supply composite system
WO2009122706A1 (en) Refrigerating device
JP2008064435A5 (en)
JP2008096093A5 (en)
JP2008064438A5 (en)
US9863680B2 (en) Heat pump apparatus
JP2008064439A (en) Air conditioner
JP2007218532A (en) Air conditioner
JP2007232265A (en) Refrigeration unit
JP2008039233A (en) Refrigerating device
WO2021156901A1 (en) Refrigeration cycle device
JP3835478B1 (en) Air conditioner
JP2002243307A (en) Air conditioning apparatus
KR102313304B1 (en) Air conditioner for carbon dioxide
JP2005291558A (en) Air conditioner
JP2007107820A (en) Air conditioner and air conditioner heat source unit used therefor
KR20060083015A (en) Apparatus for preventing the overflow of liquid refrigerants of airconditioner and control method of airconditioner using that

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5332093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151