JP5331754B2 - Polypropylene resin composition for extrusion molding and molded resin molded body thereof - Google Patents
Polypropylene resin composition for extrusion molding and molded resin molded body thereof Download PDFInfo
- Publication number
- JP5331754B2 JP5331754B2 JP2010130795A JP2010130795A JP5331754B2 JP 5331754 B2 JP5331754 B2 JP 5331754B2 JP 2010130795 A JP2010130795 A JP 2010130795A JP 2010130795 A JP2010130795 A JP 2010130795A JP 5331754 B2 JP5331754 B2 JP 5331754B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- propylene homopolymer
- weight
- propylene
- ethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920001155 polypropylene Polymers 0.000 title claims abstract description 93
- 239000004743 Polypropylene Substances 0.000 title claims abstract description 89
- -1 Polypropylene Polymers 0.000 title claims abstract description 77
- 229920005989 resin Polymers 0.000 title claims abstract description 36
- 239000011347 resin Substances 0.000 title claims abstract description 36
- 239000011342 resin composition Substances 0.000 title claims abstract description 25
- 238000001125 extrusion Methods 0.000 title claims abstract description 24
- 229920001384 propylene homopolymer Polymers 0.000 claims abstract description 69
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229920001400 block copolymer Polymers 0.000 claims abstract description 32
- 229920001971 elastomer Polymers 0.000 claims abstract description 21
- 239000005060 rubber Substances 0.000 claims abstract description 20
- 150000001993 dienes Chemical class 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 17
- 229920001577 copolymer Polymers 0.000 claims abstract description 11
- 229920000642 polymer Polymers 0.000 claims description 30
- 238000000465 moulding Methods 0.000 claims description 29
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 20
- 239000005977 Ethylene Substances 0.000 claims description 20
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims description 19
- 239000004711 α-olefin Substances 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 14
- 239000000155 melt Substances 0.000 claims description 14
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000000071 blow moulding Methods 0.000 claims description 10
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 10
- 229920005653 propylene-ethylene copolymer Polymers 0.000 claims description 9
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 8
- 239000000203 mixture Substances 0.000 abstract description 13
- 230000005484 gravity Effects 0.000 abstract description 6
- 230000000052 comparative effect Effects 0.000 description 27
- 238000006116 polymerization reaction Methods 0.000 description 23
- 239000000047 product Substances 0.000 description 23
- 238000000034 method Methods 0.000 description 15
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 15
- 238000005259 measurement Methods 0.000 description 14
- 238000002156 mixing Methods 0.000 description 12
- 239000011256 inorganic filler Substances 0.000 description 9
- 229910003475 inorganic filler Inorganic materials 0.000 description 9
- 238000005227 gel permeation chromatography Methods 0.000 description 8
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 150000003440 styrenes Chemical class 0.000 description 7
- 239000004793 Polystyrene Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000002952 polymeric resin Substances 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 238000013329 compounding Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- 239000012986 chain transfer agent Substances 0.000 description 4
- 229920006158 high molecular weight polymer Polymers 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 239000012778 molding material Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- 210000003660 reticulum Anatomy 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000012265 solid product Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229920006132 styrene block copolymer Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- AQZGPSLYZOOYQP-UHFFFAOYSA-N Diisoamyl ether Chemical compound CC(C)CCOCCC(C)C AQZGPSLYZOOYQP-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920002633 Kraton (polymer) Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 238000012685 gas phase polymerization Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- QSSJZLPUHJDYKF-UHFFFAOYSA-N methyl 4-methylbenzoate Chemical compound COC(=O)C1=CC=C(C)C=C1 QSSJZLPUHJDYKF-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002742 polystyrene-block-poly(ethylene/propylene) -block-polystyrene Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、押出成形用ポリプロピレン樹脂組成物およびその塗装樹脂成形体に関し、より詳しくは、低比重、剛性、耐熱性、塗装性、耐ドローダウン性に優れた大型ブロー成形体を成形するのに適した押出成形用ポリプロピレン樹脂組成物およびその塗装樹脂成形体に関する。 The present invention relates to a polypropylene resin composition for extrusion molding and a coated resin molded body thereof, and more specifically, for molding a large blow molded body excellent in low specific gravity, rigidity, heat resistance, paintability, and drawdown resistance. The present invention relates to a suitable polypropylene resin composition for extrusion molding and a coated resin molded body thereof.
ブロー成形等の押出性形に用いられる樹脂は、おしなべて耐ドローダウン性に優れていることが必須である。一般に、ポリプロピレンは、耐熱性や平滑性・光沢等の表面品質には優れているが、押出成形時の耐ドローダウン性が不良であり、特に、長手方向の寸法が1.3m以上のような長尺成形体のブロー成形用材料に用いた場合にはドローダウンに起因して成形品の肉厚が不均一になる問題が顕在化する。一方、ポリエチレンは、ポリプロピレンに比べて耐ドローダウン性に優れている。中でも高密度ポリエチレンは、この特性がより一層優れているので、ブロー成形用材料として適しているが、その反面、耐熱性、塗装性、表面品質に劣る欠点を有している。
そこで、ポリプロピレン及びポリエチレンの欠点を相互に補完したポリプロピレンと高密度ポリエチレンとの樹脂組成物をベースとした押出成形用材料が使用されている。
It is essential that the resin used in the extrudable form such as blow molding is excellent in resistance to drawdown. In general, polypropylene is excellent in surface quality such as heat resistance, smoothness, and gloss, but has poor draw-down resistance during extrusion molding, and particularly has a longitudinal dimension of 1.3 m or more. When it is used as a blow molding material for a long molded body, a problem that the thickness of the molded product becomes non-uniform due to drawdown becomes obvious. On the other hand, polyethylene has better drawdown resistance than polypropylene. Among these, high-density polyethylene is more suitable for blow molding because it has even better properties, but has disadvantages inferior in heat resistance, paintability, and surface quality.
Therefore, an extrusion molding material based on a resin composition of polypropylene and high-density polyethylene that complement each other with the drawbacks of polypropylene and polyethylene is used.
また、最近では、成形体に塗装性や高度な耐衝撃性を付与することが要求されていることから、ポリプロピレン樹脂にエチレン・α−オレフィン系共重合体ゴムを配合したり、かつ剛性や耐熱性を付与することが要求されていることから、無機充填材を配合したりすることが提案されている。(特許文献1、特許文献2参照)。しかしながら、エチレン・α−オレフィン系共重合体ゴムを配合すると、剛性が低下したり、表面平滑性が悪化したりする問題があり、一方、無機充填材を配合すると、成形体の重量が増したり、耐ドローダウン性が悪化したりする問題あった。 In recent years, it has been required to provide paints with high paint resistance and high impact resistance. Therefore, blending ethylene / α-olefin copolymer rubber with polypropylene resin, and providing rigidity and heat resistance. Since it is requested | required to provide property, mix | blending an inorganic filler is proposed. (See Patent Document 1 and Patent Document 2). However, when an ethylene / α-olefin copolymer rubber is blended, there is a problem that the rigidity is lowered or the surface smoothness is deteriorated. On the other hand, when an inorganic filler is blended, the weight of the molded body increases. There was a problem that the drawdown resistance deteriorated.
さらに、耐ドローダウン性、表面平滑性や塗装密着性を付与する方法として、ポリプロピレン樹脂にスチレン・共役ジエンブロック共重合体の水素添加物(SEBS等)を配合することが提案されている(特許文献3)。しかしながら、スチレン・共役ジエンブロック共重合体の水素添加物を配合すると剛性の低下は避けられず、剛性の低下を補うための無機充填材の配合が必要であった。
そのため、本出願人は、特定の性状を有する結晶性プロピレン単独重合体等とプロピレンホモポリマー等とからなるポリプロピレン樹脂材料に対して、スチレン・共役ジエンブロック共重合体の水素添加物又は特定のエチレン重合体樹脂を配合することで、無機充填材の配合を控えても剛性、耐熱性に優れ、無機充填材の配合が抑えられて低比重化が達成されるポリプロピレン樹脂組成物を提案した(特許文献4、特許文献5)。すなわち、Mw/Mnが5〜20の結晶性プロピレン単独重合体(a1)等であって、メルトフローレートが2g/10分以下、曲げ弾性率が900〜1500MPaの成分(a)、Mw/Mnが1〜9、かつ前記結晶性プロピレン単独重合体(a1)のMw/Mnより小さいプロピレンホモポリマー(b1)等であって、メルトフローレートが0.03〜3g/10分、曲げ弾性率が1800〜2600MPaの成分(b)からなるポリプロピレン樹脂材料に対して、スチレン・共役ジエンブロック共重合体の水素添加物である成分(c)を特定割合で含む押出成形用ポリプロピレン樹脂組成物(特許文献4)とするか、また、これらの成分(a)(b)に対して、メルトフローレートが0.1〜0.5g/10分、密度0.953〜0.970g/cm3のエチレン重合体樹脂である成分(c)を特定割合で含むポリプロピレン樹脂組成物(特許文献5)とすることで、剛性、耐熱性、低比重化が達成される。しかしながら、これらにおいても塗膜の密着性は必ずしも十分といえるものではなかった。
Furthermore, as a method for imparting drawdown resistance, surface smoothness and paint adhesion, it has been proposed to blend a polypropylene resin with a hydrogenated styrene / conjugated diene block copolymer (such as SEBS) (patent) Reference 3). However, when a hydrogenated styrene / conjugated diene block copolymer is blended, a decrease in rigidity is inevitable, and an inorganic filler is required to compensate for the decrease in rigidity.
Therefore, the applicant of the present invention is not limited to a polypropylene resin material composed of a crystalline propylene homopolymer having a specific property and a propylene homopolymer, etc., but a hydrogenated product of a styrene / conjugated diene block copolymer or a specific ethylene. Proposal of a polypropylene resin composition that has excellent rigidity and heat resistance by blending a polymer resin and can achieve low specific gravity by suppressing the blending of the inorganic filler even if the inorganic filler is not blended (patent) Document 4 and Patent document 5). That is, a crystalline propylene homopolymer (a1) having a Mw / Mn of 5 to 20 or the like, a component (a) having a melt flow rate of 2 g / 10 min or less and a flexural modulus of 900 to 1500 MPa, Mw / Mn Is a propylene homopolymer (b1) smaller than Mw / Mn of the crystalline propylene homopolymer (a1), etc., and has a melt flow rate of 0.03 to 3 g / 10 min and a flexural modulus of Polypropylene resin composition for extrusion molding containing a component (c), which is a hydrogenated product of a styrene / conjugated diene block copolymer, in a specific ratio with respect to a polypropylene resin material composed of a component (b) of 1800 to 2600 MPa (Patent Literature) 4) or with respect to these components (a) and (b), the melt flow rate is 0.1 to 0.5 g / 10 min, and the density is 0.953 to 0.00. With 70 g / cm polypropylene resin composition comprising 3 ethylene polymer resin and a component (c) in a specific proportion (Patent Document 5), rigidity, heat resistance, low specific gravity is achieved. However, even in these cases, the adhesion of the coating film is not always sufficient.
本発明は、上記従来の問題点に鑑み、低比重、剛性、耐熱性、塗装性、耐ドローダウン性に優れた大型ブロー成形体を成形するのに適した押出成形用ポリプロピレン樹脂組成物およびその塗装樹脂成形体を提供することを目的とする。 In view of the above-mentioned conventional problems, the present invention is a polypropylene resin composition for extrusion molding suitable for molding a large blow molded article excellent in low specific gravity, rigidity, heat resistance, paintability, and drawdown resistance, and its It aims at providing the coating resin molding.
本発明者らは、上記の課題を解決するため鋭意研究を重ねた結果、Mw/Mnが1〜9のプロピレンホモポリマー単体、又はこれにMw/Mnが5〜20かつ前記プロピレンホモポリマーよりも大きい結晶性プロピレン単独重合体を含むポリプロピレン樹脂材料に、スチレン・共役ジエンブロック共重合体の水素添加物、及びエチレン・α−オレフィン系共重合体ゴムを配合した特定の特性を有するポリプロピレン組成物を使用することにより、高い溶融張力を保持しつつ、低密度、高剛性、耐熱性、塗装性が向上したブロー成形体が得られることを見出し、本発明を完成するに到った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a propylene homopolymer having a Mw / Mn of 1 to 9, or a Mw / Mn of 5 to 20 and a propylene homopolymer than A polypropylene composition having specific characteristics obtained by blending a polypropylene resin material containing a large crystalline propylene homopolymer with a hydrogenated styrene / conjugated diene block copolymer and an ethylene / α-olefin copolymer rubber. By using it, it was found that a blow molded product having improved low density, high rigidity, heat resistance and paintability while maintaining high melt tension was obtained, and the present invention was completed.
すなわち、本発明の第1の発明によれば、下記の成分(a)60〜100重量%、及び下記の成分(b)0〜40重量%からなるポリプロピレン樹脂材料100重量部に対して、下記の成分(c)0〜30重量部と下記の成分(d)10〜40重量部とを含み、成分(c)と(d)との合計量が25〜45重量部であることを特徴とする押出成形用ポリプロピレン樹脂組成物が提供される。
成分(a): Mw/Mnが1〜9のプロピレンホモポリマー(a1)、又は該プロピレンホモポリマー部分とプロピレンエチレンコポリマー部分とを有するプロピレンエチレンブロックコポリマー(a2)であって、該プロピレンホモポリマーは、プロピレンを少なくとも2段階に単独重合し、各段階で生成する重合体部分のうち、分子量の最も高い重合体部分の極限粘度を[η]H、分子量の最も低い重合体部分の極限粘度を[η]Lとしたとき、[η]Hと[η]Lとが関係式(1)を満足し、かつメルトフローレート(230℃ 21.18N)が0.03〜3g/10分、曲げ弾性率が1800〜2600MPaのもの
3.0≦[η]H−[η]L≦6.5 ・・・(1)
成分(b): Mw/Mnが5〜20、かつMw/Mnが前記プロピレンホモポリマー(a1)よりも大きい結晶性プロピレン単独重合体(b1)、又は該結晶性プロピレン単独重合体部分とプロピレンエチレン共重合体部分とを有する結晶性プロピレンエチレンブロック共重合体(b2)であって、メルトフローレート(230℃ 21.18N)が2g/10分以下、曲げ弾性率が900〜1500MPaのもの
成分(c): スチレン・共役ジエンブロック共重合体の水素添加物
成分(d): ムーニー粘度[ML1+4(100℃)]が51以上70未満のエチレン・α−オレフィン系共重合体ゴム
That is, according to 1st invention of this invention, with respect to 100 weight part of polypropylene resin materials which consist of the following component (a) 60-100 weight% and the following component (b) 0-40 weight%, the following The component (c) is 0 to 30 parts by weight and the following component (d) is 10 to 40 parts by weight, and the total amount of the components (c) and (d) is 25 to 45 parts by weight. A polypropylene resin composition for extrusion molding is provided.
Component (a): a propylene homopolymer (a1) having an Mw / Mn of 1 to 9, or a propylene ethylene block copolymer (a2) having the propylene homopolymer portion and the propylene ethylene copolymer portion, wherein the propylene homopolymer is , Propylene is homopolymerized in at least two stages, and among the polymer parts produced in each stage, the intrinsic viscosity of the polymer part having the highest molecular weight is [η] H, and the intrinsic viscosity of the polymer part having the lowest molecular weight is [ When [η] L, [η] H and [η] L satisfy the relational expression (1), and the melt flow rate (230 ° C., 21.18 N) is 0.03 to 3 g / 10 min. The rate is 1800-2600 MPa
3.0 ≦ [η] H− [η] L ≦ 6.5 (1)
Component (b): Crystalline propylene homopolymer (b1) having an Mw / Mn of 5 to 20 and an Mw / Mn greater than the propylene homopolymer (a1), or the crystalline propylene homopolymer portion and propylene ethylene A crystalline propylene ethylene block copolymer (b2) having a copolymer portion, having a melt flow rate (230 ° C., 21.18 N) of 2 g / 10 min or less and a flexural modulus of 900 to 1500 MPa. c): Hydrogenated product of styrene / conjugated diene block copolymer Component (d): Ethylene / α-olefin copolymer rubber having Mooney viscosity [ML1 + 4 (100 ° C.)] of 51 or more and less than 70
また、本発明の第2の発明によれば、第1の発明に係り、押出成形用ポリプロピレン樹脂組成物を、ブロー成形機により成形してなるブロー成形体の表面に、塗膜が施されてなる塗装樹脂成形体が提供される。 According to a second invention of the present invention, the coating film is applied to the surface of a blow molded article obtained by molding the polypropylene resin composition for extrusion molding with a blow molding machine according to the first invention. A coated resin molded body is provided.
本発明の押出成形用ポリプロピレン樹脂組成物は、Mw/Mnが1〜9のプロピレンホモポリマー単体、又はこれにMw/Mnが5〜20かつ前記プロピレンホモポリマーよりも大きい結晶性プロピレン単独重合体を含むポリプロピレン樹脂材料に、スチレン・共役ジエンブロック共重合体の水素添加物、及びエチレン・α−オレフィン系共重合体ゴムを配合した特定の特性を有するポリプロピレン組成物を使用するので、ブロー成形時の耐ドローダウン性が改善されるだけでなく、低密度で高剛性による軽量化、塗装性も著しく優れている。
そのため、大型で複雑な形状のブロー成形体を得ることが可能になり、バンパー等の自動車外装部品等の成形に優れている。
The polypropylene resin composition for extrusion molding according to the present invention comprises a propylene homopolymer alone having an Mw / Mn of 1 to 9, or a crystalline propylene homopolymer having an Mw / Mn of 5 to 20 and larger than the propylene homopolymer. Since the polypropylene composition having specific characteristics in which the hydrogenated product of styrene / conjugated diene block copolymer and the ethylene / α-olefin copolymer rubber are used in the polypropylene resin material to be included is used at the time of blow molding Not only is the drawdown resistance improved, it is also lighter in weight and paintability due to its low density and high rigidity.
Therefore, it becomes possible to obtain a large and complicated blow molded article, and is excellent in molding automobile exterior parts such as bumpers.
1.押出成形用ポリプロピレン樹脂組成物
本発明の押出成形用ポリプロピレン樹脂組成物は、ポリプロピレン樹脂材料が、下記の成分(a)45〜100質量%と、下記の成分(b)0〜55質量%からなり、ポリプロピレン樹脂材料100重量部に対して、下記の成分(c)0〜30重量部と下記の成分(d)10〜50重量部とを含み、成分(c)と(d)との合計量が25〜50重量部であることを特徴とする。
以下に、各構成成分、樹脂組成物の物性、製法、及びそれを用いた成形体等について詳細に説明する。
1. Polypropylene resin composition for extrusion molding The polypropylene resin composition for extrusion molding of the present invention comprises a polypropylene resin material comprising 45 to 100% by mass of the following component (a) and 0 to 55% by mass of the following component (b). The total amount of the components (c) and (d) includes 0 to 30 parts by weight of the following component (c) and 10 to 50 parts by weight of the following component (d) with respect to 100 parts by weight of the polypropylene resin material. Is 25 to 50 parts by weight.
Below, each component, the physical property of a resin composition, a manufacturing method, a molded object using the same, etc. are demonstrated in detail.
(1) 成分(a)
成分(a)は、プロピレンホモポリマー(a1)、又は該プロピレンホモポリマーとプロピレンエチレンコポリマーとを有するプロピレンエチレンブロックコポリマー(a2)のいずれかである。
本発明において使用するプロピレンホモポリマー(a1)は、プロピレン単独重合体の他、本発明の目的を著しく損なわない範囲でエチレン、1−ブテン等のコモノマーが共重合されたプロピレン系共重合体も含まれる。コモノマーの量は1質量%未満程度である。
(1) Component (a)
Component (a) is either a propylene homopolymer (a1) or a propylene ethylene block copolymer (a2) having the propylene homopolymer and a propylene ethylene copolymer.
The propylene homopolymer (a1) used in the present invention includes a propylene homopolymer and a propylene copolymer in which a comonomer such as ethylene and 1-butene is copolymerized as long as the object of the present invention is not significantly impaired. It is. The amount of comonomer is less than 1% by mass.
プロピレンホモポリマー(a1)は、前記GPC測定により得られる重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1〜9、好ましくは3〜8、より好ましくは4〜7である。Mw/Mnが、この範囲内であれば、耐ドローダウン性が低下せず、成形品の表面性も低下しない。なお、Mw/Mnの測定は、ゲルパーミエーションクロマトグラフィー(GPC)により、次の測定条件で行われる。
装置:ウオーターズ社製GPC 150C型
検出器:MIRAN社製 1A赤外分光光度計(測定波長、3.42μm)
カラム:昭和電工社製AD806M/S 3本(カラムの較正は、東ソー製単分散ポリスチレン(A500,A2500,F1,F2,F4,F10,F20,F40,F288の各0.5mg/ml溶液)の測定を行い、溶出体積と分子量の対数値を2次式で近似した。また、試料の分子量は、ポリスチレンとポリプロピレンの粘度式を用いてポリプロピレンに換算した。ここでポリスチレンの粘度式の係数はα=0.723、logK=−3.967であり、ポリプロピレンはα=0.707、logK=−3.616である)
測定温度:140℃
濃度:20mg/10mL
注入量:0.2ml
溶媒:オルソジクロロベンゼン
流速:1.0ml/分
粘度式:log[η]=logK+α×logM
また、プロピレンホモポリマー(a1)のMw/Mnの値は、成分(b)の結晶性プロピレン単独重合体のMw/Mnの値より小さいことが必要であり、好ましくは1以上小さく、より好ましくは2以上小さい。プロピレンホモポリマーのMw/Mnの値が成分(b)の結晶性プロピレン単独重合体のMw/Mnの値以上では、耐ドローダウン性とピンチオフ強度とのバランスが不十分となる。
In the propylene homopolymer (a1), the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) obtained by the GPC measurement is 1 to 9, preferably 3 to 8, more preferably 4 ~ 7. If Mw / Mn is within this range, the drawdown resistance is not lowered, and the surface property of the molded article is not lowered. Mw / Mn is measured by gel permeation chromatography (GPC) under the following measurement conditions.
Apparatus: GPC 150C type manufactured by Waters Inc. Detector: 1A infrared spectrophotometer manufactured by MIRAN (measurement wavelength: 3.42 μm)
Column: Three AD806M / S manufactured by Showa Denko Co., Ltd. (column calibration was performed by Tosoh monodisperse polystyrene (0.5 mg / ml solution of each of A500, A2500, F1, F2, F4, F10, F20, F40, and F288) Measurement was performed and the logarithm of the elution volume and molecular weight was approximated by a quadratic equation, and the molecular weight of the sample was converted to polypropylene using the viscosity equation of polystyrene and polypropylene, where the coefficient of the viscosity equation of polystyrene is α = 0.723, log K = -3.767, polypropylene is α = 0.707, log K = -3.616)
Measurement temperature: 140 ° C
Concentration: 20 mg / 10 mL
Injection volume: 0.2ml
Solvent: Orthodichlorobenzene Flow rate: 1.0 ml / min Viscosity formula: log [η] = log K + α × log M
Further, the value of Mw / Mn of the propylene homopolymer (a1) needs to be smaller than the value of Mw / Mn of the crystalline propylene homopolymer of the component (b), preferably 1 or less, more preferably 2 or smaller. When the value of Mw / Mn of the propylene homopolymer is equal to or higher than the value of Mw / Mn of the crystalline propylene homopolymer of component (b), the balance between the drawdown resistance and the pinch-off strength becomes insufficient.
本発明において使用されるプロピレンホモポリマー(a1)は、融点が低いと耐熱性が低下する傾向にあり、融点が高いと成形時の加熱時間が長くなる傾向にあるため、融点が155〜170℃であることが好ましい。
ここで、融点は、示差走査型熱量計(DSC)によって得られる吸熱カーブのピークを意味する。測定方法は、例えばパーキンエルマー社製DSC7型を用い、約10mgのサンプルを、0℃〜20℃/分の昇温速度で230℃まで昇温し、3分間保持した後、5℃/分の降温速度で0℃まで降温して、5分間保持し、次いで20℃/分の昇温速度で230℃まで昇温した時に得られる吸熱カーブのピーク温度を求める。
When the melting point is low, the propylene homopolymer (a1) used in the present invention tends to have low heat resistance, and when the melting point is high, the heating time during molding tends to be long. It is preferable that
Here, melting | fusing point means the peak of the endothermic curve obtained by a differential scanning calorimeter (DSC). The measuring method is, for example, using a Perkin Elmer DSC7 type, and a sample of about 10 mg is heated to 230 ° C. at a temperature rising rate of 0 ° C. to 20 ° C./min, held for 3 minutes, and then 5 ° C./min. The temperature is lowered to 0 ° C. at a temperature lowering rate, held for 5 minutes, and then the peak temperature of the endothermic curve obtained when the temperature is raised to 230 ° C. at a temperature rising rate of 20 ° C./min is obtained.
本発明において使用されるプロピレンホモポリマー(a1)は、プロピレンを少なくとも2段階に単独重合し、各段階で生成する重合体部分のうち、分子量の最も高い重合体部分(高分子量重合体ともいう)の極限粘度を[η]H、分子量の最も低い重合体部分(低分子量重合体ともいう)の極限粘度[η]Lとしたとき、[η]Hと[η]Lとが関係式(1)を満足することが好ましい。
3.0≦[η]H−[η]L≦6.5 ・・・(1)
より好ましくは関係式(1)’を満足する。
3.5≦[η]H−[η]L≦5.5 ・・・(1)’
関係式(1)を満足すれば、溶融粘弾性が低下しても成形加工性が低下せず、また分子量格差が過大とならず不均一さが大きくならないために表面の肌荒れなど外観が悪くなることがない。
The propylene homopolymer (a1) used in the present invention is obtained by homopolymerizing propylene in at least two stages, and among the polymer parts produced in each stage, a polymer part having the highest molecular weight (also referred to as a high molecular weight polymer). When the intrinsic viscosity of [η] H is [η] H and the intrinsic viscosity [η] L of the polymer portion having the lowest molecular weight (also referred to as a low molecular weight polymer), [η] H and [η] L ) Is preferably satisfied.
3.0 ≦ [η] H− [η] L ≦ 6.5 (1)
More preferably, the relational expression (1) ′ is satisfied.
3.5 ≦ [η] H− [η] L ≦ 5.5 (1) ′
If the relational expression (1) is satisfied, even if the melt viscoelasticity is lowered, the molding processability is not lowered, and the molecular weight difference is not excessive and the non-uniformity is not increased, so that the appearance such as rough skin is deteriorated. There is nothing.
各段階での生成量の割合は、2段階で重合する場合には、高分子量重合体が好ましくは35〜65質量%、より好ましくは40〜60質量%であり、低分子量重合体が好ましくは65〜35質量%、より好ましくは60〜40質量%である。2段階で重合する場合には高分子量重合体と低分子量重合体との合計は100質量%である。この範囲であると良好な溶融流動性が得られ造粒時の混練も良好となるので好ましい。
プロピレンホモポリマー(a1)を3段階以上で重合する場合には、各重合体の部分が等量に近い量であることが好ましく、高分子量重合体と低分子量重合体の量比が0.5〜1.5、より好ましくは0.75〜1.25である。この範囲であると良好な溶融流動性が得られ造粒時の混練も良好となる。
When the polymerization is performed in two stages, the high molecular weight polymer is preferably 35 to 65% by mass, more preferably 40 to 60% by mass, and the low molecular weight polymer is preferably used. It is 65-35 mass%, More preferably, it is 60-40 mass%. When the polymerization is performed in two stages, the total of the high molecular weight polymer and the low molecular weight polymer is 100% by mass. Within this range, good melt fluidity is obtained, and kneading during granulation is good, which is preferable.
When the propylene homopolymer (a1) is polymerized in three or more stages, it is preferable that the portions of each polymer are in an amount close to an equivalent amount, and the amount ratio of the high molecular weight polymer and the low molecular weight polymer is 0.5. -1.5, more preferably 0.75-1.25. Within this range, good melt fluidity is obtained and kneading during granulation is also good.
ここで各段階での重合体の重合割合は物質収支から求め、極限粘度は各段階重合終了時の重合体のテトラリン溶液中において135℃で測定する極限粘度から、次式により求める。
WT n×[η]T n=WT n−1×[η]T n−1+(WT n−WT n−1)×[η]n
ここで、WT n−1はn−1段目までの重合体の割合の合計量、WT nはn段目までの
重合体の割合の合計量、[η]T n−1はn−1段目の重合終了時における重合体の極限粘度、[η]T nはn段目の重合終了時における重合体の極限粘度、[η]nはn段目の重合体の極限粘度、nは2以上の整数で、全重合段階の数を越えない。
Here, the polymerization ratio of the polymer at each stage is obtained from the mass balance, and the intrinsic viscosity is obtained from the intrinsic viscosity measured at 135 ° C. in the polymer tetralin solution at the end of each stage polymerization by the following formula.
W T n × [η] T n = W T n−1 × [η] T n−1 + (W T n −W T n−1 ) × [η] n
Here, W T n-1 is the total amount of the polymer up to the n-1 stage, W T n is the total amount of the polymer up to the n stage, and [η] T n-1 is n The intrinsic viscosity of the polymer at the end of the first stage polymerization, [η] T n is the intrinsic viscosity of the polymer at the end of the n stage polymerization, and [η] n is the intrinsic viscosity of the n stage polymer. n is an integer of 2 or more and does not exceed the number of all polymerization stages.
本発明に係るプロピレンホモポリマー(a1)の製造方法の例は、以下に示す通りであるが、この方法に限定されるものではない。
すなわち、プロピレンホモポリマー(a1)は、次の触媒の存在下にプロピレンを多段階に重合させることによって得ることができる。例えば、トリエチルアルミニウム、ジエチルアルミニウムモノクロリドなどの有機アルミニウム化合物(I)、もしくは有機アルミニウム化合物(I)と電子供与体(a)、例えばジイソアミルエーテルとの反応生成物(VI)を四塩化チタン(c)と反応させて得られる固体生成物(II)に、さらに電子供与体(a)と電子受容体(b)、例えば四塩化チタンとを反応させて得られる固体生成物(III)を有機アルミニウム化合物(IV)、例えばトリエチルアルミニウム、ジエチルアルミニウムモノクロリドなど、および芳香族カルボン酸エステル(V)、例えばp−トルイル酸メチルと組み合わせ、該芳香族カルボン酸エステル(V)と該固体生成物(III)のモル比率V/III=0.1〜10.0とした触媒を用いる。
多段階重合は、単一の重合槽を用いて、重合条件である温度、圧力、水素等の連鎖移動剤の濃度等を段階的に変更することにより行うことができ、あるいは温度、圧力、水素等の連鎖移動剤の濃度等の重合条件が異なる複数の重合槽を用いて行ったり、両者を組み合わせて行ってもよい。
重合様式は、バルク重合、溶液重合、気相重合等公知の様式を採用することができる。各重合段階の重合様式は、同じでも異なっていてもよい。
本発明のプロピレンホモポリマー(a1)は、最も高分子量の重合体と最も低分子量の重合体との極限粘度の差が、比較的大きいことを特徴とするものであるから、各重合段階の重合条件を決定するにあたっては、最も高分子量の重合体を得る段階では水素等の連鎖移動剤の不存在下で行い、最も低分子量の重合体を得る段階では充分な連鎖移動剤の存在下で行うことが好ましい。
Although the example of the manufacturing method of the propylene homopolymer (a1) based on this invention is as showing below, it is not limited to this method.
That is, the propylene homopolymer (a1) can be obtained by polymerizing propylene in multiple stages in the presence of the following catalyst. For example, an organoaluminum compound (I) such as triethylaluminum or diethylaluminum monochloride, or a reaction product (VI) of an organoaluminum compound (I) and an electron donor (a) such as diisoamyl ether is converted to titanium tetrachloride ( The solid product (II) obtained by reacting with c) is further reacted with an electron donor (a) and an electron acceptor (b), for example, titanium tetrachloride. In combination with an aluminum compound (IV), such as triethylaluminum, diethylaluminum monochloride, etc., and an aromatic carboxylic acid ester (V), such as methyl p-toluate, the aromatic carboxylic acid ester (V) and the solid product ( A catalyst having a molar ratio V / III of III) of 0.1 to 10.0 is used.
Multi-stage polymerization can be performed by changing the temperature, pressure, concentration of chain transfer agent such as hydrogen stepwise, etc., in a single polymerization tank, or temperature, pressure, hydrogen The polymerization may be carried out using a plurality of polymerization tanks having different polymerization conditions such as the concentration of the chain transfer agent such as a combination thereof.
As the polymerization mode, known modes such as bulk polymerization, solution polymerization, and gas phase polymerization can be adopted. The polymerization mode of each polymerization stage may be the same or different.
The propylene homopolymer (a1) of the present invention is characterized in that the difference in intrinsic viscosity between the highest molecular weight polymer and the lowest molecular weight polymer is relatively large. In determining the conditions, the step of obtaining the highest molecular weight polymer is performed in the absence of a chain transfer agent such as hydrogen, and the step of obtaining the lowest molecular weight polymer is performed in the presence of a sufficient chain transfer agent. It is preferable.
本発明において使用されるプロピレンホモポリマー(a1)は、アイソタクチックペンタッド分率(P)
とMFRとの関係が次式を満たすことが好ましい。この関係式(2)を満たすプロピレンホモポリマーを用いることで、本発明の要件である曲げ弾性率をより満たし易くなる。
1≧P≧0.015×log(MFR)+0.955 ・・・(2)
The propylene homopolymer (a1) used in the present invention has an isotactic pentad fraction (P)
And MFR preferably satisfy the following formula. By using a propylene homopolymer satisfying this relational expression (2), it becomes easier to satisfy the bending elastic modulus which is a requirement of the present invention.
1 ≧ P ≧ 0.015 × log (MFR) +0.955 (2)
ここで、アイソタクチックペンタッド分率とは、Macromolecules, 925−926 (1973)に記載されている方法、すなわち13C−NMRを使用して測定されるプロピレン系重合体分子鎖中のペンタッド単位でのアイソタクチック分率である。言い換えると、該分率は、プロピレンモノマー単位が5個連続してアイソタクチック結合したプロピレンモノマーの分率を意味する。上述の13C−NMRを使用した測定におけるスペクトルのピークの帰属決定法は、Macromolecules, 687−689 (1975)に基づいている。具体的には、13C−NMRによる測定は、FT−NMRの270MHzの装置を用い、27000回のシグナル検出限界をアイソタクチックペンタッド分率で0.001まで向上させて行うことができる。 Here, the isotactic pentad fraction is a pentad unit in a propylene polymer molecular chain measured using the method described in Macromolecules, 925-926 (1973), that is, 13C-NMR. The isotactic fraction of In other words, the fraction means a fraction of propylene monomer in which five propylene monomer units are isotactically bonded continuously. The spectral peak assignment method in the measurement using 13C-NMR described above is based on Macromolecules, 687-689 (1975). Specifically, the measurement by 13C-NMR can be performed by using a 270-MHz FT-NMR apparatus and increasing the signal detection limit of 27000 times to 0.001 in terms of isotactic pentad fraction.
本発明において使用される成分(a)は、プロピレンホモポリマー部分とプロピレンエチレンコポリマー部分とを有するプロピレンエチレンブロックコポリマー(a2)であっても良い。このプロピレンエチレンブロックコポリマー(a2)におけるプロピレンホモポリマー部分は、構造が前記プロピレンホモポリマー(a1)と共通である。 Component (a) used in the present invention may be a propylene ethylene block copolymer (a2) having a propylene homopolymer portion and a propylene ethylene copolymer portion. The propylene homopolymer portion in this propylene ethylene block copolymer (a2) has the same structure as the propylene homopolymer (a1).
プロピレンエチレンブロックコポリマー(a2)は、プロピレンホモポリマー重合工程とプロピレンエチレンランダムコポリマー重合工程を含む方法により得ることができる。
そして、プロピレンホモポリマー重合工程では、前述のプロピレンホモポリマーと同様の性状を有するプロピレンホモポリマーを製造することが重要である。なお、プロピレンホモポリマー重合工程とプロピレンエチレンランダムコポリマー重合工程の順序は特に制限はない。プロピレンホモポリマー部分の性状は、別途プロピレンホモポリマー重合工程のみを行って得られるプロピレンホモポリマーの性状を測定することにより決定する。
The propylene ethylene block copolymer (a2) can be obtained by a method including a propylene homopolymer polymerization step and a propylene ethylene random copolymer polymerization step.
In the propylene homopolymer polymerization step, it is important to produce a propylene homopolymer having the same properties as the propylene homopolymer described above. The order of the propylene homopolymer polymerization step and the propylene ethylene random copolymer polymerization step is not particularly limited. The properties of the propylene homopolymer portion are determined by measuring the properties of the propylene homopolymer obtained by separately performing only the propylene homopolymer polymerization step.
23℃キシレン可溶分量として決定されるプロピレンエチレンコポリマー部分の割合は、プロピレンエチレンブロックコポリマー(a2)の全量を100質量%としたときに、上限は7質量%以下である。プロピレンエチレンコポリマー部分の割合が7質量%以下であれば、曲げ弾性率の要件を満足し易くなる。 The proportion of the propylene ethylene copolymer portion determined as the 23 ° C. xylene soluble content is 7 mass% or less when the total amount of the propylene ethylene block copolymer (a2) is 100 mass%. If the proportion of the propylene ethylene copolymer portion is 7% by mass or less, the requirement for flexural modulus is easily satisfied.
本発明の成分(a)は、MFR(JIS−K7210、230℃、21.18N荷重で測定)が0.03〜3g/10分、好ましくは0.1〜2g/10分、より好ましくは0.2〜1g/10分である。この範囲であれば成形品の表面外観が悪くならず、耐ドローダウン性が低下することもない。
本発明の成分(a)は、曲げ弾性率が1800〜2600MPa、好ましくは2000〜2600MPa、より好ましくは2200〜2600MPaである。この範囲であれば剛性が低下したり耐衝撃性が低下することがない。
The component (a) of the present invention has an MFR (measured at JIS-K7210, 230 ° C., 21.18 N load) of 0.03 to 3 g / 10 minutes, preferably 0.1 to 2 g / 10 minutes, more preferably 0. .2 to 1 g / 10 min. Within this range, the surface appearance of the molded product is not deteriorated, and the drawdown resistance is not deteriorated.
The component (a) of the present invention has a flexural modulus of 1800 to 2600 MPa, preferably 2000 to 2600 MPa, more preferably 2200 to 2600 MPa. If it is this range, rigidity will not fall or impact resistance will not fall.
(2) 成分(b)
成分(b)は、結晶性プロピレン単独重合体(b1)、又は該結晶性プロピレン単独重合体とプロピレンエチレン共重合体とを有する結晶性プロピレンエチレンブロック重合体(b2)のいずれかである。結晶性プロピレン単独重合体(b1)は、プロピレン単独重合体の他、本発明の効果を著しく損なわない範囲でエチレン、1−ブテン等のコモノマーが共重合されたプロピレン系共重合体も含まれる。コモノマーの量は1質量%未満程度である。
(2) Component (b)
The component (b) is either a crystalline propylene homopolymer (b1) or a crystalline propylene ethylene block polymer (b2) having the crystalline propylene homopolymer and a propylene ethylene copolymer. The crystalline propylene homopolymer (b1) includes, in addition to the propylene homopolymer, a propylene copolymer in which a comonomer such as ethylene or 1-butene is copolymerized within a range that does not significantly impair the effects of the present invention. The amount of comonomer is less than 1% by mass.
結晶性プロピレン単独重合体(b1)は、GPC測定により得られる重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が5〜20、好ましくは6〜15、より好ましくは7〜11である。Mw/Mnが、この範囲であれば耐ドローダウン性が低下せず、ピンチオフ強度が低下することもない。なお、Mw/Mnの測定は前述の方法で行う。
また、プロピレンホモポリマー(b1)のMw/Mnの値は、成分(a)の結晶性プロピレン単独重合体のMw/Mnの値より大きいことが必要であり、好ましくは1以上大きく、より好ましくは2以上大きいことが好ましい。プロピレンホモポリマーのMw/Mnの値が成分(a)の結晶性プロピレン単独重合体のMw/Mnの値以下では、耐ドローダウン性とピンチオフ強度とのバランスが不十分となる。
In the crystalline propylene homopolymer (b1), the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) obtained by GPC measurement is 5 to 20, preferably 6 to 15, more preferably. Is 7-11. If Mw / Mn is within this range, the drawdown resistance is not lowered, and the pinch-off strength is not lowered. In addition, the measurement of Mw / Mn is performed by the above-mentioned method.
Further, the value of Mw / Mn of the propylene homopolymer (b1) needs to be larger than the value of Mw / Mn of the crystalline propylene homopolymer of the component (a), preferably 1 or more, more preferably 2 or more is preferable. When the value of Mw / Mn of the propylene homopolymer is equal to or less than the value of Mw / Mn of the crystalline propylene homopolymer of component (a), the balance between the drawdown resistance and the pinch-off strength becomes insufficient.
本発明において使用される結晶性プロピレン単独重合体(b1)は、融点が低いと耐熱性が低下する傾向にあり、融点が高いと成形時の加熱時間が長くなる傾向にあるため、融点が155〜170℃であることが好ましい。ここで、融点は、前述の方法で測定する。
本発明の結晶性プロピレン重合体における結晶性とは、DSC測定において結晶の融解に基づく吸熱ピークを有することを意味し、好ましくは吸熱量が30J/g以上のものをいう。
The crystalline propylene homopolymer (b1) used in the present invention tends to have low heat resistance when the melting point is low, and the heating time during molding tends to be long when the melting point is high. It is preferable that it is -170 degreeC. Here, the melting point is measured by the method described above.
The crystallinity in the crystalline propylene polymer of the present invention means that it has an endothermic peak based on crystal melting in DSC measurement, and preferably has an endotherm of 30 J / g or more.
一方、結晶性プロピレンエチレンブロック共重合体(b2)は、該結晶性プロピレン単独重合体部分40〜99質量%とプロピレンエチレン共重合体部分1〜60質量%の割合で共重合したものが好ましい。この結晶性プロピレンエチレンブロック重合体(b2)の結晶性プロピレン単独重合体部分は、その構造が結晶性プロピレン単独重合体(b1)と共通である。結晶性プロピレンエチレンブロック重合体(b2)全体に対する結晶性プロピレン単独重合体部分の割合は60〜95質量%が好ましく、より好ましくは70〜93質量%である。また、プロピレンエチレン共重合体部分の割合は5〜40質量%が好ましく、より好ましくは7〜30質量%である。 On the other hand, the crystalline propylene ethylene block copolymer (b2) is preferably copolymerized at a ratio of 40 to 99% by mass of the crystalline propylene homopolymer portion and 1 to 60% by mass of the propylene ethylene copolymer portion. The crystalline propylene homopolymer portion of the crystalline propylene ethylene block polymer (b2) has the same structure as the crystalline propylene homopolymer (b1). The proportion of the crystalline propylene homopolymer portion relative to the entire crystalline propylene ethylene block polymer (b2) is preferably 60 to 95 mass%, more preferably 70 to 93 mass%. Moreover, 5-40 mass% is preferable, and, as for the ratio of a propylene ethylene copolymer part, More preferably, it is 7-30 mass%.
本発明において使用される成分(b)のMFR(JIS−K7210、230℃、21.18N荷重で測定)は、2g/10分以下であり、好ましくは1.5g/10分以下、より好ましくは0.1〜0.5g/10分である。MFRが高すぎると、耐ドローダウン性が低下する。
本発明の成分(b)の曲げ弾性率は、900〜1500MPaであり、好ましくは1000〜1500MPa、より好ましくは1100〜1500MPaである。曲げ弾性率がこの範囲であれば剛性の低下がなく、耐衝撃性が低下しない。
The MFR (measured at JIS-K7210, 230 ° C., 21.18 N load) of the component (b) used in the present invention is 2 g / 10 minutes or less, preferably 1.5 g / 10 minutes or less, more preferably 0.1 to 0.5 g / 10 min. When MFR is too high, drawdown resistance will fall.
The flexural modulus of the component (b) of the present invention is 900-1500 MPa, preferably 1000-1500 MPa, more preferably 1100-1500 MPa. If the flexural modulus is within this range, the rigidity is not lowered and the impact resistance is not lowered.
本発明のポリプロピレン樹脂組成物の密度は、特に制限されないが、0.880〜0.920g/cm3、好ましくは0.885〜0.915g/cm3であり、また、MFR(JIS−K7210、230℃、21.18N荷重で測定)が0.03〜3g/10分、好ましくは0.1〜2g/10分、より好ましくは0.2〜1g/10分である。 The density of the polypropylene resin composition of the present invention is not particularly limited, but is 0.880 to 0.920 g / cm 3 , preferably 0.885 to 0.915 g / cm 3 , and MFR (JIS-K7210, 230 ° C. and 21.18 N load) is 0.03 to 3 g / 10 minutes, preferably 0.1 to 2 g / 10 minutes, more preferably 0.2 to 1 g / 10 minutes.
(3) 成分(c) :スチレン・共役ジエンブロック共重合体の水素添加物
本発明において使用するスチレン・共役ジエンブロック共重合体の水素添加物は、共役ジエンとしてブタジエン、イソプレン等を使用したブロック共重合体の水素添加物であり、例えば、スチレン・エチレン・ブチレン・スチレン(SEBS)やスチレン・エチレン・プロピレン・スチレン(SEPS)の他、スチレンとブタジエン及びイソプレンの併用ブロック共重合体の水素添加物等がある。ここでスチレンとしては、α−メチルスチレンやp−メチルスチレン等のスチレン誘導体を使用することもできる。
(3) Component (c): Hydrogenated product of styrene / conjugated diene block copolymer The hydrogenated product of styrene / conjugated diene block copolymer used in the present invention is a block using butadiene, isoprene or the like as the conjugated diene. This is a hydrogenated copolymer, such as styrene / ethylene / butylene / styrene (SEBS) or styrene / ethylene / propylene / styrene (SEPS), as well as hydrogenated block copolymer of styrene, butadiene and isoprene. There are things. Here, styrene derivatives such as α-methylstyrene and p-methylstyrene can also be used as styrene.
ここで使用されるスチレン・共役ジエンブロック共重合体の水素添加物は、前述の要件を満足する中空成形体が得られるものであれば特に制限はないが、JIS−7112での密度が0.90〜0.92g/cm3であり、スチレン含有量が31〜40質量%、BMS0380法による粘度が1.5Pa・s程度であるものが望ましい。
これらスチレン・共役ジエンブロック共重合体の水素添加物を配合することにより溶融張力が向上して中空成形での耐ドローダウン性が改善され、大型中空成形に非常に有効である。ただし、この配合によって溶融破断速度が低下し伸びにくくなるため、深絞り形状や複雑な形状の金型などブロー比が大きい中空成形の場合、パリソン破れや成形品が偏肉するなどの延展性が低下することがあるので、組成物の経済性が損なわれない程度に配合することが好ましい。
The hydrogenated styrene / conjugated diene block copolymer used here is not particularly limited as long as a hollow molded body that satisfies the above-mentioned requirements can be obtained, but the density in JIS-7112 is 0.00. It is preferably 90 to 0.92 g / cm 3 , a styrene content of 31 to 40% by mass, and a viscosity by the BMS0380 method of about 1.5 Pa · s.
By blending a hydrogenated product of these styrene / conjugated diene block copolymers, the melt tension is improved and the drawdown resistance in hollow molding is improved, which is very effective for large-scale hollow molding. However, this blending reduces the melt fracture rate and makes it difficult to stretch, so in the case of hollow molding with a large blow ratio, such as deep-drawn or complex shaped molds, it has extensibility such as parison tearing and uneven thickness of the molded product. Since it may fall, it is preferable to mix | blend to such an extent that the economical efficiency of a composition is not impaired.
ところで、前記特許文献5には、耐ドローダウン性、押出バリソン、成形体の表面外観を改善するために特定のエチレン重合体樹脂を成分(c)として添加しているが、本発明においては、このようなエチレン重合体樹脂を配合しても、塗装性等を改善することができない。 Incidentally, in Patent Document 5, a specific ethylene polymer resin is added as a component (c) in order to improve the drawdown resistance, the extrusion barison, and the surface appearance of the molded body. Even if such an ethylene polymer resin is blended, the paintability and the like cannot be improved.
(4) 成分(d):エチレン・α−オレフィン系共重合体ゴム
本発明においては、上記の成分(a)〜(c)に対して、塗装性等の改善のためにエチレン・α−オレフィン系共重合体ゴムを添加する。本発明において使用するエチレン・α−オレフィン系共重合体ゴムは、α−オレフィンとしてプロピレン、ブテン−1、ヘキセン−1、オクテン−1等を使用した共重合体ゴムであって、第三成分としてエチリデンノルボルネン、ジシクロペンタジエン,1,4−ヘキサジエン等の非共役ジエンを含有成分とする三元共重合体ゴムであってもよい。
これらエチレン・α−オレフィン系重合体ゴムのム−ニ−粘度[ML1+4(100℃)](ASTMD1646準拠)は51以上70未満、好ましくは55以上、より好ましくは58以上であり、好ましくは68以下である。ム−ニ−粘度が上記範囲であれば、組成物の耐ドロ−ダウン性が低下することも塗装性が劣ることも抑えられるので好ましい。本発明において使用するエチレン・α−オレフィン系共重合体ゴムは、密度が、好ましくは0.880g/cm3以下、より好ましくは0.870g/cm3以下である。
(4) Component (d): Ethylene / α-olefin copolymer rubber In the present invention, for the above components (a) to (c), ethylene / α-olefin is used for improving paintability and the like. System copolymer rubber is added. The ethylene / α-olefin copolymer rubber used in the present invention is a copolymer rubber using propylene, butene-1, hexene-1, octene-1, etc. as an α-olefin, and as a third component. It may be a terpolymer rubber containing a non-conjugated diene such as ethylidene norbornene, dicyclopentadiene, 1,4-hexadiene and the like.
The Mooney viscosity [ML1 + 4 (100 ° C.)] (according to ASTM D1646) of these ethylene / α-olefin polymer rubbers is 51 or more and less than 70, preferably 55 or more, more preferably 58 or more, and preferably 68 or less. It is. If the Mooney viscosity is in the above-mentioned range, it is preferable since the drop-down resistance of the composition is prevented from being lowered and the paintability is inferior. Ethylene · alpha-olefin copolymer rubber used in the present invention has a density of preferably 0.880 g / cm 3 or less, more preferably 0.870 g / cm 3 or less.
(5)構成成分の配合量
上記ポリプロピレン樹脂材料は、成分(a)単独で用いてもよいが、成分(b)を混合してもよい。混合してポリプロピレン樹脂材料とする場合は、成分(a)60〜100質量%と成分(b)40質量%以下を使用する。すなわち、成分(a)の配合量は、好ましくは60〜95重量%、より好ましくは70〜92質量%、さらに好ましくは85〜90質量%であり、成分(b)の配合量は、好ましくは5〜40質量%、より好ましくは8〜30質量%、さらに好ましくは10〜15質量%である。成分(a)(b)中の成分(a)の配合量が、下限値以上であれば剛性が低下することがない。また、成分(b)を添加することにより、耐衝撃性が向上する傾向となる。
一方、成分(c)の配合量は、成分(a)と成分(b)からなるポリプロピレン樹脂材料100重量部に対して、0〜30重量部、好ましくは2〜22重量部、より好ましくは4〜15重量部、さらに好ましくは6〜13重量部である。
これらスチレン・共役ジエンブロック共重合体の水素添加物を配合することにより溶融張力が向上して中空成形での耐ドローダウン性が改善され、大型中空成形に非常に有効である。しかしながら、この配合によって溶融破断速度が低下し伸びにくくなるため、深絞り形状や複雑な形状の金型などブロー比が大きい中空成形の場合、パリソン破れや成形品が偏肉するなどの延展性が低下する問題があることに加え、組成物の経済性が損なわれるため30重量部を超えて多量に配合することは好ましくない。
成分(d)の配合量は、成分(a)と成分(b)からなるポリプロピレン樹脂材料100重量部に対して、10〜40重量部とし、好ましくは11〜40重量部、より好ましくは12〜35重量部、さらに好ましくは13〜30重量部である。成分(d)のエチレン・α−オレフィン系共重合体ゴムを配合することで塗装性等を改善できる。
ただし、成分(c)及び成分(d)の合計量は、ポリプロピレン樹脂材料100重量部に対して、25〜45重量部とする。好ましい合計量は26〜45重量部であり、より好ましくは27〜40重量部、さらに好ましくは27〜35重量部である。配合量がこの範囲であれば耐ドローダウン性、塗装性が低下せず、成形時の延展性や剛性、ピンチオフ強度が低下することがない。
(5) Compounding amount of component The above-mentioned polypropylene resin material may be used alone as the component (a) or may be mixed with the component (b). If mixed to the polypropylene resin composition uses a component (a) 60 to 100 wt% and component (b) 40 wt% or less. That is, the amount of component (a) is preferably 60 to 95% by weight, more preferably 70 to 92% by weight, and still more preferably 85 to 90% by weight. The amount of component (b) is preferably It is 5-40 mass%, More preferably, it is 8-30 mass%, More preferably, it is 10-15 mass%. If the compounding amount of the component (a) in the components (a) and (b) is not less than the lower limit value, the rigidity will not decrease. Moreover, it becomes the tendency for impact resistance to improve by adding a component (b).
On the other hand, the compounding amount of the component (c) is 0 to 30 parts by weight, preferably 2 to 22 parts by weight, more preferably 4 parts per 100 parts by weight of the polypropylene resin material composed of the components (a) and (b). -15 parts by weight, more preferably 6-13 parts by weight.
By blending a hydrogenated product of these styrene / conjugated diene block copolymers, the melt tension is improved and the drawdown resistance in hollow molding is improved, which is very effective for large-scale hollow molding. However, since this blending reduces the melt fracture rate and makes it difficult to stretch, in the case of hollow molding with a large blow ratio, such as deep-drawn shapes or complex shaped molds, it has extensibility such as parison tearing and uneven thickness of the molded product. In addition to the problem of lowering, since the economic efficiency of the composition is impaired, it is not preferable to add a large amount exceeding 30 parts by weight.
The compounding amount of the component (d) is 10 to 40 parts by weight, preferably 11 to 40 parts by weight, more preferably 12 to 12 parts by weight with respect to 100 parts by weight of the polypropylene resin material composed of the component (a) and the component (b). 35 parts by weight, more preferably 13 to 30 parts by weight. Paintability etc. can be improved by blending the ethylene / α-olefin copolymer rubber of component (d).
However, the total amount of component (c) and component (d) is 25 to 45 parts by weight with respect to 100 parts by weight of the polypropylene resin material. A preferable total amount is 26-45 weight part, More preferably, it is 27-40 weight part, More preferably, it is 27-35 weight part. If the blending amount is within this range, the drawdown resistance and paintability are not lowered, and the spreadability and rigidity during molding and the pinch-off strength are not lowered.
(6)他の成分(e)
本発明においては、上記成分(a)、成分(b)、成分(c)、成分(d)からなるポリプロピレン樹脂組成物に、それぞれ本発明の目的を著しく損なわない範囲で、他の成分(e)を配合することができる。この成分(e)は、任意の成分であり、例えば、ブテン重合体樹脂や、4−メチルペンテン−1重合体樹脂等の他のポリオレフィン、ポリアミドやポリエステル等の熱可塑性樹脂、共役ジエン共重合体ゴムやスチレン・共役ジエン共重合体ゴム等の他のエラストマー、無機充填剤、酸化防止剤、紫外線吸収剤、光安定剤、滑剤、潤滑剤、可塑剤、増粘剤、帯電防止剤、難燃剤、加工性改良剤、着色剤、増核剤、分子量調整剤、等の各種添加剤を挙げることができる。これらの成分は、組成物に添加しても良いし、各成分に添加されていても良い。
無機充填剤としては、例えば、タルク、マイカ、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸マグネシウム、硫酸バリウム、硫化モリブデン、カーボンブラック、ガラス繊維、炭素繊維、チタン酸カリウム繊維、酸化チタン、クレー、カオリン、アルミナ、シリカ、中空硝子球等の板状、針状、粒状、繊維状等のものを挙げることができる。これら無機充填剤の添加によって耐熱剛性を向上させることができるが、本発明においては、ピンチオフ強度低下、高比重化等の問題点が懸念されることから、その使用量は極力少なくすることが望ましい。
(6) Other ingredients (e)
In the present invention, the component (a), component (b), component (c) and component (d) are combined with the other components (e ) Can be blended. This component (e) is an optional component, for example, other polyolefins such as butene polymer resin, 4-methylpentene-1 polymer resin, thermoplastic resins such as polyamide and polyester, and conjugated diene copolymers. Other elastomers such as rubber and styrene / conjugated diene copolymer rubber, inorganic fillers, antioxidants, UV absorbers, light stabilizers, lubricants, lubricants, plasticizers, thickeners, antistatic agents, flame retardants And various additives such as a processability improver, a colorant, a nucleator, and a molecular weight modifier. These components may be added to the composition or may be added to each component.
Examples of the inorganic filler include talc, mica, calcium carbonate, magnesium carbonate, calcium sulfate, magnesium sulfate, barium sulfate, molybdenum sulfide, carbon black, glass fiber, carbon fiber, potassium titanate fiber, titanium oxide, clay, and kaolin. Examples thereof include plates such as alumina, silica and hollow glass spheres, needles, granules and fibers. Although the heat resistance rigidity can be improved by adding these inorganic fillers, in the present invention, there are concerns about problems such as a decrease in pinch-off strength and an increase in specific gravity, so it is desirable to reduce the amount used as much as possible. .
2.塗装ブロ−成形用ポリプロピレン樹脂組成物の製造
本発明の押出成形用ポリプロピレン樹脂組成物は、上記の成分(a)(d)を配合し、必要によっては、成分(b)(c)を配合し、さらに他の成分(e)を配合して、例えば、高速ミキサー、バンバリーミキサー、連続ニーダー、一軸又は二軸押出機、ロール、ブラベンダープラストグラフ等の通常の混合混練機を使用して、一般には加熱溶融混練することにより得られる。この時、通常は造粒する方法が採用される。
これにより、210℃での溶融張力が10cN以上で、良好な耐ドロ−ダウン性も有し、低密度(0.92g/cm3以下)、高剛性(1300MPa以上)、低温衝撃性(5kJ/m2以上)、荷重たわみ温度(110℃以上)、碁盤剥離塗膜強度(5/100以下)が向上したポリプロピレン樹脂組成物を得ることができる。
本発明のポリプロピレン樹脂組成物は、高溶融張力材なので、押出成形用に好適に用いることができる。押出成形としては、中空成形、シート成形、異型押出成形などが適用可能である。中空成形によれば、次に述べるブロー成形体が製造でき、シート成形は、大型発泡シ−ト、内装部材(デッキボ−ド、トノカバ−)等の部品、製品の製造に好適に用いることができる。
2. Production of Polypropylene Resin Composition for Coating Blow Molding The polypropylene resin composition for extrusion molding of the present invention contains the above components (a) and (d), and if necessary, the components (b) and (c). In addition, other ingredients (e) are blended and generally used, for example, using a normal mixing and kneading machine such as a high speed mixer, a Banbury mixer, a continuous kneader, a single or twin screw extruder, a roll, a Brabender plastograph, etc. Is obtained by heat-melt kneading. At this time, a granulation method is usually employed.
As a result, the melt tension at 210 ° C. is 10 cN or more, it has good draw-down resistance, low density (0.92 g / cm 3 or less), high rigidity (1300 MPa or more), low temperature impact (5 kJ / m 2 or more), a deflection temperature under load (110 ° C. or more), and a grid peeling coating film strength (5/100 or less) can be obtained.
Since the polypropylene resin composition of the present invention is a high melt tension material, it can be suitably used for extrusion molding. As extrusion molding, hollow molding, sheet molding, profile extrusion molding, and the like are applicable. According to the hollow molding, the blow molded body described below can be produced, and the sheet molding can be suitably used for the production of parts and products such as large foam sheets, interior members (deck board, tonneau cover) and the like. .
3.塗装樹脂成形体
本発明の塗装樹脂成形体は、上記押出成形用ポリプロピレン樹脂組成物を通常のブロー成形機により成形した塗装用ブロー成形体に塗膜を施したものである。本発明においては、塗装用ブロー成形体の大きさによって制限されないが、特に寸法が1.3m以上の大型ブロー成形体において本発明の効果が有効に発揮される。
大型ブロー成形体としては、パレット、自動車用バンパー、建機、農機用のルーフ、ボンネット、エンジンカバー、フェンダー並びに外装パネル等の部品、製品が挙げられ好適に用いられる。
塗膜の形成については、特に制限されず各種の塗装方法を採用できる。例えば、成形体表面に必要によりアルコ−ルによる脱脂、プライマーの塗布、プラズマ処理を施すことに等によって塗料付着性能を付与させ、アクリル・メラミン塗膜やウレタン吹き付け塗装を施す方法などが挙げられる。
3. Painted resin molded product The coated resin molded product of the present invention is obtained by coating a blow molded product for coating obtained by molding the above-described polypropylene resin composition for extrusion molding with a normal blow molding machine. In the present invention, although not limited by the size of the blow molded article for coating, the effect of the present invention is effectively exhibited particularly in a large blow molded article having a dimension of 1.3 m or more.
Examples of the large blow molded article include parts and products such as pallets, automobile bumpers, construction machinery, roofs for agricultural machinery, bonnets, engine covers, fenders, and exterior panels, and are preferably used.
The formation of the coating film is not particularly limited, and various coating methods can be employed. For example, there may be mentioned a method of imparting paint adhesion performance by applying degreasing with alcohol, applying a primer, plasma treatment, etc. to the surface of the molded body, and applying an acrylic / melamine coating film or urethane spray coating.
以下に実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はその趣旨を逸脱しない限り、これによって限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto without departing from the gist thereof.
実施例及び比較例における各種評価方法は、以下に示す通りである。
(1)密度(単位:g/cc):JIS−7112に準拠して、水中置換法にて測定した。
(2)MFR(単位:g/10分):JIS K7210の試験条件14(230℃;21.18N)に基づいて測定した。
(3)Mw/Mnの測定は、ゲルパーミエーションクロマトグラフィー(GPC)で行う。測定条件は、次の通りである。
装置:ウオーターズ社製GPC 150C型
検出器:MIRAN社製 1A赤外分光光度計(測定波長、3.42μm)
カラム:昭和電工社製AD806M/S 3本(カラムの較正は、東ソー製単分散ポリスチレン(A500,A2500,F1,F2,F4,F10,F20,F40,F288の各0.5mg/ml溶液)の測定を行い、溶出体積と分子量の対数値を2次式で近似した。また、試料の分子量は、ポリスチレンとポリプロピレンの粘度式を用いてポリプロピレンに換算した。ここで、ポリスチレンの粘度式の係数はα=0.723、logK=−3.967であり、ポリプロピレンはα=0.707、logK=−3.616である。)
測定温度:140℃
濃度:20mg/10mL
注入量:0.2ml
溶媒:オルソジクロロベンゼン
流速:1.0ml/分
粘度式:log[η]=logK+α×logM
Various evaluation methods in Examples and Comparative Examples are as follows.
(1) Density (unit: g / cc): Measured by an underwater substitution method in accordance with JIS-7112.
(2) MFR (unit: g / 10 min): Measured based on test condition 14 (230 ° C .; 21.18 N) of JIS K7210.
(3) Mw / Mn is measured by gel permeation chromatography (GPC). The measurement conditions are as follows.
Apparatus: GPC 150C type manufactured by Waters Inc. Detector: 1A infrared spectrophotometer manufactured by MIRAN (measurement wavelength: 3.42 μm)
Column: Three AD806M / S manufactured by Showa Denko Co., Ltd. (column calibration was performed by Tosoh monodisperse polystyrene (0.5 mg / ml solution of each of A500, A2500, F1, F2, F4, F10, F20, F40, and F288) Measurements were made to approximate the logarithm of the elution volume and molecular weight by a quadratic equation, and the molecular weight of the sample was converted to polypropylene using the viscosity equation of polystyrene and polypropylene, where the coefficient of the viscosity equation of polystyrene is α = 0.723, log K = −3.767, and polypropylene has α = 0.707, log K = −3.616.)
Measurement temperature: 140 ° C
Concentration: 20 mg / 10 mL
Injection volume: 0.2ml
Solvent: Orthodichlorobenzene Flow rate: 1.0 ml / min Viscosity formula: log [η] = log K + α × log M
(4)溶融張力(MT)(単位;g): (株)東洋精機製キャピログラフを使用して、温度230℃に加熱した直径10mmのシリンダーに樹脂を入れ、押し込み速度10.0mm/minで溶融樹脂を直径2.095mm、長さ8mmのオリフィスから押し出した樹脂を速度4.0m/minで引き取り、溶融張力を測定し、耐ドローダウン性の指標とした。
(5)耐ドローダウン性:(株)プラコー製DA−100型大型ブロー成形機を使用して、樹脂温度220℃で、長さ2.2m、幅0.4m、重さ8kgの自動車用バンパーを成形した時に、成形体下部肉厚と上部肉厚を測定し、成形体下部肉厚に対する上部肉厚の比が0.8〜1.0のものを良好、0.8未満であるか又は成形不良若しくは成形不能のものを不良とした。
(6)塗装碁盤目剥離強度: IHI社製IPB−10A小型ブロー成形機を使用して樹脂温度200℃の成形条件によって、平均肉厚が2.0mmである200mm×200mm×30mmの箱型を成形し、表面をイソプロピルアルコ−ルで拭いて脱脂した後、ウレタン吹き付け塗装を施し、その塗膜の1cm2面積に100(10×10)個の碁盤目刻みを入れ、粘着テープで碁盤目剥離試験を行った。碁盤目の剥離個数が5/100以下のものを良好、それ以外のものを不良とした。
(4) Melt tension (MT) (unit: g): Using a Capillograph manufactured by Toyo Seiki Co., Ltd., the resin was put into a cylinder having a diameter of 10 mm heated to 230 ° C., and melted at an indentation speed of 10.0 mm / min. The resin extruded from an orifice having a diameter of 2.095 mm and a length of 8 mm was taken out at a speed of 4.0 m / min, and the melt tension was measured as an index of resistance to drawdown.
(5) Drawdown resistance: Automotive bumper with resin temperature of 220 ° C, length of 2.2m, width of 0.4m, and weight of 8kg using Plako DA-100 large blow molding machine When molding the molded body lower wall thickness and upper wall thickness, the ratio of the upper wall thickness to the molded body lower wall thickness is 0.8-1.0 good, less than 0.8 or A defective molding or an unmoldable one was regarded as defective.
(6) Paint grid peel strength: A 200 mm × 200 mm × 30 mm box with an average wall thickness of 2.0 mm is formed according to molding conditions at a resin temperature of 200 ° C. using an IPB-10A small blow molding machine manufactured by IHI. After forming, wiping the surface with isopropyl alcohol and degreasing, apply urethane spray coating, put 100 (10 × 10) grid cuts in 1 cm 2 area of the coating film, and peel off grid pattern with adhesive tape A test was conducted. Those having a number of cross-cuts of 5/100 or less were judged good, and those other than that were taken as bad.
(7)曲げ弾性率(単位:MPa):JIS−K7171に準拠して、23℃下で測定した。1300MPa以上であれば良好と評価した。
(8)アイゾット(IZOD)衝撃強度(単位:kJ/m2):JIS−K7110に準拠し、−30℃で測定した。6kJ/m2以上であれば良好と評価した。
(9)荷重たわみ温度(HDT、単位:℃):JIS−K7191−2に準拠して、0.45MPaの条件で測定した。110℃以上であれば良好と評価した。
(7) Flexural modulus (unit: MPa): Measured at 23 ° C. in accordance with JIS-K7171. If it was 1300 MPa or more, it was evaluated as good.
(8) Izod (IZOD) impact strength (unit: kJ / m 2 ): measured at −30 ° C. in accordance with JIS-K7110. If it was 6 kJ / m 2 or more, it was evaluated as good.
(9) Deflection temperature under load (HDT, unit: ° C.): Measured under the condition of 0.45 MPa in accordance with JIS-K7191-2. If it was 110 degreeC or more, it evaluated that it was favorable.
また、実施例、比較例においては次の樹脂、及びフィラーを用いた。
(1)高結晶プロピレン系組成物:成分(a)
PP1(a1) 日本ポリプロ製 MFR0.5g/10分、Mw/Mn6.0、アイソタクチックペンタッド分率0.967のプロピレンホモポリマー。3段重合品:重合比率は一段目/二段目/三段目=35/33/32(質量%)、各段の[η]は一段目/二段目/三段目=2.0/3.7/5.8であり、曲げ弾性率は2300MPaである。
PP2(a1) 日本ポリプロ製 MFR0.5g/10分、Mw/Mn10.0、アイソタクチックペンタッド分率0.967のプロピレンホモポリマー。3段重合品:重合比率は一段目/二段目/三段目=35/33/32(質量%)、各段の[η]は一段目/二段目/三段目=0.9/3.7/7.0であり、曲げ弾性率は1500MPaである。
(2)結晶性ポリプロピレン系樹脂:成分(b)
PP3(b2) 日本ポリプロ製 Mw/Mn8.6のホモPP部分90質量%を有するMFR0.5g/10分のブロック共重合体、曲げ弾性率は1200MPaである。
PP4(b2) 日本ポリプロ製 Mw/Mn4.5のホモPP部分90質量%を有するMFR2.5g/10分のブロック共重合体、曲げ弾性率は1700MPaである。
In the examples and comparative examples, the following resins and fillers were used.
(1) High crystalline propylene composition: component (a)
PP1 (a1) Propylene homopolymer with MFR 0.5 g / 10 min, Mw / Mn 6.0, isotactic pentad fraction 0.967, manufactured by Nippon Polypro. Three-stage polymer: The polymerization ratio is the first stage / second stage / third stage = 35/33/32 (mass%), and [η] of each stage is the first stage / second stage / third stage = 2.0. /3.7/5.8 and the flexural modulus is 2300 MPa.
PP2 (a1) Propylene homopolymer with MFR 0.5 g / 10 min, Mw / Mn 10.0, isotactic pentad fraction 0.967, manufactured by Nippon Polypro. Three-stage polymer: The polymerization ratio is the first stage / second stage / third stage = 35/33/32 (mass%), and [η] of each stage is the first stage / second stage / third stage = 0.9. /3.7/7.0, and the flexural modulus is 1500 MPa.
(2) Crystalline polypropylene resin: Component (b)
PP3 (b2) Mf / Mn 8.6 made by Nippon Polypro, MFR 0.5g / 10 min block copolymer having 90% by mass of homo PP portion, flexural modulus is 1200 MPa.
PP4 (b2) Mf / Mn4.5 Homo PP part 90 mass% MFR2.5g / 10min block copolymer made by Nippon Polypro, flexural modulus is 1700MPa.
(3)スチレン・共役ジエンブロック共重合体の水素添加物(SEBS):成分(c)
密度が0.91g/cm3、スチレン含有量32質量%、BMS0380法による粘度1.5Pa・sであるスチレン・ブタジエン・スチレンブロック共重合体の水素添加物(クレイトンポリマーズ製 クレイトンG1651)
(4)エチレン・α−オレフィン系共重合体ゴム
ム−ニ−粘度が[ML1+4(100℃)]55のエチレン・オクテン共重合体(EOR、ダウケミカル日本製エンゲージ8150)
(5)無機充填剤
タルク:比表面積44,000cm2/g、平均粒径が1.6μm、粒径10μm以上が0.5質量%であり、MgO成分33.1質量%、SiO2成分62.5質量%、その他の成分4.4質量%。
(3) Hydrogenated styrene / conjugated diene block copolymer (SEBS): component (c)
Hydrogenated styrene / butadiene / styrene block copolymer having a density of 0.91 g / cm 3 , a styrene content of 32% by mass and a viscosity of 1.5 Pa · s according to the BMS0380 method (Clayton G1651 manufactured by Kraton Polymers)
(4) Ethylene / α-olefin copolymer rubber Ethylene / octene copolymer having Mooney viscosity [ML1 + 4 (100 ° C.)] 55 (EOR, Engagement 8150, manufactured by Dow Chemical Japan)
(5) Inorganic filler talc: specific surface area 44,000 cm 2 / g, average particle size 1.6 μm, particle size 10 μm or more is 0.5 mass%, MgO component 33.1 mass%, SiO 2 component 62 0.5% by mass, 4.4% by mass of other components.
〔実施例1〜7〕
成分(a)として、高結晶ポリプロピレン(PP1)と、成分(b)として、MFR0.5g/10分の結晶性ポリプロピレン(PP3)を用い、この成分(a)単独、又は成分(a)と成分(b)を組み合わせてポリプロピレン樹脂材料とした。これに、成分(c)として、密度が0.91g/cm3、スチレン含有量32質量%、BMS0380法による粘度1.5Pa・sであるスチレン・エチレン・ブチレン・スチレンブロック共重合体(SEBS)クレイトンG1651と、成分(d)として、エチレン・α−オレフィン系共重合体ゴム(E8150)を表1に示す割合で配合し、ミキサーで混合した後、二軸押出機で溶融混練し、押出温度200℃にてストランドを押し出し、冷却カットして造粒した。その得られたペレットを各種評価方法で評価した。その結果を表1に示す。
[Examples 1-7]
Highly crystalline polypropylene (PP1) is used as the component (a), and crystalline polypropylene (PP3) having an MFR of 0.5 g / 10 min is used as the component (b). This component (a) alone or the component (a) and the component (B) was combined to obtain a polypropylene resin material. As a component (c), a styrene / ethylene / butylene / styrene block copolymer (SEBS) having a density of 0.91 g / cm 3 , a styrene content of 32% by mass, and a viscosity of 1.5 Pa · s by BMS0380 method. Clayton G1651 and ethylene / α-olefin copolymer rubber (E8150) as a component (d) are blended in the proportions shown in Table 1, mixed with a mixer, melt-kneaded with a twin screw extruder, extrusion temperature The strand was extruded at 200 ° C., cooled and granulated. The obtained pellets were evaluated by various evaluation methods. The results are shown in Table 1.
〔比較例1〜4〕
成分(a)単独、又は成分(a)と成分(b)を組み合わせたポリプロピレン樹脂材料に、成分(c)を配合し(比較例1、2)、さらに成分(d)を表2に示す割合で配合し(比較例3、4)、実施例1と同様にしてペレット化し、各種評価方法で評価した。その結果を表2に示す。
[Comparative Examples 1-4]
Component (a) alone or in a polypropylene resin material combining component (a) and component (b), component (c) is blended (Comparative Examples 1 and 2), and the ratio of component (d) shown in Table 2 (Comparative Examples 3 and 4), pelletized in the same manner as in Example 1, and evaluated by various evaluation methods. The results are shown in Table 2.
[比較例5]
成分(a)のPP1に変えてPP2を用いたこと以外は、比較例4と同様な方法でペレットを得て、実施例1と同様に各種評価方法で評価した。その結果を表2に示す。
[Comparative Example 5]
Except that PP2 was used instead of PP1 as the component (a), pellets were obtained in the same manner as in Comparative Example 4 and evaluated by various evaluation methods in the same manner as in Example 1. The results are shown in Table 2.
[比較例6]
SEBS、EORの配合量を、表2に示すように変えたこと以外は、比較例3と同様な方法でペレットを得て、実施例1と同様に各種評価方法で評価した。その結果を表2に示す。
[Comparative Example 6]
Except having changed the compounding quantity of SEBS and EOR as shown in Table 2, the pellet was obtained by the same method as the comparative example 3, and it evaluated by various evaluation methods similarly to Example 1. FIG. The results are shown in Table 2.
[比較例7]
PP1とPP4を組み合わせてポリプロピレン樹脂材料とし、SEBS、EORを表2に示すように配合し、実施例1と同様にして評価した。その結果を表2に示す。
[Comparative Example 7]
PP1 and PP4 were combined to form a polypropylene resin material, SEBS and EOR were blended as shown in Table 2, and evaluated in the same manner as in Example 1. The results are shown in Table 2.
[比較例8]
タルクを15重量部%加え、SEBS、EORの量を表2に示すように変えたこと以外は、比較例6と同様にして評価した。その結果を表2に示す。比較例6と比較して、曲げ弾性率、耐熱剛性は向上したが、低温衝撃は低下した。
[Comparative Example 8]
Evaluation was performed in the same manner as in Comparative Example 6 except that 15 parts by weight of talc was added and the amounts of SEBS and EOR were changed as shown in Table 2. The results are shown in Table 2. Compared with Comparative Example 6, the flexural modulus and heat-resistant rigidity were improved, but the low-temperature impact was reduced.
以上の結果から、本発明の組成物は、表1に示されたとおり、MFR0.03〜3g/10分以下の高結晶ポリプロピレン樹脂にMFR2g/10分以下の結晶性プロピレンエチレンブロック共重合体を特定の範囲の量比で併用し、スチレン・共役ジエンブロック共重合体の水素添加物(SEBS)、さらにはエチレン・α−オレフィン系共重合体ゴムを配合しているので、210℃での溶融張力が10cN以上、耐ドロ−ダウン性も有し、低密度(0.92g/cm3以下)、高剛性(1300MPa以上)、低温衝撃(5kJ/m2以上)、碁盤目塗膜剥離個数(5/100以下)の組成物が得られている(実施例1〜8参照)。
これらに対して、比較例の組成物は、表2に示されたとおり、(1)高結晶性ポリプロピレン(MFR0.5/10分)単体で、SEBSを配合しているので、耐ドロ−ダウン性が得られるが塗装性は低下し(比較例1参照)、また、(2)高結晶性ポリプロピレン(MFR0.5/10分、PP1)に、塗装性を向上すべく結晶性ポリプロピレン(MFR0.5/10分 PP3)を配合すると、SEBSにより耐ドロ−ダウン性が得られるが塗装性は低下する。(比較例2参照)。
また、(3)高結晶性ポリプロピレン(MFR0.5/10分、Mw/Mnが6のPP1)の単体にSEBS、EORを総和20重量部%以下で配合すると、塗装性は比較例1よりも改善されるが十分ではなく(比較例3参照)、(4)高結晶性ポリプロピレン(PP1)と結晶性ポリプロピレン(PP3)にSEBS、EORを総和20重量部%以下配合すると、塗装性は比較例3よりも低下する(比較例4参照)。また、(5)高結晶性ポリプロピレン(PP1)の代わりにMFR0.5g/10分でMw/Mnが10の高結晶性ポリプロピレン(PP2)を用い、SEBS、EORを総和で20重量部%以下配合すると、比較例4に対して曲げ弾性率だけでなく塗装性も低下する(比較例5参照)。
(6)高結晶ポリプロピレン(PP1)100重量部に、EORを多量(45重量部)添加すると塗装性は良好で有るが、曲げ弾性率が低下し(比較例6参照)、(7)高結晶性ポリプロピレン(MFR0.5g/10分PP1)と結晶性ポリプロピレン(MFR2.5/10分PP4)の合計100重量部に、SEBS、EORを総和で22重量部配合すると比較例6に対して塗装性と耐ドロ−ダウン性が低下する(比較例7参照)。
(8)高結晶性ポリプロピレン(MFR0.5g/10分PP1)100重量部に、SEBS、EORを総和で24重量部配合し、さらにタルク15重量部添加すると、密度が増大し、比較例6に対して低温衝撃値と耐ドロ−ダウン性も低下する(比較例8)。
From the above results, as shown in Table 1, the composition of the present invention was obtained by adding a crystalline propylene ethylene block copolymer having an MFR of 2 g / 10 min or less to a high crystal polypropylene resin having an MFR of 0.03 to 3 g / 10 min or less. Melted at 210 ° C because it is used in combination with a specific range of quantity ratios and contains a hydrogenated styrene / conjugated diene block copolymer (SEBS) and further an ethylene / α-olefin copolymer rubber. Tensile force of 10 cN or more, also has draw-down resistance, low density (0.92 g / cm 3 or less), high rigidity (1300 MPa or more), low temperature impact (5 kJ / m 2 or more), cross-cut coating film peeling number ( 5/100 or less) is obtained (see Examples 1 to 8).
On the other hand, the composition of the comparative example, as shown in Table 2, is (1) high crystalline polypropylene (MFR 0.5 / 10 min) alone and contains SEBS, so that it is resistant to drooping. However, the paintability is reduced (see Comparative Example 1), and (2) high crystalline polypropylene (MFR 0.5 / 10 min, PP1), crystalline polypropylene (MFR 0. When 5/10 min PP3) is blended, the draw-down resistance is obtained by SEBS, but the paintability is lowered. (See Comparative Example 2).
In addition, when (3) SEBS and EOR are blended in a total of 20 parts by weight or less in a single unit of high crystalline polypropylene (MFR 0.5 / 10 min, PP1 with Mw / Mn of 6), the paintability is higher than that of Comparative Example 1. Although improved but not sufficient (see Comparative Example 3), (4) When SEBS and EOR are added to a total of 20 parts by weight or less in high crystalline polypropylene (PP1) and crystalline polypropylene (PP3), the paintability is comparative. 3 (see Comparative Example 4). (5) Instead of high crystalline polypropylene (PP1), high crystalline polypropylene (PP2) with MFR 0.5 g / 10 min and Mw / Mn 10 is used, and SEBS and EOR are added in a total of 20 parts by weight or less. Then, not only the flexural modulus but also the paintability of the comparative example 4 is reduced (see comparative example 5).
(6) When a large amount (45 parts by weight) of EOR is added to 100 parts by weight of high crystalline polypropylene (PP1), the paintability is good, but the flexural modulus decreases (see Comparative Example 6), and (7) high crystal When a total of 22 parts by weight of SEBS and EOR is added to 100 parts by weight of a total of water-soluble polypropylene (MFR 0.5 g / 10 minutes PP1) and crystalline polypropylene (MFR 2.5 / 10 minutes PP4), the paintability is compared with that of Comparative Example 6. And the drop-down resistance decreases (see Comparative Example 7).
(8) When 100 parts by weight of highly crystalline polypropylene (MFR 0.5 g / 10 min PP1) is mixed with 24 parts by weight of SEBS and EOR in total, and further 15 parts by weight of talc is added, the density increases. On the other hand, the low temperature impact value and the drop-down resistance are also reduced (Comparative Example 8).
本発明の押出成形用ポリプロピレン樹脂組成物は、中空成形、シート成形、異型押出成形などに適用可能である。中空成形によれば、ブロー成形体が製造でき、シート成形は、大型発泡シ−ト、内装部材(デッキボ−ド、トノカバ−)等の部品、製品が製造できる。ブロー成形体では、大型で複雑な形状品の成形に適しており、その塗装樹脂成形体は、パレット、自動車用バンパー、建機、農機用のルーフ、ボンネット、エンジンカバー、フェンダー並びに外装パネル等の部品、製品として使用でき、特にバンパー等の自動車外装部品として好適である。 The polypropylene resin composition for extrusion molding of the present invention is applicable to hollow molding, sheet molding, profile extrusion molding, and the like. According to hollow molding, blow molded articles can be manufactured, and sheet molding can manufacture parts and products such as large foam sheets and interior members (deckboards, tonneau covers). Blow molded products are suitable for molding large and complex shaped products, and the coated resin molded products include pallets, automotive bumpers, construction machinery, agricultural machinery roofs, bonnets, engine covers, fenders, and exterior panels. They can be used as parts and products, and are particularly suitable as automobile exterior parts such as bumpers.
Claims (2)
成分(a): Mw/Mnが1〜9のプロピレンホモポリマー(a1)、又は該プロピレンホモポリマー部分とプロピレンエチレンコポリマー部分とを有するプロピレンエチレンブロックコポリマー(a2)であって、該プロピレンホモポリマーは、プロピレンを少なくとも2段階に単独重合し、各段階で生成する重合体部分のうち、分子量の最も高い重合体部分の極限粘度を[η]H、分子量の最も低い重合体部分の極限粘度を[η]Lとしたとき、[η]Hと[η]Lとが関係式(1)を満足し、かつメルトフローレート(230℃ 21.18N)が0.03〜3g/10分、曲げ弾性率が1800〜2600MPaのもの
3.0≦[η]H−[η]L≦6.5 ・・・(1)
成分(b): Mw/Mnが5〜20、かつMw/Mnが前記プロピレンホモポリマー(a1)よりも大きい結晶性プロピレン単独重合体(b1)、又は該結晶性プロピレン単独重合体部分とプロピレンエチレン共重合体部分とを有する結晶性プロピレンエチレンブロック共重合体(b2)であって、メルトフローレート(230℃ 21.18N)が2g/10分以下、曲げ弾性率が900〜1500MPaのもの
成分(c): スチレン・共役ジエンブロック共重合体の水素添加物
成分(d): ムーニー粘度[ML1+4(100℃)]が51以上70未満のエチレン・α−オレフィン系共重合体ゴム The following component (c) 0 to 30 parts by weight and the following component (c) 60 to 100% by weight and the following component (b) 0 to 40% by weight with respect to 100 parts by weight of the polypropylene resin material A polypropylene resin composition for extrusion molding, comprising 10 to 40 parts by weight of component (d), wherein the total amount of components (c) and (d) is 25 to 45 parts by weight.
Component (a): a propylene homopolymer (a1) having an Mw / Mn of 1 to 9, or a propylene ethylene block copolymer (a2) having the propylene homopolymer portion and the propylene ethylene copolymer portion, wherein the propylene homopolymer is , Propylene is homopolymerized in at least two stages, and among the polymer parts produced in each stage, the intrinsic viscosity of the polymer part having the highest molecular weight is [η] H, and the intrinsic viscosity of the polymer part having the lowest molecular weight is [ When [η] L, [η] H and [η] L satisfy the relational expression (1), and the melt flow rate (230 ° C., 21.18 N) is 0.03 to 3 g / 10 min. The rate is 1800-2600 MPa
3.0 ≦ [η] H− [η] L ≦ 6.5 (1)
Component (b): Crystalline propylene homopolymer (b1) having an Mw / Mn of 5 to 20 and an Mw / Mn greater than the propylene homopolymer (a1), or the crystalline propylene homopolymer portion and propylene ethylene A crystalline propylene ethylene block copolymer (b2) having a copolymer portion, having a melt flow rate (230 ° C., 21.18 N) of 2 g / 10 min or less and a flexural modulus of 900 to 1500 MPa. c): Hydrogenated product of styrene / conjugated diene block copolymer Component (d): Ethylene / α-olefin copolymer rubber having Mooney viscosity [ML1 + 4 (100 ° C.)] of 51 or more and less than 70
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010130795A JP5331754B2 (en) | 2010-06-08 | 2010-06-08 | Polypropylene resin composition for extrusion molding and molded resin molded body thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010130795A JP5331754B2 (en) | 2010-06-08 | 2010-06-08 | Polypropylene resin composition for extrusion molding and molded resin molded body thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011256248A JP2011256248A (en) | 2011-12-22 |
JP5331754B2 true JP5331754B2 (en) | 2013-10-30 |
Family
ID=45472795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010130795A Active JP5331754B2 (en) | 2010-06-08 | 2010-06-08 | Polypropylene resin composition for extrusion molding and molded resin molded body thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5331754B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010008910A1 (en) | 2008-07-16 | 2010-01-21 | Outlast Technologies, Inc. | Heat regulating article with moisture enhanced temperature control |
WO2010008908A1 (en) | 2008-07-16 | 2010-01-21 | Outlast Technologies, Inc. | Articles containing functional polymeric phase change materials and methods of manufacturing the same |
US8673448B2 (en) | 2011-03-04 | 2014-03-18 | Outlast Technologies Llc | Articles containing precisely branched functional polymeric phase change materials |
US9371400B2 (en) | 2010-04-16 | 2016-06-21 | Outlast Technologies, LLC | Thermal regulating building materials and other construction components containing phase change materials |
US9797087B2 (en) | 2006-01-26 | 2017-10-24 | Outlast Technologies, LLC | Coated articles with microcapsules and other containment structures incorporating functional polymeric phase change materials |
US10003053B2 (en) | 2015-02-04 | 2018-06-19 | Global Web Horizons, Llc | Systems, structures and materials for electrochemical device thermal management |
US10431858B2 (en) | 2015-02-04 | 2019-10-01 | Global Web Horizons, Llc | Systems, structures and materials for electrochemical device thermal management |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5953846B2 (en) * | 2012-03-16 | 2016-07-20 | 日本ポリプロ株式会社 | Polypropylene resin composition and flame retardant blow molded article |
JP2013228731A (en) * | 2012-03-30 | 2013-11-07 | Sekisui Plastics Co Ltd | Light reflecting plate and method for manufacturing the same |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3319112B2 (en) * | 1993-12-27 | 2002-08-26 | 住友化学工業株式会社 | Extrusion molding resin composition |
JP3352815B2 (en) * | 1994-05-30 | 2002-12-03 | 三菱化学株式会社 | Resin composition for blow molding and coated resin molded article comprising the same |
JP3366461B2 (en) * | 1994-09-20 | 2003-01-14 | 三菱化学株式会社 | Extrusion molding resin composition |
JP4022308B2 (en) * | 1998-03-25 | 2007-12-19 | 日本ポリプロ株式会社 | Blow molding resin composition |
JP4549224B2 (en) * | 2005-04-25 | 2010-09-22 | 出光ユニテック株式会社 | Method for producing transparent polypropylene-based resin sheet, transparent polypropylene-based resin sheet, molded product, method for preventing whitening of molded product comprising transparent polypropylene-based resin sheet, and temperature discrimination method |
CN101223226A (en) * | 2005-06-24 | 2008-07-16 | 陶氏环球技术公司 | Filled, low gloss, tpo compositions as substitutes for polycarbonate-abs blends |
WO2008079998A1 (en) * | 2006-12-21 | 2008-07-03 | Dow Global Technologies Inc. | Filled tpo compositions, methods of making the same, and articles prepared from the same |
JP2008163157A (en) * | 2006-12-27 | 2008-07-17 | Japan Polypropylene Corp | Blow-molding polyolefin composition |
US10370465B2 (en) * | 2007-01-18 | 2019-08-06 | Prime Polymer Co., Ltd. | Propylene homopolymer for stress-resistant molded article, composition containing the polymer, and stress-resistant molded articles obtained therefrom |
JP2008231266A (en) * | 2007-03-20 | 2008-10-02 | Mitsui Chemicals Inc | Polypropylene composition and molded product of the same |
RU2009140060A (en) * | 2007-03-30 | 2011-05-10 | Дау Глобал Текнолоджиз Инк. (Us) | POLYPROPYLENE COMPOSITION, METHOD FOR PRODUCING IT AND PRODUCTS PRODUCED FROM IT |
JP2009013333A (en) * | 2007-07-06 | 2009-01-22 | Sumitomo Chemical Co Ltd | Polypropylene-based resin composition |
JP2009173892A (en) * | 2007-12-26 | 2009-08-06 | Japan Polypropylene Corp | Polypropylene resin composition for extrusion molding and blow-molded article comprising the same |
JP4990219B2 (en) * | 2008-05-15 | 2012-08-01 | 日本ポリプロ株式会社 | Propylene resin composition and molded article thereof |
-
2010
- 2010-06-08 JP JP2010130795A patent/JP5331754B2/en active Active
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9797087B2 (en) | 2006-01-26 | 2017-10-24 | Outlast Technologies, LLC | Coated articles with microcapsules and other containment structures incorporating functional polymeric phase change materials |
WO2010008910A1 (en) | 2008-07-16 | 2010-01-21 | Outlast Technologies, Inc. | Heat regulating article with moisture enhanced temperature control |
WO2010008908A1 (en) | 2008-07-16 | 2010-01-21 | Outlast Technologies, Inc. | Articles containing functional polymeric phase change materials and methods of manufacturing the same |
US9371400B2 (en) | 2010-04-16 | 2016-06-21 | Outlast Technologies, LLC | Thermal regulating building materials and other construction components containing phase change materials |
US8673448B2 (en) | 2011-03-04 | 2014-03-18 | Outlast Technologies Llc | Articles containing precisely branched functional polymeric phase change materials |
US9938365B2 (en) | 2011-03-04 | 2018-04-10 | Outlast Technologies, LLC | Articles containing precisely branched functional polymeric phase change materials |
US10003053B2 (en) | 2015-02-04 | 2018-06-19 | Global Web Horizons, Llc | Systems, structures and materials for electrochemical device thermal management |
US10431858B2 (en) | 2015-02-04 | 2019-10-01 | Global Web Horizons, Llc | Systems, structures and materials for electrochemical device thermal management |
US11411262B2 (en) | 2015-02-04 | 2022-08-09 | Latent Heat Solutions, Llc | Systems, structures and materials for electrochemical device thermal management |
Also Published As
Publication number | Publication date |
---|---|
JP2011256248A (en) | 2011-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5331754B2 (en) | Polypropylene resin composition for extrusion molding and molded resin molded body thereof | |
US20050209387A1 (en) | Polypropylene resin compositions | |
JPH07126472A (en) | Polypropylene resin composition | |
KR100215332B1 (en) | Thermoplastic resin composition | |
EP2553016A1 (en) | Heterophasic polyolefin composition | |
US5438091A (en) | Resin composition having excellent paint coatability | |
EP3357964B1 (en) | Use of a polymer composition for the production of articles with improved paintability and surface appearance | |
JP2008163157A (en) | Blow-molding polyolefin composition | |
JPH09208761A (en) | Polyolefin-based resin composition | |
JP2018178108A (en) | Propylene resin composition and molded body | |
JP2009173892A (en) | Polypropylene resin composition for extrusion molding and blow-molded article comprising the same | |
JP2887379B2 (en) | Hard thermoplastic resin composition and injection molded article thereof | |
US5461105A (en) | Resin composition having excellent paint coatability | |
JP3255266B2 (en) | gasket | |
US7226974B2 (en) | Olefinic rubber composition | |
JP5098360B2 (en) | Polypropylene resin composition and molded body thereof | |
JP5052491B2 (en) | Polypropylene resin composition and blow molded article comprising the same | |
JP2006225418A (en) | Polypropylene resin composition and molded item composed of the same | |
JP4489475B2 (en) | Polypropylene resin composition | |
JP2887378B2 (en) | Soft thermoplastic resin composition and injection molded article thereof | |
JPH07118487A (en) | Polypropylene resin composition and automobile part produced by using the composition | |
JP2007063397A (en) | Polypropylene-based resin composition and molded article thereof | |
JP4615232B2 (en) | Polypropylene resin composition | |
JP2876362B2 (en) | Thermoplastic resin composition and injection molded article thereof | |
KR100448121B1 (en) | Polypropylene resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130514 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130709 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130729 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5331754 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |