JP5331312B2 - Manufacturing method of optical anisotropic body - Google Patents

Manufacturing method of optical anisotropic body Download PDF

Info

Publication number
JP5331312B2
JP5331312B2 JP2007132762A JP2007132762A JP5331312B2 JP 5331312 B2 JP5331312 B2 JP 5331312B2 JP 2007132762 A JP2007132762 A JP 2007132762A JP 2007132762 A JP2007132762 A JP 2007132762A JP 5331312 B2 JP5331312 B2 JP 5331312B2
Authority
JP
Japan
Prior art keywords
alignment film
liquid crystal
film material
group
polymerizable liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007132762A
Other languages
Japanese (ja)
Other versions
JP2008287066A (en
Inventor
晴義 高津
浩史 長谷部
オレグ・ヤロシュチュク
ヤコブ・ホー
ウラジーミル・ゲー・チグリノフ
ホイ−シン・コク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hong Kong University of Science and Technology HKUST
Original Assignee
Hong Kong University of Science and Technology HKUST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Kong University of Science and Technology HKUST filed Critical Hong Kong University of Science and Technology HKUST
Priority to JP2007132762A priority Critical patent/JP5331312B2/en
Publication of JP2008287066A publication Critical patent/JP2008287066A/en
Application granted granted Critical
Publication of JP5331312B2 publication Critical patent/JP5331312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently manufacturing an optically anisotropic body, in which inclination of an optical axis in a thickness direction is controlled, without using an optical alignment film which needs a large-scale UV irradiation apparatus. <P>SOLUTION: The method for manufacturing the optically anisotropic body comprises (1) a first step of forming an alignment film by applying a mixture of an alignment film material (A) for horizontally aligning a liquid crystal and an alignment film material (B) for vertically aligning the liquid crystal onto a substrate and subjecting the applied mixture of the alignment film materials (A), (B) to heating treatment and rubbing treatment and (2) a second step of applying a polymerizable liquid crystal material onto the formed alignment film, aligning the polymerizable liquid crystal material and polymerizing the aligned polymerizable liquid crystal material. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、液晶ディスプレイ等の光学補償に用いられる光学異方体の製造方法に関する。   The present invention relates to a method for producing an optical anisotropic body used for optical compensation of a liquid crystal display or the like.

重合性液晶材料を用いると種々の位相差フィルムを作成することができる。この中でも、光軸が厚み方向に傾いたフィルムは、液晶ディスプレイの視野角補償に使用できるため有用である(非特許文献1)。位相差フィルムを用いて視野角を補償するためには、光軸の傾き角を広い範囲で制御する必要がある。位相差フィルムにおいて光軸の傾きを制御するには、重合性液晶を配向させるための配向膜のプレチルト角を0〜90°の範囲で制御する必要がある。   When a polymerizable liquid crystal material is used, various retardation films can be prepared. Among these, a film whose optical axis is inclined in the thickness direction is useful because it can be used for viewing angle compensation of a liquid crystal display (Non-Patent Document 1). In order to compensate the viewing angle using the retardation film, it is necessary to control the tilt angle of the optical axis in a wide range. In order to control the tilt of the optical axis in the retardation film, it is necessary to control the pretilt angle of the alignment film for aligning the polymerizable liquid crystal in the range of 0 to 90 °.

プレチルト角を制御するためには、液晶分子を配向させるための配向膜に光配向膜を用いる構成が開示されている(特許文献1)。しかし、光配向膜を用いて液晶分子を配向させるためには、多くの場合、光配向膜に偏光した紫外線を照射する必要があり、大がかりな偏光紫外線照射装置が必要となる問題があった。   In order to control the pretilt angle, a configuration using a photo-alignment film as an alignment film for aligning liquid crystal molecules is disclosed (Patent Document 1). However, in order to align liquid crystal molecules using the photo-alignment film, in many cases, it is necessary to irradiate the photo-alignment film with polarized ultraviolet rays, and there is a problem that a large-scale polarized ultraviolet irradiation apparatus is required.

光配向膜を使用せずに、プレチルト角を制御する方法として、重合性を有さない通常の液晶材料において、水平配向膜材料と垂直配向膜材料を適宜混合した配向膜材料を用いて、製膜・ラビングする技術が開示されている(非特許文献2)。しかし、当該文献における開示は、製造方法が全く異なる通常の液晶材料に関するものであり、通常の液晶材料とは性質及び構造の全く異なる重合性液晶材料に適用することについての開示は無い。
特開平10−123531号公報 P.van de Witte, S.Stallinga, J.A.M.M. van Haaren, Digest of Internatinal Display Workshop '97, 395(1997) Applied Physics Letter 88,051910(2006)
As a method for controlling the pretilt angle without using a photo-alignment film, in a normal liquid crystal material having no polymerizability, an alignment film material appropriately mixed with a horizontal alignment film material and a vertical alignment film material is used. A technique for film / rubbing is disclosed (Non-Patent Document 2). However, the disclosure in the document relates to a normal liquid crystal material having a completely different manufacturing method, and there is no disclosure about application to a polymerizable liquid crystal material having completely different properties and structures from the normal liquid crystal material.
JP 10-123531 A P.van de Witte, S. Stalllinga, JAMM van Haaren, Digest of Internatinal Display Workshop '97, 395 (1997) Applied Physics Letter 88,051910 (2006)

本発明の課題は、大がかりな紫外線照射装置を必要とする光配向膜を使用せずに、光軸の厚み方向の傾きが制御された光学異方体を効率的に製造する方法を提供することにある。   An object of the present invention is to provide a method for efficiently producing an optical anisotropic body in which the inclination of the optical axis in the thickness direction is controlled without using a photo-alignment film that requires a large-scale ultraviolet irradiation device. It is in.

本発明者らは、重合性液晶組成物のプレチルト角を効率的に制御する方法について検討を行った結果、液晶を水平配向させるための配向膜材料及び液晶を垂直配向させるための配向膜材料の混合比を変更することによりプレチルト角を制御できることを見出し本発明の製造方法の完成に至った。   As a result of studying a method for efficiently controlling the pretilt angle of the polymerizable liquid crystal composition, the present inventors have found that an alignment film material for horizontally aligning liquid crystals and an alignment film material for vertically aligning liquid crystals. The inventors found that the pretilt angle can be controlled by changing the mixing ratio, and completed the production method of the present invention.

本発明は、(1)液晶を水平配向させる配向膜材料(A)及び液晶を垂直配向させる配向膜材料(B)の混合物を基板に塗布し、塗布した該配向膜材料(A)及び(B)の混合物に加熱処理とラビング処理を行うことにより配向膜を形成する第一工程、(2)形成された配向膜上に重合性液晶材料を塗布し重合性液晶材料を配向させ、配向した重合性液晶材料を重合させる第二工程を有し、
前記重合性液晶材料が一般式(I)

Figure 0005331312
(式中、X 1 は水素原子又はメチル基を表し、sは0〜18の整数を表し、sが0のときtは0を表し、sが1以上のときtは0又は1を表し、A、B及びCはそれぞれ独立的に、1,4-フェニレン基、隣接しないCH基が窒素で置換された1,4-フェニレン基、1,4-シクロヘキシレン基、1つ又は隣接しない2つのCH 2 基が酸素若しくは硫黄原子で置換された1,4-シクロヘキシレン基、又は1,4-シクロヘキセニル基を表し、これらのA、B及びCは、さらに炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基又はハロゲン原子で水素原子が一つ以上置換されていても良く、uは0、1、2又は3を表し、Y 及びY はそれぞれ独立的に単結合、-CH 2 CH 2 -、-CH 2 O-、-OCH 2 -、-COO-、-OCO-、-C≡C-、-CH=CH-、-CF=CF-、-(CH 2 ) 4 -、-CH 2 CH 2 CH 2 O-、-OCH 2 CH 2 CH 2 -、-CH=CH-CH 2 CH 2 -、-CH 2 CH 2 -CH=CH-、-CH=CH-COO-、-OCO-CH=CH-、-CH 2 CH 2 -COO-、-CH 2 CH 2 -OCO-、-COO-CH 2 CH 2 -又は-OCO-CH 2 CH 2 -を表し、Y 3 は単結合、-O-、-OCO-、-COO-、-CH=CH-COO-又は式(II)
Figure 0005331312
(式中、X は水素原子又はメチル基を表し、vは0〜18の整数を表し、vが0のときwは0を表し、vが1以上のときwは0又は1を表す。)を表し、Z 1 は水素原子、ハロゲン原子、シアノ基、炭素原子数1〜20の炭化水素基を表す。但しY 3 が式(II)を表すときは、Z 1 は水素原子を表す。)で表される化合物を含有するものであり、
前記混合物中の前記配向膜材料(A)と前記配向膜材料(B)の混合比を変更することにより、光学異方体のプレチルト角を制御することを特徴とする光学異方体の製造方法を提供する。 In the present invention, (1) a mixture of an alignment film material (A) for horizontally aligning liquid crystals and an alignment film material (B) for vertically aligning liquid crystals is applied to a substrate, and the applied alignment film materials (A) and (B The first step of forming an alignment film by subjecting the mixture to a heat treatment and a rubbing treatment, and (2) applying a polymerizable liquid crystal material on the formed alignment film to align the polymerizable liquid crystal material and aligning the polymerization A second step of polymerizing the conductive liquid crystal material,
The polymerizable liquid crystal material has the general formula (I)
Figure 0005331312
(In the formula, X 1 represents a hydrogen atom or a methyl group, s represents an integer of 0 to 18, t represents 0 when s is 0, t represents 0 or 1 when s is 1 or more, A, B and C are each independently 1,4-phenylene group, 1,4-phenylene group in which non-adjacent CH group is substituted with nitrogen, 1,4-cyclohexylene group, one or two non-adjacent CH 2 represents a 1,4-cyclohexylene group substituted by an oxygen or sulfur atom, or a 1,4-cyclohexenyl group, and these A, B and C are further alkyl groups having 1 to 7 carbon atoms. , An alkoxy group, an alkanoyl group, a cyano group, or a halogen atom may be substituted with one or more hydrogen atoms, u represents 0, 1 , 2, or 3, and Y 1 and Y 2 are each independently a single bond , -CH 2 CH 2 -, - CH 2 O -, - OCH 2 -, - COO -, - OCO -, - C≡C -, - CH = CH -, - CF = CF -, - (CH 2) 4 -, - CH 2 CH 2 CH 2 O -, - OCH 2 CH 2 CH 2 -, - CH = CH-CH 2 CH 2 -, -CH 2 CH 2 -CH = CH-, -CH = CH- COO-, -OCO -CH = CH-, -CH 2 CH 2 -COO-, -CH 2 CH 2 -OCO-, -COO-CH 2 CH 2 -or -OCO-CH 2 CH 2- represents Y 3 is a single bond, -O-, -OCO-, -COO-, -CH = CH-COO- or formula (II)
Figure 0005331312
(In the formula, X 2 represents a hydrogen atom or a methyl group, v represents an integer of 0 to 18, w represents 0 when v is 0, and w represents 0 or 1 when v is 1 or more. Z 1 represents a hydrogen atom, a halogen atom, a cyano group, or a hydrocarbon group having 1 to 20 carbon atoms. However, when Y 3 represents the formula (II), Z 1 represents a hydrogen atom. ) Containing a compound represented by
A method for producing an optical anisotropic body, wherein a pretilt angle of the optical anisotropic body is controlled by changing a mixing ratio of the alignment film material (A) and the alignment film material (B) in the mixture. I will provide a.

本発明の製造方法は重合性液晶組成物のプレチルト角を制御することにより、光軸の厚み方向の傾きが制御された光学異方体を効率的に製造することが可能である。本発明の製造方法は、プレチルト角の制御に光配向膜を使用しないため、大がかりな紫外線照射装置が必要無く、製造効率に優れる。   The production method of the present invention can efficiently produce an optical anisotropic body in which the inclination of the optical axis in the thickness direction is controlled by controlling the pretilt angle of the polymerizable liquid crystal composition. Since the manufacturing method of the present invention does not use a photo-alignment film for controlling the pretilt angle, a large-scale ultraviolet irradiation device is not required and the manufacturing efficiency is excellent.

以下に本発明による光学異方体の製造方法の最良の形態について説明する。
本発明で用いる液晶を水平配向させる配向膜材料(A)としては、ポリイミド系配向膜材料が好ましい。ポリアミック酸タイプと呼ばれる基板への塗布後の加熱焼成によってポリイミド膜が得られるタイプの配向膜材料でも、可溶性ポリイミドタイプと呼ばれる基板への塗布後の加熱焼成が不要なタイプでもどちらを使用しても良い。液晶を水平に配向させる配向膜材料の具体例としては、AL-1051、AL-1254、AL16470、AL16301、AL3046、AL22620、AL23201(以上、JSR株式会社製)、SE-410、SE-130、SE-2170、SE-150、SE-3310、SE-3210、SE-2811、SE-2911、SE-4310、SE-3140、SE-3510、SE-4210、SE-610、SE-7992、SE-7492、SE-5291、SE8313、SE-8613、SE-1410、SE-8292、SE-4540、SE-6441(以上、日産化学工業株式会社製)などを挙げることができる。
The best mode of the method for producing an optical anisotropic body according to the present invention will be described below.
As the alignment film material (A) for horizontally aligning the liquid crystal used in the present invention, a polyimide alignment film material is preferable. Either the alignment film material that can be obtained by heating and baking after application to the substrate called polyamic acid type, or the type that does not require heating and baking after application to the substrate called soluble polyimide type, can be used. good. Specific examples of alignment film materials for horizontally aligning liquid crystals include AL-1051, AL-1254, AL16470, AL16301, AL3046, AL22620, AL23201 (above, manufactured by JSR Corporation), SE-410, SE-130, SE -2170, SE-150, SE-3310, SE-3210, SE-2811, SE-2911, SE-4310, SE-3140, SE-3510, SE-4210, SE-610, SE-7992, SE-7492 , SE-5291, SE8313, SE-8613, SE-1410, SE-8292, SE-4540, SE-6441 (above, manufactured by Nissan Chemical Industries, Ltd.).

本発明で用いる液晶を垂直配向させる配向膜材料(B)としては、ポリイミド系配向膜材料が好ましい。ポリアミック酸タイプと呼ばれる基板への塗布後の加熱焼成によってポリイミド膜が得られるタイプの配向膜材料でも、可溶性ポリイミドタイプと呼ばれる基板への塗布後の加熱焼成が不要なタイプでもどちらを使用しても良い。液晶を垂直に配向させる配向膜材料の具体例としては、AL61543、AL60601(以上、JSR株式会社製)、SE-1211、SE-5300(以上、日産化学工業株式会社製)などを挙げることができる。   As the alignment film material (B) for vertically aligning the liquid crystal used in the present invention, a polyimide alignment film material is preferable. Either the alignment film material that can be obtained by heating and baking after application to the substrate called polyamic acid type, or the type that does not require heating and baking after application to the substrate called soluble polyimide type, can be used. good. Specific examples of alignment film materials for vertically aligning liquid crystals include AL61543, AL60601 (above, manufactured by JSR Corporation), SE-1211, SE-5300 (above, manufactured by Nissan Chemical Industries, Ltd.), and the like. .

液晶を水平配向させる配向膜材料(A)と液晶を垂直配向させる配向膜材料(B)を混合する方法としては、配向膜材料が溶媒に溶解している状態で混合しても良いし、溶媒に溶解している配向膜材料(A)に、固形状の配向膜材料(B)を添加しても良いし、溶媒に溶解している配向膜材料(B)に、固形状の配向膜材料(A)を添加しても良いし、溶媒に固形状の配向膜材料(A)と固形状の配向膜材料(B)を添加しても良い。配向膜材料中、配向膜材料(A)の比率が高いほど、得られるプレチルト角が小さくなる。配向膜材料(A)、配向膜材料(B)ともに、必ずしも単独の材料を用いる必要は無く、複数混合しても良い。   As a method of mixing the alignment film material (A) for horizontally aligning the liquid crystal and the alignment film material (B) for vertically aligning the liquid crystal, the alignment film material may be mixed in a state in which the alignment film material is dissolved in a solvent. A solid alignment film material (B) may be added to the alignment film material (A) dissolved in the solution, or a solid alignment film material may be added to the alignment film material (B) dissolved in the solvent. (A) may be added, and the solid alignment film material (A) and the solid alignment film material (B) may be added to the solvent. The higher the ratio of the alignment film material (A) in the alignment film material, the smaller the pretilt angle obtained. Both the alignment film material (A) and the alignment film material (B) do not necessarily need to be used alone, and a plurality of them may be mixed.

基板としては、ガラス材料などの無機材料、アートン(JSR株式会社製)やゼオノア(日本ゼオン株式会社製)として販売されているポリシクロオレフィンやトリアセチルセルロース、ポリカーボネートなどの有機材料を用いることができる。   As the substrate, an inorganic material such as a glass material, or an organic material such as polycycloolefin, triacetyl cellulose, or polycarbonate sold as Arton (manufactured by JSR Corporation) or ZEONOR (manufactured by Nippon Zeon Corporation) can be used. .

配向膜材料(A)と配向膜材料(B)の混合物を基板に塗布する方法としてはスピンコート、ブレードコート、ダイコートなどを挙げることができる。
塗布した後は、前記混合物から溶媒を留去することが必要である。そのため、配向膜材料の特性を確保するための焼成が不要な場合、例えば可溶性ポリイミドタイプの配向膜材料を使用する場合には、焼成処理を行わないので、溶媒を留去するための加熱処理を行う。加熱温度としては、40〜150℃の範囲が好ましく、50〜120℃の範囲が更に好ましい。加熱時間としては、10秒〜30分が好ましく、20秒〜10分が更に好ましい。
Examples of the method for applying the mixture of the alignment film material (A) and the alignment film material (B) to the substrate include spin coating, blade coating, and die coating.
After application, it is necessary to distill off the solvent from the mixture. Therefore, when baking to ensure the characteristics of the alignment film material is not necessary, for example, when using a soluble polyimide type alignment film material, the baking process is not performed. Do. As heating temperature, the range of 40-150 degreeC is preferable, and the range of 50-120 degreeC is still more preferable. The heating time is preferably 10 seconds to 30 minutes, more preferably 20 seconds to 10 minutes.

配向膜材料の特性を確保するために焼成が必要な場合、例えばポリアミック酸タイプの配向膜材料を使用する場合には、焼成処理を行う。この場合の焼成温度は、150〜250℃が好ましく、180〜240℃が更に好ましい。焼成時間は1分〜120分の範囲が好ましく、2〜90分の範囲が更に好ましい。この時の焼成処理によって、前記混合物中に含まれていた溶媒も留去される。   When firing is necessary to ensure the properties of the alignment film material, for example, when a polyamic acid type alignment film material is used, a firing process is performed. In this case, the firing temperature is preferably 150 to 250 ° C, more preferably 180 to 240 ° C. The firing time is preferably in the range of 1 minute to 120 minutes, and more preferably in the range of 2 to 90 minutes. By the baking treatment at this time, the solvent contained in the mixture is also distilled off.

配向膜材料(A)と配向膜材料(B)の混合物を基板に塗布し、必要に応じて焼成することにより製膜した後は、ラビング処理を行うことにより第一工程が完了する。ラビング処理は通常、この技術分野で使われる装置・条件で行えば良い。   After forming a film by applying a mixture of the alignment film material (A) and the alignment film material (B) to the substrate and firing as necessary, the first step is completed by performing a rubbing treatment. The rubbing process may be usually performed by an apparatus and conditions used in this technical field.

重合性液晶材料を第一工程で得られた配向膜で配向させるためには、第一工程で得られた配向膜表面に重合性液晶材料を塗布するか、もしくは第一工程で得られた配向膜のついた基板を2枚用意して、配向膜面を対向させて一定の間隔を保ち、この間隙に重合性液晶材料を挟持させる方法がある。なお、本発明においては、このように重合性液晶材料を挟持させることも、「塗布」と言う。   In order to align the polymerizable liquid crystal material with the alignment film obtained in the first step, the polymerizable liquid crystal material is applied to the surface of the alignment film obtained in the first step, or the alignment obtained in the first step. There is a method in which two substrates with films are prepared, the alignment film surfaces are opposed to each other to maintain a certain distance, and a polymerizable liquid crystal material is sandwiched between the gaps. In the present invention, sandwiching the polymerizable liquid crystal material in this way is also referred to as “coating”.

重合性液晶材料を塗布する場合には、重合性液晶を有機溶媒に溶解させても良い。有機溶媒としては重合性液晶材料を良好に溶解させるものが好ましい。このような有機溶媒としては、トルエン、キシレン、シクロヘキサノン、シクロペンタノン、プロピレングリコールモノメチルエーテルアセテートなどを挙げることができる。重合性液晶を塗布する方法としては、スピンコート、ブレードコート、ダイコートなどを挙げることができる。溶媒を塗布した後は、溶媒を留去するために加熱することが好ましい。また、均一な配向状態を迅速に得るためにも、加熱することは好ましい。加熱温度としては、40〜150℃の範囲が好ましく、50〜120℃の範囲が更に好ましく、60〜110℃の範囲が特に好ましい。加熱時間としては、10秒〜30分が好ましい。   When a polymerizable liquid crystal material is applied, the polymerizable liquid crystal may be dissolved in an organic solvent. As the organic solvent, those that can dissolve the polymerizable liquid crystal material satisfactorily are preferable. Examples of such an organic solvent include toluene, xylene, cyclohexanone, cyclopentanone, propylene glycol monomethyl ether acetate, and the like. Examples of the method for applying the polymerizable liquid crystal include spin coating, blade coating, and die coating. After applying the solvent, it is preferable to heat in order to distill off the solvent. In order to obtain a uniform alignment state quickly, heating is preferable. The heating temperature is preferably in the range of 40 to 150 ° C, more preferably in the range of 50 to 120 ° C, and particularly preferably in the range of 60 to 110 ° C. The heating time is preferably 10 seconds to 30 minutes.

重合性液晶材料を2枚の配向膜付き基板に挟持させる場合には、2枚の基板は平行を保ち、その間隙は1〜200μmに保つのが好ましい。重合性液晶材料を2枚の基板間に挟持させる方法としては、毛細管現象を用いる方法や、真空注入法を挙げることができる。注入の際は、重合性液晶材料を加熱しても良い。   When the polymerizable liquid crystal material is sandwiched between two substrates with an alignment film, the two substrates are preferably kept parallel and the gap is preferably maintained at 1 to 200 μm. Examples of a method for sandwiching the polymerizable liquid crystal material between two substrates include a method using a capillary phenomenon and a vacuum injection method. When injecting, the polymerizable liquid crystal material may be heated.

重合性液晶材料としては、低分子液晶骨格に重合性官能基を付与した材料であり、この技術分野で重合性液晶材料と認識されているものであれば特に制限なく使用することができる。重合性官能基としては、アクリロイルオキシ基、メタアクリロイルオキシ基、ビニルエーテル基、エポキシ基を挙げることができる。このような重合性液晶材料の中でも、一般式(I)   The polymerizable liquid crystal material is a material in which a polymerizable functional group is added to a low molecular liquid crystal skeleton, and any material that is recognized as a polymerizable liquid crystal material in this technical field can be used without particular limitation. Examples of the polymerizable functional group include an acryloyloxy group, a methacryloyloxy group, a vinyl ether group, and an epoxy group. Among such polymerizable liquid crystal materials, the general formula (I)

Figure 0005331312
Figure 0005331312

(式中、X1は水素原子又はメチル基を表し、sは0〜18の整数を表し、sが0のときtは0を表し、sが1以上のときtは0又は1を表し、A、B及びCはそれぞれ独立的に、1,4-フェニレン基、隣接しないCH基が窒素で置換された1,4-フェニレン基、1,4-シクロヘキシレン基、1つ又は隣接しない2つのCH2基が酸素若しくは硫黄原子で置換された1,4-シクロヘキシレン基、又は1,4-シクロヘキセニル基を表し、これらのA、B及びCは、さらに炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基又はハロゲン原子で水素原子が一つ以上置換されていても良く、uは0、1、2又は3を表し、Y及びYはそれぞれ独立的に単結合、-CH2CH2-、-CH2O-、-OCH2-、-COO-、-OCO-、-C≡C-、-CH=CH-、-CF=CF-、-(CH2)4-、-CH2CH2CH2O-、-OCH2CH2CH2-、-CH=CH-CH2CH2-、-CH2CH2-CH=CH-、-CH=CH-COO-、-OCO-CH=CH-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2CH2-又は-OCO-CH2CH2-を表し、Y3は単結合、-O-、-OCO-、-COO-、-CH=CH-COO-又は式(II) (In the formula, X 1 represents a hydrogen atom or a methyl group, s represents an integer of 0 to 18, t represents 0 when s is 0, t represents 0 or 1 when s is 1 or more, A, B and C are each independently 1,4-phenylene group, 1,4-phenylene group in which non-adjacent CH group is substituted with nitrogen, 1,4-cyclohexylene group, one or two non-adjacent CH 2 represents a 1,4-cyclohexylene group substituted by an oxygen or sulfur atom, or a 1,4-cyclohexenyl group, and these A, B and C are further alkyl groups having 1 to 7 carbon atoms. , An alkoxy group, an alkanoyl group, a cyano group, or a halogen atom may be substituted with one or more hydrogen atoms, u represents 0, 1 , 2, or 3, and Y 1 and Y 2 are each independently a single bond , -CH 2 CH 2 -, - CH 2 O -, - OCH 2 -, - COO -, - OCO -, - C≡C -, - CH = CH -, - CF = CF -, - (CH 2) 4 -, - CH 2 CH 2 CH 2 O -, - OCH 2 CH 2 CH 2 -, - CH = CH-CH 2 CH 2 -, -CH 2 CH 2 -CH = CH-, -CH = CH-COO-, -OCO-CH = CH-, -CH 2 CH 2 -COO-, -CH 2 CH 2 -OCO-, -COO-CH 2 CH 2 -or -OCO-CH 2 CH 2- represents Y 3 is a single bond, -O-, -OCO-, -COO-, -CH = CH-COO- or formula (II)

Figure 0005331312
Figure 0005331312

(式中、Xは水素原子又はメチル基を表し、vは0〜18の整数を表し、vが0のときwは0を表し、vが1以上のときwは0又は1を表す。)を表し、Z1は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20の炭化水素基を表す。但しY3が式(II)を表すときは、Z1は水素原子を表す。) (In the formula, X 2 represents a hydrogen atom or a methyl group, v represents an integer of 0 to 18, w represents 0 when v is 0, and w represents 0 or 1 when v is 1 or more. Z 1 represents a hydrogen atom, a halogen atom, a cyano group, or a hydrocarbon group having 1 to 20 carbon atoms. However, when Y 3 represents the formula (II), Z 1 represents a hydrogen atom. )

で表される化合物を含有することが好ましい。
具体的な化合物の例としては、例えば、下記式(1)〜(6)で表される化合物を挙げることができる。
It is preferable to contain the compound represented by these.
As an example of a specific compound, the compound represented by following formula (1)-(6) can be mentioned, for example.

Figure 0005331312
Figure 0005331312

(式(1)〜(6)中、s及びvはそれぞれ独立的に1〜18の整数を表し、Y3及びZ1は一般式(I)におけるものと同じ意味を表す。) (In formulas (1) to (6), s and v each independently represent an integer of 1 to 18, and Y 3 and Z 1 represent the same meaning as in general formula (I).)

重合性液晶材料には、その重合反応性を向上させることを目的として、光重合開始剤を添加することができる。光重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド等が挙げられる。その添加量は、重合性液晶材料に対して0.01〜5質量%が好ましく、0.02〜1質量%がさらに好ましく、0.03〜1質量%の範囲が特に好ましい。   A photopolymerization initiator can be added to the polymerizable liquid crystal material for the purpose of improving the polymerization reactivity. Examples of the photopolymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, and acylphosphine oxides. The addition amount is preferably 0.01 to 5% by mass, more preferably 0.02 to 1% by mass, and particularly preferably 0.03 to 1% by mass with respect to the polymerizable liquid crystal material.

また、重合性液晶材料には、その保存安定性を向上させるために、安定剤を添加することもできる。使用できる安定剤としては、例えば、ヒドロキノン、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール類、ピロガロール類、チオフェノール類、ニトロ化合物類、β−ナフチルアミン類、β−ナフトール類、ニトロソ化合物等が挙げられる。安定剤を使用する場合の添加量は、重合性液晶材料に対して0.005〜1質量%の範囲が好ましく、0.02〜0.5質量%がさらに好ましく、0.03〜0.1質量%が特に好ましい。   In addition, a stabilizer can be added to the polymerizable liquid crystal material in order to improve its storage stability. Examples of the stabilizer that can be used include hydroquinone, hydroquinone monoalkyl ethers, tert-butylcatechols, pyrogallols, thiophenols, nitro compounds, β-naphthylamines, β-naphthols, nitroso compounds, and the like. . When the stabilizer is used, the addition amount is preferably in the range of 0.005 to 1% by mass, more preferably 0.02 to 0.5% by mass, and 0.03 to 0.1% with respect to the polymerizable liquid crystal material. Mass% is particularly preferred.

重合性液晶材料を重合させる方法としては、迅速な重合の進行が望ましいので、紫外線又は電子線等の活性エネルギー線を照射することによって重合させる方法が好ましい。液晶組成物を2枚の基板間に挟持させた状態で重合を行う場合には、少なくとも照射面側の基板は活性エネルギー線に対して適当な透明性が与えられていなければならない。また、照射時の温度は、重合性液晶材料の液晶状態が保持される温度範囲内であることが好ましい。特に、光重合によって重合体を製造しようとする場合には、意図しない熱重合の誘起を避ける意味からも可能な限り室温に近い温度、即ち、典型的には25℃での温度で重合させることが好ましい。活性エネルギー線の強度は、0.1mW/cm〜2W/cmが好ましい。強度が0.1mW/cm以下の場合、光重合を完了させるのに多大な時間が必要になり生産性が悪化してしまうことがあり、2W/cm以上の場合、重合性液晶材料が劣化してしまう危険がある。 As a method of polymerizing the polymerizable liquid crystal material, since rapid progress of polymerization is desirable, a method of polymerizing by irradiating active energy rays such as ultraviolet rays or electron beams is preferable. When polymerization is performed in a state where the liquid crystal composition is sandwiched between two substrates, at least the substrate on the irradiation surface side must be given appropriate transparency to the active energy rays. Moreover, it is preferable that the temperature at the time of irradiation is in the temperature range in which the liquid crystal state of the polymerizable liquid crystal material is maintained. In particular, in the case of producing a polymer by photopolymerization, the polymerization is carried out at a temperature as close to room temperature as possible from the viewpoint of avoiding unintentional induction of thermal polymerization, that is, typically at a temperature of 25 ° C. Is preferred. The intensity of the active energy ray is preferably 0.1 mW / cm 2 to 2 W / cm 2 . When the strength is 0.1 mW / cm 2 or less, a great amount of time is required to complete the photopolymerization, and the productivity may deteriorate. When the strength is 2 W / cm 2 or more, the polymerizable liquid crystal material There is a risk of deterioration.

重合によって得られた重合体は、初期の特性変化を軽減し、安定的な特性発現を図ることを目的として熱処理を施すこともできる。熱処理の温度は50〜250℃の範囲で、また熱処理時間は30秒〜12時間の範囲が好ましい。
このような方法によって製造される重合体は、基板から剥離して単体で用いても、剥離せずに用いても良い。また、得られた重合体を積層しても、他の基板に貼り合わせて用いてもよい。
The polymer obtained by the polymerization can be subjected to a heat treatment for the purpose of reducing the initial characteristic change and achieving stable characteristic expression. The heat treatment temperature is preferably in the range of 50 to 250 ° C., and the heat treatment time is preferably in the range of 30 seconds to 12 hours.
The polymer produced by such a method may be peeled off from the substrate and used alone or without peeling. Further, the obtained polymer may be laminated or bonded to another substrate for use.

以下、実施例を挙げて本発明をさらに詳述するが、本発明はこれらの実施例に限定されるものではない。
(実験例1)
以下の成分からなる重合性液晶材料(A)を調製した。なお、右端に記載の数値は、重合性液晶材料(A)中の各成分の含有量(質量%)を示す。
EXAMPLES Hereinafter, although an Example is given and this invention is further explained in full detail, this invention is not limited to these Examples.
(Experimental example 1)
A polymerizable liquid crystal material (A) comprising the following components was prepared. In addition, the numerical value described in the right end shows content (mass%) of each component in polymeric liquid crystal material (A).

Figure 0005331312
Figure 0005331312

この重合性液晶材料(A)は、室温(25℃)でネマチック液晶相を呈した。ネマチック相−等方性液体相転移温度は52℃であった。また、589nmで測定したne(異常光の屈折率)は1.664で、no(常光の屈折率)は1.505、複屈折率(Δn)は0.159であった。粘度は178mPa・sであった。この重合性液晶組成物(A)99質量部と、光重合開始剤TPO(チバスペシャリティケミカルズ社製)0.1質量部からなる重合性液晶材料(A')を調製した。 This polymerizable liquid crystal material (A) exhibited a nematic liquid crystal phase at room temperature (25 ° C.). The nematic phase-isotropic liquid phase transition temperature was 52 ° C. Further, (refractive index of extraordinary light) n e measured at 589nm in 1.664, n o (refractive index of ordinary light) is 1.505, the birefringence index ([Delta] n) was 0.159. The viscosity was 178 mPa · s. A polymerizable liquid crystal material (A ′) comprising 99 parts by mass of the polymerizable liquid crystal composition (A) and 0.1 parts by mass of a photopolymerization initiator TPO (manufactured by Ciba Specialty Chemicals) was prepared.

(実施例1)
JSR株式会社製のJALS9203(水平配向用の配向膜材料)とJALS2021(垂直配向用の配向膜材料)を90:10(容量比)の割合で混合した。これをガラス基板にスピンコート(2000回転/分)後、180℃で1時間焼成した。その後ラビング処理を行った。このようにして得た配向膜付きガラス基板2枚を、配向膜面が向き合うように対向させた。間隙が2μmになるようにした。この間隙に、実験例1で作製した重合性液晶材料(A')を注入した。注入完了して2分後に、180mJ/cm2の紫外線を照射して重合性液晶を硬化させた。この硬化膜のプレチルト角(フィルムの光軸の傾き角)を結晶回転法により測定したところ、33度であった。
Example 1
JASR9203 (alignment film material for horizontal alignment) manufactured by JSR Corporation and JALS2021 (alignment film material for vertical alignment) were mixed at a ratio of 90:10 (capacity ratio). This was spin-coated (2000 rpm) on a glass substrate and then baked at 180 ° C. for 1 hour. Thereafter, a rubbing treatment was performed. The two glass substrates with alignment films thus obtained were opposed so that the alignment film surfaces face each other. The gap was set to 2 μm. The polymerizable liquid crystal material (A ′) produced in Experimental Example 1 was injected into this gap. Two minutes after the completion of the injection, the polymerizable liquid crystal was cured by irradiating with 180 mJ / cm 2 ultraviolet rays. The pretilt angle (tilt angle of the optical axis of the film) of this cured film was measured by a crystal rotation method and found to be 33 degrees.

(実施例2)
JSR株式会社製のJALS9203(水平配向用の配向膜材料)とJALS2021(垂直配向用の配向膜材料)を85:15(容量比)の割合で混合した。これをガラス基板にスピンコート(2000回転/分)後、180℃で1時間焼成した。その後ラビング処理を行った。このようにして得た配向膜付きガラス基板2枚を、配向膜面が向き合うように対向させた。間隙が2μmになるようにした。この間隙に、実験例1で作製した重合性液晶材料(A')を注入した。注入完了して2分後に、180mJ/cm2の紫外線を照射して重合性液晶を硬化させた。この硬化膜のプレチルト角(フィルムの光軸の傾き角)を結晶回転法により測定したところ、56度であった。
(Example 2)
JALS9203 (alignment film material for horizontal alignment) manufactured by JSR Corporation and JALS2021 (alignment film material for vertical alignment) were mixed at a ratio of 85:15 (capacity ratio). This was spin-coated (2000 rpm) on a glass substrate and then baked at 180 ° C. for 1 hour. Thereafter, a rubbing treatment was performed. The two glass substrates with alignment films thus obtained were opposed so that the alignment film surfaces face each other. The gap was set to 2 μm. The polymerizable liquid crystal material (A ′) produced in Experimental Example 1 was injected into this gap. Two minutes after the completion of the injection, the polymerizable liquid crystal was cured by irradiating with 180 mJ / cm 2 ultraviolet rays. The pretilt angle (tilt angle of the optical axis of the film) of this cured film was measured by a crystal rotation method and found to be 56 degrees.

(実施例3)
JSR株式会社製のJALS9203(水平配向用の配向膜材料)とJALS2021(垂直配向用の配向膜材料)を80:20(容量比)の割合で混合した。これをガラス基板にスピンコート(2000回転/分)後、180℃で1時間焼成した。その後ラビング処理を行った。このようにして得た配向膜付きガラス基板2枚を、配向膜面が向き合うように対向させた。間隙が2μmになるようにした。この間隙に、実験例1で作製した重合性液晶材料(A')を注入した。注入完了して2分後に、180mJ/cm2の紫外線を照射して重合性液晶を硬化させた。この硬化膜のプレチルト角(フィルムの光軸の傾き角)を結晶回転法により測定したところ、64度であった。
(Example 3)
JALS9203 (alignment film material for horizontal alignment) manufactured by JSR Corporation and JALS2021 (alignment film material for vertical alignment) were mixed at a ratio of 80:20 (capacity ratio). This was spin-coated (2000 rpm) on a glass substrate and then baked at 180 ° C. for 1 hour. Thereafter, a rubbing treatment was performed. The two glass substrates with alignment films thus obtained were opposed so that the alignment film surfaces face each other. The gap was set to 2 μm. The polymerizable liquid crystal material (A ′) produced in Experimental Example 1 was injected into this gap. Two minutes after the completion of the injection, the polymerizable liquid crystal was cured by irradiating with 180 mJ / cm 2 ultraviolet rays. The pretilt angle (tilt angle of the optical axis of the film) of this cured film was measured by a crystal rotation method and found to be 64 degrees.

(参考例1)
JSR株式会社製のJALS9203(水平配向用の配向膜材料)をガラス基板にスピンコート(2000回転/分)後、180℃で1時間焼成した。その後ラビング処理を行った。このようにして得た配向膜付きガラス基板2枚を、配向膜面が向き合うように対向させた。間隙が2μmになるようにした。この間隙に、実験例1で作製した重合性液晶材料(A')を注入した。注入完了して2分後に、180mJ/cm2の紫外線を照射して重合性液晶を硬化させた。この硬化膜のプレチルト角(フィルムの光軸の傾き角)を結晶回転法により測定したところ、3度であった。
(Reference Example 1)
JALS9203 (alignment film material for horizontal alignment) manufactured by JSR Corporation was spin-coated (2000 rpm) on a glass substrate and then baked at 180 ° C. for 1 hour. Thereafter, a rubbing treatment was performed. The two glass substrates with alignment films thus obtained were opposed so that the alignment film surfaces face each other. The gap was set to 2 μm. The polymerizable liquid crystal material (A ′) produced in Experimental Example 1 was injected into this gap. Two minutes after the completion of the injection, the polymerizable liquid crystal was cured by irradiating with 180 mJ / cm 2 ultraviolet rays. The pretilt angle (tilt angle of the optical axis of the film) of this cured film was measured by a crystal rotation method and found to be 3 degrees.

(参考例2)
JSR株式会社製のJALS2021(垂直配向用の配向膜材料)をガラス基板にスピンコート(2000回転/分)後、180℃で1時間焼成した。その後ラビング処理を行った。このようにして得た配向膜付きガラス基板2枚を、配向膜面が向き合うように対向させた。間隙が2μmになるようにした。この間隙に、実験例1で作製した重合性液晶材料(A')を注入した。注入完了して2分後に、180mJ/cm2の紫外線を照射して重合性液晶を硬化させた。この硬化膜のプレチルト角(フィルムの光軸の傾き角)を結晶回転法により測定したところ、89度であった。
(Reference Example 2)
JALS2021 (an alignment film material for vertical alignment) manufactured by JSR Corporation was spin-coated (2000 rpm) on a glass substrate and then baked at 180 ° C. for 1 hour. Thereafter, a rubbing treatment was performed. The two glass substrates with alignment films thus obtained were opposed so that the alignment film surfaces face each other. The gap was set to 2 μm. The polymerizable liquid crystal material (A ′) produced in Experimental Example 1 was injected into this gap. Two minutes after the completion of the injection, the polymerizable liquid crystal was cured by irradiating with 180 mJ / cm 2 ultraviolet rays. The pretilt angle (tilt angle of the optical axis of the film) of this cured film was measured by a crystal rotation method and found to be 89 degrees.

以上の結果を下表に示す。水平配向膜材料と垂直配向膜材料の比率を変えることにより、光学異方体(フィルム)の光軸の傾き角を制御できたことがわかる。   The above results are shown in the table below. It can be seen that the tilt angle of the optical axis of the optical anisotropic body (film) could be controlled by changing the ratio of the horizontal alignment film material and the vertical alignment film material.

Figure 0005331312
Figure 0005331312

(実験例2)
以下の成分からなる重合性液晶材料(B)を調製した。なお、右端に記載の数値は、重合性液晶材料(B)中の各成分の含有量(質量%)を示す。
(Experimental example 2)
A polymerizable liquid crystal material (B) comprising the following components was prepared. In addition, the numerical value described in the right end shows content (mass%) of each component in polymeric liquid crystal material (B).

Figure 0005331312
Figure 0005331312

重合性液晶材料(B)に重合開始剤Irgacure-907を5質量%、流動パラフィンを0.3質量%添加し、さらに固形分が30質量%となるようにトルエンを加え、重合性液晶材料(B')を調製した。   To the polymerizable liquid crystal material (B), 5% by mass of polymerization initiator Irgacure-907 and 0.3% by mass of liquid paraffin were added, and toluene was added so that the solid content would be 30% by mass. ) Was prepared.

(実施例4)
JSR株式会社製のJALS9203(水平配向用の配向膜材料)とJALS2021(垂直配向用の配向膜材料)を80:20(容量比)の割合で混合した。これをガラス基板にスピンコート(2000回転/分)後、180℃で1時間焼成した。その後ラビング処理を行った。得られた配向膜付きガラス基板に、実験例2で調製した重合性液晶材料(B')をスピンコート(3000回転/分)した。スピンコートした基板を60℃で1分間加熱することによりトルエンを揮発させた後に、室温まで冷却してからアルゴン雰囲気下で420mJ/cm2の紫外線を照射して重合性液晶を硬化させた。この硬化膜のプレチルト角(フィルムの光軸の傾き角)を結晶回転法により測定したところ、30度であった。
Example 4
JALS9203 (alignment film material for horizontal alignment) manufactured by JSR Corporation and JALS2021 (alignment film material for vertical alignment) were mixed at a ratio of 80:20 (capacity ratio). This was spin-coated (2000 rpm) on a glass substrate and then baked at 180 ° C. for 1 hour. Thereafter, a rubbing treatment was performed. The polymerizable liquid crystal material (B ′) prepared in Experimental Example 2 was spin-coated (3000 rpm) on the obtained glass substrate with an alignment film. The spin-coated substrate was heated at 60 ° C. for 1 minute to volatilize toluene, and then cooled to room temperature, and then irradiated with 420 mJ / cm 2 of ultraviolet light in an argon atmosphere to cure the polymerizable liquid crystal. The pretilt angle (tilt angle of the optical axis of the film) of this cured film was measured by a crystal rotation method and found to be 30 degrees.

Claims (4)

(1)液晶を水平配向させる配向膜材料(A)及び液晶を垂直配向させる配向膜材料(B)の混合物を基板に塗布し、塗布した該配向膜材料(A)及び(B)の混合物に加熱処理とラビング処理を行うことにより配向膜を形成する第一工程、(2)形成された配向膜上に重合性液晶材料を塗布し重合性液晶材料を配向させ、配向した重合性液晶材料を重合させる第二工程を有し、
前記重合性液晶材料が一般式(I)
Figure 0005331312
(式中、X 1 は水素原子又はメチル基を表し、sは0〜18の整数を表し、sが0のときtは0を表し、sが1以上のときtは0又は1を表し、A、B及びCはそれぞれ独立的に、1,4-フェニレン基、隣接しないCH基が窒素で置換された1,4-フェニレン基、1,4-シクロヘキシレン基、1つ又は隣接しない2つのCH 2 基が酸素若しくは硫黄原子で置換された1,4-シクロヘキシレン基、又は1,4-シクロヘキセニル基を表し、これらのA、B及びCは、さらに炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基又はハロゲン原子で水素原子が一つ以上置換されていても良く、uは0、1、2又は3を表し、Y 及びY はそれぞれ独立的に単結合、-CH 2 CH 2 -、-CH 2 O-、-OCH 2 -、-COO-、-OCO-、-C≡C-、-CH=CH-、-CF=CF-、-(CH 2 ) 4 -、-CH 2 CH 2 CH 2 O-、-OCH 2 CH 2 CH 2 -、-CH=CH-CH 2 CH 2 -、-CH 2 CH 2 -CH=CH-、-CH=CH-COO-、-OCO-CH=CH-、-CH 2 CH 2 -COO-、-CH 2 CH 2 -OCO-、-COO-CH 2 CH 2 -又は-OCO-CH 2 CH 2 -を表し、Y 3 は単結合、-O-、-OCO-、-COO-、-CH=CH-COO-又は式(II)
Figure 0005331312
(式中、X は水素原子又はメチル基を表し、vは0〜18の整数を表し、vが0のときwは0を表し、vが1以上のときwは0又は1を表す。)を表し、Z 1 は水素原子、ハロゲン原子、シアノ基、炭素原子数1〜20の炭化水素基を表す。但しY 3 が式(II)を表すときは、Z 1 は水素原子を表す。)で表される化合物を含有するものであり、
前記混合物中の前記配向膜材料(A)と前記配向膜材料(B)の混合比を変更することにより、光学異方体のプレチルト角を制御することを特徴とする光学異方体の製造方法。
(1) A mixture of alignment film material (A) for horizontally aligning liquid crystals and alignment film material (B) for vertically aligning liquid crystals is applied to a substrate, and the applied mixture of alignment film materials (A) and (B) is applied to the substrate. A first step of forming an alignment film by performing a heat treatment and a rubbing treatment; (2) applying a polymerizable liquid crystal material on the formed alignment film to align the polymerizable liquid crystal material; Having a second step of polymerizing,
The polymerizable liquid crystal material has the general formula (I)
Figure 0005331312
(In the formula, X 1 represents a hydrogen atom or a methyl group, s represents an integer of 0 to 18, t represents 0 when s is 0, t represents 0 or 1 when s is 1 or more, A, B and C are each independently 1,4-phenylene group, 1,4-phenylene group in which non-adjacent CH group is substituted with nitrogen, 1,4-cyclohexylene group, one or two non-adjacent CH 2 represents a 1,4-cyclohexylene group substituted by an oxygen or sulfur atom, or a 1,4-cyclohexenyl group, and these A, B and C are further alkyl groups having 1 to 7 carbon atoms. , An alkoxy group, an alkanoyl group, a cyano group, or a halogen atom may be substituted with one or more hydrogen atoms, u represents 0, 1 , 2, or 3, and Y 1 and Y 2 are each independently a single bond , -CH 2 CH 2 -, - CH 2 O -, - OCH 2 -, - COO -, - OCO -, - C≡C -, - CH = CH -, - CF = CF -, - (CH 2) 4 -, - CH 2 CH 2 CH 2 O -, - OCH 2 CH 2 CH 2 -, - CH = CH-CH 2 CH 2 -, -CH 2 CH 2 -CH = CH-, -CH = CH- COO-, -OCO -CH = CH-, -CH 2 CH 2 -COO-, -CH 2 CH 2 -OCO-, -COO-CH 2 CH 2 -or -OCO-CH 2 CH 2- represents Y 3 is a single bond, -O-, -OCO-, -COO-, -CH = CH-COO- or formula (II)
Figure 0005331312
(In the formula, X 2 represents a hydrogen atom or a methyl group, v represents an integer of 0 to 18, w represents 0 when v is 0, and w represents 0 or 1 when v is 1 or more. Z 1 represents a hydrogen atom, a halogen atom, a cyano group, or a hydrocarbon group having 1 to 20 carbon atoms. However, when Y 3 represents the formula (II), Z 1 represents a hydrogen atom. ) Containing a compound represented by
A method for producing an optical anisotropic body, wherein a pretilt angle of the optical anisotropic body is controlled by changing a mixing ratio of the alignment film material (A) and the alignment film material (B) in the mixture. .
前記重合を紫外線又は電子線の照射で行い、かつ前記混合物中の前記配向膜材料(A)及び前記配向膜材料(B)の混合比が90:10〜80:20(容量比)である請求項1に記載の光学異方体の製造方法。   The polymerization is performed by irradiation with ultraviolet rays or electron beams, and the mixing ratio of the alignment film material (A) and the alignment film material (B) in the mixture is 90:10 to 80:20 (capacity ratio). Item 2. A method for producing an optical anisotropic body according to Item 1. 液晶を水平配向させる配向膜材料(A)がポリイミド系の配向膜材料である請求項1又は2に記載の光学異方体の製造方法。   The method for producing an optical anisotropic body according to claim 1 or 2, wherein the alignment film material (A) for horizontally aligning the liquid crystal is a polyimide-based alignment film material. 液晶を垂直配向させる配向膜材料(B)がポリイミド系の配向膜材料である請求項1〜3のいずれか一項に記載の光学異方体の製造方法。   The method for producing an optical anisotropic body according to any one of claims 1 to 3, wherein the alignment film material (B) for vertically aligning the liquid crystal is a polyimide-based alignment film material.
JP2007132762A 2007-05-18 2007-05-18 Manufacturing method of optical anisotropic body Active JP5331312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007132762A JP5331312B2 (en) 2007-05-18 2007-05-18 Manufacturing method of optical anisotropic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007132762A JP5331312B2 (en) 2007-05-18 2007-05-18 Manufacturing method of optical anisotropic body

Publications (2)

Publication Number Publication Date
JP2008287066A JP2008287066A (en) 2008-11-27
JP5331312B2 true JP5331312B2 (en) 2013-10-30

Family

ID=40146834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007132762A Active JP5331312B2 (en) 2007-05-18 2007-05-18 Manufacturing method of optical anisotropic body

Country Status (1)

Country Link
JP (1) JP5331312B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439514B (en) * 2009-04-14 2015-12-16 拉谢扎·科米托夫 For the composition of LCD both alignment layers
JP5493446B2 (en) * 2009-04-17 2014-05-14 日東電工株式会社 Optical anisotropic film manufacturing method and rubbing treatment method
JP6492982B2 (en) * 2014-08-29 2019-04-03 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6138102B2 (en) * 2014-11-04 2017-05-31 コミトブ,ラヒェザー Composition for LCD alignment layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3041402B2 (en) * 1990-09-21 2000-05-15 セイコーインスツルメンツ株式会社 Optical writing liquid crystal light valve
WO1996010770A1 (en) * 1994-09-30 1996-04-11 Rockwell International Corporation Organic polymer o-plate compensator for improved gray scale performance in twisted nematic liquid crystal displays
JP2000066246A (en) * 1998-06-10 2000-03-03 Canon Inc Liquid crystal element
JP2000330119A (en) * 1999-05-24 2000-11-30 Canon Inc Liquid crystal device
JP2001056411A (en) * 1999-08-19 2001-02-27 Fuji Photo Film Co Ltd Phase difference plate and pickup device for optical disk
JP4385997B2 (en) * 2004-05-31 2009-12-16 Dic株式会社 Polymerizable liquid crystal composition and optical anisotropic body

Also Published As

Publication number Publication date
JP2008287066A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
EP1651999B1 (en) Alignment layer with reactive mesogens for aligning liquid crystal molecules
JP5165665B2 (en) Method for producing a film containing a polymerized liquid crystal material
KR101802218B1 (en) Liquid crystal alignment film
KR102450332B1 (en) Liquid crystal display element and method of manufacturing the same
KR20120008425A (en) Optical film, preparation method of the same, and liquid crystal display comprising the same
KR101560040B1 (en) Liquid crystal composition
JP2007086399A (en) Optical element
JP4207233B2 (en) Liquid crystal composition and optical anisotropic body using the same
JPH07294735A (en) Substrate having optical anisotropy
JP6299884B2 (en) Polymerizable liquid crystal composition and optical anisotropic body, retardation film, antireflection film, and liquid crystal display element produced using the composition
JP5331312B2 (en) Manufacturing method of optical anisotropic body
JP2006220770A (en) Liquid crystal film and liquid crystal display device
JP4984842B2 (en) Homeotropic alignment liquid crystal film and method for producing the same
JP2012220673A (en) Liquid crystal optical device and manufacturing method therefor
JP2009300698A (en) Method for manufacturing liquid crystalline retardation film, and liquid crystal display device
KR101607730B1 (en) Composition for alignment layer
JPH1121554A (en) Production of liquid crystal display element
CN102955192B (en) Negative optical compensation film and preparation method thereof
JP4674738B2 (en) Manufacturing method of liquid crystal display element
JP5148065B2 (en) Polymerized liquid crystal film with low retardation
JP2007225765A (en) Method for producing optically anisotropic body
KR101742842B1 (en) Composition for photo-aligning layer
JPH0953074A (en) Liquid crystal display element and production thereof
WO2021157704A1 (en) Method for producing optical film
JP4150956B2 (en) Substrate having optical anisotropy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5331312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250