JP5331284B2 - Antibodies for Chlamydia pneumonia detection - Google Patents

Antibodies for Chlamydia pneumonia detection Download PDF

Info

Publication number
JP5331284B2
JP5331284B2 JP2001557920A JP2001557920A JP5331284B2 JP 5331284 B2 JP5331284 B2 JP 5331284B2 JP 2001557920 A JP2001557920 A JP 2001557920A JP 2001557920 A JP2001557920 A JP 2001557920A JP 5331284 B2 JP5331284 B2 JP 5331284B2
Authority
JP
Japan
Prior art keywords
antibody
protein
ribosomal protein
chlamydia pneumoniae
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001557920A
Other languages
Japanese (ja)
Inventor
モンズール ラーマン
高志 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001557920A priority Critical patent/JP5331284B2/en
Application granted granted Critical
Publication of JP5331284B2 publication Critical patent/JP5331284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/1217Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Neisseriaceae (F)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/1242Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Pasteurellaceae (F), e.g. Haemophilus influenza
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/125Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Chlamydiales (O)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/1253Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Mycoplasmatales, e.g. Pleuropneumonia-like organisms [PPLO]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1275Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Streptococcus (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56927Chlamydia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56933Mycoplasma

Abstract

A method for specifically, highly sensitively and quickly detecting a microorganism belonging to <i>Chlamydia penumoniae</i>; an antibody to be used in the detection; a detection reagent kit; and a process for producing the antibody to be used in the detection. Namely, an antibody against the ribosomal protein of a microorganism belonging to <i>C. penumoniae</i> which reacts specifically with this microorganism; a method of detecting the microorganism in a specimen by using this antibody; and a detection reagent kit containing this antibody. The ribosomal protein is exemplified by Ribosomal Protein L7/L12 and this method is usable in detecting the infection with a microorganism causative of pneumonia.

Description

技術分野
本発明は、一般的な肺炎の原因微生物であるクラミジア・ニューモニア(Chlamydia pneumoniaeに属する微生物の検出に有用な抗体、該微生物の検出方法、該微生物の検出用試薬キット、及び該微生物検出用抗体の製造方法に関する。
本発明は、医療上、特にChlamydia pneumoniaeによって惹起される非定型肺炎の診断に重要である。
本発明は、検体、例えば、のど綿棒、組織サンプル、および体液から採取された検体中に含まれる微生物Chlamydia pneumoniaeを検出するのに有用である。
背景技術
微生物感染症の診断は、通常感染部位などでの原因菌の検出か、血清、体液中の原因菌に対する抗体の検出により確定される。特に、この診断は原因菌の検出が患者への迅速な治療を可能にする意味で重要である。
感染症原因菌の検出は、一般に、原因菌の分離培養を経て、その生理学的、生化学的あるいは構造的な特性に基づきこれを同定する培養同定法、原因菌の遺伝子をPolymerase chain reaction(PCR)法または特異的核酸ハイブリダイゼーションにより増幅させて、これを検出する遺伝子的診断法および抗体と原因菌の抗原マーカーとの特異的反応を利用して原因菌を検出する免疫学的方法に分類される。
しかしながら、培養同定法または遺伝子的診断法を用いる場合には、結果を得るのに長時間を要する。従って、原因菌を短時間にしかも高感度で検出することができ、迅速かつ適切な患者の治療につながる免疫学的方法による診断が汎用されている。
従来、免疫学的方法による感染症原因菌の検出には、菌種によって様々なマーカー抗原と抗体の組み合わせが使われている。
Chlamydia pneumoniaeは世界的に肺炎の一般的な原因菌である。小さな、非運動性のグラム陰性菌であり、選択的にヒトの体内に侵入し、病気を引き起す。病原巣となる動物は知られていない。血清陽性率は30〜40代の成人で40〜50%である(Hyman,Roblin et al.1995)。この微生物は喉頭炎、気管支炎および軽度の肺炎を発症せしめる。
この菌は、非常に微小の偏性寄生生物であり、宿主細胞の細胞質中で成長する。組織培養液中でのChlamydia pneumoniaeの成長は非常に緩慢であり(Godzik,O’Brien et al.1995)、培養液中に菌を同定するまでに少なくとも3〜5日間を要する(Essig,Zucs et al.1997)。従って、迅速に病原菌として検出する診断法としては、グラム染色法と培養法などを適用することができない。従って、クラミジアの迅速診断法としては、抗体を用いた免疫学的手法がしばしば用いられる。
クラミジア(Chlamydia)属の場合、属特異的抗原であるリポ多糖(LPS)の抗原決定基としての存在が知られており(Verkooyen,Van Lent et al.1998)、様々な診断用キットにおいて特にChlamydia trachomatisの検出用試薬抗体に利用されている。更に、Petersonら(Peterson,Cheng et al.1993;Peterson,de la Maza et al.1998)およびBatteigerら(Batteiger,Newhallet al.1986)はChlamydia属の主要外膜蛋白質(MOMP)に対するモノクローナル抗体を報告している。
これらの抗体がChlamydia pheunoniaeChlamydia trachomatisを区別することに役立つことが明らかになったが、その後、これらの抗体はChlamydia pheunoniae種内の複数の抗原性の違いを明らかにすることに重要な役割をはたした。このような抗原はChlamydia pheunoniae種内の血清型分類には役立つかもしれないがChlamydia pheunoniae種の全ての菌株の検出を必要とする通常の診断には役に立つものではない。普遍的な機能を持つ共通な抗原、しかも大部分な構造は微生物種間で保存されているにもかかわらず、それを区別して検出するのに利用できる抗原はいままで知られていなかった。
本発明は全ての微生物に同一機能の分子として普遍的に存在し、しかも抗体を取得するための蛋白質抗原として有用な蛋白質に関するものである。通常、このような分子は小規模の構造変化しか伴わないものである。このような同一機能の普遍的な分子に対する大規模な構造変化は生物の生存に対して重大な悪影響を及ぼす可能性のあるものである。
クラミジア病原体を検出する商業的に利用可能なモノクローナル抗体の数はごく僅かであり、十分というには程遠い。最近までTWAR株のみが肺炎の原因菌であると信じられてきた(Thom and Grayston 1991;United States Patent No.5,008,186)。最近になって、いくつかのクラミジア病原体の血清型が報告された。LPSまたはMOMPは菌株によって異なり、また1つの血清型に対する抗体では全てをカバーできない状況である。
発明の開示
本発明は、上記のような課題を解決するためになされたものである。すなわち、本発明は、Chlamydia pneumoniaeに属する微生物を特異的、かつ高感度に迅速に検出する方法、その検出に用いる検出用抗体、検出用試薬キットを提供することを課題とする。さらに、本発明は、その検出に用いる検出用抗体の製造方法を提供することを課題とする。
本発明者等は、全ての微生物において同一の機能が保存されている蛋白質を有用な抗原蛋白質として見出した。通常、このような蛋白質の構造変化はきわめて少ないと予想される。しかし驚くべきことに、該蛋白質に対する抗体は、微生物の種あるいは属特異的であり、該蛋白質に対する抗体は、微生物の種あるいは属特異的な識別に用いることが可能な多様性を持つとともに、対象となる微生物についてはその全ての血清型を検出しうるものであることが見出されたのである。
本発明者らは全ての微生物細胞に同一機能の分子として存在し、しかもそのアミノ酸構造が微生物間である程度の相違点をもつ細胞内分子、特にリボソーム蛋白質の一種であるRibosomal Protein L7/L12蛋白質に着目した。Ribosomal Protein L7/L12蛋白質は分子量約13キロダルトンの蛋白質であり、蛋白質合成に必須のリボソーム蛋白質として存在することが知られている。特にChlamydia pneumoniaeを含むいくつかの微生物ではRibosomal Protein L7/L12蛋白質の全アミノ酸配列が解析されている。
本発明者らはこの分子が微生物間で類似しているにもかかわらずその一部に各微生物固有の構造部分を持つことに着目し、このChlamydia pneumoniaeのRibosomal Protein L7/L12蛋白質に対する抗体を利用することで様々な微生物、細菌の種特異的でかつ全ての同一菌種内の血清型について検出が可能であることを見出した。
本発明者等はChlamydia pneumoniaeの該蛋白質に特異的な抗体が得られること、および該抗体を用いることによりChlamydia pneumoniaeの特異的な検出が可能であることを見出し、本発明を完成した。
本発明により、Chlamydia pneumoniaeのRibosomal Protein L7/L12蛋白質に対して特異的なモノクローナル抗体が見出され、開発された。この抗体は新規であり、従来公知のいかなる抗体とも異なり、上記蛋白質と特異的に反応する性質を有する。
配列表において配列番号1及び2はChlamydia pneumoniaeのRibosomal Protein L7/L12遺伝子のDNA配列(NCBI database accession #NC#000922)及び対応するアミノ酸配列(NCBI database accession #AE001593.1,NCBI data base)である。なお、配列表に記載されたアミノ酸配列の左端および右端はそれぞれアミノ基末端(以下、N末端)およびカルボキシル基末端(以下、C末端)であり、また塩基配列の左端および右端はそれぞれ5’末端および3’末端である。クロスマッチテストのアミノ酸配列はアミノ酸1文字略字によって記している。また、クロスマッチテストにおける「+」の表記は、異なるアミノ酸であるが、疎水性などの性質が類縁のアミノ酸であること、「」のブランクは性質も含めて全く異なるアミノ酸であることを示す。また、本発明で述べられる遺伝子操作の一連の分子生物学的な実験は通常の実験書の記載方法によって行うことができる。前記の通常の実験書としては、例えばMolecular Cloning,A laboratory manual,Cold Spring Harber Laboratory Press,Sambrook,J.ら(1989)を挙げることができる。

Figure 0005331284
本発明において″微生物″とは、Chlamydia pneumoniaeを意味し、特に、呼吸器における病原性を有しChlamydia感染症の原因菌として診断の意義の高い微生物をいう。
本発明において、"微生物と特異的に反応する抗体″とは、微生物の種あるいは属に特異的に反応する抗体をさすが、微生物感染症の診断においては微生物の種に特異的に反応する抗体が特に有用となる。
本発明において抗体は、ポリクローナル抗体またはモノクローナル抗体を指し、Ribosomal Protein L7/L12蛋白質の全長あるいはその部分ペプチドを用いて作成することができる。抗体を作成するためのペプチドの長さは特に限定されないがRibosomal Protein L7/L12蛋白質に対する抗体の場合、この蛋白質を特徴づけられる長さがあれば良く、好ましくは5アミノ酸以上、特に好ましくは8アミノ酸以上のペプチドを用いれば良い。
このペプチドあるいは全長蛋白質をそのまま、またはKLH(keyhole−limpet hemocyanin)やBSA(bovine serum albumin)といったキャリア蛋白質と架橋した後必要に応じてアジュバントとともに動物へ接種せしめ、その血清を回収することでRibosomal Protein L7/L12蛋白質を認識する抗体(ポリクローナル抗体)を含む抗血清を得ることができる。また抗血清より抗体を精製して使用することもできる。接種する動物としてはヒツジ、ウマ、ヤギ、ウサギ、マウス、ラット等であり、特にポリクローナル抗体作製にはヒツジ、ウサギなどが好ましい。また、ハイブリドーマ細胞を作製する公知の方法によりモノクローナル抗体を得ることも可能であるが、この場合はマウスが好ましい。
また該蛋白質の全長または5残基以上、望ましくは8残基以上のアミノ酸配列をグルタチオンS−トランスフェラーゼ(GST)などとフュージョン蛋白質としたものを精製して、または未精製のまま、抗原として用いることもできる。成書(Antibodies a laboratory manual,E.Harlow et al.,Cold Spring Harbor Laboratory)に示された各種の方法ならびに遺伝子クローニング法などにより分離されたイムノグロブリン遺伝子を用いて培養した細胞に発現させた遺伝子組み換え抗体によっても作製することができる。
本発明のマーカー抗原として用いることができるRibosomal Protein L7/L12蛋白質に対する抗体は、以下の方法あるいはその他の類似の方法によって取得することができるがこれらの方法に限定されるものではない。
a)Ribosomal Protein L7/L12蛋白質の遺伝子配列およびアミノ酸配列が既知の微生物については、他の微生物における該蛋白質のアミノ酸配列との類似性の少ない領域についてペプチド断片を合成し、それを免疫原としてポリクローナル抗体、あるいはモノクローナル抗体を作製することにより目的の抗体を取得することができる。
また、既知の該遺伝子の両端部位におけるDNA配列をプローブとしたPCR手法による遺伝子増幅、相同部分配列を鋳型プローブとしたハイブリダイゼーション法など通常の遺伝子操作手法を用いることにより該遺伝子の全長配列を取得することができる。
その後他の蛋白質遺伝子とのフュージョン遺伝子などを構築し、大腸菌等を宿主として公知の遺伝子導入手法により宿主内に該当フュージョン遺伝子を挿入し大量に発現させた後にフュージョン蛋白質として用いた蛋白質に対する抗体アフィニティカラム法などにより発現蛋白質を精製することにより目的とする蛋白質抗原を取得することができる。この場合Ribosomal Protein L7/L12の全長蛋白質が抗原となるため微生物間で保存されているアミノ酸部分に対する抗体を取得しても本発明の目的に合致しない。従って、本法によって取得した抗原に対しては公知の手法によりモノクローナル抗体を産生するハイブリドーマを取得し、該当する微生物とのみ反応する抗体を産生するクローンを選択することにより目的の抗体を取得することができる。
b)Ribosomal Protein L7/L12蛋白質のアミノ酸配列が未知の微生物については1つにはRibosomal Protein L7/L12蛋白質のアミノ酸配列が菌種間で50〜60%相同であることにより、そのアミノ酸配列の相同部分の配列を基にしてPCR法による特定配列部分の遺伝子増幅や相同部分配列を鋳型プローブとしたハイブリダイゼーション法など通常の遺伝子操作手法を用いることにより該蛋白質遺伝子を容易に取得することができる。
その後他の蛋白質遺伝子とのフュージョン遺伝子などを構築し、大腸菌等を宿主として公知の遺伝子導入手法により宿主内に該当フュージョン遺伝子を挿入し大量に発現させた後にフュージョン蛋白質として用いた蛋白質に対する抗体アフィニティカラム法などにより発現蛋白質を精製することにより目的とする蛋白質抗原を取得することができる。この場合Ribosomal Protein L7/L12の全長蛋白質が抗原となるため微生物間で保存されているアミノ酸部分に対する抗体を取得しても本発明の目的に合致しない。従って、本法によって取得した抗原に対しては公知の手法によりモノクローナル抗体を産生するハイブリドーマを取得し、該当する微生物とのみ反応する抗体を産生するクローンを選択することにより目的の抗体を取得することができる。
c)あるいはRibosomal Protein L7/L12蛋白質のアミノ酸配列が未知な場合の別な方法として、既知のRibosomal Protein L7/L12蛋白質のアミノ酸配列のうち微生物間で保存されている共通配列部分に相当する5〜30アミノ酸の合成ペプチドを作製し、そのペプチド配列に対し公知の方法でポリクローナル抗体あるいはモノクローナル抗体を作製する。該抗体を用いたアフィニティカラムクロマトによって目的の微生物細胞破砕液を精製することにより高度に精製されたRibosomal Protein L7/L12蛋白質を取得することができる。
蛋白質の精製度が不足している場合は公知の精製手法であるイオン交換クロマトグラフィー、疎水クロマトグラフィー、ゲル濾過などの手法により精製したのち作製した抗体によるウェスタンブロットなどの方法によりRibosomal Protein L7/L12蛋白質の溶出画分を同定し精製蛋白質を得ることができる。得られた精製Ribosomal Protein L7/L12蛋白質抗原を基にして公知の方法によりハイブリドーマを取得し、目的の微生物に特異的に反応するハイブリドーマを選択することにより目的の抗体を取得することができる。
上記の方法a)、b)およびc)によって得られた、種々の微生物に特異的な本発明の抗体は、微生物に特異的な各種の診断試薬およびキットを利用する、種々の免疫学的分析法に用いることができる。例えば、この抗体は、公知の測定手法であるポリスチレンラテックス粒子上に該抗体を吸着させた凝集反応、マイクロタイタープレート中で行う公知技術であるELISA法、既存のイムノクロマト法、着色粒子もしくは発色能を有する粒子、または酵素もしくは蛍光体でラベルされた該抗体とともに捕捉(capture)抗体で被覆した磁気微粒子などを用いるサンドイッチアッセイなど既知の全ての免疫測定手法に利用できる。
抗体を用いる微生物診断方法とは、ポリスチレンラテックス粒子上に該抗体を吸着させた凝集反応、マイクロタイタープレート中で行う公知技術であるELISA法、既存のイムノクロマト法、着色粒子もしくは発色能を有する粒子、または酵素もしくは蛍光体でラベルされた該抗体とともに捕捉抗体で被覆した磁気微粒子などを用いるサンドイッチアッセイなど既知の全ての免疫測定手法を利用する診断方法を意味する。
また、特に抗体を用いる有用な微生物診断方法として特表平7−509565号公報に記載されているシリコン、窒化珪素などにより形成された光学薄膜上で抗体反応をおこない光干渉原理等により検出するいわゆるオプティカルイムノアッセイ(OIA,Optical Immunoassay)などが高感度な診断方法として有用である。
また該検出方法において必要となる微生物からの細胞内マーカー抗原の抽出方法としては、TritonX−100,Tween−20をはじめとする種々の界面活性剤を用いた抽出試薬による処理法、適当なプロテアーゼなどの酵素を用いる酵素処理法、物理的方法による微生物細胞の破砕をはじめ既知の細胞構造の破砕手法が用いられる。界面活性剤等の組み合わせにより微生物ごとに試薬による最適な抽出条件を設定することが望ましい。
また、本発明における、抗体を用いる微生物検出用試薬キットとは、当該検出方法を用いた検出用試薬キットに相当する。
Chlamydia pneumoniaeのRibosomal Protein L7/L12蛋白質のアミノ酸配列及びDNA配列を配列表配列番号:1及び2に示す。従って、この微生物の場合はRibosomal Protein L7/L12蛋白質のアミノ酸配列を、配列表に「クロスマッチ」と記した類似した微生物の同種の蛋白質と比較することが可能である。相同性の低いセグメントのペプチドを合成し、これに対するポリクローナルあるいはモノクローナル抗体を作成することは、微生物に対する特異性を有するものの選択を省略することを可能とする。
特にポリクローナル抗体の場合、免疫した動物の抗血清をProtein Aカラム等で精製しIgG画分を取得したのち、さらに動物の免疫に用いた合成ペプチドによるアフィニティ精製を実施することが望ましい。
更に、当該微生物のRibosomal Protein L7/L12蛋白質のDNA配列からN末端とC末端の配列に基づいてPCRプライマーが作成された。このPCRプライマーの相同性を利用して、ゲノムDNAを用いてPCR法によりDNA断片を増幅させ、これを抽出し、常法によりChlamydia pneumoniaeのRibosomal Protein L7/L12遺伝子の断片を取得することができる。Chlamydia pneumoniaeのRibosomal Protein L7/L12遺伝子の全長はこれらの断片のDNA配列情報を分析することにより知ることができる。
取得したChlamydia pneumoniaeのRibosomal Protein L7/L12遺伝子は、例えばGSTなどとフュージョン蛋白質遺伝子を構成し、適当な発現用プラスミドを用いて発現ベクターを構築後、大腸菌等を形質転換して該蛋白質を大量発現させうる。形質転換した大腸菌を適当量培養し、菌体破砕液をGSTを用いたアフィニティカラムで精製することにより、Chlamydia pneumoniaeのRibosomal Protein L7/L12蛋白質とGSTのフュージョン蛋白質が得られる。
この蛋白質をそのまま、あるいはGST部分を切断後、抗原蛋白質として公知の手法により、複数のハイブリドーマクローンを確立し、Chlamydia pneumoniae菌体あるいは菌体破砕液またはChlamydia pneumoniaeのRibosomal Protein L7/L12蛋白質に特異的な反応を示す抗体を選択することにより目的の特異的モノクローナル抗体を取得することも可能である。
本発明に基づき作製された抗体は、公知の測定手法であるポリスチレンラテックス粒子上に該抗体を吸着させた凝集反応、マイクロタイタープレート中で行う公知技術であるELISA法、既存のイムノクロマト法、着色粒子もしくは発色能を有する粒子、または酵素もしくは蛍光体でラベルされた該抗体とともに捕捉抗体で被覆した磁気微粒子などを用いるサンドイッチアッセイなど既知の全ての免疫測定手法に利用できる。
また、本発明に基づき作製された抗体は全ての免疫測定手法において当該抗原蛋白質を固相あるいは液相中で捕獲するいわゆる捕捉抗体として機能しうると同時にパーオキシダーゼやアルカリフォスファターゼなどの酵素を公知の方法により修飾していわゆる酵素標識抗体とすることにより、検出用抗体としても機能しうる。
発明を実施するための最良の形態
以下の例は本発明を具体的に説明するためのものであって本発明について何らその範囲を限定するものではない。 TECHNICAL FIELD The present invention relates to an antibody useful for detecting a microorganism belonging to Chlamydia pneumoniae , which is a common causative microorganism for pneumonia , a method for detecting the microorganism, a reagent kit for detecting the microorganism, and the microorganism detection The present invention relates to a method for producing an antibody.
The present invention is important medically, particularly in the diagnosis of atypical pneumonia caused by Chlamydia pneumoniae .
The present invention is useful for detecting microorganisms Chlamydia pneumoniae contained in specimens collected from specimens such as throat swabs, tissue samples, and body fluids.
BACKGROUND ART Diagnosis of microbial infection is usually confirmed by detecting causative bacteria at the site of infection or detecting antibodies against causative bacteria in serum and body fluids. In particular, this diagnosis is important in the sense that detection of the causative bacteria enables rapid treatment of the patient.
Infectious disease causative bacteria are generally detected through culture of causative bacteria, and a culture identification method for identifying the causal bacteria based on their physiological, biochemical or structural characteristics. Polymerase chain reaction (PCR) ) Method or genetic diagnostic method to detect and amplify by specific nucleic acid hybridization and immunological method to detect causative bacteria using specific reaction between antibody and antigenic marker of causative bacteria The
However, when using a culture identification method or a genetic diagnosis method, it takes a long time to obtain a result. Therefore, diagnosis by an immunological method that can detect causative bacteria in a short time and with high sensitivity and leads to rapid and appropriate treatment of patients is widely used.
Conventionally, various combinations of marker antigens and antibodies have been used for detection of infection-causing bacteria by immunological methods, depending on the bacterial species.
Chlamydia pneumoniae is a common cause of pneumonia worldwide. A small, non-motile Gram-negative bacterium that selectively invades the human body and causes disease. There is no known animal that can cause pathogenesis. The seropositive rate is 40-50% in adults in their 30s and 40s (Hyman, Roblin et al. 1995). This microorganism can cause laryngitis, bronchitis and mild pneumonia.
This fungus is a very small obligate parasite that grows in the cytoplasm of the host cell. The growth of Chlamydia pneumoniae in tissue culture is very slow (Godzik, O'Brien et al. 1995) and it takes at least 3-5 days to identify the bacteria in the culture (Essig, Zucs et al. 1997). Therefore, the Gram staining method and the culture method cannot be applied as a diagnostic method for rapidly detecting a pathogenic bacterium. Therefore, an immunological technique using an antibody is often used as a rapid diagnosis method for chlamydia.
In the case of Chlamydia , the presence of lipopolysaccharide (LPS), a genus-specific antigen, as an antigenic determinant is known (Verkooyen, Van Lent et al. 1998), and especially in various diagnostic kits, Chlamydia It is used as a reagent antibody for detection of trachomatis . In addition, Peterson et al. (Peterson, Cheng et al. 1993; Peterson, de la Maza et al. 1998) and Batteiger et al. (Batteriger, Newhallal al. 1986) reported a monoclonal antibody against the Chlamydia genus (MOMP). doing.
These antibodies have been shown to help distinguish between Chlamydia pheunoniae and Chlamydia trachomatis , but these antibodies then played an important role in revealing multiple antigenic differences within the Chlamydia pheunoniae species. I beat it. Such antigens may be useful for serotyping within the Chlamydia pheunoniae species, but not for normal diagnoses that require detection of all strains of the Chlamydia pheunoniae species. Although a common antigen with a universal function, and most of the structure is conserved among microbial species, no antigen has been known that can be used to distinguish and detect it.
The present invention relates to a protein that is universally present as a molecule having the same function in all microorganisms and is useful as a protein antigen for obtaining an antibody. Usually, such molecules are only accompanied by small-scale structural changes. Such large-scale structural changes to universal molecules of the same function can have a serious adverse effect on the survival of organisms.
The number of commercially available monoclonal antibodies that detect Chlamydia pathogens is negligible and far from sufficient. Until recently, only the TWAR strain was believed to be the causative agent of pneumonia (Thom and Grayston 1991; United States Patent No. 5,008,186). Recently, several serotypes of Chlamydia pathogens have been reported. LPS or MOMP differs depending on the strain, and an antibody against one serotype cannot cover all.
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above problems. That is, an object of the present invention is to provide a method for rapidly and specifically detecting a microorganism belonging to Chlamydia pneumoniae with high sensitivity, a detection antibody used for the detection, and a detection reagent kit. Furthermore, this invention makes it a subject to provide the manufacturing method of the antibody for a detection used for the detection.
The present inventors have found a protein having the same function in all microorganisms as a useful antigen protein. Usually, such protein structural changes are expected to be extremely small. Surprisingly, however, the antibody against the protein is microbial species or genus-specific, and the antibody against the protein has diversity that can be used for microbial species or genus-specific identification, It has been found that all the serotypes of the microorganisms that can be detected can be detected.
The present inventors are present in all microbial cells as molecules having the same function, and in addition to intracellular molecules having amino acid structures that differ to some extent among microorganisms, particularly Ribosomal Protein L7 / L12 protein, which is a kind of ribosomal protein. Pay attention. Ribosomal Protein L7 / L12 protein is a protein having a molecular weight of about 13 kilodaltons, and is known to exist as a ribosomal protein essential for protein synthesis. In particular, the entire amino acid sequence of the Ribosomal Protein L7 / L12 protein has been analyzed in several microorganisms including Chlamydia pneumoniae .
The present inventors pay attention to the fact that this molecule is similar among microorganisms, and has a structural part unique to each microorganism in part, and uses an antibody against the Ribosomal Protein L7 / L12 protein of this Chlamydia pneumoniae. As a result, it was found that serotypes specific to various microorganisms and bacteria and capable of detecting serotypes within all the same bacterial species can be detected.
The present inventors have found that an antibody specific to the Chlamydia pneumoniae protein can be obtained and that Chlamydia pneumoniae can be specifically detected by using the antibody, thereby completing the present invention.
According to the present invention, a monoclonal antibody specific for the Chlamydia pneumoniae Ribosomal Protein L7 / L12 protein was found and developed. This antibody is novel and has a property of specifically reacting with the above protein unlike any conventionally known antibody.
In the sequence listing, SEQ ID NOs: 1 and 2 are the DNA sequence of the Ribosomal Protein L7 / L12 gene of Chlamydia pneumoniae (NCBI database accession # NC # 000922) and the corresponding amino acid sequence (NCBI database accession # AE001593. . The left end and right end of the amino acid sequences described in the sequence listing are the amino group end (hereinafter referred to as N-terminal) and the carboxyl group end (hereinafter referred to as C-terminal), respectively, and the left end and right end of the base sequence are each 5 ′ end. And the 3 ′ end. The amino acid sequence of the cross-match test is indicated by an amino acid single letter abbreviation. In addition, the notation “+” in the cross-match test indicates that the amino acid is different, but the property such as hydrophobicity is a similar amino acid, and the blank “” is a completely different amino acid including the property. In addition, a series of molecular biological experiments of genetic manipulation described in the present invention can be performed by a method described in a normal experiment document. Examples of the above-mentioned normal experiment documents include Molecular Cloning, A laboratory manual, Cold Spring Harbor Laboratory Press, Sambrook, J. et al. (1989).
Figure 0005331284
In the present invention, “microorganism” means Chlamydia pneumoniae , and particularly refers to a microorganism that has pathogenicity in the respiratory tract and is highly diagnostic as a causative bacterium of Chlamydia infection.
In the present invention, “an antibody that specifically reacts with a microorganism” refers to an antibody that specifically reacts with a species or genus of a microorganism. In the diagnosis of a microbial infection, an antibody that specifically reacts with a species of a microorganism. Especially useful.
In the present invention, the antibody refers to a polyclonal antibody or a monoclonal antibody, and can be prepared using the full length of the Ribosomal Protein L7 / L12 protein or a partial peptide thereof. The length of the peptide for producing the antibody is not particularly limited, but in the case of an antibody against the Ribosomal Protein L7 / L12 protein, it is sufficient that the protein has a characteristic length, preferably 5 amino acids or more, particularly preferably 8 amino acids. The above peptides may be used.
This peptide or full-length protein is directly or after cross-linking with a carrier protein such as KLH (keyhole-limpet hemocyanin) or BSA (bovine serum albumin) and then inoculated to an animal together with an adjuvant as necessary, and then the serum is collected to recover the ribosomal protein. An antiserum containing an antibody (polyclonal antibody) that recognizes the L7 / L12 protein can be obtained. Further, the antibody can be purified from the antiserum and used. The animals to be inoculated include sheep, horses, goats, rabbits, mice, rats and the like, and sheep, rabbits and the like are particularly preferable for producing polyclonal antibodies. A monoclonal antibody can also be obtained by a known method for producing a hybridoma cell. In this case, a mouse is preferred.
Further, the full-length protein or an amino acid sequence of 5 or more residues, preferably 8 or more residues, which is a fusion protein with glutathione S-transferase (GST) or the like is purified or used as an antigen without purification. You can also. Genes expressed in cells cultured using immunoglobulin genes isolated by various methods and gene cloning methods shown in the literature (Antibodies a laboratory manual, E. Harlow et al., Cold Spring Harbor Laboratory) It can also be produced by a recombinant antibody.
The antibody against Ribosomal Protein L7 / L12 protein that can be used as the marker antigen of the present invention can be obtained by the following method or other similar methods, but is not limited to these methods.
a) For microorganisms whose gene sequence and amino acid sequence of Ribosomal Protein L7 / L12 protein are known, a peptide fragment is synthesized for a region having a low similarity to the amino acid sequence of the protein in other microorganisms, and a polyclonal antibody is used as an immunogen. The desired antibody can be obtained by preparing an antibody or a monoclonal antibody.
In addition, the full-length sequence of the gene can be obtained by using conventional gene manipulation techniques such as gene amplification by PCR techniques using DNA sequences at both ends of the known gene as probes, and hybridization methods using homologous partial sequences as template probes. can do.
Then, construct a fusion gene with other protein genes, insert the corresponding fusion gene into the host by a known gene transfer method using Escherichia coli etc. as the host, express it in large quantities, and then antibody affinity column for the protein used as the fusion protein The target protein antigen can be obtained by purifying the expressed protein by a method or the like. In this case, since the full-length protein of Ribosomal Protein L7 / L12 serves as an antigen, obtaining an antibody against the amino acid portion conserved among microorganisms does not meet the purpose of the present invention. Therefore, for the antigen obtained by this method, obtain a hybridoma that produces a monoclonal antibody by a known technique, and obtain a target antibody by selecting a clone that produces an antibody that reacts only with the corresponding microorganism. Can do.
b) For microorganisms whose amino acid sequence of Ribosomal Protein L7 / L12 protein is unknown, one is that the amino acid sequence of Ribosomal Protein L7 / L12 protein is 50-60% homologous between the bacterial species, so the homology of the amino acid sequence The protein gene can be easily obtained by using normal gene manipulation techniques such as gene amplification of a specific sequence portion by PCR method based on the partial sequence and hybridization method using a homologous partial sequence as a template probe.
Then, construct a fusion gene with other protein genes, insert the corresponding fusion gene into the host by a known gene transfer method using Escherichia coli etc. as the host, express it in large quantities, and then antibody affinity column for the protein used as the fusion protein The target protein antigen can be obtained by purifying the expressed protein by a method or the like. In this case, since the full-length protein of Ribosomal Protein L7 / L12 serves as an antigen, obtaining an antibody against the amino acid portion conserved among microorganisms does not meet the purpose of the present invention. Therefore, for the antigen obtained by this method, obtain a hybridoma that produces a monoclonal antibody by a known technique, and obtain a target antibody by selecting a clone that produces an antibody that reacts only with the corresponding microorganism. Can do.
c) Alternatively, as another method when the amino acid sequence of the Ribosomal Protein L7 / L12 protein is unknown, the amino acid sequence of the Ribosomal Protein L7 / L12 protein, which corresponds to a common sequence portion conserved between microorganisms among the amino acid sequences of the known Ribosomal Protein L7 / L12 protein, A synthetic peptide of 30 amino acids is prepared, and a polyclonal antibody or a monoclonal antibody is prepared by a known method against the peptide sequence. A highly purified Ribosomal Protein L7 / L12 protein can be obtained by purifying the target microbial cell disruption solution by affinity column chromatography using the antibody.
When the degree of protein purification is insufficient, Ribosomal Protein L7 / L12 is purified by a known purification technique such as ion exchange chromatography, hydrophobic chromatography, gel filtration, etc., and then by a method such as Western blotting using the prepared antibody. The purified protein can be obtained by identifying the eluted fraction of the protein. Based on the obtained purified Ribosomal Protein L7 / L12 protein antigen, a hybridoma is obtained by a known method, and a target antibody can be obtained by selecting a hybridoma that specifically reacts with the target microorganism.
The antibodies of the present invention specific for various microorganisms obtained by the above methods a), b) and c) are subjected to various immunological analyzes using various diagnostic reagents and kits specific for the microorganisms. Can be used in the law. For example, this antibody has an agglutination reaction in which the antibody is adsorbed onto polystyrene latex particles, which is a known measurement technique, an ELISA method that is a known technique performed in a microtiter plate, an existing immunochromatography method, colored particles, or coloring ability. The present invention can be used for all known immunoassay techniques such as sandwich assays using particles having magnetic particles coated with a capture antibody together with the antibody or the antibody labeled with an enzyme or a phosphor.
The microorganism diagnosis method using an antibody is an aggregation reaction in which the antibody is adsorbed on polystyrene latex particles, an ELISA method which is a known technique performed in a microtiter plate, an existing immunochromatography method, colored particles or particles having color developing ability, Alternatively, it means a diagnostic method using all known immunoassay techniques such as a sandwich assay using magnetic fine particles coated with a capture antibody together with the antibody labeled with an enzyme or a phosphor.
In addition, an antibody reaction is performed on an optical thin film formed of silicon, silicon nitride, or the like described in JP-A-7-509565 as a useful microorganism diagnosis method using an antibody in particular, so-called detection based on a light interference principle or the like. An optical immunoassay (OIA, Optical Immunoassay) is useful as a highly sensitive diagnostic method.
In addition, methods for extracting intracellular marker antigens from microorganisms necessary in the detection method include treatment methods using extraction reagents using various surfactants such as Triton X-100 and Tween-20, suitable proteases, and the like. Known cell structure disruption techniques are used, including enzyme treatment methods using these enzymes and disruption of microbial cells by physical methods. It is desirable to set optimum extraction conditions with reagents for each microorganism by combining surfactants and the like.
In the present invention, the reagent kit for detecting a microorganism using an antibody corresponds to a reagent kit for detecting using the detection method.
The amino acid sequence and DNA sequence of Ribosomal Protein L7 / L12 protein of Chlamydia pneumoniae are shown in SEQ ID NOs: 1 and 2. Therefore, in the case of this microorganism, it is possible to compare the amino acid sequence of the Ribosomal Protein L7 / L12 protein with the same type of protein of a similar microorganism whose sequence listing indicates “crossmatch”. By synthesizing a peptide having a segment with low homology and preparing a polyclonal or monoclonal antibody against the peptide, it is possible to omit selection of one having specificity for a microorganism.
In particular, in the case of a polyclonal antibody, it is desirable to purify the antiserum of the immunized animal using a Protein A column or the like to obtain an IgG fraction, and then carry out affinity purification using a synthetic peptide used for immunization of the animal.
Furthermore, PCR primers were prepared based on the N-terminal and C-terminal sequences from the DNA sequence of the Ribosomal Protein L7 / L12 protein of the microorganism. Using this PCR primer homology, a genomic DNA can be used to amplify a DNA fragment by the PCR method, and this can be extracted, and a Chlamydia pneumoniae Ribosomal Protein L7 / L12 gene fragment can be obtained by a conventional method. . The full length of the Ribosomal Protein L7 / L12 gene of Chlamydia pneumoniae can be determined by analyzing the DNA sequence information of these fragments.
The obtained Chlamydia pneumoniae Ribosomal Protein L7 / L12 gene constitutes a fusion protein gene with, for example, GST, etc., constructs an expression vector using an appropriate expression plasmid, and then transforms Escherichia coli etc. to express the protein in large quantities It can be made. A suitable amount of the transformed E. coli is cultured, and the cell disruption solution is purified with an affinity column using GST to obtain the R. protein protein L7 / L12 protein of Chlamydia pneumoniae and the fusion protein of GST.
Using this protein as it is or after cleaving the GST portion, a plurality of hybridoma clones are established by a known method as an antigen protein, and are specific to Chlamydia pneumoniae cells or lysate of Chlamydia pneumoniae or Ribosomal Protein L7 / L12 protein of Chlamydia pneumoniae It is also possible to obtain a specific monoclonal antibody of interest by selecting an antibody that exhibits an appropriate reaction.
The antibody prepared according to the present invention is a known measurement technique, such as an agglutination reaction in which the antibody is adsorbed onto polystyrene latex particles, an ELISA method that is a known technique performed in a microtiter plate, an existing immunochromatography method, a colored particle Alternatively, it can be used for all known immunoassay techniques such as a sandwich assay using particles having chromogenic ability, or magnetic fine particles coated with a capture antibody together with the antibody labeled with an enzyme or a phosphor.
In addition, the antibody prepared according to the present invention can function as a so-called capture antibody that captures the antigen protein in a solid phase or a liquid phase in all immunoassay methods, and at the same time, enzymes such as peroxidase and alkaline phosphatase are known. It can also function as an antibody for detection by modifying it by a method to obtain a so-called enzyme-labeled antibody.
BEST MODE FOR CARRYING OUT THE INVENTION The following examples are for illustrative purposes only and are not intended to limit the scope of the present invention.

Chlamydia pneumoniaeからのRibosomal Protein L7/L12遺伝子のクローニングChlamydia pneumoniae(ATCC VR−1310、ATCCから分譲、購入)をHL細胞のモノレイヤー上で培養した。Chlamydia pneumoniaeの詳細な培養方法はKuoらなど(Cles and Stamm 1990;Kuo and Grayston 1990;Yoshizawa,Dairiki et al.1992)の記載に従った。COインキュベータ内にて37℃、5%COの条件下で微生物を5日間培養した。感染した細胞を遠心分離により集め、最終的に5×10個/ml前後の濃度となるようにTE緩衝液(和光純薬工業製)に懸濁した。この懸濁液約1.5mlを微量遠心チューブに移し取り10,000rpmで2分間遠心した。
上澄み液を棄てた。沈殿部分を567μlのTE緩衝液に再懸濁した。さらに30μlの10%SDSと3μlの20mg/mlのProteinaseK溶液を加えて良く混合し、37℃で1時間インキュベートした。懸濁液を56℃で更に1時間インキュベートした。次に10%のセチルトリメチルアンモニウムブロマイド/0.7M NaCl溶液を80μl加え、よく混合したのち65℃で10分間インキュベートした。同一体積の24:1のクロロホルム−イソアミルアルコール混合液を700μl加えよく攪拌した。
この溶液を微量遠心機で12,000rpm、5分間、4℃で遠心処理したのち、水層画分を新しい微量遠心管に移した。そこに0.6倍量のイソプロパノールを加えチューブをよく振ってDNAの沈殿を形成した。白いDNA沈殿をガラス棒ですくって1mlの70%エタノール(−20℃に冷却したもの)が入った別の微量遠心管に移した。その後チューブを10,000rpmで5分間遠心し、上清を静かに除去した。1mlの70%エタノールを追加し、混合物を更に5分間遠心した。
再び上澄みを除去したのち沈殿を100μlのTE緩衝液に溶解しDNA溶液を得た。このゲノムDNA溶液の濃度をMolecular Cloning,A laboratory manual,1989,Eds.Sambrook,J.,Fritsch,E.F.,and Maniatis,T.,Cold Spring harbor Laboratory PressのE5,Spectrophotometric Determination of the Amount of DNA or RNAに従って定量した。このゲノムDNAのうち10ngを用いてPCR(polymerase chain reaction)を行った。PCRはTaqポリメラーゼ(宝酒造社製、コードR001A)を用いた。酵素に添付の緩衝液5μl、酵素に添付のdNTP混合物4μlおよび各200pmolのオリゴヌクレオチド(配列表配列番号:3および4に示すもの)を酵素に加えた。全体の容量が50μlとなるように精製水を加えた。
この混合物を、TaKaRa PCR Thermal Cycler 480を用いて、95℃1分、50℃2分、72℃3分を5サイクル行ったのち、95℃1分、60℃2分、72℃3分を25サイクル行った。このPCR生成物の一部を用いて、1.5%アガロースゲル中にて電気泳動を実施した。エチジウムブロマイド(日本ジーン社製)にて染色後、紫外線下で観察し、約400bpのDNAが増幅されていることを確認した。制限酵素BamHIおよびXhoIを用いて切断後、1.5%アガロースゲル中にて電気泳動とエチジウムブロマイドによる染色を行った。ゲルから約400bpのバンドを切り取った。このバンドをSuprec01(宝酒造株式会社製)で精製し、一般的なベクターであるpGEX−6P−1(Pharmacia社製)に挿入した。同ベクターは目的の遺伝子断片を適当な制限酵素サイトに組み込むことによりGST蛋白質とのフュージョン蛋白質を発現しうる目的分子の発現ベクターとして機能することができる。
具体的にはベクターpGEX−6P−1と先のDNAとをそのモル比が1:3となるように混ぜ合わせて、T4 DNAリガーゼ(Invitrogen社製)にてベクターにDNAを組み込んだ。DNAを組み込んだベクターpGEX−6P−1は大腸菌のワンショットコンピテントセルに遺伝子学的手法により導入し、ついで50μg/mlのアンピシリン(シグマ社)を含む半固体状の培養プレートであるLBL−ブロス寒天(宝酒造株式会社製)に接種した。プレートを37℃で12時間インキュベートし、成長したコロニーを無差別に選択し、同じ濃度のアンピシリンを含むL−ブロス培養液に接種した。37℃で8時間振とう培養・集菌後、Wizard Miniprepを用い、添付の説明書に従ってプラスミドを分離した。プラスミドは制限酵素BamHI/XhoIにて切断処理した。約370bpのDNAを切断することによってPCR生成物の挿入を確認した。挿入されたDNAの塩基配列を上記クローンを用いて決定した。
挿入DNA断片の塩基配列の決定は、Applied Biosystems社製の蛍光シークエンサーを用いて実施した。
シークエンスサンプルの調製はPRISM,Ready Reaction Dye Terminator Cycle Sequencing Kit(Applied Biosystems社製)を用いて行った。先ず、9.5μlの反応液、4.0μlの0.8pmol/μlのT7プロモータープライマー(Gibco BRL)、および6.5μlの0.16μg/μlテンプレートDNAを0.5mlのマイクロチューブに加え、混合した。混合物を2層の100μl鉱油で覆ったのち、25サイクルPCR増幅処理を行った。ここで、1サイクルは、96℃での30秒間の処理、55℃での15秒間の処理、および60℃での4分間の処理からなる。生成物を4℃で5分間保持した。反応終了後、80μlの無菌精製水を加え、攪拌した。生成物を遠心分離し、水層をフェノール−クロロホルム混合液で3回抽出した。10μlの3M酢酸ナトリウムpH5.2と300μlのエタノールを100μlの水層に加え、攪拌した。その後14,000rpm、室温で15分間遠心し、沈殿を回収した。沈殿を75%エタノールで洗浄後、真空下に2分間静置して乾燥させ、シークエンス用サンプルとした。シークエンスサンプルは、4μlの10mMのEDTAを含むホルムアミドに溶解して90℃で2分間変性した。このものは氷中で冷却してシークエンスに供した。
無差別に選択した5個のクローンのうち2個はPCRに用いたプローブと配列上の相同性を有していた。また、Ribosomal Protein L7/L12蛋白質の遺伝子配列と一致したDNA配列が明白であった。その構造遺伝子部分の全塩基配列及び対応するアミノ酸配列は配列表配列番号:1及び2に示すような配列であった。この遺伝子断片は、明らかにChlamydia pneumoniaeのRibosomal Protein L7/L12蛋白質の遺伝子をコードするものである。
Cloning Chlamydia pneumoniae of Ribosomal Protein L7 / L12 gene from Chlamydia pneumoniae (sale from ATCC VR-1310, ATCC, purchase) were cultured on a monolayer of HL cells. Detailed culture methods of Chlamydia pneumoniae were as described by Kuo et al. (Cles and Stamm 1990; Kuo and Grayston 1990; Yoshizawa, Dairikiki et al. 1992). The microorganisms were cultured for 5 days in a CO 2 incubator at 37 ° C. and 5% CO 2 . Infected cells were collected by centrifugation and suspended in TE buffer (manufactured by Wako Pure Chemical Industries, Ltd.) to a final concentration of about 5 × 10 7 cells / ml. About 1.5 ml of this suspension was transferred to a microcentrifuge tube and centrifuged at 10,000 rpm for 2 minutes.
The supernatant was discarded. The pellet was resuspended in 567 μl TE buffer. Furthermore, 30 μl of 10% SDS and 3 μl of 20 mg / ml Proteinase K solution were added, mixed well, and incubated at 37 ° C. for 1 hour. The suspension was incubated for an additional hour at 56 ° C. Next, 80 μl of 10% cetyltrimethylammonium bromide / 0.7 M NaCl solution was added, mixed well, and then incubated at 65 ° C. for 10 minutes. 700 μl of the same volume of 24: 1 chloroform-isoamyl alcohol mixture was added and stirred well.
This solution was centrifuged at 12,000 rpm for 5 minutes at 4 ° C. in a microcentrifuge, and then the aqueous layer fraction was transferred to a new microcentrifuge tube. 0.6 times the amount of isopropanol was added thereto, and the tube was shaken well to form a DNA precipitate. The white DNA precipitate was scooped with a glass rod and transferred to another microcentrifuge tube containing 1 ml of 70% ethanol (cooled to -20 ° C). Thereafter, the tube was centrifuged at 10,000 rpm for 5 minutes, and the supernatant was gently removed. 1 ml of 70% ethanol was added and the mixture was centrifuged for another 5 minutes.
After removing the supernatant again, the precipitate was dissolved in 100 μl of TE buffer to obtain a DNA solution. The concentration of this genomic DNA solution was measured according to Molecular Cloning, A laboratory manual, 1989, Eds. Sambrook, J. et al. , Fritsch, E .; F. , And Maniatis, T .; , Cold Spring Harbor Laboratory Press, E5, Spectrophotometric Determination of the Amount of DNA or RNA. PCR (polymerase chain reaction) was performed using 10 ng of this genomic DNA. For PCR, Taq polymerase (Takara Shuzo Co., Ltd., code R001A) was used. 5 μl of buffer attached to the enzyme, 4 μl of dNTP mixture attached to the enzyme, and 200 pmol of oligonucleotides (shown in SEQ ID NOs: 3 and 4 in the sequence listing) were added to the enzyme. Purified water was added so that the total volume was 50 μl.
This mixture was subjected to 5 cycles of 95 ° C. for 1 minute, 50 ° C. for 2 minutes and 72 ° C. for 3 minutes using TaKaRa PCR Thermal Cycler 480, and then 95 ° C. for 1 minute, 60 ° C. for 2 minutes and 72 ° C. for 3 minutes for 25 minutes. Cycled. A portion of this PCR product was used for electrophoresis in a 1.5% agarose gel. After staining with ethidium bromide (manufactured by Nippon Gene Co., Ltd.), it was observed under ultraviolet light to confirm that about 400 bp of DNA was amplified. After digestion with restriction enzymes BamHI and XhoI, electrophoresis and staining with ethidium bromide were performed in a 1.5% agarose gel. A band of about 400 bp was cut from the gel. This band was purified with Suprec01 (Takara Shuzo Co., Ltd.) and inserted into a general vector pGEX-6P-1 (Pharmacia). This vector can function as an expression vector for a target molecule capable of expressing a fusion protein with a GST protein by incorporating the target gene fragment into an appropriate restriction enzyme site.
Specifically, the vector pGEX-6P-1 and the previous DNA were mixed so that the molar ratio was 1: 3, and the DNA was incorporated into the vector with T4 DNA ligase (manufactured by Invitrogen). The vector pGEX-6P-1 incorporating the DNA was introduced into a one-shot competent cell of Escherichia coli by genetic techniques, and then LBL-broth, a semi-solid culture plate containing 50 μg / ml ampicillin (Sigma). Agar (Takara Shuzo Co., Ltd.) was inoculated. Plates were incubated for 12 hours at 37 ° C. and grown colonies were selected indiscriminately and inoculated into L-broth cultures containing the same concentration of ampicillin. After shaking culture and collection at 37 ° C. for 8 hours, the plasmid was isolated using Wizard Miniprep according to the attached instructions. The plasmid was digested with restriction enzymes BamHI / XhoI. The insertion of the PCR product was confirmed by cleaving about 370 bp of DNA. The base sequence of the inserted DNA was determined using the above clone.
The nucleotide sequence of the inserted DNA fragment was determined using a fluorescent sequencer manufactured by Applied Biosystems.
Sequence samples were prepared using PRISM, Ready Reaction Dye Terminator Cycle Sequencing Kit (Applied Biosystems). First, add 9.5 μl reaction, 4.0 μl 0.8 pmol / μl T7 promoter primer (Gibco BRL), and 6.5 μl 0.16 μg / μl template DNA to a 0.5 ml microtube and mix did. The mixture was covered with two layers of 100 μl mineral oil followed by 25 cycles of PCR amplification. Here, one cycle consists of a treatment at 96 ° C. for 30 seconds, a treatment at 55 ° C. for 15 seconds, and a treatment at 60 ° C. for 4 minutes. The product was held at 4 ° C. for 5 minutes. After completion of the reaction, 80 μl of sterile purified water was added and stirred. The product was centrifuged and the aqueous layer was extracted three times with a phenol-chloroform mixture. 10 μl of 3M sodium acetate pH 5.2 and 300 μl of ethanol were added to 100 μl of the aqueous layer and stirred. Thereafter, the mixture was centrifuged at 14,000 rpm and room temperature for 15 minutes to collect the precipitate. The precipitate was washed with 75% ethanol, and left to stand for 2 minutes under vacuum to be dried to obtain a sample for sequencing. Sequence samples were dissolved in formamide containing 4 μl of 10 mM EDTA and denatured at 90 ° C. for 2 minutes. This was cooled in ice and subjected to sequencing.
Of the 5 clones selected indiscriminately, 2 had sequence homology with the probes used for PCR. In addition, a DNA sequence consistent with the gene sequence of Ribosomal Protein L7 / L12 protein was apparent. The entire base sequence of the structural gene portion and the corresponding amino acid sequence were those shown in SEQ ID NOs: 1 and 2. This gene fragment clearly codes for the gene of Ribosomal Protein L7 / L12 protein of Chlamydia pneumoniae .

Chlamydia pneumoniaeからのRibosomal Protein L7/L12蛋白質の大腸菌での大量発現と精製
発現ベクターを組み込んだ大腸菌をLB培地中で50ml、37℃、一昼夜培養した。500mlの2倍濃度のYT培地を37℃で1時間加熱した。1晩培養した大腸菌液50mlを500mlの前述の培地に入れた。一時間後、550μlの100mMイソプロピルβ−D(−)−チオガラクトピラノシド(IPTG)を導入し、4時間培養した。生成物を回収し、250mlの遠心チューブに移し、7000rpmで10分間遠心した。上澄みを棄てて50mM Tris緩衝液pH7.4、25%Sucroseを含むLysis緩衝液25mlずつに溶解した。さらに10%NP−40 1.25ml、1M MgCl 125μlを加えてプラスチックチューブに移した。氷冷下、1分間の超音波処理を5回行った。その後、12,000rpmで15分間遠心し、上清を回収した。
次に、PBSでコンディショニングしたグルタチオンアガロースカラムに前記の上澄み液を吸着させた。次に、20mM Tris緩衝液pH7.4、4.2mM MgCl、1mMジチオスレイトール(DTT)を含む洗浄液でカラムを2ベッドボリューム分洗浄した。5mMのグルタチオンを含む50mM Tris緩衝液pH9.6中で溶離処理をした。溶出画分の蛋白質含有量をピグメント結合法(Bradford法;BioRad Co.)で決定し、主画分を取得した。
得られた精製GSTフュージョンRibosomal Protein L7/L12蛋白質の純度は電気泳動法により確認したところ約75%であり免疫源として充分な純度を確保できた。
Large-scale expression and purification of Ribosomal Protein L7 / L12 protein from Chlamydia pneumoniae in E. coli E. coli incorporating the expression vector was cultured in LB medium at 50 ml, 37 ° C. overnight. 500 ml of double concentration YT medium was heated at 37 ° C. for 1 hour. 50 ml of the E. coli solution cultured overnight was placed in 500 ml of the aforementioned medium. One hour later, 550 μl of 100 mM isopropyl β-D (−)-thiogalactopyranoside (IPTG) was introduced and cultured for 4 hours. The product was collected and transferred to a 250 ml centrifuge tube and centrifuged at 7000 rpm for 10 minutes. The supernatant was discarded and dissolved in 25 ml of Lysis buffer containing 50 mM Tris buffer pH 7.4 and 25% sucrose. Further, 1.25 ml of 10% NP-40 and 125 μl of 1M MgCl 2 were added and transferred to a plastic tube. The sonication for 1 minute was performed 5 times under ice cooling. Thereafter, the mixture was centrifuged at 12,000 rpm for 15 minutes, and the supernatant was collected.
Next, the supernatant was adsorbed onto a glutathione agarose column conditioned with PBS. Next, the column was washed for 2 bed volumes with a washing solution containing 20 mM Tris buffer pH 7.4, 4.2 mM MgCl 2 , 1 mM dithiothreitol (DTT). Elution was performed in 50 mM Tris buffer pH 9.6 containing 5 mM glutathione. The protein content of the eluted fraction was determined by the pigment binding method (Bradford method; BioRad Co.), and the main fraction was obtained.
The purity of the obtained purified GST fusion Ribosomal Protein L7 / L12 protein was about 75% as confirmed by electrophoresis, and sufficient purity as an immunogen could be secured.

Chlamydia pneumoniaeのRibosomal Protein L7/L12蛋白質に対するモノクローナル抗体の作製
まずマウスの免疫についてはChlamydia pneumoniaeのGSTフュージョンRibosomal Protein L7/L12蛋白質抗原100μgを200μlのPBSに溶解後フロイントのコンプリートアジュバントを200μl加え混合した。エマルジョン化したのち200μlを腹腔内に注射した。同じエマルジョン化抗原を2週間後、4週間後、および6週間後に腹腔内に注射した。2倍濃度のエマルジョン化抗原を10週間後および14週間後に腹腔内に注射した。最終の免疫化終了の3日後に脾臓を摘出し、細胞融合した。
無菌的に取り出したマウスの脾細胞10個に対し骨髄腫細胞2×10個をガラスチューブに取り良く混合したのち1500rpmで5分間遠心し上澄みを棄て、その後細胞をよく混合した。
細胞融合に使用した骨髄腫細胞は、NS−1系の細胞株を用い10%の牛胎児血清を含むRPMI1640培地で培養し、細胞融合の2週間前から0.13mMのアザグアニン、0.5μg/mlのMC−210、10%の牛胎児血清を含むRPM11640培地で1週間培養後、さらに10%の牛胎児血清を含むRPMI1640培地で1週間培養したものを用いた。
37℃に保持したRPMI1640培養液50mlを混合細胞試料に加え、1,500rpmで遠心分離した。上澄み液を除去後、37℃に保持した50%ポリエチレングリコール1mlを加え、1分間攪拌した。37℃に保持したRPMI1640培養液10mlを加え、混合液を殺菌したピペットで約5分間吸引・排出することにより激しく攪拌した。
5分間1,000rpmで遠心分離し、上澄み液を除去したのち、細胞濃度が5×10/mlとなるように30ml HAT培養液を加えた。この混合物を均一になるまで攪拌し、0.1mlずつを96穴の培養プレートに注ぎ、37℃、7%の炭酸ガス雰囲気下で培養した。HAT培地を、第1日、第1週、および第2週にそれぞれ0.1mlずつ加え、ELISA法により所望の抗体を産生する細胞をスクリーニングした。
0.05%のアジ化ソーダ含むPBS中に溶解したGSTフュージョンRibosomal Protein L7/L12蛋白質およびGST蛋白質をそれぞれ10μg/ml濃度で希釈した液を100μlずつ96穴プレートに別々に分注し4℃で1晩吸着させた。
上澄み除去後、1%牛血清アルブミン溶液(PBS中)200μl添加し室温で1時間反応しブロッキングした。上澄み液を除去後、生成物を洗浄液(0.02%Tween20,PBS)で洗浄した。これに融合細胞の培養液100mlを加え、室温にて2時間反応させた。上澄み液を除去し、沈殿を洗浄液で洗浄した。次いで、濃度50ng/mlのペルオキシダーゼでラベルしたgoat anti−mouse IgG抗体溶液100μlを加え、室温にて1時間反応させた。上澄み液を除去し、生成物を再び洗浄液で洗浄した。TMB溶液(KPL社製)を100μlずつ加え、混合物を室温にて20分間反応させた。着色したところで1Nの硫酸100μlを加えて反応を停止し、450nmの吸光度を測定した。
この結果、GSTフュージョンRibosomal Protein L7/L12蛋白質にのみ反応しGST蛋白質には反応しない陽性ウェルが見いだされRibosomal Protein L7/L12蛋白質に対する抗体が含まれていることが判明した。
そこで陽性ウェル中の細胞をそれぞれ回収し24穴プラスティックプレート中、HAT培地で培養した。
培養した融合培地を細胞数が約20個/mlになるようにHT培地で希釈し50μlを、HT培地に懸濁した6週齢のマウス胸腺細胞10個と96穴培養プレート中で混合した。混合後、7%CO条件下、37℃で2週間培養した。
培養上澄み中の抗体活性を前述のELISA法にて同様に検定し、Ribosomal Protein L7/L12蛋白質との反応陽性の細胞を回収した。さらに、同様の希釈検定、クローニング操作を繰り返し、ハイブリドーマCPRB−1〜5の計5クローンを取得した。
Preparation of Monoclonal Antibody to Chlamydia pneumoniae Ribosomal Protein L7 / L12 Protein First, for immunization of mice, Chlamydia pneumoniae GST fusion Ribosomal Protein L7 / L12 protein antigen was added to 200 μl of PBS after adding 200 μl of PBS in a mixed solution of 200 μl of PBS. After emulsification, 200 μl was injected intraperitoneally. The same emulsified antigen was injected intraperitoneally after 2, 4 and 6 weeks. Double concentration of emulsified antigen was injected intraperitoneally after 10 and 14 weeks. Three days after the end of the final immunization, the spleen was removed and cell fused.
2 × 10 7 myeloma cells were collected from 10 8 spleen cells of aseptically removed mice in a glass tube, mixed well, centrifuged at 1500 rpm for 5 minutes, the supernatant was discarded, and then the cells were mixed well.
The myeloma cells used for cell fusion were cultured in RPMI 1640 medium containing 10% fetal calf serum using NS-1 cell line, and 0.13 mM azaguanine, 0.5 μg / mg from 2 weeks before cell fusion. After culturing for 1 week in RPM11640 medium containing 10% fetal calf serum with MC-210, 10 ml, it was further cultured for 1 week in RPMI 1640 medium containing 10% fetal calf serum.
50 ml of RPMI 1640 culture maintained at 37 ° C. was added to the mixed cell sample and centrifuged at 1,500 rpm. After removing the supernatant, 1 ml of 50% polyethylene glycol maintained at 37 ° C. was added and stirred for 1 minute. 10 ml of RPMI 1640 culture maintained at 37 ° C. was added, and the mixture was vigorously stirred by aspirating and discharging with a sterilized pipette for about 5 minutes.
After centrifuging at 1,000 rpm for 5 minutes and removing the supernatant, 30 ml HAT culture solution was added so that the cell concentration became 5 × 10 6 / ml. The mixture was stirred until it was homogeneous, and 0.1 ml was poured into a 96-well culture plate and cultured at 37 ° C. in a 7% carbon dioxide atmosphere. HAT medium was added at 0.1 ml each on the first day, the first week, and the second week, and cells producing the desired antibody were screened by ELISA.
100 μl each of GST Fusion Ribosomal Protein L7 / L12 protein and GST protein dissolved in PBS containing 0.05% sodium azide at a concentration of 10 μg / ml was separately dispensed into a 96-well plate at 4 ° C. Adsorbed overnight.
After removing the supernatant, 200 μl of 1% bovine serum albumin solution (in PBS) was added and reacted at room temperature for 1 hour for blocking. After removing the supernatant, the product was washed with a washing solution (0.02% Tween 20, PBS). To this, 100 ml of a culture solution of the fused cells was added and reacted at room temperature for 2 hours. The supernatant was removed and the precipitate was washed with a washing solution. Subsequently, 100 μl of a goat anti-mouse IgG antibody solution labeled with a peroxidase at a concentration of 50 ng / ml was added and reacted at room temperature for 1 hour. The supernatant was removed and the product was washed again with the washing solution. 100 μl of TMB solution (manufactured by KPL) was added, and the mixture was allowed to react at room temperature for 20 minutes. When colored, 100 μl of 1N sulfuric acid was added to stop the reaction, and the absorbance at 450 nm was measured.
As a result, positive wells were found that reacted only with the GST fusion Ribosomal Protein L7 / L12 protein but not with the GST protein, and were found to contain antibodies against the Ribosomal Protein L7 / L12 protein.
Therefore, the cells in each positive well were collected and cultured in a HAT medium in a 24-well plastic plate.
The cultured fusion medium was diluted with HT medium so that the number of cells was about 20 cells / ml, and 50 μl was mixed with 10 6- week-old mouse thymocytes suspended in HT medium in a 96-well culture plate. . After mixing, the cells were cultured at 37 ° C. for 2 weeks under 7% CO 2 conditions.
The antibody activity in the culture supernatant was similarly assayed by the above-mentioned ELISA method, and cells positive for reaction with Ribosomal Protein L7 / L12 protein were recovered. Further, the same dilution assay and cloning operation were repeated to obtain a total of 5 clones of hybridomas CPRB-1 to 5.

Chlamydia pneumoniaeのRibosomal Protein L7/L12蛋白質を検出するモノクローナル抗体の選択
前述のようにして取得した陽性ハイブリドーマ細胞を用いて定法にしたがってモノクローナル抗体を生産回収した。
具体的には、RPMI1640培地(10%FCS入り)を用いて継代培養した細胞をあらかじめ2週間前に0.5mlのプリスタンを腹腔内に注射したBalb/Cマウスの腹腔内に5×10個(PBS中)注射した。3週間後腹水を回収し、その遠心上澄みを取得した。
得られた抗体を含む溶液をProtein Aカラム(5ml,Pharmacia製)に吸収させ、3倍量のPBSで洗浄した。次いで、クエン酸緩衝液pH3で溶出した。抗体画分を回収し、各ハイブリドーマによって産生されたモノクローナル抗体を取得した。この5株のハイブリドーマ由来のモノクローナル抗体を用いてELISA法により評価した。
モノクローナル抗体の評価にはサンドウィッチ分析法を用いた。作成されたモノクローナル抗体をペルオキシダーゼに結合せしめることにより検出用の抗体として用いた。
酵素標識はホースラディッシュパーオキシダーゼ(SigmaグレードVI)を用い結合には試薬S−アセチルチオ酢酸N−ヒドロキシスクシンイミドを使用しAnalytical Bio−chemistry132(1983),68−73に述べられている方法に従って行った。ELISA反応においては市販の抗Chlamydia pneumoniaeポリクローナル抗体(ウサギ)を10μg/ml濃度で希釈した液を100μlずつ96穴プレートに別々に分注し4℃で1晩吸着させた。
上澄み除去後、1%牛血清アルブミン溶液(PBS中)200μl添加し室温で1時間反応しブロッキングした。上澄み液を除去後、生成物を洗浄液(0.02%Tween20,PBS)で洗浄した。これに各微生物の培養液に濃度0.3%となる量のTriton X−100を加え常温で5分間抽出することにより得られた抗原溶液100μlを加え、室温で2時間反応させた。上澄み液を除去し、生成物を再び洗浄液で洗浄した。次いで、濃度5μg/mlのペルオキシダーゼ標識抗Ribosomal Protein L7/L12蛋白質抗体溶液100μlを加え、室温にて1時間反応させた。上澄み液を除去し、生成物を再び洗浄液で洗浄した。TMB溶液(KPL社製)を100μlずつ加え、混合物を室温にて20分間反応させた。着色したところで1Nの硫酸100μlを加えて反応を停止した。450nmの吸光度を測定した。
酵素標識抗体としてハイブリドーマCPRB−1由来のモノクローナル抗体を用いた場合、試験したChlamydia pneumoniaeの全ての株を10個/mlの感度で検出すると同時に他のHaemophilus influenzaeKlebsiella pneumoniaeMycoplasma pneumoniaeおよびNeisseria meningitides等の微生物について10個/mlの高濃度でも反応性を示さずRibosomal Protein L7/L12蛋白質に対するモノクローナル抗体を用いることでChlamydia pneumoniae特異的な反応性をもつ抗体を取得したことが明確に確認できた。この抗体はAMCP−1と名付けられた。表2はAMCP−1を用いた結果のみを示す。別の微生物と交差反応を示す他の抗体を使用した結果はここで言及しない。

Figure 0005331284
Selection of Monoclonal Antibody to Detect Ribosomal Protein L7 / L12 Protein of Chlamydia pneumoniae Monoclonal antibodies were produced and recovered according to a conventional method using the positive hybridoma cells obtained as described above.
Specifically, intraperitoneally Balb / C mice subcultured cells were pre 2 weeks pristane before 0.5ml were injected intraperitoneally with RPMI1640 medium (10% FCS-containing) 5 × 10 6 Injected (in PBS). After 3 weeks, ascites was collected and the supernatant was obtained.
The solution containing the obtained antibody was absorbed into a Protein A column (5 ml, manufactured by Pharmacia) and washed with 3 times the amount of PBS. Then, elution was performed with citrate buffer pH 3. Antibody fractions were collected to obtain monoclonal antibodies produced by each hybridoma. Evaluation was performed by ELISA using monoclonal antibodies derived from these five hybridomas.
A sandwich assay was used to evaluate the monoclonal antibody. The prepared monoclonal antibody was used as a detection antibody by binding to peroxidase.
Enzyme labeling was performed according to the method described in Analytical Bio-chemistry 132 (1983), 68-73, using horseradish peroxidase (Sigma grade VI) and using the reagent S-acetylthioacetic acid N-hydroxysuccinimide for binding. In the ELISA reaction, 100 μl of a solution obtained by diluting a commercially available anti- Chlamydia pneumoniae polyclonal antibody (rabbit) at a concentration of 10 μg / ml was separately dispensed into a 96-well plate and adsorbed overnight at 4 ° C.
After removing the supernatant, 200 μl of 1% bovine serum albumin solution (in PBS) was added and reacted at room temperature for 1 hour for blocking. After removing the supernatant, the product was washed with a washing solution (0.02% Tween 20, PBS). To this, 100 μl of an antigen solution obtained by adding Triton X-100 in an amount of 0.3% to the culture solution of each microorganism and extracting for 5 minutes at room temperature was added and reacted at room temperature for 2 hours. The supernatant was removed and the product was washed again with the washing solution. Next, 100 μl of a peroxidase-labeled anti-Ribosomal Protein L7 / L12 protein antibody solution at a concentration of 5 μg / ml was added and reacted at room temperature for 1 hour. The supernatant was removed and the product was washed again with the washing solution. 100 μl of TMB solution (manufactured by KPL) was added, and the mixture was allowed to react at room temperature for 20 minutes. When colored, 100 μl of 1N sulfuric acid was added to stop the reaction. Absorbance at 450 nm was measured.
When using the monoclonal antibody from the hybridoma CPRB-1 as the enzyme-labeled antibody, if all strains of Chlamydia pneumoniae tested detected with a sensitivity of 10 6 cells / ml at the same time other Haemophilus influenzae, Klebsiella pneumoniae, Mycoplasma pneumoniae and Neisseria meningitides It was clearly confirmed that an antibody having reactivity specific to Chlamydia pneumoniae was obtained by using a monoclonal antibody against the Ribosomal Protein L7 / L12 protein that showed no reactivity even at a high concentration of 10 8 cells / ml. It was. This antibody was named AMCP-1. Table 2 shows only the results using AMCP-1. Results using other antibodies that cross-react with other microorganisms are not mentioned here.
Figure 0005331284

Ribosomal Protein L7/L12蛋白質固定化アフィニティカラムを用いたChlamydia pneumoniae Ribosomal Protein L7/L12蛋白質と特異的に反応するポリクローナル抗体の取得
実施例1に記載の方法により取得したChlamydia pneumoniaeのRibosomal Protein L7/L12蛋白質またはTriton X−100処理した菌体の上清を抗原として使用した。100μgの抗原を含む生理食塩水約1.2mlをフロイントアジュバント1.5mlとともに乳化した。エマルジョンをSPF日本白色ウサギに皮下注射してウサギを免疫化した。2週間おきに5〜6回免疫し、抗体価を確認した。
抗体価の確認はELISA法により実施した。0.05%のアジ化ソーダ含むPBS中に溶解したChlamydia pneumoniaeのRibosomal Protein L7/L12蛋白質を10μg/ml濃度に希釈した液を100μlずつ96穴プレートに分注し4℃で1晩吸着させた。上澄み除去後、1%牛血清アルブミン溶液(PBS中)200μl添加し室温で1時間反応しブロッキングした。上澄み液を除去後、生成物を洗浄液(0.02%Tween20,PBS)で洗浄した。正常のウサギ血清および免疫化したウサギの抗血清を希釈して得られた溶液100μlを加え、室温にて2時間反応させた。上澄み液を除去し、生成物を再び洗浄液で洗浄した。次いで、濃度50ng/mlのペルオキシダーゼ標識抗ウサギIgG抗体溶液100μlを加え、室温にて1時間反応させた。上澄み液を除去し、生成物を再び洗浄液で洗浄した。OPD溶液(Sigma社製)を100μlずつ加え、混合物を室温にて20分間反応させた。着色したところで1Nの硫酸100μlを加えて反応を停止した。492nmの吸光度を測定した。
抗体価上昇を確認後、大量採血を実施した。耳動脈から血液をガラス製遠心管に採取し、37℃で1時間放置後、4℃で一晩静置した。その後3000rpm5分間遠心し、上清を回収した。得られた抗血清は4℃で保存した。
Chlamydia pneumoniaeのRibosomal Protein L7/L12蛋白質を固定化したアフィニティカラムを調製した。HiTrap NHS活性化カラム(1ml,Pharmacia社製)を用いた。カラムを1mM HClで置換後直ちにRibosomal Protein L7/L12蛋白質のPBS溶液(1mg/ml)を加えた。カラムを30分間静置後、ブロッキング試薬を加え、PBSで平衡化した。
このChlamydia pneumoniaeのRibosomal Protein L7/L12蛋白質固定化アフィニティカラムを使用して、Chlamydia pneumoniaeのTriton X−100処理した菌体の上清を抗原として得られた抗血清中のポリクローナル抗体の精製を行った。この抗血清をPBSで5倍に希釈し、0.45μmのフィルターを通した後、流速0.5ml/minでChlamydia pneumoniaeのRibosomal Protein L7/L12蛋白質固定化カラムに吸着させた。その後0.1Mグリシン緩衝液pH2.1でカラムから溶出し、直ちに1M Tris緩衝液pH9.0で中和した後、抗体価測定法と同様のELISA法により目的とする抗体の溶出画分を回収した。
このようにして得られたポリクローナル抗体は特表平7−509565号公報に記載されているOIA法により評価した。
精製した抗体はOIA法の捕捉抗体として使用した。また検出抗体としては実施例4に記載したAMCP−1モノクローナル抗体をパーオキシダーゼで酵素標識したものを使用した。酵素標識はホースラディッシュパーオキシダーゼ(SigmaグレードVI)を用い結合には試薬S−アセチルチオ酢酸N−ヒドロキシスクシンイミドを使用しAnalytical Bio−chemistry 132(1983),68−73に述べられている方法に従って行った。
OIA反応においては0.05%アジ化ナトリウムを含むPBS中の精製ポリクローナル抗体を10μg/ml濃度に0.1M HEPES緩衝液pH8.0で希釈した液を50μlずつシリコンウエハー上に添加し室温で30分反応させた後、蒸留水で洗浄し、サッカロース及びアルカリ処理カゼインを含むコーティング溶液でコーティング後、使用した。
上記操作で得られた各微生物の培養液に濃度0.5%となる量のTritonX−100を加え常温で5分間抽出することにより得られた抗原溶液15μlを上記シリコンウェハー上に添加し、室温で10分間反応させた。次いで、20μg/mlペルオキシダーゼ標識化モノクローナル抗体を15μl加え、10分間反応させた。蒸留水で洗浄後、TMB溶液(KPL社製)を15μlずつ加え、混合物を室温にて5分間反応させた。生成物を蒸留水で洗浄し、酵素反応により生成した青色を肉眼で観察した。
この結果、表3に示すように、精製ポリクローナル抗体APCP−1を捕捉抗体として用いることにより、Chlamydia pneumoniaeを10個/mlの感度で検知できること、および他の微生物の反応性は検知できないことが明らかである。このようにしてChlamydia pneumoniaeのRibosomal Protein L7/L12蛋白質を固定化したアフィニティカラムにより、Chlamydia pneumoniaeに特異的に反応するポリクローナル抗体を取得したことを確認した。

Figure 0005331284
産業上の利用可能性
本発明によると微生物の進化の過程で機能的に保持された細胞内分子に対する抗体を用いて特定の種の微生物を特異的に検出できるだけでなく、同一種内における全ての血清型の微生物を精度よく検出することができる。
このような抗体として微生物のリボソーム蛋白質、Ribosomal Protein L7/L12蛋白質に対する抗体を用い、Chlamydia pneumoniaeの検出を精度良く行うことができる。
また、このような抗体を構成要素とする微生物検出用試薬キットを用いることで、微生物の検出をより汎用的に精度良く行なうことができる。
引用文献:
特許文献
米国特許No.5,008,186、Grayston,et al.1991、急性呼吸器疾患を引き起す特異なChlamydiaの検出
米国特許No.5,281,518、Campbell,et al,1994、急性呼吸器疾患を引き起す特異なChlamydiaの検出
米国特許No.5,350,673、Campbell,et al.1994、急性呼吸器疾患を引き起す特異なChlamydiaの検出
その他の文献
Batteiger,B.E.,Newhall,W.J.th.et al.(1986),「マウスモノクローナル抗体を使用するChlamydia trachomatisの主なる外皮薄膜タンパク質の抗原分析法」Infect Immun53(3),646−50
Cles,L.D.and W.E.Stamm(1990)「Chlamydia pneumoniaeの分離および継体培養のためのHL細胞の使用」J Clin Microbiol 28(5),938−40
Essig,A.,P.Zucs,et al.(1997)「慢性の肺炎患者のポリメラーゼ連鎖反応および細胞培養によるオルニトーシス(鳥類病;ハト病)の診断」、Clin Diagn Lab Immunol 4(2),213−6
Godzik,K.L.,E.R.O’Brien,et al.(1995)、「Chlamydia pneumoniae感染ヒト血管壁細胞の生体外感受性」J Clin Microbiol 33(9),2411−4
Hyman,C.L.,P.M.Roblin,et al.(1995)「主観的に健常な成人における無症状のChlamydia pneumoniae鼻咽頭保持率、ポリメラーゼ連鎖反応−酵素による免疫学的分析と培養による評価」Clin Infect Dis 20(5),1174−8
Kuo,C.C.and J.T.Grayston(1990)「Chlamydia pneumoniaeの分離および増殖のための感応セルラインおよびHL細胞の使用」J Infect Dis 162(3),755−8
Peterson,E.M.,X.Cheng,et al.(1993)「Chlamydia trachomatisの機能的要外皮薄膜蛋白質エピトープ」J Gen Microbiol 139(Pt11),2621−6
Peterson,E.M.,L.M.de la Maza,et al.(1998)「Chlamydia pneumoniaeのリポ多糖類による中和モノクローナル抗体の物性特定」Scand J Infect Dis 30(4),381−6
Thom,D.H.and J.T.Grayston(1991)「Chlamydia pneumoniae TWAR感染」Clin Chest Med 12(2),245−56
Verkooyen,R.P.,N.A.Van Lent,et al.(1998)「ミクロ免疫蛍光分析およびELISA法による慢性の閉塞性肺炎患者におけるChlamydia pneumoniae感染の診断」Am Heart J 135(1),15−20
Yoshizawa,H,K.Dairiki,et al.(1992)Chlamydia pneumoniaeに対するHep−2細胞の感度とHL細胞の感度の比較。」Kansenshogaku Zasshi 66(8),1037−41
NCBIデータベース#NC#000922.Kalman,S.,Mitchell,W.,Marathe,R.,Lammel,C.,Fan,J.,Olinger,L.,Grimwood,J.,Davis,R.W.,and Stephens,R.S.
NCBIデータベース#AE001593.1.Kalman,S.,Mitchell,W.,Marathe,R,Lammel,C.,Fan,J.,Olinger,L.,Grimwood,J.,Davis,R.W.and Stephens,R.S.
Harlow,E.,and D.Lane(1988)「抗体、実験室マニュアル」NewYork.,Cold Spring Harbor Laboratory Press
Shambrook,J.,E.F.Fritsch,and T.Maniatis.,(1989)「モレキュラークローニング、実験室マニュアル、第2版」Cold Spring Harbor Laboratory PressRibosomal Protein L7 / L12 protein Ribosomal Protein L7 / L12 protein of Chlamydia pneumoniae acquired by the method described in the acquired first embodiment of Chlamydia pneumoniae Ribosomal Protein L7 / L12 protein specifically reactive with a polyclonal antibody with immobilized affinity column Alternatively, the supernatant of cells treated with Triton X-100 was used as an antigen. About 1.2 ml of physiological saline containing 100 μg of antigen was emulsified with 1.5 ml of Freund's adjuvant. The emulsion was immunized subcutaneously into SPF Japanese white rabbits. Immunization was performed 5-6 times every 2 weeks, and the antibody titer was confirmed.
The antibody titer was confirmed by the ELISA method. A solution of Chlamydia pneumoniae Ribosomal Protein L7 / L12 protein dissolved in PBS containing 0.05% sodium azide diluted to a concentration of 10 μg / ml was dispensed into 96-well plates in a 96-well plate and adsorbed overnight at 4 ° C. . After removing the supernatant, 200 μl of 1% bovine serum albumin solution (in PBS) was added and reacted at room temperature for 1 hour for blocking. After removing the supernatant, the product was washed with a washing solution (0.02% Tween 20, PBS). 100 μl of a solution obtained by diluting normal rabbit serum and immunized rabbit antiserum was added and reacted at room temperature for 2 hours. The supernatant was removed and the product was washed again with the washing solution. Subsequently, 100 μl of a peroxidase-labeled anti-rabbit IgG antibody solution having a concentration of 50 ng / ml was added and reacted at room temperature for 1 hour. The supernatant was removed and the product was washed again with the washing solution. An OPD solution (manufactured by Sigma) was added by 100 μl each, and the mixture was reacted at room temperature for 20 minutes. When colored, 100 μl of 1N sulfuric acid was added to stop the reaction. Absorbance at 492 nm was measured.
After confirming an increase in antibody titer, a large amount of blood was collected. Blood was collected from the ear artery into a glass centrifuge tube, allowed to stand at 37 ° C. for 1 hour, and allowed to stand at 4 ° C. overnight. Thereafter, the mixture was centrifuged at 3000 rpm for 5 minutes, and the supernatant was collected. The obtained antiserum was stored at 4 ° C.
An affinity column was prepared on which the Ribosomal Protein L7 / L12 protein of Chlamydia pneumoniae was immobilized. A HiTrap NHS activation column (1 ml, manufactured by Pharmacia) was used. Immediately after replacement of the column with 1 mM HCl, a PBS solution of Ribosomal Protein L7 / L12 protein (1 mg / ml) was added. After allowing the column to stand for 30 minutes, a blocking reagent was added and equilibrated with PBS.
Using this Chlamydia pneumoniae Ribosomal Protein L7 / L12 protein-immobilized affinity column, the polyclonal antibody in the antiserum obtained using the Triton X-100-treated supernatant of Chlamydia pneumoniae as an antigen was purified. . The antiserum was diluted 5-fold with PBS, passed through a 0.45 μm filter, and then adsorbed onto a Ribosomal Protein L7 / L12 protein-immobilized column of Chlamydia pneumoniae at a flow rate of 0.5 ml / min. After eluting from the column with 0.1 M glycine buffer pH 2.1 and immediately neutralizing with 1 M Tris buffer pH 9.0, the elution fraction of the target antibody is recovered by the same ELISA method as the antibody titer measurement method. did.
The polyclonal antibody thus obtained was evaluated by the OIA method described in JP-T-7-509565.
The purified antibody was used as a capture antibody for the OIA method. As the detection antibody, the AMCP-1 monoclonal antibody described in Example 4 was enzyme-labeled with peroxidase. Enzyme labeling was performed according to the method described in Analytical Bio-chemistry 132 (1983), 68-73, using horseradish peroxidase (Sigma grade VI) and using the reagent S-acetylthioacetic acid N-hydroxysuccinimide for conjugation. .
In the OIA reaction, 50 μl of a purified polyclonal antibody in PBS containing 0.05% sodium azide diluted with 0.1 M HEPES buffer pH 8.0 to a concentration of 10 μg / ml was added to a silicon wafer at room temperature for 30 minutes. After reacting for a minute, it was washed with distilled water, used after coating with a coating solution containing saccharose and alkali-treated casein.
15 μl of an antigen solution obtained by adding Triton X-100 in an amount of 0.5% to the culture solution of each microorganism obtained by the above operation and extracting at room temperature for 5 minutes was added onto the silicon wafer, and For 10 minutes. Next, 15 μl of 20 μg / ml peroxidase-labeled monoclonal antibody was added and allowed to react for 10 minutes. After washing with distilled water, 15 μl of TMB solution (manufactured by KPL) was added, and the mixture was reacted at room temperature for 5 minutes. The product was washed with distilled water, and the blue color produced by the enzyme reaction was observed with the naked eye.
As a result, as shown in Table 3, by using the purified polyclonal antibody APCP-1 as a capture antibody, Chlamydia pneumoniae can be detected with a sensitivity of 10 8 cells / ml, and the reactivity of other microorganisms cannot be detected. it is obvious. The Ribosomal Protein L7 / L12 affinity column where the protein immobilized in this way Chlamydia pneumoniae, it was confirmed that the obtained polyclonal antibodies specifically reactive with Chlamydia pneumoniae.
Figure 0005331284
INDUSTRIAL APPLICABILITY According to the present invention, not only can a specific species of microorganisms be specifically detected using antibodies against intracellular molecules that are functionally retained during the course of the evolution of the microorganism, but also all species within the same species. Serotype microorganisms can be accurately detected.
As such an antibody, an antibody against a ribosomal protein of a microorganism, Ribosomal Protein L7 / L12 protein can be used to accurately detect Chlamydia pneumoniae .
In addition, by using a microorganism detection reagent kit having such an antibody as a constituent element, microorganisms can be detected more generally and accurately.
Cited references:
Patent Document US Pat. 5,008,186, Grayston, et al. 1991, detection of unique Chlamydia causing acute respiratory disease US Pat. 5,281,518, Campbell, et al, 1994, detection of unique Chlamydia causing acute respiratory disease. 5, 350, 673, Campbell, et al. 1994, Detection of Unique Chlamydia that Causes Acute Respiratory Disease and Other Literatures Batteiger, B. et al. E. , Newhall, W .; J. et al. th. et al. (1986), “Analytical method of Chlamydia trachomatis main coat protein using mouse monoclonal antibody” Infect Immun 53 (3), 646-50.
Cles, L .; D. and W. E. Stamm (1990) "Isolation and use of HL cells for Chlamydia pneumoniae " J Clin Microbiol 28 (5), 938-40.
Essig, A.M. , P.M. Zucs, et al. (1997) “Diagnosis of ornitosis (avian disease; pigeon disease) by polymerase chain reaction and cell culture in patients with chronic pneumonia”, Clin Diagnostic Lab Immunol 4 (2), 213-6.
Godzik, K.M. L. , E.C. R. O'Brien, et al. (1995), "In vitro sensitivity of Chlamydia pneumoniae- infected human vascular wall cells" J Clin Microbiol 33 (9), 2411-4.
Hyman, C.I. L. , P.M. M.M. Roblin, et al. (1995) “Asymptomatic Chlamydia pneumoniae nasopharyngeal retention in subjectively healthy adults, polymerase chain reaction—enzymatic immunoassay and culture evaluation” Clin Infect Dis 20 (5), 1174-8.
Kuo, C.I. C. and J. et al. T. T. et al. Grayston (1990) "Use of sensitive cell lines and HL cells for isolation and growth of Chlamydia pneumoniae " J Infect Dis 162 (3), 755-8.
Peterson, E .; M.M. , X. Cheng, et al. (1993) “Functional outer membrane protein epitope of Chlamydia trachomatis” J Gen Microbiol 139 (Pt11), 2621-6
Peterson, E .; M.M. L. M.M. de la Maza, et al. (1998) “Identification of physical properties of neutralizing monoclonal antibody by lipopolysaccharide of Chlamydia pneumoniae ” Scan J Infect Dis 30 (4), 381-6
Thom, D.C. H. and J. et al. T. T. et al. Grayston (1991) “ Chlamydia pneumoniae TWAR infection” Clin Chest Med 12 (2), 245-56.
Verkooyen, R.A. P. , N.M. A. Van Lent, et al. (1998) "Diagnosis of Chlamydia pneumoniae infection in patients with chronic obstructive pneumonia by microimmunofluorescence analysis and ELISA" Am Heart J 135 (1), 15-20.
Yoshizawa, H, K .; Dairikiki, et al. (1992) Comparison of the sensitivity of Hep-2 cells and HL cells to Chlamydia pneumoniae . Kansenshogaku Zashi 66 (8), 1037-41
NCBI database # NC # 000922. Kalman, S .; Mitchell, W .; Marathe, R .; Lammel, C .; Fan, J .; Olinger, L .; , Grimwood, J .; Davis, R .; W. , And Stephens, R .; S.
NCBI database # AE001593.1. Kalman, S .; Mitchell, W .; , Marathe, R, Lammel, C.I. Fan, J .; Olinger, L .; , Grimwood, J .; Davis, R .; W. and Stephens, R.A. S.
Harlow, E .; , And D.D. Lane (1988) "Antibodies, Laboratory Manual" New York. , Cold Spring Harbor Laboratory Press
Shambrook, J. et al. , E.C. F. Fritsch, and T.R. Maniatis. , (1989) "Molecular Cloning, Laboratory Manual, Second Edition" Cold Spring Harbor Laboratory Press.

配列表Sequence listing

Figure 0005331284
Figure 0005331284
Figure 0005331284
Figure 0005331284
Figure 0005331284
Figure 0005331284
Figure 0005331284
Figure 0005331284

Claims (4)

クラミジア・ニューモニア(Chlamydia pneumoniae)に属する細菌のリボソーム蛋白質L7/L12に対する抗体であって、当該細菌のリボソーム蛋白質L7/L12に特異的に反応し、該細菌を他の属の細菌と識別できるモノクローナル抗体を用いることを特徴とする、該細菌を他の属の細菌と識別するための細菌検出方法。
An antibody against bacterial ribosomal protein L7 / L12 belonging to Chlamydia pneumoniae (Chlamydia pneumoniae), reacts specifically with ribosomal protein L7 / L12 of the bacterium can be bacteria and identification of the bacteria other genera monoclonal bacteria detection method for, which comprises using the antibody to another bacteria identification of the bacteria other genera.
抗体が酵素と結合したモノクローナル抗体である、請求項1に記載の細菌検出方法。
The method for detecting bacteria according to claim 1, wherein the antibody is a monoclonal antibody conjugated with an enzyme.
クラミジア・ニューモニア(Chlamydiapneumoniae)に属する細菌のリボソーム蛋白質L7/L12に対する抗体であって、当該細菌のリボソーム蛋白質L7/L12に特異的に反応し、該細菌を他の属の細菌と識別できるモノクローナル抗体を用いることを特徴とする、該細菌を他の属の細菌と識別するための細菌検出用試薬キット。
An antibody against bacterial ribosomal protein L7 / L12 belonging to Chlamydia pneumoniae (Chlamydiapneumoniae), reacts specifically with ribosomal protein L7 / L12 of the bacteria, monoclonal antibodies the bacteria can bacterial and identification of other genera characterized by using a bacterial and identify different bacteria detection reagent kit for the bacteria other genera.
抗体が酵素と結合したモノクローナル抗体である、請求項3に記載の細菌検出用試薬キット。 The reagent kit for detecting bacteria according to claim 3, wherein the antibody is a monoclonal antibody conjugated with an enzyme.
JP2001557920A 2000-01-31 2001-01-31 Antibodies for Chlamydia pneumonia detection Expired - Lifetime JP5331284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001557920A JP5331284B2 (en) 2000-01-31 2001-01-31 Antibodies for Chlamydia pneumonia detection

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000062684 2000-01-31
JP2000062684 2000-01-31
JP2001557920A JP5331284B2 (en) 2000-01-31 2001-01-31 Antibodies for Chlamydia pneumonia detection
PCT/JP2001/000625 WO2001057089A1 (en) 2000-01-31 2001-01-31 Antibody for detecting chlamydia pneumoniae

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011196225A Division JP2012017334A (en) 2000-01-31 2011-09-08 Antibody for detecting chlamydia pneumoniae

Publications (1)

Publication Number Publication Date
JP5331284B2 true JP5331284B2 (en) 2013-10-30

Family

ID=18582657

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2001557920A Expired - Lifetime JP5331284B2 (en) 2000-01-31 2001-01-31 Antibodies for Chlamydia pneumonia detection
JP2011196225A Pending JP2012017334A (en) 2000-01-31 2011-09-08 Antibody for detecting chlamydia pneumoniae

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011196225A Pending JP2012017334A (en) 2000-01-31 2011-09-08 Antibody for detecting chlamydia pneumoniae

Country Status (6)

Country Link
JP (2) JP5331284B2 (en)
KR (1) KR100734994B1 (en)
CN (2) CN1962694A (en)
AU (1) AU2001230531A1 (en)
CA (1) CA2398467C (en)
WO (1) WO2001057089A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201605A (en) * 2002-12-26 2004-07-22 Asahi Kasei Corp Dna encoding ribosome l7/l12 protein of bacterium of genus legionella
WO2007120947A1 (en) * 2006-01-13 2007-10-25 Indiana University Research & Technology Corporation Molecules for the treatment of lung disease involving an immune reaction to connective tissue found in the lung
JP6676464B2 (en) * 2016-05-17 2020-04-08 旭化成株式会社 Method and kit for detecting Chlamydia pneumoniae
JP6831643B2 (en) * 2016-05-17 2021-02-17 旭化成株式会社 Methods and kits for detecting bacteria
KR20230148421A (en) 2021-03-29 2023-10-24 아사히 가세이 가부시키가이샤 Gonococcus detection kit and gonococcus detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996007910A1 (en) * 1994-09-02 1996-03-14 Meiji Milk Products Company Limited Diagnostic drug for chlamydia infection
JPH0931097A (en) * 1995-07-24 1997-02-04 Yuka Medeiasu:Kk Determination of chlamydia trachomatis antibody

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE178940T1 (en) * 1990-09-11 1999-04-15 Inst Child Health Research CLONING AND SEQUENCING OF DERMATOPHAGOID ANTIGENS (HOUSE DUST MITES)
JP3506703B2 (en) * 1992-07-31 2004-03-15 サーモ バイオスター インコーポレイテッド Apparatus and method for detecting an object to be analyzed by optical interference
JP3814844B2 (en) * 1994-09-20 2006-08-30 日立化成工業株式会社 Chlamydia pneumoniae antigen polypeptide, DNA encoding the same, recombinant vector containing the DNA, transformant containing the recombinant vector, and method for producing anti-Chlamydia pneumoniae antibody
ATE352624T1 (en) * 1997-11-21 2007-02-15 Serono Genetics Inst Sa CHLAMYDIA PNEUMONIAE GENOMIC SEQUENCES AND POLYPEPTIDES, FRAGMENTS AND APPLICATIONS THEREOF FOR DETECTION, PREVENTION AND CURE
NZ509577A (en) * 1998-07-31 2003-01-31 Asahi Chemical Ind Antibodies for ribosmal proteins specific to only one microorganism genus or species

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996007910A1 (en) * 1994-09-02 1996-03-14 Meiji Milk Products Company Limited Diagnostic drug for chlamydia infection
JPH0931097A (en) * 1995-07-24 1997-02-04 Yuka Medeiasu:Kk Determination of chlamydia trachomatis antibody

Also Published As

Publication number Publication date
AU2001230531A1 (en) 2001-08-14
KR20020073191A (en) 2002-09-19
CN1406248A (en) 2003-03-26
CA2398467A1 (en) 2001-08-09
CA2398467C (en) 2010-06-29
JP2012017334A (en) 2012-01-26
WO2001057089A1 (en) 2001-08-09
CN1962694A (en) 2007-05-16
KR100734994B1 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
JP5219057B2 (en) Antibodies for detecting microorganisms
US6828110B2 (en) Assays for detection of Bacillus anthracis
JP2012006968A (en) Antibody for detecting mycoplasma pneumoniae
US8940496B2 (en) Method for detecting microorganisms belonging to Mycoplasma pneumoniae and/or Mycoplasma genitalium
JP2012017334A (en) Antibody for detecting chlamydia pneumoniae
JP5442641B2 (en) Method for measuring all Haemophilus influenzae
US20090269789A1 (en) Antibodies for detecting microorganisms
US20080124747A1 (en) Methods for detecting b. anthracis infection
Tabassum et al. Identification of an N-terminal 27 kDa fragment of Mycoplasma pneumoniae P116 protein as specific immunogen in M. pneumoniae infections
JP5351367B2 (en) Antibodies for Chlamydia trachomatis detection
JP2021069355A (en) Antibody for detecting mycoplasma pneumoniae in sample, method for detecting mycoplasma pneumoniae using said antibody, reagent, and kit
JPWO2020111272A1 (en) How to detect the causative agent of acute sinusitis due to bacterial infection
JP2004166564A (en) Monoclonal antibody and method for diagnosing tuberculosis
JP2010248129A (en) Antibody for detecting legionella bacteria
KR20040092299A (en) A newly discovered tuberculosis-specific antigen and diagnostic kit using these antigens
JP2019158627A (en) Method and device for detecting peculiar antigen of mycoplasma pneumoniae
JP2000041674A (en) Antibacterial monoclonal antibody

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110922

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5331284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term