JP5330981B2 - Method for producing vaterite-type calcium carbonate - Google Patents
Method for producing vaterite-type calcium carbonate Download PDFInfo
- Publication number
- JP5330981B2 JP5330981B2 JP2009286537A JP2009286537A JP5330981B2 JP 5330981 B2 JP5330981 B2 JP 5330981B2 JP 2009286537 A JP2009286537 A JP 2009286537A JP 2009286537 A JP2009286537 A JP 2009286537A JP 5330981 B2 JP5330981 B2 JP 5330981B2
- Authority
- JP
- Japan
- Prior art keywords
- calcium carbonate
- vaterite
- type calcium
- average particle
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 title claims description 117
- 229910000019 calcium carbonate Inorganic materials 0.000 title claims description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000243 solution Substances 0.000 claims description 61
- 239000002245 particle Substances 0.000 claims description 39
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 26
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 26
- 239000011575 calcium Substances 0.000 claims description 24
- 238000003756 stirring Methods 0.000 claims description 23
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 18
- 239000001110 calcium chloride Substances 0.000 claims description 16
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 16
- 239000007864 aqueous solution Substances 0.000 claims description 7
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 5
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 5
- 239000001099 ammonium carbonate Substances 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 3
- 230000002194 synthesizing effect Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 230000007423 decrease Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 9
- 229910021532 Calcite Inorganic materials 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000012295 chemical reaction liquid Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- -1 phosphors Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
本発明は、バテライト型炭酸カルシウムの製造方法において、製造されるバテライト型炭酸カルシウムの粒径を所望の大きさに制御する方法に関する。 The present invention relates to a method for controlling the particle size of a manufactured vaterite-type calcium carbonate to a desired size in a method for producing a vaterite-type calcium carbonate.
炭酸カルシウムは、蛍光体、電子材料、セラミックス等の原料や、インキ、ゴム、合成樹脂、紙、医薬品、食品、化粧品等の充填剤などの配合材料に利用されている。炭酸カルシウムの結晶系には、カルサイト、アラゴナイト、バテライトの3種がある。カルサイトは紡錘形や立方形、アラゴナイトは柱状形、バテライトは球状の粒子形態を持つとされている。このうち、上記の原料や配合材料として用いる場合、光沢性や平滑性、反応性に優れているものはバテライトであるが、目的に応じ、所望の粒子径を有するものが要求される。 Calcium carbonate is used as a blending material for raw materials such as phosphors, electronic materials, ceramics, and fillers for ink, rubber, synthetic resin, paper, pharmaceuticals, foods, cosmetics, and the like. There are three crystal systems of calcium carbonate: calcite, aragonite, and vaterite. Calcite has a spindle shape or cubic shape, aragonite has a columnar shape, and vaterite has a spherical particle shape. Among these, when used as the above-mentioned raw materials and blended materials, those that are excellent in gloss, smoothness, and reactivity are vaterites, but those having a desired particle size are required depending on the purpose.
しかしながら、バテライト型炭酸カルシウムの製造方法において、製造されるバテライト型炭酸カルシウムの粒径を制御する技術は、従来知られていなかった。一方、反応時の条件を管理することに関する技術としては、例えば以下のものが挙げられる。 However, in the method for producing vaterite-type calcium carbonate, a technique for controlling the particle size of the produced vaterite-type calcium carbonate has not been known. On the other hand, examples of techniques relating to managing the conditions during the reaction include the following.
例えば、カルシウムイオンを含む溶液と炭酸イオンを含む溶液の混合物に、攪拌機により急激に撹拌して反応初期段階から物理的衝撃を与えることにより、立方体の結晶であるカルサイトの成長過程で角部分の形成が互いの衝突により阻止され、球状のバテライトを得るという方法がある(特許文献1)。しかしながら、特許文献1の方法は、カルサイトの立方体の角が物理的衝撃によって取れることでバテライトという別の結晶系となるという誤った認識に基づくものであり、そのような方法によってはバテライト型炭酸カルシウムを得ることはできない。
For example, by rapidly stirring a mixture of a solution containing calcium ions and a solution containing carbonate ions with a stirrer and applying a physical impact from the initial stage of the reaction, the corner portion of the calcite that is a cubic crystal is grown. There is a method in which formation is prevented by collision with each other and spherical vaterite is obtained (Patent Document 1). However, the method of
また、水溶性カルシウム塩と炭酸アンモニウムとをアンモニヤアルカリ性溶液中で30℃以下の温度で撹拌しつつ反応させる方法がある(特許文献2)。しかし、特許文献2に記載された条件では、得られるバテライトは大粒径となり、小粒径のものを製造することはできなかった。
In addition, there is a method in which a water-soluble calcium salt and ammonium carbonate are reacted in an ammoniacal alkaline solution with stirring at a temperature of 30 ° C. or less (Patent Document 2). However, under the conditions described in
本発明の目的は、バテライト型炭酸カルシウムの製造方法において、製造されるバテライト型炭酸カルシウムの平均粒径を所望の大きさに制御する方法を提供することにある。 An object of the present invention is to provide a method for controlling the average particle size of the produced vaterite-type calcium carbonate to a desired size in the production method of the vaterite-type calcium carbonate.
本発明者は、塩化カルシウム溶液に炭酸アンモニウムとアンモニア水を加えて反応させるに際し、反応時の諸条件を適宜変化させることにより、所望の平均粒径のバテライト型炭酸カルシウムを製造できることを見出した。 The present inventor has found that when adding ammonium carbonate and aqueous ammonia to a calcium chloride solution and reacting them, vaterite-type calcium carbonate having a desired average particle diameter can be produced by appropriately changing various conditions during the reaction.
本発明は、塩化カルシウム水溶液、炭酸アンモニウム及びアンモニア水を混合・撹拌して反応させ、炭酸カルシウムを合成するに際し、下記条件1〜4を全て満たす範囲内において、いずれか1以上の条件を調節して反応を行うことにより、得られるバテライト型炭酸カルシウムの平均粒径を制御することを特徴とするバテライト型炭酸カルシウムの製造方法を提供するものである。
条件1:反応液の温度が、0℃超50℃以下
条件2:反応液中の塩化カルシウムの濃度が、0.250〜0.625mol/L
条件3:添加するアンモニア水(NH4OH)の量が、反応液中のCaに対するモル比(NH4OH/Ca)として、0.67以上
条件4:反応液の撹拌回転数が、200rpm以上
In the present invention, when calcium carbonate aqueous solution, ammonium carbonate and aqueous ammonia are mixed and stirred to react to synthesize calcium carbonate, any one or more conditions are adjusted within a range satisfying all of the following
Condition 1: The temperature of the reaction solution is over 0 ° C. and 50 ° C. or less. Condition 2: The concentration of calcium chloride in the reaction solution is 0.250 to 0.625 mol / L.
Condition 3: The amount of ammonia water (NH 4 OH) to be added is 0.67 or more as a molar ratio to Ca in the reaction solution (NH 4 OH / Ca). Condition 4: The stirring rotation speed of the reaction solution is 200 rpm or more.
本発明の製造方法を用いれば、所望の平均粒径を有するバテライト型炭酸カルシウムを製造することができる。 If the manufacturing method of this invention is used, the vaterite type | mold calcium carbonate which has a desired average particle diameter can be manufactured.
本発明において、原料として使用する塩化カルシウム(CaCl2)は、純度の高いものが好ましく、例えば、特開昭62-36021号公報、特開昭63-156012号公報等に記載の方法に従って製造することができる。前者は、生石灰を消化し、その溶液を比較的高い温度でろ過することによりSrを除き、得られた石灰乳を塩化アンモニウムに溶解して不溶物を除去し、純度の高いCaCl2を調製する方法であり、後者は、石灰石をHClに溶解し、CaCl2のpHを調整することで、不純物を析出させて分離し、純度の高いCaCl2を調製する方法である。 In the present invention, calcium chloride (CaCl 2 ) used as a raw material preferably has a high purity, and is produced, for example, according to the methods described in JP-A-62-236021 and JP-A-63-156012. be able to. The former digests quick lime, removes Sr by filtering the solution at a relatively high temperature, dissolves the obtained lime milk in ammonium chloride to remove insoluble matters, and prepares high purity CaCl 2 a method, the latter can be prepared by dissolving the limestone HCl, by adjusting the pH of CaCl 2, was separated by precipitating impurities, a process for preparing a high purity CaCl 2.
本発明において、CaCl2の炭酸化反応は、塩化カルシウム水溶液に炭酸アンモニウムとアンモニア水を添加することにより行われる。本発明では、この炭酸化反応における、
:反応液の温度(条件1)、反応液中の塩化カルシウムの濃度(条件2)、添加するアンモニア水の量(条件3)、:撹拌回転数(条件4)のいずれか1以上を調節することにより、製造されるバテライト型炭酸カルシウムの平均粒径を制御する。
In the present invention, the carbonation reaction of CaCl 2 is performed by adding ammonium carbonate and aqueous ammonia to a calcium chloride aqueous solution. In the present invention, in this carbonation reaction,
: Adjust one or more of the temperature of the reaction solution (condition 1), the concentration of calcium chloride in the reaction solution (condition 2), the amount of ammonia water to be added (condition 3), and the stirring rotation speed (condition 4) Thus, the average particle diameter of the manufactured vaterite-type calcium carbonate is controlled.
〔条件1〕:反応液の温度が、0℃超50℃以下
バテライト型炭酸カルシウムの平均粒径は、反応温度が低いほど小さくなり、反応温度が高いほど大きくなる。このため、反応液の温度を上記範囲内で適宜調節することにより、バテライト型炭酸カルシウムの平均粒径を制御することができる。
[Condition 1]: The temperature of the reaction solution is more than 0 ° C. and 50 ° C. or less The average particle size of the vaterite-type calcium carbonate decreases as the reaction temperature decreases, and increases as the reaction temperature increases. For this reason, the average particle diameter of the vaterite-type calcium carbonate can be controlled by appropriately adjusting the temperature of the reaction solution within the above range.
低温の方がバテライトが安定するため、高いバテライト生成率が得られる観点からは、反応液の温度は3〜30℃、特に5〜10℃が好ましい。 Since the vaterite is more stable at a lower temperature, the temperature of the reaction solution is preferably 3 to 30 ° C., particularly preferably 5 to 10 ° C. from the viewpoint of obtaining a high vaterite production rate.
〔条件2〕:反応液中の塩化カルシウムの濃度が、0.250〜0.625mol/L
バテライト型炭酸カルシウムの平均粒径は、塩化カルシウム濃度が低いほど大きくなり、塩化カルシウム濃度が高いほど小さくなる。このため、反応液中の塩化カルシウム濃度を上記範囲内で適宜調節することにより、バテライト型炭酸カルシウムの平均粒径を制御することができる。
[Condition 2]: The concentration of calcium chloride in the reaction solution is 0.250 to 0.625 mol / L.
The average particle size of the vaterite-type calcium carbonate increases as the calcium chloride concentration decreases, and decreases as the calcium chloride concentration increases. For this reason, the average particle diameter of the vaterite type calcium carbonate can be controlled by appropriately adjusting the calcium chloride concentration in the reaction solution within the above range.
コスト面からは塩化カルシウム濃度が高い方が好ましいが、濃度が高くなるとバテライトの結晶粒子がきれいな球形ではなくなるため、きれいな球形のバテライトを得る観点からは、塩化カルシウム濃度は、0.300〜0.550mol/L、特に0.375〜0.500mol/Lが好ましい。 From the viewpoint of cost, it is preferable that the calcium chloride concentration is high, but when the concentration is high, the crystal particles of the vaterite are not in a beautiful spherical shape. In particular, 0.375 to 0.500 mol / L is preferable.
〔条件3〕:添加するアンモニア水(NH4OH)の量が、反応液中のCaに対するモル比(NH4OH/Ca)として、0.67以上
バテライト型炭酸カルシウムの平均粒径は、アンモニア水量が少ないほど小さくなり、アンモニア水量が多いほど大きくなる。このため、添加するアンモニア水の量を上記範囲内で適宜調節することにより、バテライト型炭酸カルシウムの平均粒径を制御することができる。
[Condition 3]: The amount of ammonia water (NH 4 OH) to be added is 0.67 or more as the molar ratio to NH in the reaction solution (NH 4 OH / Ca). The average particle size of the vaterite-type calcium carbonate is the amount of ammonia water The smaller the amount, the smaller the amount, and the larger the amount of ammonia water, the larger. For this reason, the average particle diameter of the vaterite-type calcium carbonate can be controlled by appropriately adjusting the amount of ammonia water to be added within the above range.
コスト面からはアンモニアは少ない方が有利だが、少なすぎるとバテライト生成率が低くなるため、アンモニア水量(NH4OH/Caモル比)は、1.00〜2.50、特に1.34〜2.01が好ましい。 From the viewpoint of cost, it is advantageous that the amount of ammonia is small. However, if the amount is too small, the rate of vaterite formation is lowered. Therefore, the amount of ammonia water (NH 4 OH / Ca molar ratio) is preferably 1.00 to 2.50, particularly preferably 1.34 to 2.01.
〔条件4〕:撹拌回転数が、200rpm以上
バテライト型炭酸カルシウムの平均粒径は、反応液の撹拌速度が低いほど大きくなり、撹拌速度が高いほど小さくなる。このため、撹拌速度を上記範囲内で適宜調節することにより、バテライト型炭酸カルシウムの平均粒径を制御することができる。なお、撹拌装置は特に限定されない。
[Condition 4]: The rotational speed of stirring is 200 rpm or more. The average particle size of the vaterite-type calcium carbonate increases as the stirring speed of the reaction solution decreases, and decreases as the stirring speed increases. For this reason, the average particle diameter of the vaterite-type calcium carbonate can be controlled by appropriately adjusting the stirring speed within the above range. The stirring device is not particularly limited.
エネルギーコスト面では回転数が低い方が良いが、回転数が低いと粒径分布がブロードになってしまい粒径がそろったものが得られないため、攪拌回転数は、500〜1500rpm、特に850〜1200rpmが好ましい。 In terms of energy cost, it is better to have a low rotational speed, but if the rotational speed is low, the particle size distribution becomes broad and a product with a uniform particle size cannot be obtained, so the stirring rotational speed is 500-1500 rpm, especially 850 ˜1200 rpm is preferred.
以上の炭酸化反応により生成したバテライト型球状炭酸カルシウムスラリーは、ろ過後、水、アセトン等で洗浄する。洗浄後の固体は、熱風乾燥器、真空乾燥機、振動乾燥機などにより乾燥する。 The vaterite spherical calcium carbonate slurry produced by the above carbonation reaction is washed with water, acetone or the like after filtration. The washed solid is dried by a hot air dryer, a vacuum dryer, a vibration dryer or the like.
以下に、実施例を挙げて、さらに具体的に説明する。
なお、以下の実施例において、結晶系の分析及び粒径の測定は、以下の方法を用いた。
Hereinafter, examples will be described in more detail.
In the following examples, the following methods were used for crystal system analysis and particle size measurement.
〔X線回折による結晶系の分析〕
乾燥した炭酸カルシウムをX線回折用サンプルとした。X線回折の測定は、D8 Advance(Bruker AXS社製)で行い、測定条件は、ターゲットCuKα、管電圧50kV、管電流350mA、走査範囲5〜65°(2θ)、ステップ幅0.0234°、スキャンスピード0.13°s/stepとした。得られたX線回折パターンについて定性分析を行い、バテライトとカルサイトの有無を確認した。
[Analysis of crystal system by X-ray diffraction]
Dry calcium carbonate was used as a sample for X-ray diffraction. X-ray diffraction is measured with D8 Advance (manufactured by Bruker AXS). Measurement conditions are target CuKα, tube voltage 50kV, tube current 350mA,
〔レーザー回折・散乱法による粒径の分析〕
測定は、マイクロトラック9320-X100(日機装社製)を用いて行った。測定用の試料は、分散媒としてエタノールを用い、エタノール30cm3に対してサンプル0.016gを添加して180秒間超音波分散したものを用いた。
[Particle size analysis by laser diffraction / scattering method]
The measurement was performed using Microtrac 9320-X100 (Nikkiso Co., Ltd.). A sample for measurement was obtained by using ethanol as a dispersion medium, adding 0.016 g of sample to 30 cm 3 of ethanol and ultrasonically dispersing for 180 seconds.
実施例1 条件1:反応温度の影響
1mol/LのCaCl2水溶液を510.7g調製し「溶液A」とした。一方、(NH4)2CO3 38.4g及び28%アンモニア水14.7gを水817.0gに溶解させて「溶液B」を調製した。反応溶液全量(溶液A+溶液B)におけるCa濃度は0.375mol/L、CO3濃度は0.300mol/Lである。
溶液Aと溶液Bの混合・攪拌は、メカニカル制御攪拌器RW20 digital(IKA社製)を用いて、攪拌回転数850rpmにて5分間5〜30℃(5℃、10℃、20℃、30℃)で行った。
スラリーをろ過し、水200mLで洗浄し、ろ過を行った後、40℃で15時間真空乾燥を行い、試料を得た。
この結果を図1に示すように、バテライト型炭酸カルシウムの平均粒径は、反応温度が低いほど小さくなり、反応温度が高いほど大きくなった。
Example 1 Condition 1: Effect of Reaction Temperature 510.7 g of a 1 mol / L CaCl 2 aqueous solution was prepared as “Solution A”. On the other hand, 38.4 g of (NH 4 ) 2 CO 3 and 14.7 g of 28% aqueous ammonia were dissolved in 817.0 g of water to prepare “Solution B”. The Ca concentration in the total amount of the reaction solution (solution A + solution B) is 0.375 mol / L, and the CO 3 concentration is 0.300 mol / L.
Mixing / stirring of solution A and solution B is 5-30 ° C. (5 ° C., 10 ° C., 20 ° C., 30 ° C.) for 5 minutes at a stirring speed of 850 rpm using a mechanically controlled stirrer RW20 digital (manufactured by IKA). )
The slurry was filtered, washed with 200 mL of water, filtered, and then vacuum dried at 40 ° C. for 15 hours to obtain a sample.
As shown in FIG. 1, the average particle size of the vaterite-type calcium carbonate was smaller as the reaction temperature was lower and was larger as the reaction temperature was higher.
実施例2 条件2:塩化カルシウム濃度の影響
1mol/LのCaCl2水溶液を510.7g調製し「溶液A」とした。一方、(NH4)2CO3 38.4g及び28%アンモニア水14.7gを水260.6〜3599.3gに溶解させて「溶液B」を調製した。反応溶液全量(溶液A+溶液B)におけるCa濃度及びCO3濃度は、以下に示すとおりとした。
Example 2 Condition 2: Effect of Calcium Chloride Concentration 510.7 g of a 1 mol / L CaCl 2 aqueous solution was prepared as “Solution A”. On the other hand, 38.4 g of (NH 4 ) 2 CO 3 and 14.7 g of 28% aqueous ammonia were dissolved in 260.6 to 3599.3 g of water to prepare “Solution B”. The Ca concentration and CO 3 concentration in the total amount of the reaction solution (solution A + solution B) were as shown below.
・Ca濃度=0.125mol/L、CO3濃度=0.100mol/L
(溶液Bの調製に使用した水量=3599.3g)
・Ca濃度=0.250mol/L、CO3濃度=0.200mol/L
(溶液Bの調製に使用した水量=1512.6g)
・Ca濃度=0.375mol/L、CO3濃度=0.300mol/L
(溶液Bの調製に使用した水量=817.0g)
・Ca濃度=0.500mol/L、CO3濃度=0.400mol/L
(溶液Bの調製に使用した水量=469.2g)
・Ca濃度=0.625mol/L、CO3濃度=0.500mol/L
(溶液Bの調製に使用した水量=260.6g)
・ Ca concentration = 0.125 mol / L, CO 3 concentration = 0.100 mol / L
(Water amount used to prepare Solution B = 3599.3 g)
・ Ca concentration = 0.250 mol / L, CO 3 concentration = 0.200 mol / L
(Amount of water used to prepare Solution B = 1512.6 g)
・ Ca concentration = 0.375 mol / L, CO 3 concentration = 0.300 mol / L
(Amount of water used to prepare Solution B = 817.0 g)
・ Ca concentration = 0.500 mol / L, CO 3 concentration = 0.400 mol / L
(Amount of water used to prepare Solution B = 469.2 g)
・ Ca concentration = 0.625 mol / L, CO 3 concentration = 0.500 mol / L
(Amount of water used to prepare Solution B = 260.6 g)
溶液Aと溶液Bの混合・攪拌は、メカニカル制御攪拌器RW20 digital(IKA社製)を用いて、攪拌回転数850rpmにて5分間20℃で行った。 Solution A and solution B were mixed and stirred using a mechanically controlled stirrer RW20 digital (manufactured by IKA) at a stirring speed of 850 rpm for 5 minutes at 20 ° C.
スラリーをろ過し、水200mLで洗浄し、ろ過を行った後、40℃で15時間真空乾燥を行い、試料を得た。
この結果を図2に示すように、バテライト型炭酸カルシウムの平均粒径は、塩化カルシウム濃度が低いほど大きくなり、塩化カルシウム濃度が高いほど小さくなった。塩化カルシウム濃度が低すぎる場合には、カルサイトが生成した。
The slurry was filtered, washed with 200 mL of water, filtered, and then vacuum dried at 40 ° C. for 15 hours to obtain a sample.
As shown in FIG. 2, the average particle size of the vaterite-type calcium carbonate increases as the calcium chloride concentration decreases and decreases as the calcium chloride concentration increases. When the calcium chloride concentration was too low, calcite was formed.
実施例3 条件3:アンモニア水量の影響
1mol/LのCaCl2水溶液を510.7g調製し「溶液A」とした。一方、(NH4)2CO3 38.4g及び28%アンモニア水7.4〜44.1gを水790.7〜823.6gに溶解させ「溶液B」を調製した。反応溶液全量(溶液A+溶液B)におけるCa濃度は0.375mol/L、CO3濃度は0.300mol/Lになるようにした。
Example 3 Condition 3: Effect of Ammonia Water Amount 510.7 g of a 1 mol / L CaCl 2 aqueous solution was prepared as “Solution A”. Meanwhile, 38.4 g of (NH 4 ) 2 CO 3 and 7.4-44.1 g of 28% ammonia water were dissolved in 790.7-823.6 g of water to prepare “Solution B”. The Ca concentration in the whole reaction solution (solution A + solution B) was 0.375 mol / L, and the CO 3 concentration was 0.300 mol / L.
・アンモニア水量7.4g(NH4OH/Ca(mol比)=0.34)
(溶液Bの調製に使用した水量=823.6g)
・アンモニア水量11.0g(NH4OH/Ca(mol比)=0.50)
(溶液Bの調製に使用した水量=820.3g)
・アンモニア水量14.7g(NH4OH/Ca(mol比)=0.67)
(溶液Bの調製に使用した水量=817.0g)
・アンモニア水量29.4g(NH4OH/Ca(mol比)=1.34)
(溶液Bの調製に使用した水量=803.8g)
・アンモニア水量44.1g(NH4OH/Ca(mol比)=2.01)
(溶液Bの調製に使用した水量=790.7g)
・ Ammonia water amount 7.4g (NH 4 OH / Ca (mol ratio) = 0.34)
(Amount of water used to prepare Solution B = 823.6 g)
・ Ammonia water volume 11.0g (NH 4 OH / Ca (mol ratio) = 0.50)
(Amount of water used to prepare Solution B = 820.3 g)
・ Ammonia water amount 14.7g (NH 4 OH / Ca (mol ratio) = 0.67)
(Amount of water used to prepare Solution B = 817.0 g)
・ Amount of ammonia water 29.4g (NH 4 OH / Ca (mol ratio) = 1.34)
(Amount of water used to prepare Solution B = 803.8 g)
・ Ammonia water amount 44.1g (NH 4 OH / Ca (mol ratio) = 2.01)
(Amount of water used to prepare Solution B = 790.7 g)
溶液Aと溶液Bの混合・攪拌は、メカニカル制御攪拌器RW20 digital(IKA社製)を用いて、攪拌回転数850rpmにて5分間20℃で行った。
スラリーをろ過し、水200mLで洗浄し、ろ過を行った後、40℃で15時間真空乾燥を行い、試料を得た。
この結果を図3に示すように、バテライト型炭酸カルシウムの平均粒径は、アンモニア水量が少ないほど小さくなり、アンモニア水量が多いほど大きくなった。アンモニア水量が少なすぎる場合には、カルサイトが生成した。
Solution A and solution B were mixed and stirred using a mechanically controlled stirrer RW20 digital (manufactured by IKA) at a stirring speed of 850 rpm for 5 minutes at 20 ° C.
The slurry was filtered, washed with 200 mL of water, filtered, and then vacuum dried at 40 ° C. for 15 hours to obtain a sample.
As shown in FIG. 3, the average particle size of the vaterite-type calcium carbonate is smaller as the amount of ammonia water is smaller, and is larger as the amount of ammonia water is larger. When the amount of aqueous ammonia was too small, calcite was generated.
実施例4 条件4:撹拌速度の影響
1mol/LのCaCl2水溶液を510.7g調製し「溶液A」とした。一方、(NH4)2CO3 38.4g及び28%アンモニア水14.7gを水817.0gに溶解させて「溶液B」を調製した。反応溶液全量(溶液A+溶液B)におけるCa濃度は0.375mol/L、CO3濃度は0.300mol/Lになるようにした。
溶液Aと溶液Bの混合・攪拌は、メカニカル制御攪拌器RW20 digital(IKA社製)を用いて、攪拌回転数200〜1200rpm(200rpm、400rpm、850rpm、1200rpm)にて5分間20℃で行った。
スラリーをろ過し、水200mLで洗浄し、ろ過を行った後、40℃で15時間真空乾燥を行い、試料を得た。
この結果を図4に示すように、バテライト型炭酸カルシウムの平均粒径は、撹拌速度が低いほど大きくなり、撹拌速度が高いほど小さくなった。
Example 4 Condition 4: Effect of Stirring Speed 510.7 g of a 1 mol / L CaCl 2 aqueous solution was prepared as “Solution A”. On the other hand, 38.4 g of (NH 4 ) 2 CO 3 and 14.7 g of 28% aqueous ammonia were dissolved in 817.0 g of water to prepare “Solution B”. The Ca concentration in the whole reaction solution (solution A + solution B) was 0.375 mol / L, and the CO 3 concentration was 0.300 mol / L.
Solution A and solution B were mixed and stirred using a mechanically controlled stirrer RW20 digital (manufactured by IKA) at a stirring speed of 200 to 1200 rpm (200 rpm, 400 rpm, 850 rpm, 1200 rpm) for 5 minutes at 20 ° C. .
The slurry was filtered, washed with 200 mL of water, filtered, and then vacuum dried at 40 ° C. for 15 hours to obtain a sample.
As shown in FIG. 4, the average particle size of the vaterite-type calcium carbonate increases as the stirring speed decreases, and decreases as the stirring speed increases.
Claims (5)
条件1:反応液の温度が、0℃超50℃以下
条件2:反応液中の塩化カルシウムの濃度が、0.250〜0.625mol/L
条件3:添加するアンモニア水(NH4OH)の量が、反応液中のCaに対するモル比(NH4OH/Ca)として、0.67以上
条件4:撹拌回転数が、200rpm以上 When synthesizing calcium carbonate aqueous solution, ammonium carbonate, and ammonia water by mixing and stirring to synthesize calcium carbonate, the reaction is carried out by adjusting any one or more of the conditions within a range satisfying all of the following conditions 1 to 4. Thus, the average particle diameter of the obtained vaterite-type calcium carbonate is controlled.
Condition 1: The temperature of the reaction solution is over 0 ° C. and 50 ° C. or less. Condition 2: The concentration of calcium chloride in the reaction solution is 0.250 to 0.625 mol / L.
Condition 3: The amount of ammonia water (NH 4 OH) to be added is 0.67 or more as the molar ratio (NH 4 OH / Ca) to Ca in the reaction solution. Condition 4: The rotation speed of stirring is 200 rpm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009286537A JP5330981B2 (en) | 2009-12-17 | 2009-12-17 | Method for producing vaterite-type calcium carbonate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009286537A JP5330981B2 (en) | 2009-12-17 | 2009-12-17 | Method for producing vaterite-type calcium carbonate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011126740A JP2011126740A (en) | 2011-06-30 |
JP5330981B2 true JP5330981B2 (en) | 2013-10-30 |
Family
ID=44289763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009286537A Active JP5330981B2 (en) | 2009-12-17 | 2009-12-17 | Method for producing vaterite-type calcium carbonate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5330981B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107459053A (en) * | 2017-08-10 | 2017-12-12 | 青阳县永诚钙业有限责任公司 | A kind of production method of paste calcium carbonate |
CN107324369A (en) * | 2017-08-10 | 2017-11-07 | 青阳县永诚钙业有限责任公司 | A kind of preparation method of calcium carbonate fine powder |
CN107352571A (en) * | 2017-08-10 | 2017-11-17 | 青阳县永诚钙业有限责任公司 | A kind of anti-oxidant lime stone and preparation method thereof |
CN107285360A (en) * | 2017-08-10 | 2017-10-24 | 青阳县永诚钙业有限责任公司 | A kind of preparation method of precipitated calcium carbonate |
CN107352570A (en) * | 2017-08-10 | 2017-11-17 | 青阳县永诚钙业有限责任公司 | A kind of preparation method of stratiform calcite calcium carbonate |
CN107473252A (en) * | 2017-08-10 | 2017-12-15 | 青阳县永诚钙业有限责任公司 | A kind of preparation method of flaky calcite calcium carbonate crystal |
CN107324368A (en) * | 2017-08-10 | 2017-11-07 | 青阳县永诚钙业有限责任公司 | A kind of preparation method of nano-calcium carbonate |
CN115215364A (en) * | 2022-07-12 | 2022-10-21 | 西安建筑科技大学 | Ammonia still waste liquid solidified CO 2 And method for synthesizing vaterite calcium carbonate |
CN116396018B (en) * | 2023-03-03 | 2024-05-17 | 湖北工业大学 | Method for preparing nano-micron crystal nucleus additive by utilizing commercial mixing station waste slurry and wastewater integrated carbon fixation |
JP7522271B1 (en) | 2023-07-05 | 2024-07-24 | 株式会社Tbm | Manufacturing method of calcium carbonate particles and manufacturing device of calcium carbonate particles |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54150397A (en) * | 1978-05-19 | 1979-11-26 | Central Glass Co Ltd | Production of vaterite type calcium carbonate |
JPS6236021A (en) * | 1985-08-09 | 1987-02-17 | Nippon Sekkai Kogyosho:Kk | Production of calcium carbonate having low strontium content |
JPS63156012A (en) * | 1986-12-17 | 1988-06-29 | Central Glass Co Ltd | Production of calcium carbonate having high purity |
JPH01108117A (en) * | 1987-10-21 | 1989-04-25 | Tsurumi Soda Kk | Production of spherical calcium carbonate |
JP2772483B2 (en) * | 1989-07-19 | 1998-07-02 | ハットリ株式会社 | Method for producing spherical calcium carbonate |
JPH06102542B2 (en) * | 1990-06-11 | 1994-12-14 | 矢橋工業株式会社 | Method for producing spherical particle calcium carbonate |
JP4574524B2 (en) * | 2005-11-25 | 2010-11-04 | 有限会社ニューライム研究社 | Crossed disk-shaped, hamburger-shaped or disk-shaped vaterite-type calcium carbonate and method for producing the same |
-
2009
- 2009-12-17 JP JP2009286537A patent/JP5330981B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011126740A (en) | 2011-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5330981B2 (en) | Method for producing vaterite-type calcium carbonate | |
EP2552835B1 (en) | Process for obtaining precipitated calcium carbonate | |
US6156286A (en) | Seeding of aragonite calcium carbonate and the product thereof | |
Yang et al. | Effects of sodium dodecyl sulfate on the oriented growth of nesquehonite whiskers | |
CN107074577A (en) | The PCC of portlandite content with reduction | |
JP5387809B2 (en) | Vaterite-type spherical calcium carbonate and method for producing the same | |
CN104692437A (en) | Preparation method of morphology controllable calcium carbonate based on temperature control | |
FI105545B (en) | Precipitated calcium carbonate | |
PL192346B1 (en) | Method of obtaining loose calcium carbonate particles | |
JP2013136497A (en) | Method for producing calcium carbonate having surface charge and filler for papermaking using the calcium carbonate | |
JP2002234725A (en) | Method for producing calcium carbonate of aragonite crystal system | |
CN109790043A (en) | Synthesize hydromagnesite particle and preparation method thereof | |
JP2003286026A (en) | Method for manufacturing calcium carbonate whisker | |
JP2882852B2 (en) | Monodispersed plate-like calcium carbonate and method for producing the same | |
JP2549857B2 (en) | Method for producing calcium carbonate with controlled particle size | |
JP5330982B2 (en) | Method for producing vaterite-type calcium carbonate | |
JP5415337B2 (en) | Method for producing vaterite-type calcium carbonate containing magnesium and vaterite-type calcium carbonate containing magnesium | |
CN113651349B (en) | Method for preparing stable spherical vaterite phase calcium carbonate in organic medium | |
KR101088182B1 (en) | Method for manufacturing subsidence calcium carbonate via basic calcium carbonate | |
JP2001139328A (en) | Method for manufacturing bobbin-like calcium carbonate having excellent dispersibility | |
KR100370433B1 (en) | The production of Calcite which is made from Amorphous Calcium Carbonate and is combined through the carbonation method in Ethanol-Ethylene Glycol system | |
JPH09221318A (en) | Production of acicular crystal basic magnesium chloride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130718 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130726 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5330981 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |