JP5330285B2 - 1 can type combined heat source machine - Google Patents

1 can type combined heat source machine Download PDF

Info

Publication number
JP5330285B2
JP5330285B2 JP2010017801A JP2010017801A JP5330285B2 JP 5330285 B2 JP5330285 B2 JP 5330285B2 JP 2010017801 A JP2010017801 A JP 2010017801A JP 2010017801 A JP2010017801 A JP 2010017801A JP 5330285 B2 JP5330285 B2 JP 5330285B2
Authority
JP
Japan
Prior art keywords
temperature
burner
combustion
determination
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010017801A
Other languages
Japanese (ja)
Other versions
JP2011021873A (en
Inventor
秀介 近藤
英男 岡本
政一 清水
征樹 宮島
勇一 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2010017801A priority Critical patent/JP5330285B2/en
Publication of JP2011021873A publication Critical patent/JP2011021873A/en
Application granted granted Critical
Publication of JP5330285B2 publication Critical patent/JP5330285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect clogging of a fin in a heat exchanger on one side, in one can type complex heat source machine having: a pair of burners 2<SB>1</SB>, 2<SB>2</SB>disposed in parallel with each other in a single can body; a pair of heat exchangers 3<SB>1</SB>, 3<SB>2</SB>disposed in parallel with each other in an upper section of the can body; and a partitioning wall 8 for dividing the inside of the can body into two combustion chambers 7<SB>1</SB>, 7<SB>2</SB>, and cooling the partitioning wall by the air from an air supply chamber 5. <P>SOLUTION: At least a part of an area of the partitioning wall 8 facing both combustion chambers 7<SB>1</SB>, 7<SB>2</SB>is made hollow, and a temperature sensor 10 is disposed in the hollow section. When the fin of one of the heat exchangers is clogged, a combustion gas in one of the combustion chambers corresponding to the heat exchanger flows in a state of deflecting to a partitioning wall side, and a detection temperature of the temperature sensor 10 rises. In a single combustion for burning only one of burners, the presence or absence of fin clogging of one of the heat exchangers corresponding to one of the burners is discriminated on the basis of the detection temperature of the temperature sensor 10. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、単一の缶体と、この缶体内に横方向に並べて設けた第1と第2の一対のバーナと、缶体の上部に横方向に並べて設けた第1と第2の一対の熱交換器とを備える1缶式複合熱源機に関する。   The present invention includes a single can body, a first and second pair of burners provided side by side in the can body, and a first and second pair provided side by side on the top of the can body. The present invention relates to a single can type combined heat source apparatus including a heat exchanger.

従来、この種の1缶式複合熱源機では、缶体内の第1と第2の両バーナと第1と第2の両熱交換器との間の空間を、第1バーナから第1熱交換器に至る第1燃焼室と第2バーナから第2熱交換器に至る第2燃焼室とに区画する仕切り壁を備え、一方のバーナ、例えば、第2バーナのみを燃焼させて第2熱交換器を加熱する単独燃焼時に、第2バーナの燃焼ガスが第1熱交換器側に流れて第1熱交換器が加熱されるといった不具合を防止できるようにしている。また、缶体の下部に、分布板で仕切られた給気室を画成し、単一の燃焼ファンからの燃焼用空気を給気室から分布板に形成した分布孔を介して第1と第2の両燃焼室に供給するようにしている。   Conventionally, in this type of single can type combined heat source machine, the space between the first and second burners and the first and second heat exchangers in the can is transferred from the first burner to the first heat exchange. A partition wall that divides into a first combustion chamber leading to the furnace and a second combustion chamber leading from the second burner to the second heat exchanger, and burns only one of the burners, for example, the second burner to perform the second heat exchange At the time of single combustion for heating the heat exchanger, it is possible to prevent a problem that the combustion gas of the second burner flows to the first heat exchanger side and the first heat exchanger is heated. Further, an air supply chamber partitioned by a distribution plate is defined at the lower part of the can body, and the first and second combustion air from a single combustion fan is distributed through the distribution holes formed in the distribution plate from the air supply chamber. The fuel is supplied to both the second combustion chambers.

ここで、上記の如く缶体内に仕切り壁を設ける場合、第1と第2の各バーナの燃焼熱により仕切り壁が加熱されて非常に高温になるため、仕切り壁の耐熱性の確保が問題になる。そこで、仕切り壁を、第1燃焼室側と第2燃焼室側の2枚の壁板を有する中空構造に構成し、両壁板間の空隙に給気室からの空気を流すようにしたものも知られている(例えば、特許文献1参照)。これによれば、仕切り壁が給気室からの空気により空冷されて、仕切り壁の耐熱性が確保される。   Here, when the partition wall is provided in the can as described above, the partition wall is heated to a very high temperature by the combustion heat of each of the first and second burners, so ensuring the heat resistance of the partition wall is a problem. Become. Therefore, the partition wall is configured as a hollow structure having two wall plates on the first combustion chamber side and the second combustion chamber side so that the air from the air supply chamber flows in the gap between both wall plates. Is also known (see, for example, Patent Document 1). According to this, the partition wall is air-cooled by the air from the air supply chamber, and the heat resistance of the partition wall is ensured.

ところで、熱源機をある程度運転すると、熱交換器のフィンに煤やスケールが堆積してフィン詰りや熱交換器に連なる排気通路の閉塞を生ずることがある。熱交換器や排気通路の閉塞度合いが増加すると、燃焼室に流れる空気量(送風量)が減少して燃焼ファンの仕事量が減少し、燃焼ファンを駆動するファンモータに流れるファン電流が低下する。そこで、従来、給湯用等の単一用途の熱源機において、燃焼ファンの回転数とファン電流との相関関係に基づいて熱交換器及び熱交換器に連なる排気通路の閉塞度合いを検出するようにしたものが知られている(例えば、特許文献2参照)。そして、閉塞度合いの増加に伴い燃焼ファンの回転数を増加補正又はバーナの燃焼量を減少補正する燃焼改善制御を行い、閉塞度合いが所定値以上になった場合にバーナの燃焼を停止するようにしている。   By the way, if the heat source device is operated to some extent, soot and scale may accumulate on the fins of the heat exchanger, which may cause clogging of the fins and blockage of the exhaust passage connected to the heat exchanger. If the degree of blockage of the heat exchanger or exhaust passage increases, the amount of air flowing into the combustion chamber (air flow) decreases, the work of the combustion fan decreases, and the fan current flowing through the fan motor that drives the combustion fan decreases. . Therefore, conventionally, in a single-use heat source machine for hot water supply or the like, the degree of blockage of the heat exchanger and the exhaust passage connected to the heat exchanger is detected based on the correlation between the rotational speed of the combustion fan and the fan current. Is known (see, for example, Patent Document 2). Combustion improvement control is performed to increase the rotational speed of the combustion fan or decrease the burner combustion amount as the degree of blockage increases, and when the blockage level exceeds a predetermined value, combustion of the burner is stopped. ing.

1缶式複合熱源機においても、燃焼ファンの回転数とファン電流との相関関係に基づいて熱交換器のフィン詰りを検出することが考えられる。然し、第1熱交換器と第2熱交換器との一方の熱交換器、例えば、第1熱交換器のフィン詰りを生じたときは、第1燃焼室への送風量が減少する分、第2燃焼室への送風量が増加して、トータルの送風量は然程減少しない。そのため、一方の熱交換器のフィン詰りを燃焼ファンの回転数とファン電流との相関関係に基づいて検出することは困難である。   Even in a single can type combined heat source machine, it is conceivable to detect clogging of the heat exchanger based on the correlation between the rotational speed of the combustion fan and the fan current. However, when fin clogging occurs in one heat exchanger of the first heat exchanger and the second heat exchanger, for example, the first heat exchanger, the amount of air flow to the first combustion chamber is reduced, The amount of blown air to the second combustion chamber increases, and the total amount of blown air does not decrease so much. Therefore, it is difficult to detect fin clogging of one heat exchanger based on the correlation between the rotational speed of the combustion fan and the fan current.

特開2006−78162号公報JP 2006-78162 A 特許第3029547号公報Japanese Patent No. 3029547

本発明は、以上の点に鑑み、一方の熱交換器のフィン詰りを生じたときにこれを検出できるようにした1缶式複合熱源器を提供することをその課題としている。   This invention makes it the subject to provide the 1 can type | mold composite heat source device which enabled it to detect this when the fin clogging of one heat exchanger produced in view of the above point.

本発明は、単一の缶体と、この缶体内に横方向に並べて設けた第1と第2の一対のバーナと、缶体の上部に横方向に並べて設けた第1と第2の一対の熱交換器と、缶体内の第1と第2の両バーナと第1と第2の両熱交換器との間の空間を、第1バーナから第1熱交換器に至る第1燃焼室と第2バーナから第2熱交換器に至る第2燃焼室とに区画する仕切り壁とを備え、缶体の下部に、分布板で仕切られた給気室を画成し、単一の燃焼ファンからの燃焼用空気を給気室から分布板に形成した分布孔を介して第1と第2の両燃焼室に供給するようにした1缶式複合熱源機であって、仕切り壁を給気室からの空気により空冷するようにしたものにおいて、上記課題を解決するために以下の如く改良したことを特徴とする。   The present invention includes a single can body, a first and second pair of burners provided side by side in the can body, and a first and second pair provided side by side on the top of the can body. A first combustion chamber extending from the first burner to the first heat exchanger in a space between the first heat exchanger and the first and second burners in the can and the first and second heat exchangers. And a partition wall that divides into a second combustion chamber from the second burner to the second heat exchanger, and an air supply chamber partitioned by a distribution plate is defined at the lower part of the can body. A one-can type combined heat source machine that supplies combustion air from a fan to both the first and second combustion chambers through distribution holes formed in the distribution plate from the supply chamber. In order to solve the above-described problems, the present invention is characterized in that it is air-cooled by air from the air chamber.

即ち、本発明は、第1と第2の両燃焼室に面する仕切り壁の部分の少なくとも一部が中空に形成されて、この中空部に温度センサが配置され、第1バーナのみの単独燃焼時に、温度センサの検出温度が所定の第1判定温度以上になったとき、第1熱交換器のフィン詰りを生じたと判別する第1判別手段と、第2バーナのみの単独燃焼時に、温度センサの検出温度が所定の第2判定温度以上になったとき、第2熱交換器のフィン詰りを生じたと判別する第2判別手段と、を備えることを特徴とする。   That is, according to the present invention, at least a part of the partition wall portion facing both the first and second combustion chambers is formed hollow, a temperature sensor is disposed in the hollow portion, and the single combustion of only the first burner is performed. Sometimes, when the temperature detected by the temperature sensor is equal to or higher than a predetermined first judgment temperature, the first judgment means for judging that the fins of the first heat exchanger are clogged, and the temperature sensor at the time of single combustion of only the second burner And a second discriminating means for discriminating that the clogging of the fins of the second heat exchanger has occurred when the detected temperature becomes equal to or higher than a predetermined second judgment temperature.

ここで、第1熱交換器と第2熱交換器との一方の熱交換器のフィン詰りを生じると、他方の熱交換器を通過して流れる空気流や排気流に引かれて、一方の熱交換器に対応する一方の燃焼室内の燃焼ガスが仕切り壁側に偏って流れる。そして、本発明の如く仕切り壁の中空部に温度センサを配置しておけば、一方の熱交換器のフィン詰りを生じたときに、温度センサの検出温度が上昇する。即ち、第1熱交換器のフィン詰りを生じた場合は、温度センサの検出温度が所定の第1判定温度以上になり、また、第2熱交換器のフィン詰りを生じた場合は、温度センサの検出温度が所定の第2判定温度以上になる。尚、第1と第2の両バーナの同時燃焼時には、温度センサの検出温度が上昇しても、第1熱交換器と第2熱交換器との何れの熱交換器のフィン詰りを生じたか判別不能であるが、本発明では、第1バーナのみの単独燃焼時に温度センサの検出温度に基づく第1熱交換器のフィン詰りの判別を行い、第2バーナのみの単独燃焼時に温度センサ検出温度に基づく第2熱交換器のフィン詰りの判別を行うため、何れの熱交換器のフィン詰りを生じたかを確実に判別できる。   Here, when fin clogging of one heat exchanger of the first heat exchanger and the second heat exchanger occurs, it is drawn by the air flow or exhaust flow flowing through the other heat exchanger, Combustion gas in one combustion chamber corresponding to the heat exchanger flows toward the partition wall side. If the temperature sensor is arranged in the hollow portion of the partition wall as in the present invention, the detected temperature of the temperature sensor rises when fins of one heat exchanger are clogged. That is, when fin clogging occurs in the first heat exchanger, the temperature detected by the temperature sensor is equal to or higher than a predetermined first determination temperature, and when fin clogging occurs in the second heat exchanger, the temperature sensor The detected temperature becomes equal to or higher than a predetermined second determination temperature. During simultaneous combustion of both the first and second burners, even if the temperature detected by the temperature sensor rises, which heat exchanger of the first heat exchanger or the second heat exchanger has clogged fins Although it is impossible to discriminate, in the present invention, the fin clogging of the first heat exchanger is determined based on the temperature detected by the temperature sensor when the first burner alone is burned, and the temperature sensor detected temperature is detected when the second burner is burned alone. Therefore, it is possible to reliably determine which heat exchanger has clogged fins.

また、本発明においては、第1判別手段と第2判別手段の何れかでフィン詰まりを生じたと判別されたときに、第1と第2の両バーナのうち燃焼中のバーナの燃焼を停止し、以後の当該バーナの燃焼を禁止することが望ましい。これによれば、フィン詰りを生じた一方の熱交換器に対応する一方のバーナの燃焼で燃焼不良を生ずることを防止でき、安全である。   Further, in the present invention, when it is determined that either one of the first determination means and the second determination means has caused the clogging of the fins, the combustion of the burning burner among the first and second burners is stopped. Therefore, it is desirable to prohibit subsequent combustion of the burner. According to this, it is possible to prevent the occurrence of defective combustion due to combustion of one burner corresponding to one heat exchanger that has clogged fins, and it is safe.

ところで、第1バーナと第2バーナの大小差等に起因して、第1判定温度と第2判定温度とを異なる温度に設定することがある。ここで、第1判定温度と第2判定温度とのうち温度の高い方を高温判定温度、低い方を低温判定温度とし、第1判別手段と第2判別手段とのうち高温判定温度に基づく判別を行うものを高温判別手段、低温判定温度に基づく判別を行うものを低温判別手段とすると、第1バーナと第2バーナのうち高温判別手段による判別を行う一方のバーナの単独燃焼又は第1と第2の両バーナの同時燃焼から低温判別手段による判別を行う他方のバーナの単独燃焼に移行する際に、温度センサの検出温度が低温判定温度以上になることがある。この場合には、他方のバーナに対応する熱交換器のフィン詰りを生じていなくても、他方のバーナの単独燃焼の開始で低温判別手段により熱交換器のフィン詰りを生じたと誤判別されて、他方のバーナの燃焼が停止されてしまう。また、第1と第2の両バーナの同時燃焼から高温判別手段による判別を行う一方のバーナの単独燃焼に移行する際に、温度センサの検出温度が高温判定温度以上になっている場合には、一方のバーナに対応する熱交換器のフィン詰りを生じていなくても、一方のバーナの単独燃焼の開始で高温判別手段により熱交換器のフィン詰りを生じたと誤判別されて、一方のバーナの燃焼が停止されてしまう。   By the way, the first determination temperature and the second determination temperature may be set to different temperatures due to the size difference between the first burner and the second burner. Here, the higher one of the first determination temperature and the second determination temperature is the high temperature determination temperature, the lower one is the low temperature determination temperature, and the determination based on the high temperature determination temperature is between the first determination means and the second determination means. If one that performs the determination based on the low temperature determination temperature and the one that performs the determination based on the low temperature determination temperature are the low temperature determination means, one of the first burner and the second burner that performs the determination by the high temperature determination means, When shifting from the simultaneous combustion of both the second burners to the single combustion of the other burner that is determined by the low temperature determination means, the temperature detected by the temperature sensor may be equal to or higher than the low temperature determination temperature. In this case, even if the heat exchanger corresponding to the other burner is not clogged with fins, it is erroneously determined that the heat exchanger has clogged with the low temperature discrimination means at the start of the single combustion of the other burner. The combustion of the other burner is stopped. In addition, when the temperature of the temperature sensor is equal to or higher than the high temperature determination temperature when shifting from the simultaneous combustion of both the first and second burners to the single combustion of one burner that is determined by the high temperature determination means. Even if the heat exchanger corresponding to one of the burners is not clogged with fins, it is erroneously determined that the heat exchanger has clogged with the high temperature discrimination means at the start of single combustion of one of the burners, and one of the burners Will stop burning.

そのため、第1と第2の両バーナの同時燃焼の停止時又は第1バーナと第2バーナのうち高温判別手段による判別を行う一方のバーナの単独燃焼の停止時に温度センサの検出温度が低温判定温度以上である場合は、燃焼停止時点から所定時間経過するまで低温判別手段による判別を禁止し、第1と第2の両バーナの同時燃焼の停止時に温度センサの検出温度が高温判定温度以上である場合は、燃焼停止時点から所定時間経過するまで高温判別手段による判別を禁止することが望ましい。これによれば、第1熱交換器や第2熱交換器のフィン詰りを生じていない場合、判別禁止時間中に温度センサの検出温度が低下して、上記誤判別を防止することができる。   Therefore, when the simultaneous combustion of both the first and second burners is stopped or when the single burner of one of the first and second burners is discriminated by the high temperature discriminating means, the temperature detected by the temperature sensor is judged to be low. If the temperature is equal to or higher than the temperature, discrimination by the low temperature discrimination means is prohibited until a predetermined time has elapsed from the time when combustion is stopped, and when the simultaneous combustion of both the first and second burners is stopped, the temperature detected by the temperature sensor is higher than the high temperature judgment temperature. In some cases, it is desirable to prohibit discrimination by the high temperature discrimination means until a predetermined time elapses from the point of time when combustion is stopped. According to this, when the fin clogging of the first heat exchanger or the second heat exchanger has not occurred, the temperature detected by the temperature sensor is lowered during the discrimination prohibition time, and the erroneous discrimination can be prevented.

また、停電等で電源が落ちると、燃焼ファンが停止されるため、バーナの燃焼が停止されても余熱により仕切り壁が加熱されて、温度センサの検出温度が上昇し低温判定温度以上になってしまうことがある。この場合、電源を再投入して、低温判別手段による判別を行う前記他方のバーナを燃焼させたときに、低温判別手段により熱交換器のフィン詰りを生じたと誤判別される可能性がある。   In addition, when the power is turned off due to a power failure or the like, the combustion fan is stopped, so even if combustion of the burner is stopped, the partition wall is heated by the residual heat, and the temperature detected by the temperature sensor rises to be above the low temperature determination temperature. May end up. In this case, when the power source is turned on again and the other burner to be discriminated by the low temperature discriminating means is burned, there is a possibility that the low temperature discriminating means erroneously discriminates that the heat exchanger has clogged fins.

そのため、電源が落ちた後、電源を再投入した時点での温度センサの検出温度が低温判定温度以上の場合に、電源の再投入時点から所定時間経過するまで低温判別手段による判別を禁止することが望ましい。これによれば、低温判別手段により熱交換器のフィン詰りを生じたと誤判別されることを防止できる。また、前記他方のバーナを燃焼させない場合にも、電源の再投入時点から判別禁止の時間をカウントするため、他方のバーナの燃焼開始後、低温判別手段による判別開始までの時間が短くなり、安全である。   Therefore, after the power is turned off, if the temperature sensor detected temperature at the time when the power is turned on again is equal to or higher than the low temperature judgment temperature, discrimination by the low temperature judgment means is prohibited until a predetermined time has elapsed since the power was turned on again. Is desirable. According to this, it is possible to prevent erroneous determination that the heat exchanger fins are clogged by the low temperature determination means. Even when the other burner is not burned, since the time for which discrimination is prohibited is counted from the time when the power is turned on again, the time from the start of combustion of the other burner to the start of discrimination by the low temperature discriminating means is shortened. It is.

更に、第1バーナのみの単独燃焼時に、温度センサの検出温度が第1判定温度未満であっても、第1判定温度より低く設定される所定の第1予備判定温度以上になったときは、燃焼ファンの回転数を増加補正又は第1バーナの燃焼量を減少補正する燃焼改善制御を行うと共に、第2バーナのみの単独燃焼時に、温度センサの検出温度が第2判定温度未満であっても、第2判定温度より低く設定される所定の第2予備判定温度以上になったときは、燃焼ファンの回転数を増加補正又は第2バーナの燃焼量を減少補正する燃焼改善制御を行うことが望ましい。これによれば、第1熱交換器や第2熱交換器の軽度のフィン詰りを生じても、燃焼状態の改善で燃焼室の温度上昇を抑制して、熱源機の寿命を延ばすことができる。   Further, during the single combustion of only the first burner, even when the temperature detected by the temperature sensor is lower than the first determination temperature, when the temperature becomes equal to or higher than a predetermined first preliminary determination temperature set lower than the first determination temperature, Combustion improvement control for increasing the rotational speed of the combustion fan or reducing the combustion amount of the first burner is performed, and even when the temperature detected by the temperature sensor is less than the second determination temperature during the single combustion of only the second burner When the temperature becomes equal to or higher than a predetermined second preliminary determination temperature set lower than the second determination temperature, combustion improvement control for correcting the increase in the rotation speed of the combustion fan or correcting the decrease in the combustion amount of the second burner may be performed. desirable. According to this, even if a slight fin clogging of the first heat exchanger or the second heat exchanger occurs, the temperature of the combustion chamber can be suppressed by improving the combustion state, and the life of the heat source machine can be extended. .

また、第1と第2の両バーナの同時燃焼時には、仕切り壁が第1と第2の両バーナにより加熱されて、第1と第2の各熱交換器のフィン詰りを生じていなくても、温度センサの検出温度が第1と第2の両判定温度より高くなってしまうことがあり、このまま同時燃焼を継続すると、熱源機の寿命に悪影響が及ぶ。この場合、第1と第2のバーナの同時燃焼時に、温度センサの検出温度が第1と第2の両判定温度より高く設定される所定の第3判定温度以上になった場合は、第1と第2の両バーナの燃焼を停止することも考えられる。然し、これでは、熱源機が突然使用不能になってしまい、使用者に不便をかける。   Further, at the time of simultaneous combustion of both the first and second burners, the partition wall is heated by both the first and second burners, so that fin clogging of the first and second heat exchangers does not occur. The detected temperature of the temperature sensor may be higher than both the first and second determination temperatures, and if the simultaneous combustion is continued as it is, the life of the heat source machine is adversely affected. In this case, when the detected temperature of the temperature sensor becomes equal to or higher than a predetermined third determination temperature set higher than both the first and second determination temperatures during simultaneous combustion of the first and second burners, the first It is also conceivable to stop the combustion of both the second burner. However, in this case, the heat source machine suddenly becomes unusable and inconveniences the user.

そのため、第1と第2の両バーナの同時燃焼時に、温度センサの検出温度が第3判定温度以上になった場合は、第1バーナと第2バーナの一方のバーナを単独燃焼させ、当該一方のバーナの燃焼停止後に他方のバーナを単独燃焼させることが望ましい。これによれば、第1バーナ又は第2バーナの単独での燃焼が可能となり、熱源機が突然使用不能になって使用者に不便をかけることを回避できる。   Therefore, when the detected temperature of the temperature sensor becomes equal to or higher than the third determination temperature at the time of simultaneous combustion of both the first and second burners, one of the first burner and the second burner is burned independently, It is desirable to burn the other burner alone after the burning of the other burner is stopped. According to this, combustion of the 1st burner or the 2nd burner alone becomes possible, and it can avoid that a heat source machine becomes suddenly unusable and inconveniences a user.

ところで、第1と第2の両熱交換器のフィン詰りを生ずると、第1と第2の各バーナの燃焼ガスが仕切り壁側に偏って流れなくなり、温度センサの検出温度が然程上昇しなくなる。そのため、温度センサの検出温度に基づくフィン詰りの判別は行えなくなる。この場合、燃焼ファンの回転数と燃焼ファンを駆動するファンモータに流れるファン電流との相対関係に基づいて第1と第2の両熱交換器及び両熱交換器に連なる排気通路の閉塞度合いを検出する閉塞検出手段と、第1バーナと第2バーナとの何れか一方のバーナの単独燃焼時に、閉塞検出手段で検出した閉塞度合いが所定の第1判定値以上になったとき、第1と第2の両熱交換器のフィン詰りを生じたと判別する第3判別手段とを備えていれば、両熱交換器が共にフィン詰りしたときにこれを検出でき、有利である。   By the way, when the fins of both the first and second heat exchangers are clogged, the combustion gas of each of the first and second burners does not flow to the partition wall side, and the temperature detected by the temperature sensor rises so much. Disappear. Therefore, it becomes impossible to determine fin clogging based on the temperature detected by the temperature sensor. In this case, based on the relative relationship between the rotational speed of the combustion fan and the fan current flowing through the fan motor that drives the combustion fan, the degree of blockage of the first and second heat exchangers and the exhaust passage connected to both heat exchangers is determined. When the degree of blockage detected by the blockage detection means is equal to or greater than a predetermined first determination value during the single combustion of any one of the first burner and the second burner, If the second heat exchangers are provided with third discriminating means for discriminating that the fins are clogged, it is advantageous that both heat exchangers can be detected when the fins are clogged together.

ここで、一方のバーナの単独燃焼時に第3判別手段でフィン詰りを生じたと判別されたときは、当該一方のバーナの燃焼を停止し、以後の当該一方のバーナの燃焼を禁止することが考えられる。然し、閉塞検出手段で検出する閉塞度合いは、排気通路への風の吹きこみや養生シート等による排気口の閉塞で一時的に増加することがあり、このような一時的な閉塞度合いの増加で以後のバーナの燃焼を禁止するのは、使用者に必要以上の不便をかけることになる。   Here, when it is determined by the third determining means that the clogging of the one burner has occurred during the single combustion of the one burner, it is considered that the combustion of the one burner is stopped and the subsequent combustion of the one burner is prohibited. It is done. However, the degree of blockage detected by the blockage detection means may increase temporarily due to wind blown into the exhaust passage or blockage of the exhaust port due to a curing sheet, etc. Prohibiting subsequent burner burns will cause more inconvenience to the user.

そのため、一方のバーナの単独燃焼時に第3判別手段でフィン詰りを生じたと判別されたときは、当該一方のバーナの燃焼を停止し、その後、第1バーナ又は第2バーナの燃焼開始指令が出されたとき、点火前に燃焼ファンのみを作動させた状態で所定時間をかけて閉塞検出手段により閉塞度合いを検出し、検出された閉塞度合いが第1判定値未満の場合に、この閉塞度合いに応じて燃焼ファンの回転数を補正して第1バーナ又は第2バーナに点火することが望ましい。これによれば、一時的な閉塞度合いの増加で一方のバーナの燃焼が停止されても、その後、点火前に検出した閉塞度合いが第1判定値未満である限りバーナを再度燃焼させることができ、使用者に必要以上の不便をかけることを回避できる。   For this reason, when it is determined by the third determining means that the clogging of the one burner has occurred during the single combustion of the one burner, the combustion of the one burner is stopped, and then the combustion start command for the first burner or the second burner is issued. In this case, the blockage detection means detects the blockage degree over a predetermined time with only the combustion fan being operated before ignition. When the detected blockage degree is less than the first determination value, the blockage degree is set to this blockage degree. Accordingly, it is desirable to ignite the first burner or the second burner by correcting the rotational speed of the combustion fan. According to this, even if combustion of one burner is stopped due to a temporary increase in the degree of blockage, the burner can be burned again as long as the degree of blockage detected before ignition is less than the first determination value thereafter. It is possible to avoid inconvenience more than necessary for the user.

また、第1と第2の両バーナの同時燃焼時に、閉塞検出手段で検出した閉塞度合いが第1判定値よりも低く設定する所定の第2判定値以上になった場合は、第1バーナと第2バーナの一方のバーナを単独燃焼させ、当該一方のバーナの燃焼停止後に他方のバーナを単独燃焼させることが望ましい。これによれば、第1バーナ又は第2バーナの単独での燃焼が可能となり、熱源機が突然使用不能になって使用者に不便をかけることを回避できる。   In addition, when the first and second burners are simultaneously burned, when the degree of blockage detected by the blockage detection unit is equal to or higher than a predetermined second determination value set lower than the first determination value, It is desirable that one burner of the second burner is burned alone and the other burner is burned alone after the burning of the one burner is stopped. According to this, combustion of the 1st burner or the 2nd burner alone becomes possible, and it can avoid that a heat source machine becomes suddenly unusable and inconveniences a user.

ところで、第1、第2及び第3の各判別手段によりフィン詰りと判別されないまま第1と第2の各バーナの燃焼が通常停止された後に第1バーナ又は第2バーナの燃焼指令が出されたとき、上述した点火前の閉塞度合いの検出を毎回行うことも考えられるが、これでは、バーナに点火されるまでに時間がかかってしまう。そこで、電源が落ちても消えないように不揮発性メモリに記憶されている閉塞度合いを、第1と第2の各バーナの燃焼が通常停止されたときに検出される閉塞度合いに毎回書き換え、不揮発性メモリに記憶されている閉塞度合いに応じて燃焼ファンの回転数を補正して第1バーナ又は第2バーナの点火制御を行うことが考えられる。然し、これでは、閉塞度合いの書き換え頻度が非常に多くなって、不揮発性メモリの耐久性に悪影響が及ぶ。   By the way, a combustion command for the first burner or the second burner is issued after the combustion of the first and second burners is normally stopped without being determined as fin clogging by the first, second and third determining means. In this case, the above-described detection of the degree of closing before ignition may be performed every time, but this takes time until the burner is ignited. Therefore, the degree of blockage stored in the non-volatile memory is rewritten to the degree of blockage detected when the combustion of each of the first and second burners is normally stopped so as not to disappear even when the power is turned off. It is conceivable to perform ignition control of the first burner or the second burner by correcting the rotational speed of the combustion fan in accordance with the degree of blockage stored in the volatile memory. However, in this case, the rewrite frequency of the blockage degree is extremely increased, and the durability of the nonvolatile memory is adversely affected.

そのため、第1と第2の各バーナの燃焼が通常停止されたときに閉塞検出手段で検出される閉塞度合いが不揮発性メモリに記憶されている閉塞度合いから所定量以上変化している場合にのみ、不揮発性メモリに記憶されている閉塞度合いを今回検出された閉塞度合いに書き換え、その後、第1バーナ又は第2バーナの燃焼開始指令が出されたとき、不揮発性メモリに記憶されている閉塞度合いに基づいて第1バーナ又は第2バーナの点火制御を行うことが望ましい。これによれば、バーナの燃焼開始指令が出されてからバーナに点火されるまでにかかる時間が短くなると共に、閉塞度合いの書き換え頻度が減少して、不揮発性メモリの耐久性に悪影響が及ぶことを防止できる。   For this reason, only when the degree of blockage detected by the blockage detection means when the combustion of the first and second burners is normally stopped has changed by a predetermined amount or more from the degree of blockage stored in the nonvolatile memory. The blockage degree stored in the non-volatile memory when the blockage degree stored in the non-volatile memory is rewritten to the blockage degree detected this time, and then the combustion start command for the first burner or the second burner is issued. It is desirable to perform ignition control of the first burner or the second burner based on the above. According to this, the time taken from when the burner combustion start command is issued until the burner is ignited is shortened, and the rewrite frequency of the blockage degree is reduced, which adversely affects the durability of the nonvolatile memory. Can be prevented.

尚、後述する実施形態において、上記第1判別手段に相当するのは図5のSTEP6であり、上記第2判別手段に相当するのは図5のSTEP14であり、上記第3判別手段に相当するのは図5のSTEP3,11である。   In an embodiment described later, STEP 6 in FIG. 5 corresponds to the first determination unit, and STEP 14 in FIG. 5 corresponds to the second determination unit, which corresponds to the third determination unit. These are STEPs 3 and 11 in FIG.

本発明の第1実施形態の1缶式複合熱源機を示す切断正面図。The cutting front view showing the 1 can type compound heat source machine of a 1st embodiment of the present invention. 図1のII−II線で切断した切断側面図。FIG. 2 is a cut side view taken along line II-II in FIG. 1. ファン回転数とファン電流との相関関係を示すグラフ。The graph which shows the correlation with a fan rotation speed and a fan electric current. 補正係数と閉塞度合いとの相関関係を示すグラフ。The graph which shows the correlation with a correction coefficient and the obstruction | occlusion degree. 実施形態の1缶式複合熱源機で行う運転制御の内容を示すフロー図。The flowchart which shows the content of the operation control performed with the 1 can type | mold composite heat source machine of embodiment. 実施形態の1缶式複合熱源機で行う点火制御の内容を示すフロー図。The flowchart which shows the content of the ignition control performed with the 1 can type | mold composite heat source machine of embodiment. 実施形態の1缶式複合熱源機で行う判別禁止制御の内容を示すフロー図。The flowchart which shows the content of the discrimination | determination prohibition control performed with the 1 can type compound heat source machine of embodiment. 第2実施形態の1缶式複合熱源機を示す切断正面図。The cutting front view which shows the 1 can type | mold composite heat source machine of 2nd Embodiment. 第2実施形態の1缶式複合熱源機で行う判別禁止制御の内容を示すフロー図。The flowchart which shows the content of the discrimination | determination prohibition control performed with the 1 can type compound heat source machine of 2nd Embodiment.

図1は、給湯機能と風呂追い焚き機能とを有する1缶式複合熱源機を示している。この複合熱源機は、単一の缶体1内に横方向に並べて設けた給湯用の第1バーナ2と風呂用の第2バーナ2とを備えると共に、缶体1の上部に横方向に並べて設けた給湯用の第1熱交換器3と風呂用の第2熱交換器3とを備えている。 FIG. 1 shows a single can type combined heat source machine having a hot water supply function and a bath reheating function. With the composite heat source machine, and a second burner 2 2 for the first burner 2 1 and bath hot water supply provided side by side in the lateral direction in a single can body 1, transverse to the top of the can body 1 Tile and a second heat exchanger 3 2 for the first heat exchanger 3 1 the bath hot water supply provided in the.

缶体1の下部には、缶体1内の空間に対し分布板4で仕切られた給気室5が画成されている。給気室5には、ファンモータ6aで駆動される単一の燃焼ファン6が接続されている。そして、燃焼ファン6からの空気が給気室5から分布板4に形成した多数の分布孔4aを介して缶体1内の後述する第1と第2の両燃焼室7,7に燃焼用二次空気として供給されるようにしている。 In the lower part of the can body 1, an air supply chamber 5 partitioned by a distribution plate 4 with respect to the space in the can body 1 is defined. A single combustion fan 6 driven by a fan motor 6 a is connected to the supply chamber 5. Then, air from the combustion fan 6 enters the first and second combustion chambers 7 1 and 7 2, which will be described later, in the can 1 through a number of distribution holes 4 a formed in the distribution plate 4 from the air supply chamber 5. It is supplied as secondary air for combustion.

第1と第2の各バーナ2,2は、夫々、缶体1の奥行方向たる前後方向(図1の紙面直交方向)に長手の単位バーナ2aを横方向に複数列設して構成されている。各単位バーナ2aは、図2に示す如く、前後方向にのびる下部の混合管部2bを備えている。そして、分布板4の前部を上方に屈曲させて、給気室5の前部に立上り部5aを形成し、この立上り部5aに各混合管部2bの流入端を臨ませている。給気室5の立上り部5aの前面はガスマニホールド2cで閉塞されており、このガスマニホールド2cに、各単位バーナ2aの混合管部2bに臨むガスノズル2dが設けられている。そして、各ガスノズル2dから各単位バーナ2aの混合管部2bに燃料ガスが供給され、且つ、混合管部2bに立上り部5aから燃焼用一次空気が供給されるようにしている。 Each of the first and second burners 2 1 and 2 2 is configured by arranging a plurality of unit burners 2a that are long in the front-rear direction (in the direction orthogonal to the plane of FIG. 1) as the depth direction of the can body 1 in the horizontal direction. Has been. As shown in FIG. 2, each unit burner 2a includes a lower mixing tube portion 2b extending in the front-rear direction. And the front part of the distribution plate 4 is bent upward, the rising part 5a is formed in the front part of the air supply chamber 5, and the inflow end of each mixing pipe part 2b is made to face this rising part 5a. The front surface of the rising portion 5a of the air supply chamber 5 is closed by a gas manifold 2c, and a gas nozzle 2d facing the mixing tube portion 2b of each unit burner 2a is provided in the gas manifold 2c. The fuel gas is supplied from each gas nozzle 2d to the mixing pipe portion 2b of each unit burner 2a, and the primary combustion air is supplied to the mixing pipe portion 2b from the rising portion 5a.

第1と第2の各熱交換器3,3は、前後方向に隙間を存して多数積層した吸熱フィン3aと、これら吸熱フィン3aを貫通する蛇行形状の吸熱管3bとで構成される。第1熱交換器3の吸熱管3bには、図示しないが、上流側の給水管と下流側の出湯管とが接続されており、出湯管の下流端の出湯栓を開いて第1熱交換器3に通水したとき、第1バーナ2に点火されて、出湯栓から設定温度の湯が出湯される。また、第2熱交換器3の吸熱管3bには、図示しないが、往き管と戻り管とを介して浴槽が接続されており、浴槽内の水を第2熱交換器3を介して循環させるとき、第2バーナ2に点火されて、風呂の追い焚きが行われる。 Each of the first and second heat exchangers 3 1 , 3 2 includes a heat absorbing fin 3 a that is stacked in a large number in the front-rear direction, and a meandering heat absorbing tube 3 b that passes through the heat absorbing fin 3 a. The Although not shown, an upstream water supply pipe and a downstream hot water outlet pipe are connected to the heat absorption pipe 3b of the first heat exchanger 31, and a first hot water tap is opened at the downstream end of the hot water outlet pipe. when passed through the exchanger 3 1, is ignited first burner 2 1, the hot water set temperature from hot water tap is tapped. The second heat absorbing tube 3b of the heat exchanger 3 2, although not shown, bathtub via the return forward pipe line is connected, via a water through the second heat exchanger 3 2 in the bathtub when circulating Te and ignited in the second burner 2 2, bath reheating is carried out.

尚、給湯よりも風呂追い焚きの方が要求加熱能力が小さいため、第2バーナ2と第2熱交換器3は夫々第1バーナ2と第1熱交換器3よりも小型になっている。 Since the direction of reheating bath than hot water supply less demand heating capacity, the second burner 2 2 smaller than a second heat exchanger 3 2 are each first burner 2 1 and the first heat exchanger 3 1 It has become.

また、缶体1内には、第1と第2の両バーナ2,2と第1と第2の両熱交換器3,3との間の空間を、第1バーナ2から第1熱交換器3に至る第1燃焼室7と、第2バーナ2から第2熱交換器3に至る第2燃焼室7とに区画する仕切り壁8が設けられている。そのため、第1バーナ2の燃焼ガスは第1燃焼室7を介して第1熱交換器3に導かれ、第2バーナ2の燃焼ガスは第2燃焼室7を介して第2熱交換器3に導かれる。第1と第2の各熱交換器3,3で熱交換した燃焼ガスは、両熱交換器3,3の上方に配置した排気通路を構成する共通の排気フード9に流れ、排気フード9に形成した排気口9aから外部に排出される。 Further, in the can 1, a space between the first and second burners 2 1 and 2 2 and the first and second heat exchangers 3 1 and 3 2 is provided as a first burner 2 1. and a first combustion chamber 71 leading to the first heat exchanger 3 1, and the partition wall 8 is provided for partitioning the second burner 2 2 second combustion chamber 7 2 reaching the second heat exchanger 3 2 Yes. Therefore, the first combustion gas of the burner 2 1 is led to the first heat exchanger 3 1 through the first combustion chamber 71, the combustion gas of the second burner 2 2 through the second combustion chamber 7 Paragraph 2 is guided to the heat exchanger 3 2. Combustion gas heat exchange with the first and second of each heat exchanger 3 1, 3 2, flows to a common exhaust hood 9 which constitutes the exhaust passage that is disposed above the two heat exchangers 3 1, 3 2, It is discharged to the outside through an exhaust port 9 a formed in the exhaust hood 9.

仕切り壁8は、第1燃焼室7側と第2燃焼室7側の2枚の壁板8a,8aで構成され、下端から上端に亘って両壁板8a,8a間に空隙を有する中空構造に形成されている。そして、両壁板8a,8a間の空隙の横幅を仕切り壁8の下部で広くし、この空隙を分布板4に形成した連通孔4bを介して給気室5に連通させている。更に、各壁板8aの上下方向中間の肩部に図示省略した通気孔を形成している。これによれば、両壁板8a,8a間の空隙に給気室5からの空気が流れると共に、各壁板8aの上部外側面に沿って通気孔から噴出する空気が流れる。そのため、仕切り壁8が給気室5からの空気により空冷されて、仕切り壁8の耐熱性が確保される。 Partition wall 8 has a first combustion chamber 71 side and the second combustion chamber 7 2 side of the two wall panels 8a, is composed of 8a, both wallboard 8a over the upper end from the lower end, the gap between the 8a It is formed in a hollow structure. The lateral width of the gap between the wall plates 8a, 8a is widened at the lower part of the partition wall 8, and the gap is communicated with the air supply chamber 5 through the communication hole 4b formed in the distribution plate 4. Further, a vent hole (not shown) is formed in the middle shoulder portion of each wall plate 8a in the vertical direction. According to this, the air from the air supply chamber 5 flows into the space between the wall plates 8a, 8a, and the air ejected from the vent holes flows along the upper outer surface of each wall plate 8a. Therefore, the partition wall 8 is air-cooled by the air from the air supply chamber 5, and the heat resistance of the partition wall 8 is ensured.

ところで、第1熱交換器3と第2熱交換器3との一方の熱交換器のフィン詰り(吸熱フィン3a間の隙間の閉塞)を生ずると、両熱交換器3,3の上方の共通の排気フード9に他方の熱交換器を通過して流れる排気流に引かれて、一方の熱交換器に対応する一方の燃焼室内の燃焼ガスが仕切り壁8側に偏って流れる。尚、他方の熱交換器に対応するバーナを燃焼させなくても、給気室5から他方の熱交換器を介して排気フード9に流れる空気流に引かれて、一方の燃焼室内の燃焼ガスが仕切り壁8側に偏って流れる。そして、このまま長期間使用すると、上記空気による冷却では不十分になって、燃焼ガスの熱により仕切り壁8の損傷を生じてしまう。また、一方の熱交換器のフィン詰りを生じたまま対応するバーナの燃焼を行うと、燃焼不良を生ずる。 Meanwhile, the results in the first heat exchanger 3 1 and clogging the fins of the second heat exchanger 3 2 and one heat exchanger (blockage of the gap between the heat absorbing fin 3a), both heat exchangers 3 1, 3 2 The exhaust gas flowing through the other heat exchanger flows to the common exhaust hood 9 above the other, and the combustion gas in one combustion chamber corresponding to the one heat exchanger flows toward the partition wall 8 side. . Even if the burner corresponding to the other heat exchanger is not burned, the combustion gas in one combustion chamber is drawn by the air flow flowing from the air supply chamber 5 to the exhaust hood 9 via the other heat exchanger. Flows unevenly toward the partition wall 8 side. And if it uses for a long time as it is, the cooling by the said air will become inadequate, and the partition wall 8 will be damaged by the heat of combustion gas. Further, if the corresponding burner is burned while the fins of one heat exchanger are clogged, defective combustion occurs.

そこで、本実施形態では、第1と第2の両熱交換器3,3に面する仕切り壁8の上部の中空部(両壁板8a,8a間の空隙)に温度センサ10を配置し、この温度センサ10の検出温度に基づいて、第1熱交換器3と第2熱交換器3との一方の熱交換器のフィン詰りを検出するようにしている。 Therefore, in the present embodiment, the temperature sensor 10 is disposed in the upper hollow portion (the space between both wall plates 8a and 8a) of the partition wall 8 facing both the first and second heat exchangers 3 1 and 3 2. and, based on this temperature detected by the temperature sensor 10, and to detect the first heat exchanger 3 1 clogging fins of one heat exchanger and the second heat exchanger 3 2.

温度センサ10は、先端にサーミスタ等の感温素子を内蔵する感温部10aを有するパイプ状のものであり、図2に示す如く、缶体1の前面側から温度センサ10を仕切り壁8の中空部に挿入している。そして、感温部10aを仕切り壁8の前後方向中央部に位置させた状態で、温度センサ10の尾端側の固定部10bを缶体1の前面に固定している。   The temperature sensor 10 has a pipe-like shape having a temperature sensing portion 10a incorporating a temperature sensing element such as a thermistor at the tip. The temperature sensor 10 is connected to the partition wall 8 from the front side of the can 1 as shown in FIG. It is inserted in the hollow part. And the fixed part 10b of the tail end side of the temperature sensor 10 is being fixed to the front surface of the can 1 in the state which located the temperature sensitive part 10a in the center part of the partition wall 8 in the front-back direction.

尚、温度センサ10が仕切り壁8の両壁板8a,8aに接触していると、第1バーナ2と第2バーナ2との一方のバーナのみを燃焼させる単独燃焼時に、このバーナに対応する一方の熱交換器のフィン詰りで一方の燃焼室側の壁板8aの温度が高温になっても、この壁板8aから他方の燃焼室側の壁板8aへの温度センサ10を介しての熱引けで、温度センサ10の検出温度の上昇が抑制され、フィン詰りの検出精度が悪くなる。そこで、本実施形態では、両壁板8a,8aに、温度センサ10の挿入部分に位置させて、横方向外方に膨出する膨出部8bを形成し、温度センサ10が両壁板8a,8aに接触しないようにしている。 Incidentally, both wallboard 8a of the temperature sensor 10 is a partition wall 8, when in contact with the 8a, when one alone causes only a burned burner combustion of the first burner 2 1 and the second burner 2 2, the burner Even if the temperature of the wall plate 8a on one combustion chamber side becomes high due to clogging of the fins of one of the corresponding heat exchangers, the temperature sensor 10 from the wall plate 8a to the wall plate 8a on the other combustion chamber side passes through the temperature sensor 10. As a result, the detection temperature of the temperature sensor 10 is prevented from increasing, and the fin clogging detection accuracy deteriorates. Therefore, in the present embodiment, the both wall plates 8a and 8a are formed with the bulging portion 8b bulging outward in the lateral direction so as to be positioned at the insertion portion of the temperature sensor 10, and the temperature sensor 10 is formed on the both wall plates 8a. , 8a.

温度センサ10の検出信号は、第1と第2の両バーナ2,2と燃焼ファン6とを制御するコントローラ11に入力される。また、コントローラ11は、機能的手段として、第1と第2の両熱交換器3,3と両熱交換器3,3に連なる排気通路(排気フード9)の閉塞度合いを燃焼ファン6の回転数とファン電流との相関関係に基づいて検出する閉塞検出手段を備えている。 A detection signal of the temperature sensor 10 is input to a controller 11 that controls both the first and second burners 2 1 and 2 2 and the combustion fan 6. The controller 11 is burned as functional means, the occlusion degree of the exhaust passage (exhaust hood 9) the first and connected to a second of the two heat exchangers 3 1, 3 2 and Ryonetsu exchanger 3 1, 3 2 Blockage detection means for detecting based on the correlation between the rotational speed of the fan 6 and the fan current is provided.

ここで、ファン回転数―ファン電流特性は、通常は図3のa線のようになるが、閉塞度合いが増加すると、第1と第2の各燃焼室7,7に流れる空気量(送風量)が減少して燃焼ファン6の仕事量が減少し、ファン電流が低下して図3のb線のようになる。そして、図3のc線で示す実験により求めた補助値ラインと通常ライン(a線)とのファン電流の差をΔI1、補助値ラインと実際のファン電流の差をΔI2、1以下の定数をαとして、空気不足を生じないようにするために必要なファン回転数の補正係数Hを、H={(ΔI1/ΔI2)−1}×α+1の式で求めると、この補正係数Hと閉塞度合いとの間には図4に示す相関関係が成立する。そこで、本実施形態では、閉塞検出手段により閉塞度合いを表すパラメータとして補正係数Hを検出(算出)している。 Here, the fan rotation speed-fan current characteristic is normally as indicated by a line in FIG. 3, but when the degree of blockage increases, the amount of air flowing through the first and second combustion chambers 7 1 and 7 2 ( 3), the work amount of the combustion fan 6 is reduced, the fan current is reduced, and the line b in FIG. 3 is obtained. Then, the difference in fan current between the auxiliary value line and the normal line (a line) obtained by the experiment shown by the c line in FIG. 3 is ΔI1, the difference between the auxiliary value line and the actual fan current is ΔI2, and a constant of 1 or less. As α, a correction coefficient H of the fan rotational speed necessary for preventing air shortage is obtained by an equation H = {(ΔI1 / ΔI2) −1} × α + 1. 4 holds the correlation shown in FIG. Therefore, in the present embodiment, the correction coefficient H is detected (calculated) as a parameter representing the degree of blockage by the blockage detection means.

以下、コントローラ11が行う運転制御の内容を図5を参照して説明する。尚、図5において、YT1は例えば250℃程度に設定される第1判定温度、YT1aはYT1よりも低い200℃程度に設定される第1予備判定温度、YT2は例えば230℃程度に設定される第2判定温度、YT2aはYT2よりも低い180℃程度に設定される第2予備判定温度、YT3は第1と第2の両判定温度YT1,YT2よりも高い例えば280℃程度に設定される第3判定温度、YT4は第3判定温度YT3よりも高い例えば300℃に設定される第4判定温度、YH1は例えば1.2程度(閉塞度合い換算で80%)に設定される第1判定値、YH2は第1判定値YH1よりも低い1.18程度(閉塞度合い換算で78%)に設定される第2判定値である。   Hereinafter, the contents of the operation control performed by the controller 11 will be described with reference to FIG. In FIG. 5, YT1 is set to a first determination temperature set to about 250 ° C., for example, YT1a is set to a first preliminary determination temperature set to about 200 ° C. lower than YT1, and YT2 is set to about 230 ° C. for example. The second determination temperature, YT2a is a second preliminary determination temperature set to about 180 ° C. lower than YT2, and YT3 is set to about 280 ° C. higher than both the first and second determination temperatures YT1 and YT2, for example. The third determination temperature, YT4 is higher than the third determination temperature YT3, for example, a fourth determination temperature set to 300 ° C., for example, and YH1 is, for example, a first determination value set to about 1.2 (80% in terms of blockage degree), YH2 is a second determination value that is set to about 1.18 (78% in terms of blockage) that is lower than the first determination value YH1.

コントローラ11は、先ず、STEP1で複合熱源機の運転状態が第1バーナ2のみを燃焼させる給湯単独運転、第2バーナ2のみを燃焼させる風呂単独運転及び第1と第2の両バーナ2,2を同時に燃焼させる給湯と風呂の同時運転の何れであるかを判別する。 The controller 11 first single hot water supply run to the operating state of the multifunction heat source device in STEP1 burning only the first burner 2 1, bath alone operation and first to burn only the second burner 2 2 and the second of the two burners 2 It is determined whether the hot water supply for simultaneously burning 1 and 2 2 or the bath is operated simultaneously.

給湯単独運転時(第1バーナ2のみの単独燃焼時)には、STEP2で燃焼改善制御を行う。燃焼改善制御は、第1バーナ2の燃焼量に対応する基準回転数に補正係数Hを乗算した回転数で燃焼ファン6を回転させる。これにより、閉塞度合いの増加に伴い燃焼ファン6の回転数が増加補正されることになり、空気不足による燃焼不良が防止される。 During the single hot water supply operation (during independent combustion of the first burner 2 1 only), the combustion improvement control by STEP2. Combustion improvement control, the combustion fan 6 is rotated at a rotational speed obtained by multiplying the correction coefficient H in the reference rotation speed corresponding to the first burner 2 first combustion amount. As a result, the rotational speed of the combustion fan 6 is corrected to increase as the degree of blockage increases, and combustion failure due to air shortage is prevented.

次に、STEP3で補正係数Hが第1判定値YH1未満であるか否かを判別する。H<YH1であれば、STEP4に進み、温度センサ10の検出温度Tが第1予備判定温度YT1a以上になったか否かを判別する。第1熱交換器3の軽度のフィン詰りを生ずると、T≧YT1aになる。この場合は、STEP5に進み、燃焼ファン6の回転数を基準回転数に補正係数Hを乗算した値よりも所定比率(例えば、5%)増加補正する燃焼改善制御を行うと共に、第1熱交換器3のフィン詰りの発生を報知するエラー表示を行う。これによれば、第1熱交換器3の軽度のフィン詰りで第1燃焼室7への供給空気量が不足気味になっても、ファン回転数の増加補正で燃焼状態を改善することができ、また、仕切り壁8に流れる冷却空気量が増量されて、仕切り壁8の温度が下がり寿命がのびる。 Next, in STEP 3, it is determined whether or not the correction coefficient H is less than the first determination value YH1. If H <YH1, the process proceeds to STEP 4, and it is determined whether or not the detected temperature T of the temperature sensor 10 has become equal to or higher than the first preliminary determination temperature YT1a. When causing mild fin clogging of the first heat exchanger 3 1, the T ≧ YT1a. In this case, the process proceeds to STEP 5, in which combustion improvement control is performed to correct the rotational speed of the combustion fan 6 by a predetermined ratio (for example, 5%) higher than the value obtained by multiplying the reference rotational speed by the correction coefficient H, and the first heat exchange is performed. an error message is displayed for notifying the occurrence of the vessel 3 1 fin clogging. According to this, even if the supply air amount to the first combustion chamber 7 1 clogging mild fins of the first heat exchanger 3 1 becomes somewhat insufficient, to improve the combustion state in an increase correction of the fan speed In addition, the amount of cooling air flowing through the partition wall 8 is increased, the temperature of the partition wall 8 is lowered, and the life is extended.

次に、STEP6で温度センサ10の検出温度Tが第1判定温度YT1以上になったか否かを判別する。ここで、第1熱交換器3のフィン詰りが進行すると、温度センサ10の検出温度Tは第1判定温度YT1以上に上昇する。そこで、T≧YT1になったときは第1熱交換器3のフィン詰りを生じたと判断し、STEP7に進んで第1フラグFを「1」にセットした後STEP9に進み、エラー表示すると共に第1バーナ2の燃焼を停止するエラー停止を行う。 Next, in STEP 6, it is determined whether or not the detected temperature T of the temperature sensor 10 has become equal to or higher than the first determination temperature YT1. Here, the first heat exchanger 3 1 fin clogging progresses, the detected temperature T of the temperature sensor 10 rises above the first judgment temperature YT1. Therefore, when it is T ≧ YT1 determines that resulted in clogging fins of the first heat exchanger 3 1, the process proceeds to STEP9 After setting the first flag F to "1" advances to STEP7, while error display stop with an error to stop the combustion of the first burner 2 1.

ところで、第1と第2の両熱交換器3,3のフィン詰りを生ずると、第1と第2の各バーナ2,2の燃焼ガスが仕切り壁8側に偏って流れなくなり、温度センサ10の検出温度Tが然程上昇しなくなる。そのため、温度センサ10の検出温度Tに基づくフィン詰りの判別は行えなくなる。一方、両熱交換器3,3のフィン詰りを生ずると、補正係数Hが増加する。そこで、STEP3でH≧YH1と判別されたときは、第1と第2の両熱交換器3,3のフィン詰りを生じたと判断し、STEP8で第3フラグF3を「1」にセットした後に、STEP9に進んでエラー停止を行う。 By the way, if the first and second heat exchangers 3 1 and 3 2 are clogged with fins, the combustion gases of the first and second burners 2 1 and 2 2 are not biased toward the partition wall 8 side. The detected temperature T of the temperature sensor 10 does not rise so much. For this reason, it is impossible to determine fin clogging based on the temperature T detected by the temperature sensor 10. On the other hand, when the fins of both heat exchangers 3 1 and 3 2 are clogged, the correction coefficient H increases. Therefore, when it is determined in STEP 3 that H ≧ YH1, it is determined that the first and second heat exchangers 3 1 and 3 2 are clogged with fins, and the third flag F3 is set to “1” in STEP 8. After that, proceed to STEP 9 to stop the error.

風呂単独運転時(第2バーナ2のみの単独燃焼時)には、先ず、STEP10において、第2バーナ2の燃焼量に対応する基準回転数に補正係数Hを乗算した回転数で燃焼ファン6を回転させる燃焼改善制御を行う。次に、STEP11で補正係数Hが第1判定値YH1未満であるか否かを判別する。H<YH1であれば、STEP12に進み、温度センサ10の検出温度Tが第2予備判定温度YT2a以上になったか否かを判別する。第2熱交換器3の軽度のフィン詰りを生ずると、T≧YT2aになる。この場合は、STEP13に進み、燃焼ファン6の回転数を基準回転数に補正係数Hを乗算した値よりも所定比率(例えば、3%)増加補正する燃焼改善制御を行うと共に、第2熱交換器3のフィン詰りの発生を報知するエラー表示を行う。これによれば、第2熱交換器3の軽度のフィン詰りで第2燃焼室7への供給空気量が不足気味になっても、ファン回転数の増加補正で燃焼状態を改善することができ、また、仕切り壁8に流れる冷却空気量が増量されて、仕切り壁8の温度が下がり寿命がのびる。 Bath islanding when the (during independent combustion of the second burners 2 2 only), first, in STEP 10, the combustion fan at a rotational speed obtained by multiplying the correction coefficient H as a reference speed corresponding to the second combustion amount of burners 2 2 Combustion improvement control for rotating 6 is performed. Next, in STEP 11, it is determined whether or not the correction coefficient H is less than the first determination value YH1. If H <YH1, the process proceeds to STEP 12, and it is determined whether or not the detected temperature T of the temperature sensor 10 is equal to or higher than the second preliminary determination temperature YT2a. When causing mild fin clogging of the second heat exchanger 3 2 becomes T ≧ YT2a. In this case, the process proceeds to STEP13, in which combustion improvement control is performed to correct the rotational speed of the combustion fan 6 by a predetermined ratio (for example, 3%) higher than the value obtained by multiplying the reference rotational speed by the correction coefficient H, and the second heat exchange is performed. an error message is displayed for notifying the occurrence of the vessel 3 second fin clogging. According to this, even if the supply air amount to the second combustion chamber 7 2 in clogging mild fins of the second heat exchanger 3 2 becomes somewhat insufficient, to improve the combustion state in an increase correction of the fan speed In addition, the amount of cooling air flowing through the partition wall 8 is increased, the temperature of the partition wall 8 is lowered, and the life is extended.

次に、STEP14で温度センサ10の検出温度Tが第2判定温度YT2以上になったか否かを判別する。ここで、第2熱交換器3のフィン詰りが進行すると、温度センサ10の検出温度Tは第2判定温度YT2以上に上昇する。そこで、T≧YT2になったときは第2熱交換器3のフィン詰りを生じたと判断し、STEP15で第2フラグF2を「1」にセットした後STEP17に進み、エラー表示すると共に第2バーナ2の燃焼を停止するエラー停止を行う。また、STEP11でH≧YH1と判別されたときは、第1と第2の両熱交換器3,3のフィン詰りを生じたと判断し、STEP16で第3フラグF3を「1」にセットした後に、STEP17に進んでエラー停止を行う。 Next, in STEP 14, it is determined whether or not the detected temperature T of the temperature sensor 10 has become equal to or higher than the second determination temperature YT2. Here, the second heat exchanger 3 2 fins clogging progresses, the detected temperature T of the temperature sensor 10 rises above the second judgment temperature YT2. Therefore, when it is T ≧ YT2 determines that resulted in the second heat exchanger 3 2 fin clogging, the flow proceeds to STEP17 after setting the second flag F2 to "1" in STEP 15, the addition to error display 2 stop with an error to stop the combustion of the burner 2 2. If it is determined in STEP 11 that H ≧ YH1, it is determined that the first and second heat exchangers 3 1 and 3 2 are clogged with fins, and in STEP 16, the third flag F3 is set to “1”. After that, proceed to STEP 17 to stop the error.

尚、STEP5やSTEP13でファン回転数を増加補正した後、第1熱交換器3や第2熱交換器3の吸熱フィン3a間に堆積した煤やスケールが脱落してフィン詰りが解消されることもある。そこで、ファン回転数の増加補正後に、温度センサ10の検出温度Tが第1予備判定温度YT1aや第2予備判定温度YT2aよりも低く設定する所定温度(例えば、給湯単独運転時には180℃、風呂単独運転時には130℃)以下になったら、燃焼ファン6の回転数を基準回転数に補正係数Hを乗算した値に戻してもよい。 Incidentally, after increasing corrected fan speed in STEP5 or STEP 13, clogging the fins is eliminated by depositing soot and scale between the first heat exchanger 3 1 and the second heat exchanger 3 2 absorbing fin 3a falls off Sometimes. Therefore, after the increase in fan speed is corrected, a predetermined temperature at which the detected temperature T of the temperature sensor 10 is set lower than the first preliminary determination temperature YT1a and the second preliminary determination temperature YT2a (for example, 180 ° C. during hot water supply single operation, bath only When the temperature becomes 130 ° C. or lower during operation, the rotational speed of the combustion fan 6 may be returned to a value obtained by multiplying the reference rotational speed by the correction coefficient H.

給湯と風呂の同時運転時(第1と第2の両バーナ2,2の同時燃焼時)には、先ず、STEP18において、基準回転数に補正係数Hを乗算した回転数で燃焼ファン6を回転させる燃焼改善制御を行う。次に、STEP19で補正係数Hが第2判定値YH2未満であるか否かを判別する。H<YH2であれば、STEP20に進み、温度センサ10の検出温度Tが第3判定温度YT3以上になったか否かを判別する。ここで、同時運転時には、仕切り壁8が第1と第2の両バーナ2,2により加熱されて、第1と第2の各熱交換器3,3のフィン詰りを生じていなくても、温度センサ10の検出温度Tが第1と第2の両判定温度YT1,YT2より高くなってしまうことがあり、このまま同時運転を継続すると、熱源機の寿命に悪影響が及ぶ。この場合、同時運転時に、温度センサ10の検出温度Tが第3判定温度YT3以上になったときは、第1と第2の両バーナ2,2の燃焼を停止することも考えられる。然し、これでは、熱源機が突然使用不能になってしまい、使用者に不便をかける。 During simultaneous operation of hot water supply and bath (when both the first and second burners 2 1 and 2 2 are simultaneously combusted), first, in STEP 18, the combustion fan 6 is rotated at a rotational speed obtained by multiplying the reference rotational speed by the correction coefficient H. To improve combustion. Next, in STEP 19, it is determined whether or not the correction coefficient H is less than the second determination value YH2. If H <YH2, the process proceeds to STEP 20, and it is determined whether or not the detected temperature T of the temperature sensor 10 is equal to or higher than the third determination temperature YT3. Here, at the time of simultaneous operation, the partition wall 8 is heated by both the first and second burners 2 1 and 2 2 , thereby causing fin clogging of the first and second heat exchangers 3 1 and 3 2. Even if not, the detected temperature T of the temperature sensor 10 may be higher than both the first and second determination temperatures YT1 and YT2, and if the simultaneous operation is continued as it is, the life of the heat source machine is adversely affected. In this case, during simultaneous operation, if the detected temperature T of the temperature sensor 10 is equal to or higher than the third determination temperature YT3, it is conceivable to stop the combustion of both the first and second burners 2 1 and 2 2 . However, in this case, the heat source machine suddenly becomes unusable and inconveniences the user.

そこで、温度センサ10の検出温度Tが第3判定温度YT3以上になった場合は、STEP21でエラー表示すると共に、STEP22で同時運転から給湯単独運転に移行させる。そして、STEP23で給湯運転が停止されたと判別されたときに、STEP24に進んで風呂単独運転に移行させる。そのため、熱源機が突然使用不能になって使用者に不便をかけることを回避できる。   Therefore, when the detected temperature T of the temperature sensor 10 is equal to or higher than the third determination temperature YT3, an error is displayed in STEP 21 and the operation is shifted from the simultaneous operation to the hot water supply single operation in STEP 22. When it is determined in STEP 23 that the hot water supply operation has been stopped, the process proceeds to STEP 24 to shift to a bath single operation. Therefore, it can be avoided that the heat source machine suddenly becomes unusable and inconveniences the user.

また、給湯や風呂の単独運転に移行することで、温度センサ10の検出温度Tは低下するが、稀に検出温度Tが上昇し続けてしまうことがある。そこで、STEP25において、温度センサ10の検出温度Tが第4判定温度YT4以上になったか否かを判別し、T≧YT4になったときは、STEP26で第1フラグF1と第2フラグF2とを共に「1」にセットすると共に、STEP27でエラー表示すると共に燃焼中のバーナを消火するエラー停止を行う。   Moreover, although the detection temperature T of the temperature sensor 10 falls by shifting to the hot water supply or the bath independent operation, the detection temperature T may continue to rise rarely. Therefore, in STEP 25, it is determined whether or not the detected temperature T of the temperature sensor 10 is equal to or higher than the fourth determination temperature YT4. If T ≧ YT4, the first flag F1 and the second flag F2 are set in STEP 26. Both are set to "1", an error is displayed in STEP 27, and an error stop is performed to extinguish the burning burner.

また、STEP19でH≧YH2と判別されたときも、熱源機が突然使用不能になって使用者に不便をかけることを回避するために、STEP28でエラー表示すると共に、STEP29で同時運転から給湯単独運転に移行させる。その後、STEP30で給湯運転が停止されたと判別されたときに、STEP31に進んで風呂単独運転に移行させる。尚、図示しないが、STEP22,29で給湯単独運転に移行したときは、STEP2〜STEP9と同様の制御を行い、STEP24,31で風呂単独運転に移行したときは、STEP10〜STEP17と同様の制御を行う。   Also, when it is determined in STEP 19 that H ≧ YH2, in order to avoid inconvenience to the user due to sudden disuse of the heat source unit, an error is displayed in STEP 28 and the hot water supply is separated from the simultaneous operation in STEP 29. Shift to driving. Thereafter, when it is determined in STEP 30 that the hot water supply operation has been stopped, the process proceeds to STEP 31 to shift to a bath single operation. In addition, although not shown in figure, when it transfers to hot water supply independent operation by STEP22, 29, the same control as STEP2-STEP9 is performed, and when it transfers to bath independent operation by STEP24, 31, the control similar to STEP10-STEP17 is performed. Do.

上記第1乃至第3フラグF1,F2,F3は、電源が落ちても消去されないように、コントローラ11に設けた不揮発性メモリに記憶される。そして、コントローラ11は、出湯栓が開かれて給湯運転の開始指令(第1バーナ2の燃焼開始指令)が出されたときや、風呂追い焚きスイッチがオンされて風呂運転の開始指令(第2バーナ2の燃焼開始指令)が出されたときに、これら第1乃至第3フラグF1,F2,F3を読み出して、図6に示す点火制御を行う。 The first to third flags F1, F2, and F3 are stored in a nonvolatile memory provided in the controller 11 so that they are not erased even when the power is turned off. Then, the controller 11, when the start command of the hot water supply operation is opened tapping plug (first combustion start command of the burner 2 1) is issued and, being turned on the bath reheating switch start command bath operation (the when second combustion start command of the burner 2 2) is issued, reads these first to third flag F1, F2, F3, performs ignition control shown in FIG.

点火制御では、先ず、STEP101において、第1フラグF1と第2フラグF2とが共に「1」にセットされているか否かを判別し、セットされていれば、STEP102に進んで、第1と第2の両バーナ2,2の点火を禁止する。また、STEP103で第1フラグF1のみが「1」にセットされていると判別されたときは、STEP104に進んで、第1バーナ2の点火を禁止し、STEP105で第2フラグF1のみが「1」にセットされていると判別されたときは、STEP106に進んで、第2バーナ2の点火を禁止する。そのため、STEP6でT≧YT1と判別されて第1フラグF1が「1」にセットされたり、STEP14でT≧YT2と判別されて第2フラグF2が「1」にセットされたり、STEP26でT≧YT4と判別されて第1フラグF1及び第2フラグF2が「1」にセットされると、インターロックがかかり、以後修理が完了して業者がこれらフラグF1,F2を「0」にリセットしない限り該当するバーナの燃焼が禁止される。 In the ignition control, first, in STEP 101, it is determined whether or not both the first flag F1 and the second flag F2 are set to “1”. If they are set, the process proceeds to STEP 102, where the first and first flags F1 and F2 are set. 2 ignition of both burners 2 1 and 2 2 is prohibited. Further, when it is determined that only the first flag F1 in STEP103 is set to "1", the process proceeds to STEP 104, first prohibited ignition of the burner 2 1, second only flag F1 is in STEP105 " when it is judged is set to 1 ", the process proceeds to STEP 106, prohibits the second ignition burner 2 2. Therefore, it is determined in STEP 6 that T ≧ YT1 and the first flag F1 is set to “1”, T14 is determined as T ≧ YT2 and the second flag F2 is set to “1”, or T26 in T26 If it is determined as YT4 and the first flag F1 and the second flag F2 are set to “1”, an interlock is applied, and then repair is completed and the contractor does not reset these flags F1 and F2 to “0”. Combustion of the relevant burner is prohibited.

また、点火制御では、STEP107において、第3フラグF3が「1」にセットされているか否かを判別する。ここで、第3フラグF3は、補正係数HがSTEP3やSTEP11で第1判定値YH1以上と判別されたときに「1」にセットされるが、排気通路への風の吹きこみや養生シート等による排気口9aの閉塞で閉塞度合いが一時的に増加したときにH≧YH1になることがある。このような一時的な閉塞度合いの増加で以後のバーナの燃焼を禁止したのでは、使用者に必要以上の不便をかけることになる。   Further, in the ignition control, in STEP 107, it is determined whether or not the third flag F3 is set to “1”. Here, the third flag F3 is set to “1” when the correction coefficient H is determined to be greater than or equal to the first determination value YH1 in STEP3 or STEP11, but wind blowing into the exhaust passage, curing sheet, or the like H ≧ YH1 may occur when the degree of blockage temporarily increases due to blockage of the exhaust port 9a. Prohibiting burning of the burner thereafter due to such a temporary increase in the degree of blockage will cause unnecessary inconvenience to the user.

そこで、第3フラグF3が「1」にセットされている場合は、STEP108に進み、点火前に燃焼ファン6のみを作動させた状態で補正係数Hを所定時間かけて検出する。尚、この所定時間は、風等による一時的な閉塞度合いの変動の影響を受けないように例えば6秒に設定される。そして、所定時間中に補正係数Hを徐々に更新し、或いは、補正係数Hの平均値を求める。その後、STEP109に進み、STEP108で検出した補正係数Hが第1判定値YH1未満であるか否かを判別する。そして、H<YH1であれば、STEP111に進み、点火時の基準回転数に補正係数Hを乗算した回転数で燃焼ファン6を回転させてから第1バーナ2や第2バーナ2に点火する。 Therefore, when the third flag F3 is set to “1”, the process proceeds to STEP 108, and the correction coefficient H is detected over a predetermined time in a state where only the combustion fan 6 is operated before ignition. Note that the predetermined time is set to, for example, 6 seconds so as not to be affected by a temporary change in the degree of blockage due to wind or the like. Then, the correction coefficient H is gradually updated during a predetermined time, or an average value of the correction coefficients H is obtained. Thereafter, the process proceeds to STEP 109, where it is determined whether or not the correction coefficient H detected in STEP 108 is less than the first determination value YH1. Then, if H <YH1, the process proceeds to STEP 111, the ignition from the rotated first burner 2 1 and the second burner 2 2 combustion fan 6 at a rotation speed obtained by multiplying the correction coefficient H in the reference speed during ignition To do.

また、第1乃至第3フラグF1,F2,F3の何れもが「1」にセットされていない場合、即ち、STEP3,11でH≧YH1と判別されず、且つ、STEP6でT≧YT1と判別されたり、STEP14でT≧YT2と判別されたり、STEP25でT≧YT4と判別されたりしないまま前回の給湯単独運転や風呂単独運転や同時運転が通常停止された場合にも、点火前に補正係数Hを検出して点火時のファン回転数の補正を行うことが考えられる。然し、これでは、運転開始指令が出されてから点火までに時間がかかってしまう。そこで、前回通常停止されたときは、STEP110に進んで不揮発性メモリに記憶されている補正係数Hを読み出した後、STEP111に進むようにしている。尚、「通常停止」とは、出湯栓が閉じられて給湯単独運転や同時運転が停止されたり、浴槽水の温度が設定温度に上昇し、或いは、風呂追い焚きスイッチがオフされて風呂単独運転や同時運転が停止されることを意味する。   Further, when none of the first to third flags F1, F2, and F3 is set to “1”, that is, H ≧ YH1 is not determined in STEP3 and 11, and T ≧ YT1 is determined in STEP6. Even if the previous hot water single operation or bath single operation or simultaneous operation is normally stopped without being determined as T ≧ YT2 in STEP14 or as T ≧ YT4 in STEP25, the correction coefficient is set before ignition. It is conceivable to detect H and correct the fan speed at the time of ignition. However, in this case, it takes time until ignition after the operation start command is issued. Therefore, when the normal stop was performed last time, the process proceeds to STEP 110, and after reading the correction coefficient H stored in the nonvolatile memory, the process proceeds to STEP 111. Note that “normal stop” means that the hot-water tap is closed and hot water supply independent operation or simultaneous operation is stopped, the temperature of the bath water rises to the set temperature, or the bath reheating switch is turned off and the bath is operated independently. Or simultaneous operation is stopped.

ここで、不揮発性メモリに記憶されている補正係数Hを、通常停止されたときに検出される補正係数Hに毎回書き換えることも考えられるが、これでは、補正係数Hの書き換え頻度が非常に多くなって、不揮発性メモリの耐久性に悪影響が及ぶ。そこで、本実施形態では、図示しないが、通常停止されたときに検出される補正係数Hが不揮発性メモリに記憶されている補正係数Hから所定量(例えば、0.04)以上変化している場合にのみ、不揮発性メモリに記憶されている補正係数Hを今回検出された補正係数Hに書き換えるようにしている。   Here, it is conceivable that the correction coefficient H stored in the non-volatile memory is rewritten every time to the correction coefficient H detected when it is normally stopped, but in this case, the frequency of rewriting the correction coefficient H is very high. This adversely affects the durability of the nonvolatile memory. Therefore, in this embodiment, although not shown, the correction coefficient H detected when the operation is normally stopped is changed by a predetermined amount (for example, 0.04) or more from the correction coefficient H stored in the nonvolatile memory. Only in this case, the correction coefficient H stored in the nonvolatile memory is rewritten to the correction coefficient H detected this time.

ところで、本実施形態では、第2バーナ2及び第2熱交換器3が第1バーナ2及び第1熱交換器3よりも小型であるため、第2熱交換器3のフィン詰りの判定に用いる第2判定温度YT2を第1熱交換器3のフィン詰りの判定に用いる第1判定温度YT1よりも低い温度に設定している。この場合、給湯単独運転や同時運転から風呂単独運転に移行する際に、温度センサ10の検出温度Tが第2判定温度YT2以上になっていると、第2熱交換器3のフィン詰りを生じていなくても、STEP14でT≧YT2と判別されて、第2バーナ2の燃焼がエラー停止されてしまう。また、同時運転から給湯単独運転に移行する際に、温度センサ10の検出温度Tが第1判定温度YT1以上になっていると、第1熱交換器3のフィン詰りを生じていなくても、STEP6でT≧YT1と判別されて、第1バーナ2の燃焼がエラー停止されてしまう。また、停電等で電源が落ちると、燃焼ファン6が停止されるため、バーナの燃焼が停止されても余熱により仕切り壁8が加熱されて、温度センサ10の検出温度Tが上昇し第2判定温度YT2以上になってしまうことがある。この場合、電源を再投入して、風呂単独運転を行ったときに、STEP14でT≧YT2と判別されて、第2バーナ2の燃焼がエラー停止されてしまう可能性がある。 Incidentally, in the present embodiment, since the second burner 2 2 and the second heat exchanger 3 2 is a first burner 2 1 and smaller than the first heat exchanger 3 1, the second heat exchanger 3 2 fins It is set to a temperature lower than the first judgment temperature YT1 using the second judgment temperature YT2 used for the determination of the clogging determination of the first heat exchanger 3 1 fin clogging. In this case, when moving a bath isolated operation from single hot water supply run or simultaneous operation, when the detected temperature T of the temperature sensor 10 is equal to or higher than the second judgment temperature YT2, the second heat exchanger 3 2 fin jam even if not caused, it is determined that T ≧ YT2 at STEP 14, the combustion of the second burners 2 2 from being stopped error. Further, when shifting from co-operating in single hot water supply run, the detected temperature T of the temperature sensor 10 is equal to or greater than the first judgment temperature YT1, even if no cause clogging first fin heat exchanger 3 1 , it is determined to T ≧ YT1 in STEP6, the first burner 2 1 combustion has been halted errors. Further, when the power is turned off due to a power failure or the like, the combustion fan 6 is stopped. Therefore, even if the combustion of the burner is stopped, the partition wall 8 is heated by the residual heat, and the temperature T detected by the temperature sensor 10 rises to make the second determination. The temperature may be higher than YT2. In this case, restoring the power, when performing a bath islanding, it is determined that T ≧ YT2 at STEP 14, the combustion of the second burners 2 2 may possibly be stopped error.

そこで、本実施形態では、コントローラ11によりSTEP6,14での判別を一定条件下で禁止する判別禁止制御を行うようにしている。判別禁止制御の詳細は図7に示す通りであり、先ず、STEP201で電源が再投入されたか否かを判別し、再投入されたとき、STEP202に進んで、温度センサ10の検出温度Tが第2判定温度YT2以上であるか否かを判別する。T≧YT2であれば、STEP203で電源再投入時点から所定時間(例えば、120秒)経過したか否かを判別し、経過したときに、STEP204に進んで、STEP6,14での判別を許可する。T<TY2であれば、STEP204に直接進んで、STEP6,14での判別を直ちに許可する。これによれば、電源再投入時にT≧YT2である場合は、所定時間経過するまでSTEP14での判別が禁止されることになり、その間に温度センサ10の検出温度Tが低下して第2判定温度TY2未満になる。そのため、電源再投入後に風呂単独運転を行ったときに、第2熱交換器3のフィン詰りを生じていないのに、第2バーナ2の燃焼がエラー停止されることを防止できる。また、風呂単独運転がされていない場合にも、電源再投入時点から判別禁止の時間をカウントするため、風呂単独運転開始後、STEP14での判別開始までの時間が短くなり、安全である。 Therefore, in the present embodiment, the determination prohibition control is performed in which the controller 11 prohibits the determination in STEPs 6 and 14 under a certain condition. The details of the discrimination prohibition control are as shown in FIG. 7. First, at STEP 201, it is discriminated whether or not the power is turned on again. When the power is turned on again, the routine proceeds to STEP 202 where the detected temperature T of the temperature sensor 10 is the first. 2 It is determined whether or not the determination temperature is YT2 or higher. If T ≧ YT2, it is determined in STEP 203 whether or not a predetermined time (for example, 120 seconds) has elapsed from the time when the power is turned on again, and when it has elapsed, the process proceeds to STEP 204 and the determination in STEP 6 and 14 is permitted. . If T <TY2, the process proceeds directly to STEP 204, and the discrimination in STEPs 6 and 14 is immediately permitted. According to this, when T ≧ YT2 when the power is turned on again, the determination in STEP 14 is prohibited until a predetermined time elapses, during which the detected temperature T of the temperature sensor 10 decreases and the second determination is made. The temperature becomes less than TY2. Therefore, when performing a bath islanding after a power cycle, though not occurred a second heat exchanger 3 2 fins clogged, the combustion of the second burners 2 2 can be prevented from being stopped error. Even when the bath is not operated alone, the time for which discrimination is prohibited is counted from the time when the power is turned on again. Therefore, the time from the start of bath independent operation until the start of discrimination in STEP 14 is shortened, which is safe.

また、STEP205で風呂単独運転が停止されたと判別されたときは、STEP204に直接進むが、STEP206で給湯単独運転が停止されたと判別されたときは、STEP207に進んで、温度センサ10の検出温度Tが第2判定温度YT2以上であるか否かを判別する。そして、T≧YT2であれば、STEP208で給湯運転停止時点から所定時間(例えば、100秒)経過したか否かを判別して、経過したときにSTEP204に進み、経過するまではSTEP14での判別を禁止する。これによれば、給湯単独運転から風呂単独運転に移行する際に、第2熱交換器3のフィン詰りを生じていなくても、STEP14でT≧YT2と判別されて、第2バーナ2の燃焼がエラー停止されてしまうことを防止できる。また、給湯単独運転停止後に風呂単独運転を開始しなくても、判別禁止の時間をカウントするため、風呂単独運転開始後、STEP14での判別開始までの時間が短くなり、安全である。 If it is determined in STEP 205 that the bath single operation has been stopped, the process proceeds directly to STEP 204. If it is determined in STEP 206 that the hot water supply single operation has been stopped, the process proceeds to STEP 207 and the temperature T detected by the temperature sensor 10 is detected. Is determined to be equal to or higher than the second determination temperature YT2. If T ≧ YT2, it is determined in STEP 208 whether or not a predetermined time (for example, 100 seconds) has elapsed since the hot water supply operation stop time, and when it has elapsed, the process proceeds to STEP 204. Is prohibited. According to this, when moving a bath isolated operation from single hot water supply run, even if no cause second heat exchanger 3 2 fin clogging, it is determined that T ≧ YT2 at STEP 14, the second burner 2 2 It is possible to prevent the combustion of this from being stopped due to an error. Further, even if the bath independent operation is not started after the hot water supply independent operation is stopped, the discrimination prohibition time is counted. Therefore, the time from the start of the bath independent operation until the start of the discrimination in STEP 14 is shortened, which is safe.

また、同時運転から給湯単独運転や風呂単独運転に移行して、STEP209で同時運転が停止されたと判別されたときは、STEP210に進んで、温度センサ10の検出温度Tが第1判定温度YT1以上であるか否かを判別し、T<YT1であれば、STEP211に進んで、温度センサ10の検出温度Tが第2判定温度YT2以上であるか否かを判別する。そして、T≧YT2であれば、STEP212で同時運転停止時点から所定時間(例えば、150秒)経過したか否かを判別して、経過したときにSTEP204に進み、経過するまではSTEP14での判別を禁止する。これによれば、同時運転から風呂単独運転に移行する際に、第2熱交換器3のフィン詰りを生じていなくても、STEP14でT≧YT2と判別されて、第2バーナ2の燃焼がエラー停止されてしまうことを防止できる。 Further, when it is determined that the simultaneous operation is stopped from the simultaneous operation to the hot water supply single operation or the bath single operation and the simultaneous operation is stopped in STEP 209, the process proceeds to STEP 210, and the detected temperature T of the temperature sensor 10 is equal to or higher than the first determination temperature YT1. If T <YT1, the process proceeds to STEP 211, where it is determined whether or not the detected temperature T of the temperature sensor 10 is equal to or higher than the second determination temperature YT2. If T ≧ YT2, it is determined in STEP 212 whether or not a predetermined time (for example, 150 seconds) has elapsed since the simultaneous operation stop point, and when it has elapsed, the process proceeds to STEP 204. Is prohibited. According to this, the simultaneous operation when moving a bath isolated operation, even if not result in second heat exchanger 3 2 fin clogging, it is determined that T ≧ YT2 at STEP 14, the second burner 2 2 It is possible to prevent combustion from being stopped due to an error.

また、STEP210でT≧YT1と判別されたときは、STEP213で同時運転停止時点から所定時間(例えば、150秒)経過したか否かを判別し、経過したときにSTEP214に進んでSTEP6での判別を許可し、経過するまではSTEP6での判別を禁止する。これによれば、同時運転から給湯単独運転に移行する際に、第1熱交換器3のフィン詰りを生じていなくても、STEP6でT≧YT1と判別されて、第1バーナ2の燃焼がエラー停止されてしまうことを防止できる。 If it is determined in STEP 210 that T ≧ YT1, it is determined in STEP 213 whether or not a predetermined time (for example, 150 seconds) has elapsed since the simultaneous operation stop time, and when it has elapsed, the process proceeds to STEP 214 and the determination in STEP 6 Until the time elapses, the determination in STEP 6 is prohibited. According to this, in the transition from co-operation in the single hot water supply run, even if no cause clogging first fin heat exchanger 3 1, it is determined to T ≧ YT1 in STEP6, the first burner 2 1 It is possible to prevent combustion from being stopped due to an error.

次に、図8に示す第2実施形態の1缶式複合熱源機について説明する。第2実施形態の基本的な構造は、上記第1実施形態のものと同様であるが、第2バーナ2を構成する単位バーナ2aの本数を第1実施形態のものより1本少なくし、仕切り壁8の第2燃焼室7側の壁板8aの下部を第1実施形態のものより第2燃焼室7側に単位バーナ1本分だけ大きくオフセットしている。この場合、仕切り壁8と第2バーナ2間の横方向距離が長くなり、第2熱交換器3のフィン詰りを生じても第2バーナ2の燃焼ガスが仕切り壁8に寄りにくくなって、温度センサ10の検出温度Tが上昇しにくくなる。そのため、第2燃焼室7側の壁板8aの中間の肩部に形成する通気孔(図示せず)の面積を第1実施形態のものより小さくして、第2燃焼室7側の壁板8aの外側面に沿って流す空気量を減少させている。その結果、風呂単独運転時の定常温度が給湯単独運転時の定常温度より高くなり、第2熱交換器3のフィン詰りを判別する第2判定温度YT2を第1熱交換器3のフィン詰りを判別する第1判定温度YT1よりも高く設定することが必要になる。 Next, the single can type combined heat source machine of the second embodiment shown in FIG. 8 will be described. The basic structure of the second embodiment is similar to that of the first embodiment, the number of unit burner 2a constituting the second burner 2 2 one less than that of the first embodiment, the lower portion of the second combustion chamber 7 2 side of the wall plate 8a by a unit burner one roll to the second combustion chamber 7 2 side than those of the first embodiment of the partition wall 8 is larger offset. In this case, the lateral distance between the partition wall 8 and the second burner 2 2 becomes long, difficult even if the second heat exchanger 3 2 fin clogging combustion gas in the second burner 2 2 close to the partition wall 8 Thus, the detected temperature T of the temperature sensor 10 is unlikely to increase. Therefore, the area of the vent holes (not shown) to form an intermediate shoulder portion of the second combustion chamber 7 2 side wall plate 8a is made smaller than that of the first embodiment, the second combustion chamber 7 2 side The amount of air flowing along the outer surface of the wall plate 8a is reduced. As a result, the constant temperature during bath islanding operation is higher than the steady state temperature during the single hot water supply run, the second judgment temperature YT2 of the first heat exchanger 3 1 the fins to determine the second heat exchanger 3 2 fin jam It is necessary to set the temperature higher than the first determination temperature YT1 for determining clogging.

第2実施形態でも、運転制御と点火制御は第1実施形態と同様に図5、図6に示す如く行うが、第1判定温度YT1と第2判定温度YT2との高低関係が第1実施形態のものとは逆になるため、判別禁止制御は図9に示す如く行っている。即ち、電源再投入時にSTEP202で温度センサ10の温度Tが第1判定温度YT1以上であると判別されたときや、風呂単独運転の停止時にSTEP207で温度センサ10の温度Tが第1判定温度YT1以上であると判別されたときや、同時運転停止時にSTEP211で温度センサ10の温度Tが第1判定温度YT1以上であると判別されたときに、所定時間経過するまでSTEP6での判別を禁止し、また、同時運転停止時にSTEP210で温度センサ10の温度Tが第2判定温度YT2以上であると判別されたときに、所定時間経過するまでSTEP14での判別を禁止している。   Also in the second embodiment, the operation control and the ignition control are performed as shown in FIGS. 5 and 6 as in the first embodiment, but the level relationship between the first determination temperature YT1 and the second determination temperature YT2 is the first embodiment. Therefore, the discrimination prohibition control is performed as shown in FIG. That is, when it is determined in STEP 202 that the temperature T of the temperature sensor 10 is equal to or higher than the first determination temperature YT1 when the power is turned on again, or when the bath independent operation is stopped, the temperature T of the temperature sensor 10 is changed to the first determination temperature YT1 in STEP207. When it is determined that it is above or when it is determined in STEP211 that the temperature T of the temperature sensor 10 is equal to or higher than the first determination temperature YT1 when the simultaneous operation is stopped, the determination in STEP6 is prohibited until a predetermined time elapses. Further, when it is determined in STEP 210 that the temperature T of the temperature sensor 10 is equal to or higher than the second determination temperature YT2 when the simultaneous operation is stopped, the determination in STEP 14 is prohibited until a predetermined time elapses.

これによれば、電源を再投入してから給湯単独運転を行う際や、風呂単独運転又は同時運転から給湯単独運転に移行する際に、第1熱交換器3のフィン詰りを生じていなくても、STEP6でT≧YT1と判別されて、第1バーナ2の燃焼がエラー停止されてしまうこと防止でき、更に、同時運転から風呂単独運転に移行する際に、第2熱交換器3のフィン詰りを生じていなくても、STEP14でT≧YT2と判別されて、第2バーナ2の燃焼がエラー停止されてしまうことを防止できる。 According to this, and when performing the single hot water supply run of restoring the power, in the transition from the bath alone operation or simultaneous operation in single hot water supply run, not occurring a 3 1 fin clogging first heat exchanger even, it is determined that T ≧ YT1 in STEP6, the combustion of the first burner 2 1 can be prevented that would be stopped error, further, when moving a bath islanding operation from simultaneous operation, the second heat exchanger 3 even if not result in second fin clogging, it is determined that T ≧ YT2 at STEP 14, the combustion of the second burners 2 2 can be prevented from being stopped error.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されない。例えば、上記実施形態では、STEP2,5,10,13,18の燃焼改善制御において、燃焼ファン6の回転数を増加補正しているが、第1と第2の各バーナ2,2の燃焼量を減少補正し、或いは、燃焼ファン6の回転数を増加補正すると共に各バーナ2,2の燃焼量を減少補正するようにしてもよい。また、上記実施形態では、閉塞度合いを表すパラメータとして補正係数Hを用い、H≧YH1になったときに、第1と第2の両熱交換器3,3のフィン詰りを生じたと判断しているが、ファン電流がファン回転数に応じて定められる所定の判定電流以下になったときに、第1と第2の両熱交換器3,3のフィン詰りを生じたと判断することも可能である。 As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to this. For example, in the above embodiment, in the combustion improvement control of STEPs 2, 5, 10, 13, and 18, the rotational speed of the combustion fan 6 is increased and corrected, but the first and second burners 2 1 and 2 2 The amount of combustion may be corrected to decrease, or the rotational speed of the combustion fan 6 may be corrected to increase and the amount of combustion of each burner 2 1 , 2 2 may be corrected to decrease. In the above embodiment, the correction coefficient H is used as a parameter representing the degree of blockage, and it is determined that fin clogging has occurred in both the first and second heat exchangers 3 1 and 3 2 when H ≧ YH1. However, when the fan current falls below a predetermined determination current determined according to the fan rotation speed, it is determined that the fins of the first and second heat exchangers 3 1 and 3 2 are clogged. It is also possible.

また、上記実施形態では、仕切り壁8の内部空隙と外側面とに給気室5からの空気を流しているが、仕切り壁8の内部空隙のみに給気室5からの空気を流し、或いは、仕切り壁8の両壁板8a,8aを互いに密着させ、仕切り壁8の外側面のみに給気室5からの空気を流して、仕切り壁8を空冷することも可能である。尚、この場合、第1と第2の両熱交換器3,3に面する仕切り壁8の上部の一部には、両壁板8a,8aを密着させずに中空部を形成し、この中空部に温度センサ10を配置する。また、仕切り壁8を1枚板構造とし、その外側面に給気室5からの空気を流して、仕切り壁8を空冷すると共に、第1と第2の両熱交換器3,3に面する仕切り壁8の上部の一部に前後方向のびる孔を形成し、この孔で構成される中空部に温度センサ10を挿入してもよい。 Moreover, in the said embodiment, although the air from the air supply chamber 5 is poured into the internal space and the outer surface of the partition wall 8, the air from the air supply chamber 5 is flowed only into the internal space of the partition wall 8, or It is also possible to cool the partition wall 8 by bringing both wall plates 8a, 8a of the partition wall 8 into close contact with each other and allowing air from the air supply chamber 5 to flow only on the outer surface of the partition wall 8. In this case, a hollow portion is formed in a part of the upper portion of the partition wall 8 facing both the first and second heat exchangers 3 1 and 3 2 without the wall plates 8a and 8a being in close contact with each other. The temperature sensor 10 is disposed in the hollow portion. Further, the partition wall 8 has a single plate structure, and air from the air supply chamber 5 flows on the outer surface of the partition wall 8 to air-cool the partition wall 8 and the first and second heat exchangers 3 1 and 3 2. A hole extending in the front-rear direction may be formed in a part of the upper portion of the partition wall 8 facing, and the temperature sensor 10 may be inserted into a hollow portion constituted by the hole.

また、上記実施形態は、第1バーナ2及び第1熱交換器3を給湯用、第2バーナ2及び第2熱交換器3を風呂用とした1缶式複合熱源機に本発明を適用したものであるが、第2バーナ2及び第2熱交換器3を風呂以外の用途、例えば、暖房用とし、更には、第1バーナ2及び第1熱交換器3を給湯以外の用途のものとする1缶式複合熱源機にも同様に本発明を適用できる。 Further, the above-described embodiment, the first burner 2 1 and the first heat exchanger 3 1 for hot water, the second burner 2 2 and 1 can type composite heat source machine and the second heat exchanger 3 2 and a bath While the invention is obtained by applying the second burner 2 2 and the second heat exchanger 3 2 other than bath applications, for example, and for heating, and further, the first burner 2 1 and the first heat exchanger 3 1 Similarly, the present invention can be applied to a single can type combined heat source machine that is used for purposes other than hot water supply.

1…缶体、2…第1バーナ、2…第2バーナ、3…第1熱交換器、3…第2熱交換器、4…分布板、4a…分布孔、5…給気室、6…燃焼ファン、6a…ファンモータ、7…第1燃焼室、7…第2燃焼室、8…仕切り壁、9…排気フード(排気通路)、10…温度センサ、11…コントローラ。 DESCRIPTION OF SYMBOLS 1 ... Can body, 2 1 ... 1st burner, 2 2 ... 2nd burner, 3 1 ... 1st heat exchanger, 3 2 ... 2nd heat exchanger, 4 ... Distribution board, 4a ... Distribution hole, 5 ... Supply Air chamber, 6 ... combustion fan, 6a ... fan motor, 7 1 ... first combustion chamber, 7 2 ... second combustion chamber, 8 ... partition wall, 9 ... exhaust hood (exhaust passage), 10 ... temperature sensor, 11 ... controller.

Claims (10)

単一の缶体と、この缶体内に横方向に並べて設けた第1と第2の一対のバーナと、缶体の上部に横方向に並べて設けた第1と第2の一対の熱交換器と、缶体内の第1と第2の両バーナと第1と第2の両熱交換器との間の空間を、第1バーナから第1熱交換器に至る第1燃焼室と第2バーナから第2熱交換器に至る第2燃焼室とに区画する仕切り壁とを備え、缶体の下部に、分布板で仕切られた給気室を画成し、単一の燃焼ファンからの燃焼用空気を給気室から分布板に形成した分布孔を介して第1と第2の両燃焼室に供給するようにした1缶式複合熱源機であって、仕切り壁を給気室からの空気により空冷するようにしたものにおいて、
第1と第2の両燃焼室に面する仕切り壁の部分の少なくとも一部が中空に形成されて、この中空部に温度センサが配置され、
第1バーナのみの単独燃焼時に、温度センサの検出温度が所定の第1判定温度以上になったとき、第1熱交換器のフィン詰りを生じたと判別する第1判別手段と、
第2バーナのみの単独燃焼時に、温度センサの検出温度が所定の第2判定温度以上になったとき、第2熱交換器のフィン詰りを生じたと判別する第2判別手段と、を備えることを特徴とする1缶式複合熱源機。
A single can body, a first and second pair of burners provided side by side in the can body, and a first and second pair of heat exchangers provided side by side on the top of the can body And a first combustion chamber and a second burner extending from the first burner to the first heat exchanger in a space between the first and second burners and the first and second heat exchangers in the can. And a second combustion chamber extending from the first heat exchanger to the second heat exchanger, and defining a supply chamber partitioned by a distribution plate at the lower part of the can body, and combustion from a single combustion fan 1 can type combined heat source machine that supplies the working air from the air supply chamber to the first and second combustion chambers through the distribution holes formed in the distribution plate, the partition wall from the air supply chamber In what was air-cooled with air,
At least a part of the part of the partition wall facing both the first and second combustion chambers is formed hollow, and a temperature sensor is disposed in the hollow part,
A first discriminating means for discriminating that a fin clogging of the first heat exchanger has occurred when the temperature detected by the temperature sensor is equal to or higher than a predetermined first judgment temperature during single combustion of only the first burner;
And a second discriminating means for discriminating that the clogging of the second heat exchanger has occurred when the temperature detected by the temperature sensor becomes equal to or higher than a predetermined second judgment temperature during the single combustion of only the second burner. One can type combined heat source machine.
前記第1判別手段と前記第2判別手段の何れかでフィン詰りを生じたと判別されたときは、前記第1と第2の両バーナのうち燃焼中のバーナの燃焼を停止し、以後の当該バーナの燃焼を禁止することを特徴とする請求項1記載の1缶式複合熱源機。   When it is determined that fin clogging has occurred in either the first determination means or the second determination means, combustion of the burning burner out of the first and second burners is stopped, and the subsequent The single-can composite heat source machine according to claim 1, wherein combustion of the burner is prohibited. 請求項2記載の1缶式複合熱源機であって、前記第1判定温度と前記第2判定温度とが異なる温度に設定されるものにおいて、
第1判定温度と第2判定温度とのうち温度の高い方を高温判定温度、低い方を低温判定温度とし、前記第1判別手段と前記第2判別手段とのうち高温判定温度に基づく判別を行うものを高温判別手段、低温判定温度に基づく判別を行うものを低温判別手段として、
前記第1と第2の両バーナの同時燃焼の停止時又は第1バーナと第2バーナのうち高温判別手段による判別を行う一方のバーナの単独燃焼の停止時に前記温度センサの検出温度が低温判定温度以上である場合は、燃焼停止時点から所定時間経過するまで低温判別手段による判別を禁止し、第1と第2の両バーナの同時燃焼の停止時に温度センサの検出温度が高温判定温度以上である場合は、燃焼停止時点から所定時間経過するまで高温判別手段による判別を禁止することを特徴とする1缶式複合熱源機。
In the can type combined heat source machine according to claim 2, wherein the first determination temperature and the second determination temperature are set to different temperatures.
Of the first determination temperature and the second determination temperature, the higher one is the high temperature determination temperature, the lower one is the low temperature determination temperature, and the first determination means and the second determination means are determined based on the high temperature determination temperature. What is to be performed is a high temperature determination means, and what is to be determined based on a low temperature determination temperature is a low temperature determination means.
When the simultaneous combustion of the first and second burners is stopped, or when the single burner of one of the first and second burners is discriminated by the high temperature discriminating means, the temperature detected by the temperature sensor is judged to be low. If the temperature is equal to or higher than the temperature, discrimination by the low temperature discrimination means is prohibited until a predetermined time has elapsed from the time when combustion is stopped, and when the simultaneous combustion of both the first and second burners is stopped, the temperature detected by the temperature sensor is higher than the high temperature judgment temperature. In some cases, the one-can type combined heat source unit is characterized in that discrimination by the high temperature discrimination means is prohibited until a predetermined time has elapsed since the combustion stop point.
電源が落ちた後、電源を再投入した時点での前記温度センサの検出温度が前記低温判定温度以上の場合に、電源の再投入時点から所定時間経過するまで前記低温判別手段による判別を禁止することを特徴とする請求項3記載の1缶式複合熱源機。   After the power is turned off, if the detected temperature of the temperature sensor at the time when the power is turned on again is equal to or higher than the low temperature judgment temperature, the judgment by the low temperature judgment means is prohibited until a predetermined time elapses after the power is turned on again. The single can type combined heat source machine according to claim 3. 前記第1バーナのみの単独燃焼時に、前記温度センサの検出温度が前記第1判定温度未満であっても、第1判定温度より低く設定される所定の第1予備判定温度以上になった場合は、前記燃焼ファンの回転数を増加補正又は第1バーナの燃焼量を減少補正する燃焼改善制御を行うと共に、前記第2バーナのみの単独燃焼時に、温度センサの検出温度が前記第2判定温度未満であっても、第2判定温度より低く設定される所定の第2予備判定温度以上になったときは、燃焼ファンの回転数を増加補正又は第2バーナの燃焼量を減少補正する燃焼改善制御を行うことを特徴とする請求項2〜4の何れか1項記載の1缶式複合熱源機。   When the temperature detected by the temperature sensor is lower than the first determination temperature during the single combustion of only the first burner, when the temperature is equal to or higher than a predetermined first preliminary determination temperature set lower than the first determination temperature. The combustion improvement control for increasing the rotational speed of the combustion fan or correcting the decrease in the combustion amount of the first burner is performed, and the detected temperature of the temperature sensor is less than the second determination temperature during the single combustion of only the second burner. Even if it becomes more than the predetermined 2nd preliminary judgment temperature set lower than the 2nd judgment temperature, the combustion improvement control which carries out increase correction of the number of rotations of a combustion fan or reduction correction of the amount of combustion of the 2nd burner The can-type combined heat source machine according to any one of claims 2 to 4, wherein: 前記第1と第2の両バーナの同時燃焼時に、前記温度センサの検出温度が前記第1と第2の両判定温度より高く設定される所定の第3判定温度以上になった場合は、第1バーナと第2バーナの一方のバーナを単独燃焼させ、当該一方のバーナの燃焼停止後に他方のバーナを単独燃焼させることを特徴とする請求項2〜5の何れか1項記載の1缶式複合熱源機。   When the detected temperature of the temperature sensor becomes equal to or higher than a predetermined third determination temperature set higher than both the first and second determination temperatures during simultaneous combustion of the first and second burners, 6. One can type burner according to any one of claims 2 to 5, wherein one burner of one burner and the second burner is burned separately, and the other burner is burned alone after the burning of the one burner is stopped. Combined heat source machine. 前記燃焼ファンの回転数と燃焼ファンを駆動するファンモータに流れるファン電流との相対関係に基づいて前記第1と第2の両熱交換器及び両熱交換器に連なる排気通路の閉塞度合いを検出する閉塞検出手段と、
前記第1バーナと前記第2バーナとの何れか一方のバーナの単独燃焼時に、閉塞検出手段で検出した閉塞度合いが所定の第1判定値以上になったとき、前記第1と第2の両熱交換器のフィン詰りを生じたと判別する第3判別手段とを備えることを特徴とする請求項2〜6の何れか1項記載の1缶式複合熱源機。
Based on the relative relationship between the rotational speed of the combustion fan and the fan current flowing through the fan motor that drives the combustion fan, the degree of blockage of the first and second heat exchangers and the exhaust passage connected to the two heat exchangers is detected. Occlusion detection means to
When the degree of blockage detected by the blockage detection means is equal to or greater than a predetermined first determination value during single combustion of either the first burner or the second burner, both the first and second burners are used. The single can type combined heat source machine according to any one of claims 2 to 6, further comprising third discriminating means for discriminating that the fins of the heat exchanger are clogged.
前記一方のバーナの単独燃焼時に前記第3判別手段でフィン詰りを生じたと判別されたときは、当該一方のバーナの燃焼を停止し、その後、第1バーナ又は第2バーナの燃焼開始指令が出されたとき、点火前に燃焼ファンのみを作動させた状態で所定時間をかけて閉塞検出手段により閉塞度合いを検出し、検出された閉塞度合いが第1判定値未満の場合に、この閉塞度合いに応じて燃焼ファンの回転数を補正して第1バーナ又は第2バーナに点火することを特徴とする請求項7記載の1缶式複合熱源機。   If the third discriminating unit determines that the clogging of the one burner has occurred during the single combustion of the one burner, the combustion of the one burner is stopped, and then a combustion start command for the first burner or the second burner is issued. In this case, the blockage detection means detects the blockage degree over a predetermined time with only the combustion fan being operated before ignition. When the detected blockage degree is less than the first determination value, the blockage degree is set to this blockage degree. 8. The single can type combined heat source machine according to claim 7, wherein the number of revolutions of the combustion fan is corrected accordingly and the first burner or the second burner is ignited. 前記第1と第2の両バーナの同時燃焼時に、前記閉塞検出手段で検出した閉塞度合いが前記第1判定値よりも低く設定する所定の第2判定値以上になった場合は、第1バーナと第2バーナの一方のバーナを単独燃焼させ、当該一方のバーナの燃焼停止後に他方のバーナを単独燃焼させることを特徴とする請求項8記載の1缶式複合熱源機。   When the degree of blockage detected by the blockage detection means becomes equal to or higher than a predetermined second determination value set lower than the first determination value during simultaneous combustion of the first and second burners, the first burner 9. The single can type combined heat source machine according to claim 8, wherein one burner of the first burner and the second burner are burned separately, and the other burner is burned alone after the combustion of the one burner is stopped. 前記第1、第2及び第3の各判別手段によりフィン詰りと判別されないまま前記第1と第2の各バーナの燃焼が通常停止されたときに前記閉塞検出手段で検出される閉塞度合いが不揮発性メモリに記憶されている閉塞度合いから所定量以上変化している場合にのみ、不揮発性メモリに記憶されている閉塞度合いを今回検出された閉塞度合いに書き換え、その後、第1バーナ又は第2バーナの燃焼開始指令が出されたとき、不揮発性メモリに記憶されている閉塞度合いに応じて燃焼ファンの回転数を補正して第1バーナ又は第2バーナに点火することを特徴とする請求項8又は9記載の1缶式複合熱源機。   The blockage degree detected by the blockage detection means when the combustion of the first and second burners is normally stopped without being determined as fin clogging by the first, second and third determination means is non-volatile. The blockage degree stored in the non-volatile memory is rewritten to the blockage degree detected this time only when the blockage degree stored in the non-volatile memory changes by a predetermined amount or more, and then the first burner or the second burner 9. The first burner or the second burner is ignited by correcting the rotational speed of the combustion fan in accordance with the degree of blockage stored in the nonvolatile memory when the combustion start command is issued. Or 1 can type compound heat source machine of 9.
JP2010017801A 2009-06-18 2010-01-29 1 can type combined heat source machine Active JP5330285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010017801A JP5330285B2 (en) 2009-06-18 2010-01-29 1 can type combined heat source machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009145746 2009-06-18
JP2009145746 2009-06-18
JP2010017801A JP5330285B2 (en) 2009-06-18 2010-01-29 1 can type combined heat source machine

Publications (2)

Publication Number Publication Date
JP2011021873A JP2011021873A (en) 2011-02-03
JP5330285B2 true JP5330285B2 (en) 2013-10-30

Family

ID=43632102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010017801A Active JP5330285B2 (en) 2009-06-18 2010-01-29 1 can type combined heat source machine

Country Status (1)

Country Link
JP (1) JP5330285B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6157939B2 (en) * 2013-06-11 2017-07-05 株式会社パロマ Combustion device
JP2015001342A (en) * 2013-06-17 2015-01-05 リンナイ株式会社 One can-type composite heat source machine
JP6139383B2 (en) * 2013-11-07 2017-05-31 リンナイ株式会社 1 can type combined heat source machine
JP6168604B2 (en) * 2014-02-03 2017-07-26 リンナイ株式会社 1 can type combined heat source machine
JP6168605B2 (en) * 2014-02-03 2017-07-26 リンナイ株式会社 1 can type combined heat source machine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309116A (en) * 1989-05-25 1990-12-25 Takagi Ind Co Ltd Safety mechanism of combustion apparatus
JPH0730909B2 (en) * 1989-06-20 1995-04-10 三菱電機株式会社 Dust filter clogging indicator for hot air heater
JP3029547B2 (en) * 1995-03-22 2000-04-04 リンナイ株式会社 Combustion equipment
JP3017935B2 (en) * 1996-03-26 2000-03-13 サンデン株式会社 Heating water heater
JP2000028138A (en) * 1998-07-10 2000-01-25 Sanyo Electric Co Ltd Heater
JP3475091B2 (en) * 1998-09-18 2003-12-08 リンナイ株式会社 Combustion equipment
JP3854158B2 (en) * 2001-09-13 2006-12-06 リンナイ株式会社 Combustion device
JP3824967B2 (en) * 2002-06-03 2006-09-20 リンナイ株式会社 Combustion device
JP4252971B2 (en) * 2004-08-09 2009-04-08 リンナイ株式会社 1 can type combined heat source machine
JP2009097459A (en) * 2007-10-18 2009-05-07 Mitsubishi Electric Corp Controller for engine

Also Published As

Publication number Publication date
JP2011021873A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP5330285B2 (en) 1 can type combined heat source machine
JP4850205B2 (en) 1 can type combined heat source machine
JP5525670B2 (en) Canned heat source machine
JP6398325B2 (en) Water heater
JP5186440B2 (en) 1 can type combined heat source machine
JP2017026280A (en) Water heater
JP2011027350A (en) Single can type complex heat source machine
JP5285920B2 (en) Gas hot water heating system
JP5178656B2 (en) 1 can type combined heat source machine
JP5715789B2 (en) Combined heat source machine
JP5414648B2 (en) Combined combustion device
CN106123301B (en) Combustion system and gas water heater with same
JP7099866B2 (en) Combined heat source machine
KR100294416B1 (en) Control method of combustion in heating operation using the temperature of gas boiler heating water and heating return water
JP6787107B2 (en) Combustion device
JP2015001342A (en) One can-type composite heat source machine
JP2020020509A (en) Forced air supply type combustion device
JP7335586B2 (en) Water heater
JP6168605B2 (en) 1 can type combined heat source machine
JP5318732B2 (en) Hot water heater
KR19980085384A (en) Combustion Control Method of Gas Boiler
JP5884875B1 (en) Water heater
JP5911107B2 (en) 1 can type combined heat source machine
JP6671242B2 (en) Heat source machine
KR100302274B1 (en) Method controlling a gas boiler for detecting and preventing reverse wind

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Ref document number: 5330285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250