JP4252971B2 - 1 can type combined heat source machine - Google Patents

1 can type combined heat source machine Download PDF

Info

Publication number
JP4252971B2
JP4252971B2 JP2005113786A JP2005113786A JP4252971B2 JP 4252971 B2 JP4252971 B2 JP 4252971B2 JP 2005113786 A JP2005113786 A JP 2005113786A JP 2005113786 A JP2005113786 A JP 2005113786A JP 4252971 B2 JP4252971 B2 JP 4252971B2
Authority
JP
Japan
Prior art keywords
partition wall
air
combustion
heat
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005113786A
Other languages
Japanese (ja)
Other versions
JP2006078162A (en
Inventor
英男 岡本
政一 清水
宏明 佐々木
弘逸 太田
征樹 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2005113786A priority Critical patent/JP4252971B2/en
Priority to CN2006100069479A priority patent/CN1847729B/en
Publication of JP2006078162A publication Critical patent/JP2006078162A/en
Priority to KR1020060029711A priority patent/KR100731772B1/en
Application granted granted Critical
Publication of JP4252971B2 publication Critical patent/JP4252971B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Housings, Intake/Discharge, And Installation Of Fluid Heaters (AREA)

Description

本発明は、単一の缶体と、この缶体内に横方向に並べて設けた第1と第2の一対のバーナと、缶体の上部に横方向に並べて設けた第1と第2の一対の熱交換器とを備える1缶式複合熱源機に関する。   The present invention includes a single can body, a first and second pair of burners provided side by side in the can body, and a first and second pair provided side by side on the top of the can body. The present invention relates to a single can type combined heat source apparatus including a heat exchanger.

従来、この種の1缶式複合熱源機として、缶体内の第1と第2の両バーナと第1と第2の両熱交換器との間の空間を、第1バーナから第1熱交換器に至る第1燃焼室と第2バーナから第2熱交換器に至る第2燃焼室とに区画する仕切り壁を備え、一方のバーナ、例えば、第2バーナのみを燃焼させて第2熱交換器を加熱する単独運転時に、第2バーナの燃焼排気が第1熱交換器側に流れて第1熱交換器が加熱されるといった不具合を防止できるようにしたものが知られている(例えば、特許文献1参照)。また、このものでは、缶体の下部に、分布板で仕切られた給気室を画成し、燃焼ファンからの燃焼用空気を分布板に形成した分布孔を介して第1と第2の両燃焼室に供給するようにしている。   Conventionally, as a single can type combined heat source machine of this type, the space between the first and second burners and the first and second heat exchangers in the can is transferred from the first burner to the first heat exchange. A partition wall that divides into a first combustion chamber leading to the furnace and a second combustion chamber leading from the second burner to the second heat exchanger, and burns only one of the burners, for example, the second burner to perform the second heat exchange It is known that the problem that combustion exhaust of the second burner flows to the first heat exchanger side and the first heat exchanger is heated at the time of single operation for heating the heat exchanger can be prevented (for example, Patent Document 1). In this case, an air supply chamber partitioned by a distribution plate is defined at the lower part of the can body, and the first and second air supply holes are formed through distribution holes formed in the distribution plate by the combustion air from the combustion fan. The fuel is supplied to both combustion chambers.

ところで、缶体内に仕切り壁を設ける場合、第1と第2の各バーナの燃焼熱により仕切り壁が加熱されて非常に高温になり、仕切り壁の耐熱性の確保が問題になる。上記従来例では、給気室から分布板の分布孔を介して各燃焼室に流入する空気の一部が仕切り壁の外壁面に沿って流れるようにしているが、仕切り壁の外壁面に沿って流れるのは、仕切り壁寄りの分布孔から流入する僅かな量の空気であり、仕切り壁を十分に冷却できない。そのため、仕切り壁と各バーナとの間の横方向間隔を広くして、仕切り壁に対する各バーナからの熱影響を低減することが必要になり、熱源機が大型化する不具合がある。
特公平2−17784号公報(第3図、第6図)
By the way, when providing a partition wall in a can, the partition wall is heated by the combustion heat of each of the first and second burners and becomes extremely high, and securing the heat resistance of the partition wall becomes a problem. In the above conventional example, a part of the air flowing into each combustion chamber from the air supply chamber through the distribution hole of the distribution plate flows along the outer wall surface of the partition wall. A small amount of air flowing in from the distribution holes near the partition wall flows, and the partition wall cannot be cooled sufficiently. For this reason, it is necessary to widen the lateral interval between the partition wall and each burner to reduce the thermal influence from each burner on the partition wall, and there is a problem that the heat source machine becomes large.
Japanese Patent Publication No. 2-17784 (FIGS. 3 and 6)

本発明は、以上の点に鑑み、仕切り壁と各バーナとの間の横方向間隔を広くせずに仕切りの耐熱性を確保できるようにして、小型化を可能とした1缶式複合熱源機を提供することをその課題としている。 In view of the above points, the present invention provides a single can type combined heat source that can ensure the heat resistance of the partition wall without widening the lateral spacing between the partition wall and each burner, and can be downsized. The challenge is to provide a machine.

上記課題を解決するために、単一の缶体と、この缶体内に横方向に並べて設けた第1と第2の一対のバーナと、缶体の上部に横方向に並べて設けた第1と第2の一対の熱交換器と、缶体内の第1と第2の両バーナと第1と第2の両熱交換器との間の空間を、第1バーナから第1熱交換器に至る第1燃焼室と第2バーナから第2熱交換器に至る第2燃焼室とに区画する仕切り壁とを備えると共に、缶体の下部に、分布板で仕切られた給気室を画成し、燃焼ファンからの燃焼用空気を分布板に形成した分布孔を介して第1と第2の両燃焼室に供給するようにした1缶式複合熱源機において、本発明によれば、仕切り壁を、空隙を存して横方向に対向する2枚の板で構成し、両板間の空隙に給気室からの空気を流すようにしている。 In order to solve the above-mentioned problems, a single can body, a first and second pair of burners provided side by side in the can body, and a first and second side by side provided on the top of the can body, A space between the second pair of heat exchangers, the first and second burners in the can, and the first and second heat exchangers reaches from the first burner to the first heat exchanger. A partition wall that divides the first combustion chamber and the second combustion chamber from the second burner to the second heat exchanger, and defines an air supply chamber partitioned by a distribution plate at a lower portion of the can body. In a one-can type combined heat source machine in which combustion air from a combustion fan is supplied to both the first and second combustion chambers through distribution holes formed in the distribution plate , according to the present invention , the partition wall Is constituted by two plates facing each other in the lateral direction with a gap therebetween, and air from the air supply chamber is caused to flow through the gap between the two plates.

また、本発明によれば、仕切り壁を構成する2枚の板間の空隙、即ち、仕切り壁の内部空隙に給気室からの空気が流れ、仕切り壁が内側から効率良く冷却されることになる。従って、仕切り壁と各バーナとの間の横方向間隔を左程広くしなくても、仕切り壁の耐熱性を確保でき、熱源機の小型化を図れる。 Further , according to the present invention, the air from the air supply chamber flows into the space between the two plates constituting the partition wall, that is, the internal space of the partition wall, and the partition wall is efficiently cooled from the inside. Become. Therefore, the heat resistance of the partition wall can be ensured and the heat source machine can be reduced in size without increasing the horizontal interval between the partition wall and each burner to the left.

ところで、缶体内では気柱振動を生ずる。ここで、第1と第2の両燃焼室は第1と第2の両熱交換器を介して通気可能に連通し、このままでは、両燃焼室を連続した一つの振動空間として気柱振動が発生し、気柱振動の固有振動数が低くなる。そして、気柱振動の固有振動数が低くなると、火炎が共鳴振動し易くなって、燃焼騒音が大きくなる。この場合、両熱交換器の境界部に面する各熱交換器の側端部に、各熱交換器を構成する吸熱フィン間の隙間を封止する封止部を設ければ、両熱交換器間の通気が遮断され、両燃焼室の両熱交換器を介しての連通が断たれる。また、仕切り壁を上記の如く2枚の板で構成する場合、両板を、両熱交換器の境界部に挿入される両板の上端部において、両熱交換器の封止部に接触させれば、各板と各熱交換器との間の隙間を介しての両燃焼室の連通も断たれる。従って、気柱振動は各燃焼室で個別に発生することになり、気柱振動の固有振動数が高くなる。その結果、火炎の共鳴振動が有効に防止され、燃焼騒音が低減される。   By the way, air column vibration is generated in the can. Here, both the first and second combustion chambers communicate with each other through both the first and second heat exchangers so as to be able to ventilate. Occurs and the natural frequency of the air column vibration is lowered. When the natural frequency of the air column vibration is lowered, the flame is likely to resonate and the combustion noise is increased. In this case, if a sealing portion is provided at the side end of each heat exchanger facing the boundary between both heat exchangers to seal the gap between the heat sink fins constituting each heat exchanger, both heat exchange Ventilation between the chambers is blocked, and communication between both combustion chambers via both heat exchangers is cut off. Further, when the partition wall is constituted by two plates as described above, both plates are brought into contact with the sealing portions of both heat exchangers at the upper end portions of both plates inserted into the boundary portion of both heat exchangers. Then, the communication between both combustion chambers through the gap between each plate and each heat exchanger is also cut off. Accordingly, the air column vibration is generated individually in each combustion chamber, and the natural frequency of the air column vibration is increased. As a result, the resonance vibration of the flame is effectively prevented and the combustion noise is reduced.

尚、仕切り壁を構成する2枚の板に空気吹出し孔を開設すると、両燃焼室が空気吹出し孔と2枚の板間の空隙とを介して連通し、両燃焼室に跨る気柱振動が発生する。この場合、仕切り壁を構成する2枚の板間に、両板間の空隙を分布板から仕切り壁の上端に亘り横方向に2分する中仕切り板を介設すれば、両燃焼室の連通が中仕切り板により断たれる。従って、両燃焼室に跨る気柱振動は発生せず、気柱振動の固有振動数の低下による燃焼騒音の増大を確実に防止できる。 In addition, when the air blowing holes are opened in the two plates constituting the partition wall , the two combustion chambers communicate with each other via the air blowing holes and the gap between the two plates, and the air column vibration straddling both the combustion chambers is generated. appear. In this case, if an intermediate partition plate that bisects the gap between the two plates in the lateral direction from the distribution plate to the upper end of the partition wall is interposed between the two plates constituting the partition wall, the communication between the two combustion chambers is achieved. Is cut off by the partition plate. Therefore, no air column vibration straddling both combustion chambers is generated, and an increase in combustion noise due to a decrease in the natural frequency of the air column vibration can be reliably prevented.

図1は、単一の缶体1内に、第1バーナ2−1と第2バーナ2−2とを横方向に並べて設けると共に、缶体1の上部に、第1バーナ2−1で加熱される給湯用の第1熱交換器3−1と第2バーナ2−2で加熱される暖房用の第2熱交換器3−2とを横方向に並べて設けて成る1缶式複合熱源機の参考例を示している。 FIG. 1 shows that a first burner 2-1 and a second burner 2-2 are arranged in a horizontal direction in a single can 1 and heated by the first burner 2-1 at the top of the can 1. 1 can type combined heat source apparatus in which a first heat exchanger 3-1 for hot water supply and a second heat exchanger 3-2 for heating heated by the second burner 2-2 are arranged side by side in the horizontal direction A reference example is shown.

缶体1の下部には、缶体1内の空間に対し分布板4で仕切られた給気室5が画成されている。そして、給気室5に接続される燃焼ファン6を設け、燃焼ファン6からの燃焼用空気を給気室5から分布板4に形成した多数の分布孔4aを介して缶体1内に供給するようにしている。   In the lower part of the can body 1, an air supply chamber 5 partitioned by a distribution plate 4 with respect to the space in the can body 1 is defined. And the combustion fan 6 connected to the air supply chamber 5 is provided, and the combustion air from the combustion fan 6 is supplied into the can 1 through the distribution holes 4 a formed in the distribution plate 4 from the air supply chamber 5. Like to do.

各バーナ2−1,2−2は、夫々、缶体1の奥行方向(図1の紙面直交方向)に長手の単位バーナ2aを横方向に複数列設して構成されている。各単位バーナ2aは、図2に示す如く、缶体1の奥側(後側)にのびる混合管部2bを備えている。そして、分布板4の後部を上方にオフセットして、給気室5の後部に立上り部5aを形成し、この立上り部5aに各単位バーナ2aの混合管部2bの流入端を臨ませている。また、給気室5の立上り部5aに各バーナ2−1,2−2用のガスマニホールド2cを収納し、ガスマニホールド2cに設けた各ノズル2dから各単位バーナ2aの混合管部2bにガスが供給され、且つ、混合管部2bに給気室5から燃焼用一次空気が供給されるようにしている。尚、暖房よりも給湯の方が大きな加熱能力を要求されるため、各バーナ2−1,2−2を構成する単位バーナ2aの個数は第1バーナ2−1の方が多くなっている。   Each of the burners 2-1 and 2-2 is configured by arranging a plurality of longitudinal unit burners 2 a in the horizontal direction in the depth direction of the can 1 (the direction orthogonal to the plane of FIG. 1). As shown in FIG. 2, each unit burner 2 a includes a mixing tube portion 2 b extending on the back side (rear side) of the can body 1. Then, the rear part of the distribution plate 4 is offset upward, a rising part 5a is formed at the rear part of the air supply chamber 5, and the inflow end of the mixing pipe part 2b of each unit burner 2a faces the rising part 5a. . Further, the gas manifold 2c for each burner 2-1 and 2-2 is accommodated in the rising portion 5a of the air supply chamber 5, and gas is supplied from the nozzle 2d provided in the gas manifold 2c to the mixing tube portion 2b of each unit burner 2a. Is supplied, and primary air for combustion is supplied from the air supply chamber 5 to the mixing tube portion 2b. Since hot water supply is required to have a larger heating capacity than heating, the number of unit burners 2a constituting each burner 2-1 and 2-2 is greater in the first burner 2-1.

各熱交換器3−1,3−2は、缶体1の奥行方向に隙間を存して多数積層した吸熱フィン3aと、これら吸熱フィン3aを貫通する蛇行形状の吸熱管3bとで構成される。第1熱交換器3−1の吸熱管3bには、図示しないが、上流側の給水管と下流側の出湯管とが接続されており、出湯管の下流端の出湯栓を開いて第1熱交換器3−1に通水したとき、第1バーナ2−1に点火されて、出湯栓から設定温度の湯が出湯される。第2熱交換器3−2の吸熱管3bは、図示しないが、往き管と戻り管とを介して床暖房等の暖房回路(図示せず)に接続されており、暖房回路に第2熱交換器3−2を介して湯水を循環させて、暖房を行う。   Each of the heat exchangers 3-1 and 3-2 includes a heat absorption fin 3a in which a large number of the heat absorption fins 3a are stacked in the depth direction of the can 1 and a meandering heat absorption tube 3b penetrating the heat absorption fins 3a. The Although not shown, an upstream water supply pipe and a downstream hot water discharge pipe are connected to the heat absorption pipe 3b of the first heat exchanger 3-1, and the first hot water tap at the downstream end of the hot water discharge pipe is opened. When water is passed through the heat exchanger 3-1, the first burner 2-1 is ignited, and hot water having a set temperature is discharged from the hot water tap. Although not shown, the heat absorption pipe 3b of the second heat exchanger 3-2 is connected to a heating circuit (not shown) such as floor heating via an outgoing pipe and a return pipe, and the second heat is supplied to the heating circuit. Heating is performed by circulating hot water through the exchanger 3-2.

また、缶体1内には、第1と第2の両バーナ2−1,2−2と第1と第2の両熱交換器3−1,3−2との間の空間を、第1バーナ2−1から第1熱交換器3−1に至る第1燃焼室7−1と第2バーナ2−2から第2熱交換器3−2に至る第2燃焼室7−2とに区画する仕切り壁8が設けられている。かくして、第1バーナ2−1の燃焼排気は第1燃焼室7―1を介して第1熱交換器3−1に導かれ、第2バーナ2−2の燃焼排気は第2燃焼室7−2を介して第2熱交換器3−2に導かれる。第1と第2の各熱交換器7−1,7−2で熱交換した燃焼排気は両熱交換器3−1,3−2の上側の排気フード9に流れ、排気フード9に形成した排気口9aから外部に排出される。   Further, in the can 1, a space between the first and second burners 2-1 and 2-2 and the first and second heat exchangers 3-1 and 3-2 is provided. The first combustion chamber 7-1 from the first burner 2-1 to the first heat exchanger 3-1 and the second combustion chamber 7-2 from the second burner 2-2 to the second heat exchanger 3-2. A partition wall 8 for partitioning is provided. Thus, the combustion exhaust from the first burner 2-1 is led to the first heat exchanger 3-1 via the first combustion chamber 7-1, and the combustion exhaust from the second burner 2-2 is sent to the second combustion chamber 7-. 2 to the second heat exchanger 3-2. The combustion exhaust heat-exchanged by the first and second heat exchangers 7-1 and 7-2 flows into the exhaust hood 9 above the heat exchangers 3-1 and 3-2 and is formed in the exhaust hood 9. It is discharged to the outside through the exhaust port 9a.

尚、図1に示す参考例では、両バーナ2−1,2−2と両熱交換器3−1,3−2との間の空間だけでなく両バーナ2−1,2−2の配置部も2分するように、仕切り壁8を両熱交換器3−1,3−2の境界部の隙間から分布板4に亘って上下方向に延在させている。そして、分布板4上に、仕切り壁8の配置位置に合わせて、仕切り壁8より横方向幅が広い中空の空気案内部材10を配置している。これを詳述するに、分布板4に、仕切り壁8の横方向両外側に位置させて、一対の側板10a,10aを立設し、両側板10a,10aで空気案内部材10を構成している。そして、各側板10aと仕切り壁8との間の空隙、即ち、空気案内部材10の内部空隙を分布板4に形成した連通孔4bを介して給気室5に連通させている。この連通孔4bは、図3に示す如く前後方向に長手の長孔であり、単位面積当りの開口面積は分布孔4aより大きい。 In the reference example shown in FIG. 1 , not only the space between both burners 2-1 and 2-2 and both heat exchangers 3-1 and 3-2 but also the arrangement of both burners 2-1 and 2-2. The partition wall 8 extends in the vertical direction across the distribution plate 4 from the gap at the boundary between the heat exchangers 3-1 and 3-2 so that the portion is also divided into two. On the distribution plate 4, a hollow air guide member 10 having a lateral width wider than that of the partition wall 8 is disposed in accordance with the position of the partition wall 8. In detail, the pair of side plates 10a and 10a are erected on the distribution plate 4 on both lateral sides of the partition wall 8, and the air guide member 10 is configured by the side plates 10a and 10a. Yes. And the space | gap between each side plate 10a and the partition wall 8, ie, the internal space | gap of the air guide member 10, is connected to the air supply chamber 5 via the communication hole 4b formed in the distribution plate 4. FIG. The communication hole 4b is a long hole elongated in the front-rear direction as shown in FIG. 3, and the opening area per unit area is larger than the distribution hole 4a.

また、仕切り壁8は、空隙を存して横方向に対向する2枚の板8a,8aで構成されており、両板8a,8a間の空隙、即ち、仕切り壁8の内部空隙を分布板4に形成した連通孔4cを介して給気室5に連通させている。連通孔4bは、上記連通孔4bと同様に前後方向に長手の長孔であり、単位面積当りの開口面積は分布孔4aより大きい。   In addition, the partition wall 8 is composed of two plates 8a and 8a that are opposed to each other in the lateral direction with a space therebetween. The space between the plates 8a and 8a, that is, the internal space of the partition wall 8 is distributed to the distribution plate. The air supply chamber 5 is communicated with the air supply chamber 5 through a communication hole 4 c formed in 4. The communication hole 4b is a long hole elongated in the front-rear direction, similar to the communication hole 4b, and the opening area per unit area is larger than the distribution hole 4a.

かくして、給気室5から空気案内部材10の内部空隙に比較的多量の空気が供給され、空気案内部材10の上端から吹出す空気により仕切り壁8の横方向両側の外壁面に沿って上方に流れる冷却空気流aが生成され、更に、給気室5から仕切り壁8の内部空隙にも比較的多量の空気が供給される。そのため、仕切り壁8は、その内部空隙に流れる冷却空気流bと外壁面に沿って流れる冷却空気流aとで内外から効率良く空冷される。従って、第1と第2の各バーナ2−1,2−2の仕切り壁8寄りの単位バーナ2aと仕切り壁8との間の横方向間隔が狭く、仕切り壁8に各バーナ2−1,2−2の燃焼熱が及び易くなっても、仕切り壁8の温度は左程高くならず、耐熱性が確保される。このように各バーナ2−1,2−2と仕切り壁8との間の横方向間隔を狭めることができるため、熱源機の小型化を図れる。   Thus, a relatively large amount of air is supplied from the air supply chamber 5 to the internal space of the air guide member 10, and the air blown from the upper end of the air guide member 10 moves upward along the outer wall surfaces on both sides in the lateral direction of the partition wall 8. A flowing cooling air flow a is generated, and a relatively large amount of air is supplied from the air supply chamber 5 to the internal space of the partition wall 8. Therefore, the partition wall 8 is efficiently air-cooled from inside and outside by the cooling air flow b flowing through the internal gap and the cooling air flow a flowing along the outer wall surface. Therefore, the horizontal interval between the unit burner 2a near the partition wall 8 of each of the first and second burners 2-1 and 2-2 and the partition wall 8 is narrow, and each burner 2-1 is placed on the partition wall 8. Even if the combustion heat of 2-2 becomes easy to reach, the temperature of the partition wall 8 does not increase to the left, and heat resistance is ensured. Thus, since the horizontal direction space | interval between each burner 2-1 and 2-2 and the partition wall 8 can be narrowed, size reduction of a heat source machine can be achieved.

尚、空気案内部材10が各バーナ2−1,2−2の上端よりも上方にのびていると、空気案内部材10に各バーナ2−1,2−2の燃焼熱が及び、空気案内部材10の耐熱性を確保し難くなる。また、空気案内部材10の上端の高さが各バーナ2−1,2−2の上端に比し低いと、空気案内部材10の上端から吹出す空気の一部が各バーナ2−1,2−2側に流れて燃焼用二次空気として利用され、仕切り壁8の外壁面に沿って流れる冷却空気量が減少してしまう。そこで、本実施形態では、空気案内部材10の耐熱性を確保して、且つ、冷却空気量の減少も防止できるように、空気案内部材10の上端の高さを各バーナ2−1,2−2の上端と同等高さに設定している。   If the air guide member 10 extends above the upper ends of the burners 2-1 and 2-2, the combustion heat of the burners 2-1 and 2-2 reaches the air guide member 10. It becomes difficult to ensure the heat resistance of the. If the height of the upper end of the air guide member 10 is lower than the upper ends of the burners 2-1, 2-2, a part of the air blown from the upper end of the air guide member 10 is burned. The amount of cooling air that flows to the −2 side and is used as secondary air for combustion and flows along the outer wall surface of the partition wall 8 decreases. Therefore, in the present embodiment, the height of the upper end of the air guide member 10 is set to each of the burners 2-1 and 2- in order to ensure the heat resistance of the air guide member 10 and to prevent the amount of cooling air from decreasing. 2 is set to the same height as the upper end.

また、他の参考例として図4に示す如く、仕切り壁8を1枚板構造とする場合図1に示した参考例と同様に、分布板4に立設した一対の側板10a,10aで構成される空気案内部材10を設け、給気室5からの空気を連通孔4bと空気案内部材10の内部空隙とを介して空気案内部材10の上端から吹出させ、仕切り壁8の横方向両側の外壁面に沿って上方に流れる冷却空気流aを生成させる。尚、第2実施形態においても、空気案内部材10の耐熱性を確保して、且つ、冷却空気量の減少も防止できるように、空気案内部材10の上端の高さを各バーナ2−1,2−2の上端と同等高さに設定する。 Further, in FIG. 4 shown to如 rather as another reference example, the case where the partition wall 8 and one plate structure, like the reference example shown in FIG. 1, a pair of side plates 10a erected on the distribution plate 4, An air guide member 10 configured by 10 a is provided, and air from the air supply chamber 5 is blown out from the upper end of the air guide member 10 through the communication hole 4 b and the internal space of the air guide member 10, A cooling air flow a flowing upward along the outer wall surfaces on both sides in the direction is generated. In the second embodiment, the height of the upper end of the air guide member 10 is set to each of the burners 2-1, so as to ensure the heat resistance of the air guide member 10 and prevent the cooling air amount from decreasing. Set to the same height as the upper end of 2-2.

図5は本発明の第1実施形態を示している。このものでは、仕切り壁8を2枚の板8a,8aから成る中空構造に構成すると共に、仕切り壁8の下部に、各板8aの曲げにより、横方向両外側に張り出す一対の肩部10b,10bと、両肩部10b,10bから分布板4に向けて下方にのびる一対の側板部10c,10cとを形成している。かくして、両肩部10b,10bと両側板部10c,10cとにより、仕切り壁8と一体の中空の空気案内部材10が構成される。そして、空気案内部材10の内部空隙を、分布板4に形成した、単位面積当りの開口面積が分布孔4aより大きな連通孔4bを介して給気室5に連通させている。また、空気案内部材10の上端となる両肩部10b,10bに、図6に示す如く、上向きに開口する複数の空気吹出し孔10dを開設している。 FIG. 5 shows a first embodiment of the present invention . In this structure, the partition wall 8 is formed in a hollow structure composed of two plates 8a and 8a, and a pair of shoulder portions 10b projecting outwardly in the lateral direction by bending each plate 8a at the lower part of the partition wall 8. , 10b and a pair of side plate portions 10c, 10c extending downward from the shoulder portions 10b, 10b toward the distribution plate 4. Thus, the hollow air guide member 10 integrated with the partition wall 8 is constituted by the shoulder portions 10b, 10b and the side plate portions 10c, 10c. The internal air gap of the air guide member 10 is communicated with the air supply chamber 5 through a communication hole 4b formed in the distribution plate 4 and having an opening area per unit area larger than the distribution hole 4a. Further, as shown in FIG. 6, a plurality of air blowing holes 10 d that open upward are formed in both shoulder portions 10 b and 10 b that are the upper ends of the air guide member 10.

これによれば、給気室5から空気案内部材10の内部空隙に比較的多量の空気が供給され、この空気の一部が仕切り壁8の2枚の板8a,8a間の空隙に流れて、仕切り壁8の内部に冷却空気流bが生成されると共に、肩部10bの空気吹出し孔10dから吹出す空気により仕切り壁8の外壁面に沿って上方に流れる冷却空気流aが生成される。従って、仕切り壁8が内外から効率良く空冷される。そして、第1実施形態では、空気案内部材10が仕切り壁8と一体化されるため、部品点数を削減して、コストダウンを図ることができる。 According to this, a relatively large amount of air is supplied from the air supply chamber 5 to the internal space of the air guide member 10, and a part of this air flows into the space between the two plates 8 a and 8 a of the partition wall 8. The cooling air flow b is generated inside the partition wall 8 and the cooling air flow a flowing upward along the outer wall surface of the partition wall 8 is generated by the air blown from the air blowing hole 10d of the shoulder 10b. . Therefore, specifications outright wall 8 can be efficiently cooled from the inside and outside. And in 1st Embodiment, since the air guide member 10 is integrated with the partition wall 8, a number of parts can be reduced and cost reduction can be aimed at.

尚、肩部10bの高さは、空気案内部材10の耐熱性を確保して、且つ、冷却空気量の減少も防止できるように、各バーナ2−1,2−2の上端と同等高さに設定する。また、第1実施形態では、仕切り壁8を2枚の板8a,8aから成る中空構造に構成しているが、仕切り壁8を1枚板構造とし、仕切り壁8の下部のみを二股状に分岐して、上記両肩部10b,10bと両側板部10c,10cとから成る空気案内部材10を形成することも可能である。但し、この場合には、仕切り壁8を押し出し成形等の特殊な製法で形成することが必要になる。これに対し、第1実施形態のように構成すれば、仕切り壁8を構成する2枚の板8a,8aの単純な曲げ加工で肩部10bと側板部10cを形成できるため、加工コストが安くなり、しかも仕切り壁8をその内外から空冷して冷却性能を向上させることができ、有利である。 The height of the shoulder 10b is the same height as the upper ends of the burners 2-1 and 2-2 so as to ensure the heat resistance of the air guide member 10 and to prevent a decrease in the amount of cooling air. Set to. In the first embodiment, the partition wall 8 has a hollow structure composed of two plates 8a and 8a. However, the partition wall 8 has a single-plate structure, and only the lower part of the partition wall 8 is bifurcated. It is also possible to branch to form the air guide member 10 composed of the shoulder portions 10b and 10b and the side plate portions 10c and 10c. However, in this case, it is necessary to form the partition wall 8 by a special manufacturing method such as extrusion molding. On the other hand, if comprised like 1st Embodiment, since the shoulder part 10b and the side-plate part 10c can be formed by the simple bending process of the two board | plates 8a and 8a which comprise the partition wall 8, processing cost is cheap. In addition, the partition wall 8 can be air-cooled from the inside and outside to improve the cooling performance, which is advantageous.

また、図5に示す第1実施形態では、燃焼騒音を低減させるための対策も施している。ここで、第1と第2の両燃焼室7−1,7−2が第1と第2の両熱交換器3−1,3−2や仕切り壁8を介して通気可能に連通していると、両燃焼室7−1,7−2を連続した一つの振動空間として気柱振動が発生する。気柱振動の固有振動数Fは、音速をC、振動空間の長さをLとして、F=C/2Lになる。両燃焼室7−1,7−2が連続した一つの振動空間になった場合、缶体1の横幅が例えば31cmであると、Lは仕切り壁8による抵抗の影響で37cm程度になる。また、燃焼時の缶体1内の平均温度は170℃程度になり、このときCは435m/秒になる。そして、両燃焼室7−1,7−2を連続した一つの振動空間として発生する気柱振動の固有振動数Fは590Hzになる。このような低い振動数では火炎が共鳴振動し易く、大きな燃焼騒音を生ずる。 Further, in the first embodiment shown in FIG. 5, measures are taken to reduce combustion noise. Here, the first and second combustion chambers 7-1 and 7-2 communicate with each other through the first and second heat exchangers 3-1 and 3-2 and the partition wall 8 so as to allow ventilation. If so, air column vibrations are generated using the combustion chambers 7-1 and 7-2 as one continuous vibration space. The natural frequency F of the air column vibration is F = C / 2L where C is the speed of sound and L is the length of the vibration space. When both combustion chambers 7-1 and 7-2 become one continuous vibration space, if the lateral width of the can 1 is, for example, 31 cm, L becomes about 37 cm due to the influence of the partition wall 8. Moreover, the average temperature in the can 1 at the time of combustion will be about 170 degreeC, and C will be 435 m / sec at this time. The natural frequency F of the air column vibration generated as one continuous vibration space between the combustion chambers 7-1 and 7-2 is 590 Hz. At such a low frequency, the flame easily resonates and generates a large combustion noise.

そのため、第1実施形態では、第1と第2の両熱交換器3−1,3−2の境界部に面する各熱交換器3−1,3−2の側端部に、図7に示す如く、各熱交換器3−1,3−2の吸熱フィン3a間の隙間を封止する封止部3cを設けている。そして、仕切り壁8を構成する2枚の板8a,8aを、両熱交換器3−1,3−2の境界部に挿入される両板8a,8aの上端部において、両熱交換器3−1,3−2の封止部3c、3cに接触させている。これによれば、封止部3cにより両熱交換器3−1,3−2間の通気が遮断され、両燃焼室7−1,7−2の両熱交換器3−1,3−2を介しての連通が断たれると共に、仕切り壁8と各熱交換器3−1,3−2との間の隙間を介しての両燃焼室3−1,3−2の連通も断たれる。尚、封止部3cは、吸熱フィン3aの側端部に形成した折曲げ部で形成されているが、吸熱フィン3aとは別体の板材で封止部3cを構成することも可能である。 For this reason, in the first embodiment, the side ends of the heat exchangers 3-1 and 3-2 facing the boundary between the first and second heat exchangers 3-1 and 3-2 are shown in FIG. As shown in FIG. 2, a sealing portion 3c is provided for sealing the gap between the heat absorbing fins 3a of the heat exchangers 3-1, 3-2. And the two plates 8a and 8a which comprise the partition wall 8 are both heat exchanger 3 in the upper end part of both plates 8a and 8a inserted in the boundary part of both heat exchangers 3-1 and 3-2. -1 and 3-2 are in contact with the sealing portions 3c and 3c. According to this, ventilation between both heat exchangers 3-1 and 3-2 is blocked by the sealing part 3c, and both heat exchangers 3-1 and 3-2 of both combustion chambers 7-1 and 7-2 are blocked. The communication between the combustion chambers 3-1 and 3-2 via the gap between the partition wall 8 and the heat exchangers 3-1 and 3-2 is also cut off. It is. In addition, although the sealing part 3c is formed by the bending part formed in the side edge part of the heat absorption fin 3a, it is also possible to comprise the sealing part 3c with the board | plate material separate from the heat absorption fin 3a. .

また、仕切り壁8を構成する2枚の板8a,8aの夫々の肩部10bに空気吹出し孔10dが開設されているため、このままでは、空気吹出し10dと両板8a,8a間の空隙とを介して両燃焼室7−1,7−2が連通する。そこで、両板8a,8a間に、両板8a,8a間の空隙を分布板4から仕切り壁8の上端に亘り横方向に2分する中仕切り板8bを介設している。これにより、空気吹出し10dと両板8a,8a間の空隙とを介しての両燃焼室7−1,7−2の連通も断たれる。尚、両板8a,8aの最上端には横方向内側への折曲げ部8c,8cを存して起立する接合フランジ部8d,8dが形成されており、両接合フランジ部8d,8dを中間に中仕切り板8bの上端を挟むようにして結合させている。そして、両板8a,8aの上端の折曲げ部8c,8cに、図7に示す如く、通気孔8eを開設し、両板8a,8a間の空隙に流れた空気が通気孔8eから両熱交換器3−1,3−2の境界部に流れ出るようにしている。 Further, since the air blowing holes 10d are formed in the respective shoulder portions 10b of the two plates 8a and 8a constituting the partition wall 8, the air blowing hole 10d and the gap between the plates 8a and 8a are not changed as they are. Both combustion chambers 7-1 and 7-2 communicate with each other. Therefore, an intermediate partition plate 8b that bisects the gap between the plates 8a and 8a in the lateral direction from the distribution plate 4 to the upper end of the partition wall 8 is interposed between the plates 8a and 8a. As a result, the communication between the combustion chambers 7-1 and 7-2 via the air blowing hole 10d and the gap between the plates 8a and 8a is also cut off. In addition, joining flanges 8d and 8d are formed at the uppermost ends of both plates 8a and 8a with standing bent portions 8c and 8c extending inward in the lateral direction. Are joined so as to sandwich the upper end of the partition plate 8b. Then, as shown in FIG. 7, a vent hole 8e is formed in the bent portions 8c and 8c at the upper ends of both plates 8a and 8a, and the air flowing into the gap between the plates 8a and 8a is heated from the vent hole 8e. It flows out to the boundary part of the exchangers 3-1 and 3-2.

以上の如く両燃焼室7−1,7−2の連通が断たれると、両燃焼室7−1,7−2を連続した一つの振動空間とする気柱振動の発生が防止され、気柱振動は各燃焼室7−1,7−2で個別に発生することになり、気柱振動の固有振動数が高くなる。例えば、第1燃焼室7−1の横幅が23cm、第2燃焼室7−2の横幅が7cmである場合、各燃焼室7−1,7−2で発生する気柱振動の固有振動数は、第1燃焼室7−1で950Hz、第2燃焼室7−2で3100Hzになる。固有振動数がこのような高い値になると、火炎が共鳴振動し難くなり、燃焼騒音が低減される。   When the communication between the combustion chambers 7-1 and 7-2 is interrupted as described above, the generation of air column vibrations that make both the combustion chambers 7-1 and 7-2 one continuous vibration space is prevented. Column vibration is generated individually in each of the combustion chambers 7-1 and 7-2, and the natural frequency of the air column vibration is increased. For example, when the width of the first combustion chamber 7-1 is 23 cm and the width of the second combustion chamber 7-2 is 7 cm, the natural frequency of the air column vibration generated in each of the combustion chambers 7-1 and 7-2 is The first combustion chamber 7-1 has a frequency of 950 Hz, and the second combustion chamber 7-2 has a frequency of 3100 Hz. When the natural frequency reaches such a high value, the flame hardly resonates and combustion noise is reduced.

図8は第1実施形態の変形例である第2実施形態を示している。第2実施形態の缶体1及び両熱交換器3−1,3−2は上記第1実施形態と同一であるが、第2バーナ2−2の定格燃焼量を低くするために、第1実施形態における第2バーナ2−2の横方向最内側の単位バーナ2aが取外されている。そして、第2バーナ2−2側(図8の左側)の側板部10cを、取外した単位バーナ2aの分だけ左側に変位させている。一方、両熱交換器3−1,3−2は第1実施形態のものと同一であるため、両熱交換器3−1,3−2の境界部に挿入される仕切り壁8の上端部の位置は変化しない。その結果、仕切り壁8の左側の板8aの上端部と左側の側板部10cとの間の横方向距離が大きくなる。この場合、左側の板8aに第2バーナ2−2の上端と同等高さで形成する左側の肩部10bの横方向幅を上記横方向距離に等しく設定すると、左側の肩部10bの直上部に圧力の低い還流域が発生し、第2バーナ2−2の火炎が還流域側に傾いて燃焼が不安定になる。これを防止するため、左側の肩部10bに形成する空気吹出し孔10dの開口面積を大きくすることも考えられるが、これでは空気過多になり、第2熱交換器3−2が空気で冷却されて熱効率が悪くなってしまう。 FIG. 8 shows a second embodiment which is a modification of the first embodiment. The can body 1 and the heat exchangers 3-1 and 3-2 of the second embodiment are the same as those of the first embodiment. However, in order to reduce the rated combustion amount of the second burner 2-2, the first The innermost unit burner 2a of the second burner 2-2 in the embodiment is removed. Then, the side plate portion 10c on the second burner 2-2 side (left side in FIG. 8) is displaced to the left side by the amount of the removed unit burner 2a. On the other hand, since both the heat exchangers 3-1 and 3-2 are the same as those of the first embodiment, the upper end portion of the partition wall 8 inserted in the boundary portion between the both heat exchangers 3-1 and 3-2. The position of does not change. As a result, the lateral distance between the upper end portion of the left plate 8a of the partition wall 8 and the left side plate portion 10c increases. In this case, if the lateral width of the left shoulder portion 10b formed on the left plate 8a at the same height as the upper end of the second burner 2-2 is set equal to the lateral distance, the upper portion of the left shoulder portion 10b. Thus, a low pressure recirculation zone is generated, and the flame of the second burner 2-2 is tilted toward the recirculation zone to make combustion unstable. In order to prevent this, it is conceivable to increase the opening area of the air blowing hole 10d formed in the left shoulder 10b. However, this causes excessive air, and the second heat exchanger 3-2 is cooled with air. Thermal efficiency will deteriorate.

そこで、第2実施形態では、左側の肩部10bの横方向幅を上記横方向距離より狭く設定し、左側の板8aに、第2バーナ2−2の最大燃焼時における火炎の上端と同等高さになる部分に位置させて、上記横方向距離と左側の肩部10bの横方向幅との差分の横方向幅を持つ段部8fを形成している。これによれば、左側の板8aの肩部10bと段部8fとの間の部分が第2バーナ2−2側に近付く。そのため、左側の肩部10bに開設する空気吹出し孔10dの開口面積を大きくしなくても、該肩部10bの直上部に還流域は発生せず、火炎の傾きが防止されて燃焼が安定する。 Therefore, in the second embodiment, the lateral width of the left shoulder 10b is set to be narrower than the lateral distance, and the left plate 8a has a height equivalent to the upper end of the flame at the time of maximum combustion of the second burner 2-2. A step portion 8f having a lateral width that is a difference between the lateral distance and the lateral width of the left shoulder 10b is formed at the portion that becomes the thickness. According to this, the portion between the shoulder portion 10b and the step portion 8f of the left plate 8a approaches the second burner 2-2 side. Therefore, even if the opening area of the air blowing hole 10d opened in the left shoulder portion 10b is not increased, a reflux region does not occur immediately above the shoulder portion 10b, and the inclination of the flame is prevented and the combustion is stabilized. .

ここで、最大燃焼時においても燃焼の安定性を確保するには、段部8fの位置を最大燃焼時における火炎の上端と同等高さに設定することが必要になる。一方、段部8fの位置が高くなると、段部8fと第2熱交換器3−2との間の上下方向距離が短くなって、段部8fの直上部に位置する第2熱交換器3−2の部分に燃焼排気が流れにくくなり、熱効率が低下する。第4実施形態の如く第2バーナ2−2の最大燃焼時における火炎の上端と同等高さの位置に段部8fを形成しておけば、燃焼の安定性と熱効率とをうまく両立できる。   Here, in order to ensure the stability of combustion even at the time of maximum combustion, it is necessary to set the position of the step portion 8f to the same height as the upper end of the flame at the time of maximum combustion. On the other hand, when the position of the step portion 8f is increased, the vertical distance between the step portion 8f and the second heat exchanger 3-2 is shortened, and the second heat exchanger 3 located immediately above the step portion 8f. It becomes difficult for combustion exhaust gas to flow in the portion -2, and thermal efficiency is lowered. If the step portion 8f is formed at a height equivalent to the upper end of the flame at the time of maximum combustion of the second burner 2-2 as in the fourth embodiment, both combustion stability and thermal efficiency can be successfully achieved.

尚、第2実施形態では、段部8fを水平に形成しているが、段部8fの直上部に位置する第2熱交換器3−2の部分に燃焼排気を導き易くするために、横方向内側に向かって上方に傾斜するように段部8fを形成しても良い。また、第1バーナ2−1の横方向最内側の単位バーナ2aを取外して、右側の側板部10cの位置を、取外した単位バーナ2aの分だけ右側に変位させる場合には、右側の板8aにも左側の板8aと同様に段部を形成する。 In the second embodiment, the step portion 8f is formed horizontally. However, in order to make it easy to guide the combustion exhaust to the portion of the second heat exchanger 3-2 located immediately above the step portion 8f, the step portion 8f is formed horizontally. The step portion 8f may be formed so as to incline upward toward the inner side in the direction. When the innermost unit burner 2a in the lateral direction of the first burner 2-1 is removed and the position of the right side plate portion 10c is displaced to the right by the amount of the removed unit burner 2a, the right plate 8a Also, a step is formed in the same manner as the left plate 8a.

以上、給湯用の第1熱交換器3−1と暖房用の第2熱交換器3−2とを有する1缶式複合熱源機に本発明を適用した実施形態について説明したが、第2熱交換器3−2がその吸熱フィンに風呂の湯水を循環させる風呂吸熱管を貫通させた風呂追い焚き用の熱交換器である場合や、吸熱フィンに暖房吸熱管と風呂吸熱管とを貫通させた暖房兼風呂追い焚き用の熱交換器である場合にも、また、第1熱交換器3−1がその吸熱フィンに給湯吸熱管と風呂吸熱管とを貫通させた給湯兼風呂追焚き用の熱交換器である場合や、給湯用以外の熱交換器である場合にも同様に本発明を適用できる。また、第1と第2の両熱交換器3−1,3−2は、上記何れの実施形態においても、完全に分離しているが、第1と第2の両熱交換器3−1,3−2の吸熱フィン3a,3aを連続した共通フィンで構成することも可能である。   As mentioned above, although embodiment which applied this invention to the 1 can type | mold composite heat source machine which has the 1st heat exchanger 3-1 for hot-water supply and the 2nd heat exchanger 3-2 for heating was described, 2nd heat When the exchanger 3-2 is a heat exchanger for retreating a bath in which a bath endothermic pipe that circulates the hot water of the bath is passed through the endothermic fin, or the endothermic pipe and the endothermic pipe are passed through the endothermic fin In the case of a heat exchanger for heating and bathing, the first heat exchanger 3-1 is also used for hot water and bathing in which the heat-absorbing fin penetrates the hot-water heat-absorbing tube and the bath heat-absorbing tube. The present invention can be similarly applied to a case where the heat exchanger is a heat exchanger or a heat exchanger other than for hot water supply. In addition, the first and second heat exchangers 3-1 and 3-2 are completely separated in any of the above embodiments, but the first and second heat exchangers 3-1 are both separated. , 3-2 can be constituted by a continuous common fin.

参考例としての熱源機の構成を示す模式的な切断正面図。 The typical cutting front view showing the composition of the heat source machine as a reference example . 図1のII−II線で切断した切断側面図。FIG. 2 is a cut side view taken along line II-II in FIG. 1. 図1のIII−III線で切断した切断側面図。The cut side view cut | disconnected by the III-III line | wire of FIG. 他の参考例としての熱源機の構成を示す模式的な切断正面図。 The typical cutting front view showing the composition of the heat source machine as other reference examples . 本発明熱源機の第1実施形態の構成を示す模式的な切断正面図。The typical cutting front view showing composition of a 1st embodiment of the present invention heat source machine. 第1実施形態の仕切り壁を示す斜視図。 The perspective view which shows the partition wall of 1st Embodiment. 図5のVII−VII線で切断した拡大切断平面図。The expansion cutting top view cut | disconnected by the VII-VII line of FIG. 本発明熱源機の第2実施形態の構成を示す模式的な切断正面図。The typical cutting front view showing composition of a 2nd embodiment of the present heat source machine.

符号の説明Explanation of symbols

1…缶体、2−1…第1バーナ、2−2…第2バーナ、2a…単位バーナ、3−1…第1熱交換器、3−2…第2熱交換器、4…分布板、4a…分布孔、5…給気室、6…燃焼ファン、7−1…第1燃焼室、7−2…第2燃焼室、8…仕切り壁、8a…板、8b…中仕切り板、10d…空気吹出し孔。 DESCRIPTION OF SYMBOLS 1 ... Can body, 2-1 ... 1st burner, 2-2 ... 2nd burner, 2a ... Unit burner, 3-1 ... 1st heat exchanger, 3-2 ... 2nd heat exchanger, 4 ... Distribution board 4a ... distribution hole, 5 ... supply chamber, 6 ... combustion fan, 7-1 ... first combustion chamber, 7-2 ... second combustion chamber, 8 ... partition wall, 8a ... plate, 8b ... partition plate, 1 0d: Air blowing hole.

Claims (1)

単一の缶体と、この缶体内に横方向に並べて設けた第1と第2の一対のバーナと、缶体の上部に横方向に並べて設けた第1と第2の一対の熱交換器と、缶体内の第1と第2の両バーナと第1と第2の両熱交換器との間の空間を、第1バーナから第1熱交換器に至る第1燃焼室と第2バーナから第2熱交換器に至る第2燃焼室とに区画する仕切り壁とを備えると共に、缶体の下部に、分布板で仕切られた給気室を画成し、燃焼ファンからの燃焼用空気を分布板に形成した分布孔を介して第1と第2の両燃焼室に供給するようにした1缶式複合熱源機において、
仕切り壁を、給気室からの空気を流す空隙を存して横方向に対向する2枚の板で構成し、
前記両熱交換器の境界部に面する各熱交換器の側端部に、各熱交換器を構成する吸熱フィン間の隙間を封止する封止部を設けると共に、前記仕切り壁を構成する前記2枚の板を、両熱交換器の境界部に挿入される両板の上端部において、両熱交換器の封止部に接触させ、
前記仕切り壁を構成する前記2枚の板に空気吹出し孔を開設し、
両板間に、両板間の空隙を前記分布板から仕切り壁の上端に亘り横方向に2分する中仕切り板を介設することを特徴とする1缶式複合熱源機。
A single can body, a first and second pair of burners provided side by side in the can body, and a first and second pair of heat exchangers provided side by side on the top of the can body And a first combustion chamber and a second burner extending from the first burner to the first heat exchanger in a space between the first and second burners and the first and second heat exchangers in the can. And a second combustion chamber extending from the first heat exchanger to the second heat exchanger, and defining a supply chamber partitioned by a distribution plate at a lower portion of the can body, and combustion air from the combustion fan In a single can type combined heat source machine that supplies the first and second combustion chambers through distribution holes formed in the distribution plate,
The partition wall is composed of two plates facing each other in the lateral direction with a gap through which air flows from the air supply chamber ,
The side wall of each heat exchanger facing the boundary between the two heat exchangers is provided with a sealing portion for sealing a gap between the heat absorption fins constituting each heat exchanger, and constitutes the partition wall. The two plates are brought into contact with the sealing portions of both heat exchangers at the upper end portions of both plates inserted into the boundary portion of both heat exchangers,
An air blowing hole is opened in the two plates constituting the partition wall,
A single can type combined heat source machine, characterized in that an intermediate partition plate that bisects the gap between the two plates in the lateral direction from the distribution plate to the upper end of the partition wall is interposed between the two plates .
JP2005113786A 2004-08-09 2005-04-11 1 can type combined heat source machine Expired - Fee Related JP4252971B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005113786A JP4252971B2 (en) 2004-08-09 2005-04-11 1 can type combined heat source machine
CN2006100069479A CN1847729B (en) 2005-04-11 2006-01-26 One-can type complex heat source machine
KR1020060029711A KR100731772B1 (en) 2005-04-11 2006-03-31 Complex heat source machine with one can

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004232494 2004-08-09
JP2005113786A JP4252971B2 (en) 2004-08-09 2005-04-11 1 can type combined heat source machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008261088A Division JP4718593B2 (en) 2004-08-09 2008-10-07 1 can type combined heat source machine

Publications (2)

Publication Number Publication Date
JP2006078162A JP2006078162A (en) 2006-03-23
JP4252971B2 true JP4252971B2 (en) 2009-04-08

Family

ID=36157761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005113786A Expired - Fee Related JP4252971B2 (en) 2004-08-09 2005-04-11 1 can type combined heat source machine

Country Status (1)

Country Link
JP (1) JP4252971B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850205B2 (en) * 2008-04-25 2012-01-11 リンナイ株式会社 1 can type combined heat source machine
JP5330285B2 (en) * 2009-06-18 2013-10-30 リンナイ株式会社 1 can type combined heat source machine
JP5186440B2 (en) * 2009-06-22 2013-04-17 リンナイ株式会社 1 can type combined heat source machine
JP5178656B2 (en) * 2009-07-16 2013-04-10 リンナイ株式会社 1 can type combined heat source machine
JP5790973B2 (en) * 2011-07-28 2015-10-07 株式会社ノーリツ Water heater
JP5871167B2 (en) * 2012-04-28 2016-03-01 株式会社ノーリツ Combustion device
JP5904407B2 (en) * 2012-04-28 2016-04-13 株式会社ノーリツ Water heater
JP6087174B2 (en) * 2013-03-05 2017-03-01 株式会社パロマ Combustion device
JP6087173B2 (en) * 2013-03-05 2017-03-01 株式会社パロマ Combustion device
JP6121208B2 (en) * 2013-03-25 2017-04-26 株式会社パロマ Combustion device
JP2015001342A (en) * 2013-06-17 2015-01-05 リンナイ株式会社 One can-type composite heat source machine
JP6139383B2 (en) * 2013-11-07 2017-05-31 リンナイ株式会社 1 can type combined heat source machine

Also Published As

Publication number Publication date
JP2006078162A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP4252971B2 (en) 1 can type combined heat source machine
CN106016692B (en) Combustion apparatus
CN1690583B (en) Single pot-type assembled heating source
JP5871167B2 (en) Combustion device
US11293702B2 (en) Heat exchanger and hot water apparatus
US20170059201A1 (en) Heat exchanger and manufacturing method for unit plate constituting heat exchanger
JP4850205B2 (en) 1 can type combined heat source machine
JP6756575B2 (en) A fin tube type heat exchanger and a combustion device equipped with this heat exchanger
JP6831206B2 (en) Fin tube type heat exchanger and combustion device equipped with this heat exchanger
KR101717096B1 (en) Heat exchanger
JP4718593B2 (en) 1 can type combined heat source machine
KR100731772B1 (en) Complex heat source machine with one can
JP2015105814A (en) Combustion device
JP2008076002A (en) Heat exchanger
WO2022152277A1 (en) Gas device and gas water heater
JP5178656B2 (en) 1 can type combined heat source machine
JP2011027350A (en) Single can type complex heat source machine
KR100598549B1 (en) Complex heat source machine with one can
KR101372303B1 (en) Heat Exchanger
KR101717092B1 (en) Heat exchanger
EP3327369B1 (en) Heat exchanger
JP2020094769A (en) Heat source machine
JP2015001342A (en) One can-type composite heat source machine
JP2006200828A (en) Compound heat exchanger
JP7080440B2 (en) Hot water device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees