JP5330144B2 - Trace solid sample analyzer - Google Patents

Trace solid sample analyzer Download PDF

Info

Publication number
JP5330144B2
JP5330144B2 JP2009178724A JP2009178724A JP5330144B2 JP 5330144 B2 JP5330144 B2 JP 5330144B2 JP 2009178724 A JP2009178724 A JP 2009178724A JP 2009178724 A JP2009178724 A JP 2009178724A JP 5330144 B2 JP5330144 B2 JP 5330144B2
Authority
JP
Japan
Prior art keywords
solid sample
processing
liquid
container
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009178724A
Other languages
Japanese (ja)
Other versions
JP2011033434A (en
Inventor
久 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009178724A priority Critical patent/JP5330144B2/en
Publication of JP2011033434A publication Critical patent/JP2011033434A/en
Application granted granted Critical
Publication of JP5330144B2 publication Critical patent/JP5330144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、微量の固体試料を液体で処理するために用いられる器具及び該器具を用いた固体試料の処理方法に関する。   The present invention relates to an instrument used for processing a small amount of a solid sample with a liquid and a method of processing a solid sample using the instrument.

固体試料から幅広い極性の成分を溶媒抽出する方法として、Bligh&Dyer法などの多段階抽出法が知られている(非特許文献1参照)。しかしながら、試料が生体から得られるものである場合、その量は微量であることが多く、Bligh&Dyer法を用いたのでは、試料とは別に抽出溶媒のみを取り出すことが困難である。   As a method for solvent extraction of a wide range of polar components from a solid sample, a multistage extraction method such as the Bligh & Dyer method is known (see Non-Patent Document 1). However, when the sample is obtained from a living body, the amount thereof is often very small, and it is difficult to take out only the extraction solvent separately from the sample using the Bligh & Dyer method.

そこで、微量の固体試料の溶媒抽出に関する技術として、特許文献1においては、固体状試料に含有される溶媒に可溶な成分と溶媒に不溶な成分とを溶媒抽出により分離する抽出分離装置が提案されている。この装置は、(イ)送液路に沿って溶媒を供給する送液管、(ロ)着脱可能に保持されたフィルタを備えた抽出部、(ハ)抽出部から流出した抽出液を捕集しかつ濃縮する濃縮部、(ニ)送液管、抽出部及び濃縮部を一体に保持する保持部材を備えている。   Therefore, as a technique related to solvent extraction of a small amount of a solid sample, Patent Document 1 proposes an extraction / separation apparatus that separates a solvent-soluble component and a solvent-insoluble component contained in the solid sample by solvent extraction. Has been. This apparatus is (a) a liquid feed pipe for supplying a solvent along a liquid feed path, (b) an extraction unit having a filter that is detachably held, and (c) an extract flowing out from the extraction unit. And (2) a holding member that integrally holds the liquid feeding pipe, the extraction unit, and the concentration unit.

しかし前記の抽出分離装置は、抽出のための溶媒が送液路内を流下する構造のものなので、溶媒と試料の接触時間が短い。その結果、抽出効率の低い成分や、試料の内部に存在する成分を抽出することが困難である。また、この装置はその構造上、加温抽出することが容易でなく、そのことによっても、抽出効率を高めることが困難である。   However, the extraction / separation apparatus has a structure in which the solvent for extraction flows down in the liquid supply path, so that the contact time between the solvent and the sample is short. As a result, it is difficult to extract a component with low extraction efficiency or a component present inside the sample. In addition, this apparatus is not easy to heat and extract due to its structure, and it is difficult to increase the extraction efficiency.

特開2005−214785JP-A-2005-214785

E.G.Bligh and W.J.Dyer,Can.J.Biochem.Physiol.,37,911(1957)E. G. Bligh and W.W. J. et al. Dyer, Can. J. et al. Biochem. Physiol. , 37, 911 (1957)

本発明は、前述した従来技術が有する欠点を解消し得る微量固体試料処理器具及びそれを用いた微量固体試料の処理方法を提供するものである。   The present invention provides a trace solid sample processing instrument that can eliminate the drawbacks of the above-described prior art and a method for processing a trace solid sample using the same.

本発明は、微量の固体試料をその内部に保持可能なキャピラリー部を有する保持具と、該保持具の密閉収容が可能な収容具とを備えた微量固体試料処理器具を提供するものである。   The present invention provides a trace solid sample processing instrument including a holder having a capillary part capable of holding a trace amount of solid sample therein and a holder capable of hermetically containing the holder.

また本発明は、前記の微量固体試料処理器具における前記保持具のキャピラリー部内に微量固体試料を設置し、
前記試料が設置された前記保持具を前記収容具内に収容するとともに、収容の前若しくは後又は収容と同時に収容具内に処理液を充填し、次いで
前記収容具を密閉し、前記処理液によって前記試料を処理する微量固体試料の処理方法を提供するものである。
Further, the present invention provides a trace solid sample in the capillary portion of the holder in the trace solid sample processing instrument,
The holder on which the sample is placed is housed in the container, and the container is filled with a treatment liquid before, after, or simultaneously with the accommodation, and then the container is sealed, and the treatment liquid is used. The present invention provides a method for treating a small amount of solid sample for treating the sample.

本発明によれば、微量の固体試料を処理液と長時間接触させることが可能となる。また、接触後に、固体試料と処理液とを容易に分離することが可能となる。更に、加温処理を行うことも可能となり、処理液による処理効率を高めることができる。   According to the present invention, a small amount of a solid sample can be brought into contact with a treatment liquid for a long time. In addition, the solid sample and the processing liquid can be easily separated after the contact. Furthermore, it becomes possible to perform a heating process, and the processing efficiency by a process liquid can be improved.

図1(a)は、本発明の微量固体試料処理器具の一実施形態を示す斜視図であり、図1(b)は、図1(a)に示す微量固体試料処理器具の分解斜視図である。Fig.1 (a) is a perspective view which shows one Embodiment of the trace amount solid sample processing instrument of this invention, FIG.1 (b) is a disassembled perspective view of the trace amount solid sample treatment instrument shown to Fig.1 (a). is there. 図2(a)ないし(d)は、図1に示す微量固体試料処理器具を用いた試料の処理方法を示す工程図である。2A to 2D are process diagrams showing a sample processing method using the trace solid sample processing apparatus shown in FIG. 液体クロマトグラフ−質量分析装置を用いた、実施例における、コレステロールの測定結果である。It is a measurement result of cholesterol in the Example using a liquid chromatograph-mass spectrometer. アミノ酸分析計を用いた、実施例における、蛋白質加水分解アミノ酸の測定結果である。It is a measurement result of a protein hydrolyzed amino acid in an Example using an amino acid analyzer.

以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図1(a)及び(b)に示すように、本発明の一実施形態の微量固体試料処理器具10は、大別して試料の保持具20と収容具30とから構成されている。   The present invention will be described below based on preferred embodiments with reference to the drawings. As shown in FIGS. 1A and 1B, a trace solid sample processing instrument 10 according to an embodiment of the present invention is roughly composed of a sample holder 20 and a container 30.

試料の保持具20は、細い管状のキャピラリー部21と、該キャピラリー部21の上端に連接された筒状部22とから構成されている。キャピラリー部21は微量試料をその内部に保持可能な部位である。キャピラリー部21は、その上下端が開口した管状のものであり、上端は上述のとおり筒状部22に連接している。キャピラリー部21はその横断面積が、好ましくは0.1〜3mm2、更に好ましくは0.5〜1mm2という微細な管である。このような微細な管であることによって、キャピラリー部21は、微量の試料を首尾良く保持することができる。キャピラリー部21の横断面積は、その値が前記の範囲内であることを条件として、キャピラリー部21の全長にわたって同じでもよく、あるいは異なっていてもよい。一般に横断面積は、キャピラリー部21の全長にわたって同じになっている。 The sample holder 20 includes a thin tubular capillary part 21 and a cylindrical part 22 connected to the upper end of the capillary part 21. The capillary part 21 is a part capable of holding a small amount of sample therein. The capillary portion 21 has a tubular shape whose upper and lower ends are open, and the upper end is connected to the tubular portion 22 as described above. The capillary portion 21 is a fine tube having a cross-sectional area of preferably 0.1 to 3 mm 2 , more preferably 0.5 to 1 mm 2 . By being such a fine tube, the capillary portion 21 can successfully hold a small amount of sample. The cross-sectional area of the capillary portion 21 may be the same or different over the entire length of the capillary portion 21 on the condition that the value is within the above range. In general, the cross-sectional area is the same over the entire length of the capillary portion 21.

キャピラリー部21の横断面の形状に特に制限はない。横断面の形状は、一般に円形とすることができる。この場合、横断面の形状は、キャピラリー部21の全長にわたって同じでもよく、あるいは異なっていてもよい。一般に横断面の形状は、キャピラリー部21の全長にわたって同じになっている。   The shape of the cross section of the capillary part 21 is not particularly limited. The cross-sectional shape can be generally circular. In this case, the shape of the cross section may be the same or different over the entire length of the capillary portion 21. In general, the shape of the cross section is the same over the entire length of the capillary portion 21.

横断面積と異なり、キャピラリー部21の長さは本発明において特に臨界的でない。この長さを一般に2〜4cmに設定することで、満足すべき効果が得られる。   Unlike the cross-sectional area, the length of the capillary portion 21 is not particularly critical in the present invention. A satisfactory effect can be obtained by setting this length to 2 to 4 cm in general.

キャピラリー部21は、その内部に液体透過性のフィルタ23を有している。フィルタ23は、その上に固体試料(図示せず)を載置するためのものである。また、固体試料が処理液とともにキャピラリー部21から流下することを防止するためのものである。フィルタ23は、液体透過性であればよく、その例としては繊維材料からなる綿状体、オープンセル状の多孔質体などが挙げられる。フィルタ23が繊維材料からなる綿状体である場合、該繊維材料の太さ及び繊維間距離は、固体試料の量や形態に応じて適切な値が選択される。多孔質体の孔径についても同様である。これらの値は本発明において臨界的でなく、当業者が適宜設定し得る事項である。   The capillary part 21 has a liquid permeable filter 23 therein. The filter 23 is for placing a solid sample (not shown) thereon. Further, it is for preventing the solid sample from flowing down from the capillary part 21 together with the processing liquid. The filter 23 only needs to be liquid permeable, and examples thereof include a cotton-like body made of a fiber material, an open-cell porous body, and the like. When the filter 23 is a cotton-like body made of a fiber material, appropriate values are selected for the thickness of the fiber material and the distance between the fibers according to the amount and form of the solid sample. The same applies to the pore diameter of the porous body. These values are not critical in the present invention, and can be appropriately set by those skilled in the art.

フィルタ23を構成する材料としては、固体試料の種類や、処理液の種類に応じて適切なものが選択される。例えばポリエチレン、ポリプロピレン、アクリル樹脂等を初めとする各種の熱可塑性樹脂、ガラスや石英等の酸化ケイ素質材料などを用いることができる。これらの材料のうち、コンタミネーションの低減の点から、灰化処理が可能な材料である酸化ケイ素質材料を用いることが好ましい。   As a material constituting the filter 23, an appropriate material is selected according to the type of the solid sample and the type of the processing liquid. For example, various thermoplastic resins such as polyethylene, polypropylene, and acrylic resin, and silicon oxide materials such as glass and quartz can be used. Of these materials, from the viewpoint of reducing contamination, it is preferable to use a silicon oxide material that is an ashable material.

筒状部22は、その上下端が開口した管状のものであり、その下端は筒状部22の上端に滑らかに連接している。筒状部22はその横断面積が、キャピラリー部21の横断面積よりも大きくなっている。このような筒状部22を設けることで、固体試料をキャピラリー部21に充填する操作を容易に行うことができる。すなわち、横断面積の小さな部位であるキャピラリー部21に固体試料を直接充填することは容易でないのに対し、キャピラリー部21に連接して、横断面積が大きい筒状部22を設け、該筒状部22に固体試料を入れることで、固体試料をキャピラリー部21に充填することが容易になる。筒状部22の横断面積や横断面の形状は、この観点から決定すればよい。一般に筒状部22の横断面積は20〜30mm2に設定することが好ましく、筒状部22の横断面の形状は円形にすればよい。同様に、筒状部22の長さも、固体試料を該筒状部22に入れやすい長さであれば、その値に特に制限はない。例えば筒状部22の長さは5〜7cm程度に設定することができる。 The cylindrical portion 22 is a tubular shape whose upper and lower ends are open, and the lower end thereof is smoothly connected to the upper end of the cylindrical portion 22. The tubular portion 22 has a larger cross-sectional area than the cross-sectional area of the capillary portion 21. By providing such a cylindrical portion 22, an operation of filling the capillary portion 21 with a solid sample can be easily performed. That is, while it is not easy to directly fill the capillary portion 21 having a small cross-sectional area with the solid sample, a cylindrical portion 22 having a large cross-sectional area is provided to be connected to the capillary portion 21, and the cylindrical portion is provided. By putting the solid sample in 22, it becomes easy to fill the capillary portion 21 with the solid sample. What is necessary is just to determine the cross-sectional area of the cylindrical part 22, and the shape of a cross section from this viewpoint. In general, the cross-sectional area of the cylindrical portion 22 is preferably set to 20 to 30 mm 2, and the shape of the cross section of the cylindrical portion 22 may be circular. Similarly, the length of the cylindrical portion 22 is not particularly limited as long as the solid sample can be easily put into the cylindrical portion 22. For example, the length of the cylindrical portion 22 can be set to about 5 to 7 cm.

保持具20においては、キャピラリー部21と筒状部22とは一体的に形成され、同一の材料から構成されていてもよく、あるいはキャピラリー部21と筒状部22とを別異の材料から構成し、両者を接着や嵌合等の接合手段によって一体にしてもよい。   In the holder 20, the capillary part 21 and the cylindrical part 22 may be formed integrally and may be made of the same material, or the capillary part 21 and the cylindrical part 22 may be made of different materials. However, they may be integrated by a joining means such as adhesion or fitting.

キャピラリー部21と筒状部22とが同一の材料から構成されているか、別異の材料から構成されているかを問わず、これらを構成する材料としては、固体試料の種類や、処理液の種類に応じて適切なものが選択される。例えばポリエチレン、ポリプロピレン、アクリル樹脂等を初めとする各種の熱可塑性樹脂、ガラス等の酸化ケイ素質材料などを用いることができる。これらの材料のうち、コンタミネーションの低減の点から、灰化処理が可能な材料である酸化ケイ素質材料を用いることが好ましい。これら熱可塑性樹脂や酸化ケイ素質材料からなるキャピラリー部21は、例えばこれらの材料からなる管状体を加熱して引き伸ばすことで得ることができる。   Regardless of whether the capillary portion 21 and the cylindrical portion 22 are made of the same material or different materials, the material constituting them may be a solid sample type or a treatment liquid type. Appropriate ones are selected according to For example, various thermoplastic resins including polyethylene, polypropylene, acrylic resin and the like, and silicon oxide materials such as glass can be used. Of these materials, from the viewpoint of reducing contamination, it is preferable to use a silicon oxide material that is an ashable material. The capillary portion 21 made of these thermoplastic resin or silicon oxide material can be obtained, for example, by heating and stretching a tubular body made of these materials.

次に、保持具20が収容される収容具30について説明する。収容具30は、収容部31とキャップ32とから構成される。収容部31は、上端に開口部31aを有する有底管状のものである。収容部31の深さは、保持具20の全長よりも大きくなっている。また、収容部31の横断面の面積及び形状に特に制限はなく、保持具20を収容部31内に挿入可能になっていればよい。   Next, the container 30 in which the holder 20 is accommodated will be described. The container 30 includes a container 31 and a cap 32. The accommodating part 31 is a bottomed tubular thing which has the opening part 31a in the upper end. The depth of the accommodating part 31 is larger than the full length of the holder 20. Moreover, there is no restriction | limiting in particular in the area and shape of the cross section of the accommodating part 31, and the holder 20 should just be able to be inserted in the accommodating part 31. FIG.

収容部31は、開口部寄りの部位32が同じ太さになっている。一方、収容部31は、その下端寄りの部位33が、下方に向かうに連れて縮径している。収容部31の横断面形状がこのようになっていることで、保持具20を収容部31内に収容しやすくなり、かつ収容部31内に収容された保持具20が、該収容部31内で移動しづらくなる。また、処理液(図示せず)の使用量が過度に多くなることを防止できる。これらの観点から、収容部31における縮径している部位33の長さ(収容部31内部における長さ)は、保持具20におけるキャピラリー部21の長さを超えないことが好ましい。   The accommodating portion 31 has a portion 32 near the opening having the same thickness. On the other hand, the accommodating portion 31 is reduced in diameter as the portion 33 near the lower end thereof goes downward. Since the cross-sectional shape of the storage portion 31 is as described above, the holder 20 can be easily stored in the storage portion 31, and the holder 20 stored in the storage portion 31 is included in the storage portion 31. Makes it difficult to move. Moreover, it can prevent that the usage-amount of a process liquid (not shown) increases excessively. From these viewpoints, it is preferable that the length of the portion 33 having a reduced diameter in the accommodating portion 31 (the length in the accommodating portion 31) does not exceed the length of the capillary portion 21 in the holder 20.

収容部31の開口部31a及びその近傍の外側面にはネジ山が設けられている。このネジ山によって、収容部31とキャップ32とが螺合するようになっている。両者が螺合することによって、キャップ32は収容部31の開口部31aを密栓し、収容具30は、その内部に保持具20を密閉収容することが可能になっている。なお、キャップ32の密栓手段は螺合に限られず、収容部31とキャップ32とが着脱可能であれば、他の手段、例えば嵌合等を採用してもよい。また、密栓できる限り、収容部31とキャップ32とは別体であることを要しない。例えば両者を、ヒンジを介して一体となし、キャップ32を収容部31に嵌合させて密閉状態となしてもよい。   A screw thread is provided on the opening 31a of the accommodating portion 31 and the outer surface in the vicinity thereof. With this screw thread, the accommodating portion 31 and the cap 32 are screwed together. When both are screwed together, the cap 32 tightly plugs the opening 31a of the accommodating portion 31, and the accommodating device 30 can hermetically accommodate the holder 20 therein. Note that the sealing means of the cap 32 is not limited to screwing, and other means such as fitting may be adopted as long as the housing portion 31 and the cap 32 are detachable. Moreover, as long as it can be sealed, the accommodating part 31 and the cap 32 do not need to be separate bodies. For example, both may be integrated through a hinge, and the cap 32 may be fitted into the accommodating portion 31 to be in a sealed state.

収容具30における収容部31を構成する材料としては、固体試料の種類や、処理液の種類に応じて適切なものが選択される。そのような材料としては、保持具20を構成する材料として先に述べたものと同様のものを用いることができる。特に、コンタミネーションの低減の点から酸化ケイ素質材料を用いることが好ましい。収容具30におけるキャップ32を構成する材料も、固体試料の種類や、処理液の種類に応じて適切なものが選択される。なお、キャップ32は、処理液と直接に接触する可能性が低く、灰化処理を行う必要性が低いので、酸化ケイ素質材料から構成されている必要性は低い。   As a material constituting the container 31 in the container 30, an appropriate material is selected according to the type of the solid sample and the type of the processing liquid. As such a material, the same material as described above as the material constituting the holder 20 can be used. In particular, it is preferable to use a silicon oxide material from the viewpoint of reducing contamination. As the material constituting the cap 32 in the container 30, an appropriate material is selected according to the type of the solid sample and the type of the processing liquid. Note that the cap 32 is unlikely to be in direct contact with the treatment liquid and has a low need for ashing treatment, so the necessity of being made of a silicon oxide material is low.

次に、図1に示す処理器具10を用いた処理方法について、図2(a)ないし(d)を参照しながら説明する。まず、前処理として処理器具10を清浄な状態にする。保持具20、フィルタ23及び収容具30の収容部31がいずれも酸化ケイ素質材料から構成されている場合には、これらを500℃前後の温度で灰化処理して有機物を除去し、コンタミネーションを防止することが好ましい。   Next, a processing method using the processing tool 10 shown in FIG. 1 will be described with reference to FIGS. 2 (a) to 2 (d). First, the processing tool 10 is put into a clean state as pretreatment. When the holder 20, the filter 23, and the container 31 of the container 30 are all made of a silicon oxide material, they are ashed at a temperature of about 500 ° C. to remove organic matter, and contaminated. It is preferable to prevent this.

前処理が完了したら、図2(a)に示すように、保持具20の筒状部22における上端の開口部から微量の固体試料40を入れる。その後に保持具20を軽くタップすることで、固体試料40は、キャピラリー部21内のフィルタ23上に設置される。本処理方法で処理可能な固体試料40の量の下限値は、固体試料40の種類にもよるが好ましくは10μg、更に好ましくは100μgである。上限値に特に制限はないが、多量である場合には、本処理方法を採用する利益が薄れる。この観点から上限値は好ましくは1mg、更に好ましくは500μgである。なお、図2(a)に示す固体試料40は、長さ1mm前後のヒトの毛髪の切片をイメージしている。   When the pretreatment is completed, as shown in FIG. 2A, a small amount of the solid sample 40 is put through the opening at the upper end of the cylindrical portion 22 of the holder 20. Thereafter, the solid sample 40 is placed on the filter 23 in the capillary section 21 by lightly tapping the holder 20. The lower limit of the amount of the solid sample 40 that can be processed by this processing method is preferably 10 μg, more preferably 100 μg, although it depends on the type of the solid sample 40. There is no particular limitation on the upper limit value, but if the amount is large, the benefit of adopting this processing method is diminished. From this viewpoint, the upper limit is preferably 1 mg, more preferably 500 μg. In addition, the solid sample 40 shown to Fig.2 (a) has imaged the slice of human hair about 1 mm in length.

固体試料40が設置された保持具20は、図2(b)に示すように、収容部31内に収容される。この収容の前若しくは後又は収容と同時に、収容部31内に処理液を充填する。保持具20を収容部31内に収容した後に処理液を充填する場合には、該処理液は、同図に示すように保持具20内に注入されることが、固体試料40の効率的な処理の観点から好ましい。処理液の充填量は、充填された処理液の液面が、固体試料40の位置よりも高くなるような量とする。   The holder 20 in which the solid sample 40 is installed is accommodated in the accommodating part 31, as shown in FIG.2 (b). Before or after the accommodation or simultaneously with the accommodation, the accommodating portion 31 is filled with the processing liquid. When the treatment liquid is filled after the holder 20 is accommodated in the accommodating portion 31, the treatment liquid is injected into the holder 20 as shown in FIG. It is preferable from the viewpoint of processing. The filling amount of the processing liquid is set such that the liquid level of the filled processing liquid is higher than the position of the solid sample 40.

収容部31内への保持具20の収容及び収容部31内への処理液の充填が完了したら、収容部31の上端における開口部31aをキャップ32で閉じ、図2(c)に示すように収容部31内を密閉する。これによって、処理状態が完成する。本処理方法によれば、背景技術の項で説明した特許文献1に記載の技術と異なり、処理液が収容部31内に保持されるので、処理液と固体試料40との長時間にわたる接触が可能となる。その結果、効率的な処理が可能となる。例えば処理液が溶媒抽出用の液である場合には、固体試料40に抽出効率の低い成分が含まれている場合や、固体試料40の内部に存在する成分を抽出する場合であっても、目的とする成分を効率よく抽出できる。また、処理液が染色液である場合には、固体試料40の内部まで効率的に染色できる。更に、処理液が、固体試料40を化学的に修飾する液である場合には、固体試料40の内部まで効率的に反応を起こさせることができる。   When the storage of the holder 20 in the storage part 31 and the filling of the processing liquid into the storage part 31 are completed, the opening 31a at the upper end of the storage part 31 is closed with a cap 32, as shown in FIG. The inside of the accommodating part 31 is sealed. This completes the processing state. According to this processing method, unlike the technique described in Patent Document 1 described in the section of the background art, the processing liquid is held in the storage unit 31, so that the processing liquid and the solid sample 40 are in contact with each other for a long time. It becomes possible. As a result, efficient processing is possible. For example, when the processing liquid is a solvent extraction liquid, even when the solid sample 40 contains a component with low extraction efficiency or when a component existing inside the solid sample 40 is extracted, The target component can be extracted efficiently. Further, when the processing liquid is a staining liquid, the interior of the solid sample 40 can be efficiently stained. Further, when the treatment liquid is a liquid that chemically modifies the solid sample 40, the reaction can be efficiently caused to the inside of the solid sample 40.

処理液による固体試料40の処理は、収容具30を静置した状態下に行ってもよく、あるいは穏やかに振盪させた状態下に行ってもよい。   The treatment of the solid sample 40 with the treatment liquid may be performed in a state where the container 30 is left still, or may be performed in a state where the container 30 is gently shaken.

図2(c)に示すように、保持具20に保持された固体試料40は、処理液とともに収容具30内に密閉されているので、収容具30を例えば湯煎することで、加温することができる。これによって、処理液による処理の一層の効率化を図ることができる。加温の程度は、収容具30の密閉性の程度、固体試料40の種類、処理液の種類等に応じて適切に選択される。例えば固体試料40がヒトの毛髪であり、処理液として有機溶媒を使用する場合には40℃程度、あるいは酸加水分解を行う場合には110℃程度に加温することができる。   As shown in FIG.2 (c), since the solid sample 40 hold | maintained at the holder 20 is sealed in the container 30 with the process liquid, it heats the container 30 by, for example, bathing in water. Can do. Thereby, it is possible to further increase the efficiency of the treatment with the treatment liquid. The degree of heating is appropriately selected according to the degree of hermeticity of the container 30, the type of the solid sample 40, the type of treatment liquid, and the like. For example, when the solid sample 40 is human hair and an organic solvent is used as the treatment liquid, the solid sample 40 can be heated to about 40 ° C., or when acid hydrolysis is performed, to about 110 ° C.

固体試料40と処理液とを所定の時間接触させたら、キャップ32を回して収容具30を開き、図2(d)に示すように、該収容具30内に保持されている保持具20を取り出す。この際、保持具20の上端開口部より空気等の気体を吹き込み、保持具20内に残留している溶媒を、収容具30内に吹き出すことにより、溶媒の回収を効率良く行うことができる。この場合、保持具20内に保持されている固体試料40は、フィルタ23上に載置された状態になっているので、保持具20の取り出しとともに収容具30外に取り出される。また、保持具20内に存在していた処理液は、フィルタ23によって液切りがされて、収容部31内に残存する。したがって、本実施形態の処理器具10を用いれば、固体試料40が微量であっても、処理液との分離を容易に、かつ確実に行うことができる。その結果、処理後の処理液のみを容易に回収することができる。該処理液は、後工程である分析等の工程に付される。   When the solid sample 40 and the processing liquid are brought into contact with each other for a predetermined time, the cap 32 is turned to open the container 30, and the holder 20 held in the container 30 is removed as shown in FIG. Take out. At this time, a gas such as air is blown from the upper end opening of the holder 20 and the solvent remaining in the holder 20 is blown into the container 30, whereby the solvent can be efficiently recovered. In this case, since the solid sample 40 held in the holder 20 is placed on the filter 23, the solid sample 40 is taken out of the container 30 along with the removal of the holder 20. In addition, the processing liquid present in the holder 20 is drained by the filter 23 and remains in the storage unit 31. Therefore, if the processing instrument 10 of this embodiment is used, even if the amount of the solid sample 40 is very small, it can be easily and reliably separated from the processing liquid. As a result, only the treated liquid after treatment can be easily recovered. The treatment liquid is subjected to a process such as analysis, which is a subsequent process.

固体試料40の種類や処理液の種類によっては、多段階処理を行うことが有利である。多段階処理を行う場合には、図2(d)に示すように、固体試料40を保持具20とともに収容具30外に取り出した後、固体試料40から分離された処理液を取り出して、別の容器50に移し替える。次いで、空になった収容具30内に、先に取り出した保持具20を固体試料40とともに再び収容具30内に収容する。つまり、図2(b)に示す工程に戻る。そして、保持具20を収容具30内に収容する前若しくは後又は収容と同時に、収容具30の収容部31内に、先に使用した処理液とは異なる第2の処理液を収容部31内に充填する。しかる後、収容部31の上端における開口部31aをキャップ32で閉じ、図2(c)に示すように収容部31内を密閉し、第2の処理液による固体試料40の処理を行う。その後は、図2(d)に示す操作が再び行われる。   Depending on the type of the solid sample 40 and the type of the processing liquid, it is advantageous to perform a multistage process. When performing multi-stage processing, as shown in FIG. 2D, after the solid sample 40 is taken out of the container 30 together with the holder 20, the treatment liquid separated from the solid sample 40 is taken out and separated. Transfer to container 50. Next, the holder 20 taken out first is accommodated in the container 30 together with the solid sample 40 in the container 30 that has been emptied. That is, the process returns to the process shown in FIG. Then, before or after housing the holder 20 in the container 30 or simultaneously with housing, the second processing liquid different from the previously used processing liquid is contained in the container 31 in the container 31 of the container 30. To fill. Thereafter, the opening 31a at the upper end of the storage unit 31 is closed with the cap 32, the interior of the storage unit 31 is sealed as shown in FIG. 2C, and the solid sample 40 is processed with the second processing liquid. Thereafter, the operation shown in FIG. 2D is performed again.

多段階処理は2回に限られず、必要に応じて3回以上行ってもよい。つまり、図2(b)ないし図2(d)に示す手順の操作を複数回行うことができる。   The multistage process is not limited to twice, and may be performed three or more times as necessary. That is, the procedure shown in FIGS. 2B to 2D can be performed a plurality of times.

本処理方法の対象となる固体試料の種類に制限はない。本処理方法は、採取量が微量である固体試料を処理の対象とする場合にその利点が際立つ。そのような固体試料としては、例えば生体から採取した試料が挙げられる。具体的には、ヒトの毛髪、ヒトの皮膚、ヒトの臓器から採取した生体試料が挙げられる。採取量が微量である別の固体試料として、犯罪現場に残された微量の繊維及びその他の固体付着物等が挙げられる。   There is no limitation on the type of solid sample that is the subject of this treatment method. This treatment method is particularly advantageous when a solid sample with a small amount of sample is used as the object of treatment. An example of such a solid sample is a sample collected from a living body. Specific examples include biological samples collected from human hair, human skin, and human organs. Another solid sample with a small amount collected is a small amount of fiber left on the crime scene and other solid deposits.

一方、処理液としては、固体試料の種類に応じて適切なものが選択される。本処理方法の趣旨にかんがみて、処理液は、固体試料を溶解させるものであってはならない。具体的な処理液としては、溶媒抽出のための各種の液(水性液、有機溶媒)、染色液、固体試料と化学反応し、固体試料に所定の基を結合させる液等が挙げられる。   On the other hand, as the treatment liquid, an appropriate one is selected according to the type of the solid sample. In view of the purpose of this treatment method, the treatment liquid should not dissolve the solid sample. Specific treatment liquids include various liquids for solvent extraction (aqueous liquid, organic solvent), staining liquid, liquid that chemically reacts with a solid sample, and bonds a predetermined group to the solid sample.

処理液として、溶媒抽出のための液を用いる場合には、上述した多段階処理として、多段階抽出を行うことができる。この場合には、抽出用溶媒Aを用いて、対象物Aを抽出し、次いで抽出用溶媒Aとは極性の異なる抽出用溶媒Bを用いて対象物Bを抽出し、・・という多段階の抽出操作を行い、抽出用溶媒に応じて対象物を抽出することができる。本処理方法によれば、微量の固体試料を対象として、ロスやコンタミネーションなく多段階抽出を行うことができる。   When a solution for solvent extraction is used as the treatment liquid, multistage extraction can be performed as the above-described multistage treatment. In this case, the object A is extracted using the extraction solvent A, and then the object B is extracted using the extraction solvent B having a polarity different from that of the extraction solvent A. An extraction operation can be performed to extract an object according to the extraction solvent. According to this processing method, it is possible to perform multi-stage extraction on a small amount of solid sample without any loss or contamination.

固体試料として、微量のヒトの毛髪を用いる場合には、上述した利点に加え、以下の利点もある。多段階抽出後において毛髪を酸で加水分解し、それによって生じたアミノ酸を分析することで容易に蛋白質量を測定ことができる。アミノ酸の定量技術は確立されたものである(日本生化学会編「新生化学実験講座1 蛋白質II 一次構造」東京化学同人)。まず本処理方法に従い溶媒抽出によって毛髪から脂質を除去し、次いで脂質が除去された毛髪について、同じ処理器具10を用い、塩酸等の酸によって保持具20内に保持された毛髪を完全分解させる。このようにして得られた液を対象として、公知のアミノ酸の定量分析を行う。その分析結果から、毛髪の蛋白質の質量を算出する。これにより毛髪に含まれる微量成分の割合を、蛋白質量を基準として正確に表現することができる。   When a very small amount of human hair is used as the solid sample, there are the following advantages in addition to the advantages described above. Protein mass can be easily measured by hydrolyzing hair with acid after multi-stage extraction and analyzing the resulting amino acid. An amino acid quantification technique has been established ("Neochemistry Experiment Course 1, Protein II Primary Structure", Tokyo Kagaku Doujin, edited by the Japanese Biochemical Society). First, lipid is removed from the hair by solvent extraction according to the present treatment method, and then, the hair from which the lipid has been removed is completely decomposed with respect to the hair held in the holder 20 with an acid such as hydrochloric acid using the same treatment tool 10. A known amino acid is quantitatively analyzed for the liquid thus obtained. From the analysis result, the protein mass of the hair is calculated. Thereby, the ratio of the trace component contained in hair can be expressed correctly on the basis of protein mass.

以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば前記実施形態における保持具20は、キャピラリー部21と筒状部22とから構成されていたが、これに代えてキャピラリー部21のみから保持具20を構成してもよい。また、収容具30における収容部31は、その下端寄りの位置が下方に向けて縮径していたが、これに代えて収容部31はその全長にわたって同じ太さであってもよい。   As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment. For example, the holder 20 in the above embodiment is composed of the capillary part 21 and the cylindrical part 22, but the holder 20 may be composed of only the capillary part 21 instead. Moreover, although the accommodating part 31 in the accommodating tool 30 was diameter-reduced toward the downward position, the accommodating part 31 may be the same thickness over the full length instead of this.

また前記実施形態においては、キャピラリー部21の下端が収容部31の底部内壁に接していたが、これに代えて、キャップ32によって筒状部22の上端を保持できるようにし、キャピラリー部21の下端を収容部31の底部内壁に接しないようにしてもよい。こうすることによって、キャピラリー内外の溶媒の移動を一層容易にすることができる。   In the above-described embodiment, the lower end of the capillary portion 21 is in contact with the bottom inner wall of the accommodating portion 31. Instead, the upper end of the cylindrical portion 22 can be held by the cap 32, and the lower end of the capillary portion 21 is held. You may make it not contact | connect the bottom part inner wall of the accommodating part 31. FIG. By doing so, the movement of the solvent inside and outside the capillary can be further facilitated.

更に、キャピラリー部21の下端と収容部31の底部内壁の一部は接するが、他部は接しないように、キャピラリー部21の下端の形状あるいは収容部31の底部内壁形状を調整してもよい。例えばキャピラリー部21の下端部の切断面に傾斜をもたせることによって、該下端部の一部が収容部31の底部内壁に接するようにして、キャピラリー内外の溶媒の移動が一層容易となるようにしてもよい。   Further, the shape of the lower end of the capillary portion 21 or the shape of the bottom inner wall of the accommodating portion 31 may be adjusted so that the lower end of the capillary portion 21 and a part of the bottom inner wall of the accommodating portion 31 are in contact with each other, but the other portion is not in contact. . For example, by making the cut surface of the lower end portion of the capillary portion 21 inclined, a part of the lower end portion comes into contact with the bottom inner wall of the accommodating portion 31 so that the movement of the solvent inside and outside the capillary is further facilitated. Also good.

また前記実施形態において用いた処理液は、これを溶媒抽出に用いる場合には、固体試料を溶解させるものであってはならないが、他の処理を行う場合には、固体試料を溶解させる処理液を用いることは何ら差し支えない。   In addition, the processing liquid used in the above embodiment should not dissolve a solid sample when it is used for solvent extraction. However, when other processing is performed, the processing liquid that dissolves the solid sample. There is no problem with using.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.

(1)毛髪の採取
被験者1名の頭皮から1cmの毛元部分を6本、1mmの毛元部分を3本採取した。1cmの毛髪は、天秤によりそれぞれの毛髪質量を測定した(1mmの毛髪においては毛髪の正確な質量が測定できない)。1cmの毛髪3本と1mmの毛髪3本はそれぞれ1本ずつ、図1に示す微量固体試料処理器具10に収容した。一方、残りの1cmの毛髪3本は、保持具20が分析値に与える影響を調べるため、保持具20を取り除いた収容具30に収容した。
(1) Collection of hair Six 1 cm hair portions and three 1 mm hair portions were collected from the scalp of one subject. The hair mass of each 1 cm hair was measured by a balance (the exact mass of hair cannot be measured with 1 mm hair). Three 1 cm hairs and three 1 mm hairs were accommodated in the trace solid sample processing apparatus 10 shown in FIG. On the other hand, the remaining three 1 cm hairs were accommodated in a container 30 from which the holder 20 was removed in order to examine the influence of the holder 20 on the analysis value.

(2)毛髪脂質の抽出
上記で準備した微量固体試料処理器具に、クロロホルム/メタノール=2/1(体積比)溶液を加えて、40℃で24時間静置させることにより脂質を抽出した。抽出液を回収した後、同様にクロロホルム/メタノール=1/1(体積比)溶液、クロロホルム/メタノール=1/2(体積比)溶液、クロロホルム/メタノール/水=18/9/1(体積比)溶液においても抽出を行い、全ての抽出液を混合した。このように調製した脂質の抽出液を窒素気流下で乾固し、メタノールを加えて溶解することで、脂質試料を調製した。
(2) Extraction of hair lipids A solution of chloroform / methanol = 2/1 (volume ratio) was added to the trace solid sample processing instrument prepared above, and lipids were extracted by allowing to stand at 40 ° C. for 24 hours. After recovering the extract, similarly, chloroform / methanol = 1/1 (volume ratio) solution, chloroform / methanol = 1/2 (volume ratio) solution, chloroform / methanol / water = 18/9/1 (volume ratio). Extraction was also performed on the solution, and all the extracts were mixed. A lipid sample was prepared by drying the lipid extract prepared in this way under a nitrogen stream and dissolving it by adding methanol.

(3)毛髪の酸加水分解
残った毛髪試料を含む微量固体試料処理器具に6N塩酸を加えて、110℃で24時間反応させた。反応液を全て流下させ保持具20を取り除いた後、エバポレーターを用いて乾固し、水を加えて溶解することで、蛋白質加水分解アミノ酸試料を調製した。
(3) Acid hydrolysis of hair 6N hydrochloric acid was added to a trace amount solid sample treatment apparatus including a hair sample remaining, and reacted at 110 ° C. for 24 hours. After all the reaction liquid was allowed to flow down and the holder 20 was removed, it was dried using an evaporator and dissolved by adding water to prepare a protein hydrolyzed amino acid sample.

(4)コレステロールの測定
上記(2)で調製した脂質試料を用いて、液体クロマトグラフ−質量分析法でコレステロールの測定を行った。液体クロマトグラフ−質量分析法による条件は以下のとおりである。
(4−1)液体クロマトグラフ−質量分析装置
液体クロマトグラフと質量分析装置が一体になった分析システムとして、アジレント社製1100シリーズLC/MSDを使用した。
(4−2)カラム及び分離条件
カラム及び分離条件は次のとおりとした。
分離カラム:化学物質評価研究機構、L−column ODS 2.1mmΦ×150mm(5μm)
移動相:メタノール
移動相流速:0.2mL/分
カラム温度:40℃
試料溶液注入量:5μL
(4−3)質量分析装置における検出条件
質量分析装置における検出条件は次のとおりとした。
イオン化法:APCI
極性:正イオン
フラグメンター電圧:120V
Vcap電圧:3500V
ネブライザー圧力:60psig
乾燥ガス流量:4.0L/分
乾燥ガス温度:320℃
ベーポライザー温度:300℃
コロナ電流:6μA
SIMモニターイオン:m/z=369.3
(4) Measurement of cholesterol Cholesterol was measured by liquid chromatography-mass spectrometry using the lipid sample prepared in (2) above. The conditions by liquid chromatography-mass spectrometry are as follows.
(4-1) Liquid Chromatograph-Mass Spectrometer 1100 Series LC / MSD manufactured by Agilent was used as an analysis system in which a liquid chromatograph and a mass spectrometer were integrated.
(4-2) Column and separation conditions The columns and separation conditions were as follows.
Separation column: Chemical Substance Evaluation Research Organization, L-column ODS 2.1 mmΦ × 150 mm (5 μm)
Mobile phase: Methanol Mobile phase Flow rate: 0.2 mL / min Column temperature: 40 ° C
Sample solution injection volume: 5 μL
(4-3) Detection conditions in the mass spectrometer The detection conditions in the mass spectrometer were as follows.
Ionization method: APCI
Polarity: Positive ion fragmentor Voltage: 120V
Vcap voltage: 3500V
Nebulizer pressure: 60 psig
Dry gas flow rate: 4.0 L / min Dry gas temperature: 320 ° C
Vaporizer temperature: 300 ° C
Corona current: 6μA
SIM monitor ion: m / z = 369.3

(5)蛋白質加水分解アミノ酸の測定
上記(3)で調製した蛋白質加水分解アミノ酸試料を用いて、アミノ酸分析計でアミノ酸の測定を行った。アミノ酸分析計の条件は以下のとおりである。
(5−1)アミノ酸分析計
アミノ酸分析計として、日立社製L−8800シリーズを使用した。
(5−2)分析条件
分析条件として、アミノ酸分析計にデフォルトで登録されている蛋白質加水分解アミノ酸分析条件をそのまま用いた。
(5−3)アミノ酸分子の略語
本明細書において、各アミノ酸分子を以下のように表記する。Asp/アスパラギン酸、Thr/スレオニン、Ser/セリン、Glu/グルタミン酸、Pro/プロリン、Gly/グリシン、Ala/アラニン、Cys/シスチン、Val/バリン、Met/メチオニン、Ile/イソロイシン、Leu/ロイシン、Tyr/チロシン、Phe/フェニルアラニン、Lys/リシン、His/ヒスチジン、Arg/アルギニン。
(5) Measurement of protein hydrolyzed amino acid Using the protein hydrolyzed amino acid sample prepared in (3) above, amino acid was measured with an amino acid analyzer. The conditions of the amino acid analyzer are as follows.
(5-1) Amino acid analyzer L-8800 series manufactured by Hitachi, Ltd. was used as an amino acid analyzer.
(5-2) Analysis conditions The analysis conditions for protein hydrolyzed amino acids registered in the amino acid analyzer by default were used as they were.
(5-3) Abbreviations of amino acid molecules In the present specification, each amino acid molecule is represented as follows. Asp / aspartic acid, Thr / threonine, Ser / serine, Glu / glutamic acid, Pro / proline, Gly / glycine, Ala / alanine, Cys / cystine, Val / valine, Met / methionine, Ile / isoleucine, Leu / leucine, Tyr / Tyrosine, Phe / phenylalanine, Lys / lysine, His / histidine, Arg / arginine.

(6)測定データの解析
コレステロールの測定データを図3、蛋白質加水分解アミノ酸の測定データを図4に示す。コレステロール、アミノ酸ともにピーク面積から定量値を算出し、アミノ酸においては各アミノ酸分子の定量値を合わせることで蛋白質量を算出した。そして、コレステロールの定量値を毛髪質量あるいは蛋白質量で除することにより、毛髪質量当たり又は蛋白質量当たりのコレステロールの絶対量を算出した。
(6) Analysis of measurement data FIG. 3 shows measurement data of cholesterol, and FIG. 4 shows measurement data of protein hydrolyzed amino acids. For both cholesterol and amino acids, quantitative values were calculated from the peak areas, and for amino acids, the protein mass was calculated by combining the quantitative values of each amino acid molecule. Then, the absolute amount of cholesterol per hair mass or protein mass was calculated by dividing the quantitative value of cholesterol by the hair mass or protein mass.

上記の操作によって、採取した毛髪に含まれるコレステロールの量を測定した。以後は1cmの毛髪を微量固体試料処理器具10で処理した試料を〔1〕、1mmの毛髪を微量固体試料処理器具10で処理した試料を〔2〕、1cmの毛髪を保持具20を取り除いた器具30で処理した試料を〔3〕として表記する。試料〔1〕及び〔3〕における毛髪質量当たりのコレステロールの絶対量を表1に、試料〔1〕、〔2〕及び〔3〕における蛋白質量当たりのコレステロールの絶対量を表2に示す。なお、表に示す定量値はn=3の平均値及び標準偏差を示している。   By the above operation, the amount of cholesterol contained in the collected hair was measured. Thereafter, a sample obtained by treating 1 cm of hair with a trace solid sample treatment instrument 10 [1], a sample obtained by treating 1 mm of hair with a trace solid sample treatment instrument 10 [2], and removing a holder 20 from a 1 cm hair. The sample processed with the instrument 30 is denoted as [3]. The absolute amount of cholesterol per hair mass in samples [1] and [3] is shown in Table 1, and the absolute amount of cholesterol per protein mass in samples [1], [2] and [3] is shown in Table 2. The quantitative values shown in the table indicate the average value and standard deviation of n = 3.

Figure 0005330144
Figure 0005330144

Figure 0005330144
Figure 0005330144

表1において、毛髪間誤差があるため全く同じ値にはならないが、〔1〕及び〔3〕でほぼ同等の定量値が得られ、本発明の微量固体試料処理器具が有用であることが証明された。一方、表2において、蛋白質量は毛髪質量に比べて90%程度であることから、毛髪質量当たりでの定量値と蛋白質量当たりの定量値は若干異なってくるが、〔1〕、〔2〕及び〔3〕でほぼ同等の定量値が得られ、本発明の微量固体試料処理器具が、特に毛髪の質量が正確に量れないような微量試料の解析に有用であることが証明された。 In Table 1, although there is an error between hairs, the values are not exactly the same, but almost the same quantitative values are obtained in [1] and [3], and it is proved that the trace solid sample processing instrument of the present invention is useful. It was done. On the other hand, in Table 2, since the protein mass is about 90% compared to the hair mass, the quantitative value per hair mass and the quantitative value per protein mass are slightly different, but [1], [2] And [3], almost the same quantitative values were obtained, and it was proved that the trace solid sample processing apparatus of the present invention is particularly useful for analyzing trace samples in which the mass of hair is not accurately measured.

10 微量固体試料処理器具
20 保持具
21 キャピラリー部
22 筒状部
30 収容具
31 収容部
32 キャップ
40 微量固体試料
DESCRIPTION OF SYMBOLS 10 Trace solid sample processing instrument 20 Holder 21 Capillary part 22 Cylindrical part 30 Container 31 Storage part 32 Cap 40 Trace solid sample

Claims (9)

微量の固体試料をその内部に保持可能なキャピラリー部を有する保持具と、該保持具の
密閉収容が可能な収容具とを備えた微量固体試料処理器具であって、
前記保持具のキャピラリー部内に、液体透過性のフィルタを有し、
前記収容具の収容部は、その下端寄りの部位が、下方に向かうに連れて縮径している、微量固体試料処理器具。
A trace solid sample processing instrument comprising a holder having a capillary part capable of holding a trace amount of solid sample therein, and a holder capable of hermetically containing the holder ,
In the capillary part of the holder, it has a liquid permeable filter,
The container portion of the container is a trace solid sample processing instrument whose portion near the lower end is reduced in diameter as it goes downward.
前記収容部における縮径している前記部位の長さが、前記保持具における前記キャピラリー部の長さを超えていない請求項1記載の微量固体試料処理器具。 The trace solid sample processing instrument according to claim 1 , wherein a length of the portion having a reduced diameter in the housing portion does not exceed a length of the capillary portion in the holder . 前記収容具が、上端に開口部を有する有底管状の収容部と、該開口部を密栓するキャップとを備え、
前記収容部、前記保持具及び前記フィルタが酸化ケイ素質材料製である請求項1又は2記載の微量固体試料処理器具。
The container comprises a bottomed tubular container having an opening at the upper end, and a cap for sealing the opening;
The trace solid sample processing instrument according to claim 1 or 2, wherein the container, the holder, and the filter are made of a silicon oxide material.
固体試料の溶媒抽出処理に用いられる請求項1ないし3のいずれかに記載の微量固体試料処理器具。   The trace solid sample processing instrument according to any one of claims 1 to 3, which is used for solvent extraction processing of a solid sample. 請求項1に記載の微量固体試料処理器具における前記保持具のキャピラリー部内に微量固体試料を設置し、
前記試料が設置された前記保持具を前記収容具内に収容するとともに、収容の前若しくは後又は収容と同時に収容具内に処理液を充填し、次いで
前記収容具を密閉し、前記処理液によって前記試料を処理する微量固体試料の処理方法。
A trace solid sample is installed in the capillary part of the holder in the trace solid sample processing instrument according to claim 1,
The holder on which the sample is placed is housed in the container, and the container is filled with a treatment liquid before, after, or simultaneously with the accommodation, and then the container is sealed, and the treatment liquid is used. A method for treating a trace solid sample, wherein the sample is treated.
前記処理液が溶媒抽出のための液である請求項5記載の処理方法。   The processing method according to claim 5, wherein the processing liquid is a liquid for solvent extraction. 前記固体試料が生体から採取した試料である請求項5又は6記載の処理方法。   The processing method according to claim 5 or 6, wherein the solid sample is a sample collected from a living body. 生体から採取した試料が毛髪であり、前記処理液が該毛髪に含まれる脂質の抽出が可能な液であり、
該処理液によって該毛髪から脂質を抽出した後に該毛髪を酸で加水分解し、分解液中に含まれるアミノ酸を定量分析することで、該毛髪中に含まれる蛋白質量を算出する請求項5ないし7のいずれかに記載の処理方法。
The sample collected from the living body is hair, and the treatment liquid is a liquid capable of extracting lipid contained in the hair,
6. The amount of protein contained in the hair is calculated by extracting lipids from the hair with the treatment liquid, hydrolyzing the hair with an acid, and quantitatively analyzing amino acids contained in the decomposition liquid. 8. The processing method according to any one of 7.
前記処理液で前記試料を処理した後、前記収容具を開いて該処理液を取り出し、次いで該処理液とは異なる第2の処理液を該収容具内に充填し、そして該収容具を密閉し、該第2の処理液によって該試料を処理する請求項5ないし8のいずれかに記載の処理方法。   After processing the sample with the processing liquid, the container is opened to take out the processing liquid, and then the second processing liquid different from the processing liquid is filled in the container, and the container is sealed. The processing method according to claim 5, wherein the sample is processed with the second processing liquid.
JP2009178724A 2009-07-31 2009-07-31 Trace solid sample analyzer Expired - Fee Related JP5330144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009178724A JP5330144B2 (en) 2009-07-31 2009-07-31 Trace solid sample analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009178724A JP5330144B2 (en) 2009-07-31 2009-07-31 Trace solid sample analyzer

Publications (2)

Publication Number Publication Date
JP2011033434A JP2011033434A (en) 2011-02-17
JP5330144B2 true JP5330144B2 (en) 2013-10-30

Family

ID=43762659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178724A Expired - Fee Related JP5330144B2 (en) 2009-07-31 2009-07-31 Trace solid sample analyzer

Country Status (1)

Country Link
JP (1) JP5330144B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6842166B2 (en) * 2017-03-29 2021-03-17 国立研究開発法人 海上・港湾・航空技術研究所 Antifouling performance evaluation method and antifouling performance evaluation system by quantitative analysis of deposits
WO2020021784A1 (en) * 2018-07-25 2020-01-30 株式会社島津製作所 Biological component collecting method and biological component analysis method

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602995A (en) * 1985-05-20 1986-07-29 Technicon Instruments Corporation Liquid level adjusting and filtering device
US4891134A (en) * 1988-01-25 1990-01-02 Abbott Laboratories Sample filtration device
BE1005090A5 (en) * 1991-06-25 1993-04-13 Saliva Diagnostic Systems Inc Device and sampling system fitness sample.
DE69305947T2 (en) * 1992-09-18 1997-03-13 Amersham Int Plc Device and method for affinity separation
SE9301759D0 (en) * 1993-05-21 1993-05-21 Vincenzo Vassarotti CENTRIFUGAL METHOD FOR CONCENTRATING MACROMOLECULES FROM A SOLUTION AND DEVICE FOR CARRYING OUT SAID METHOD
US5800784A (en) * 1996-07-09 1998-09-01 Horn; Marcus J. Chemical sample treatment system and cassette, and methods for effecting multistep treatment process
US6048457A (en) * 1997-02-26 2000-04-11 Millipore Corporation Cast membrane structures for sample preparation
JPH11192216A (en) * 1998-01-06 1999-07-21 Sekisui Chem Co Ltd Blood component drawing container
JP2001194365A (en) * 1999-11-05 2001-07-19 Sekisui Chem Co Ltd Container and method for measuring cell function
JP2001356125A (en) * 2000-06-15 2001-12-26 Kanebo Ltd Evaluation method for hair damage
US6916423B2 (en) * 2000-07-18 2005-07-12 Invitrogen Corporation Device and methods for subdividing and filtering gel material and extracting molecules therefrom
JP2002116201A (en) * 2000-10-11 2002-04-19 Sekisui Chem Co Ltd Cell-function measuring container
WO2003005039A1 (en) * 2001-07-04 2003-01-16 Kyowa Medex Co., Ltd. Method of preparing solution for quantification, quantification method using solution for quantification, instrument for preparing solution for quantification and method of using the same
ES2607978T3 (en) * 2001-10-12 2017-04-05 Becton, Dickinson And Company Apparatus for storing biological samples
JP3740532B2 (en) * 2002-08-07 2006-02-01 独立行政法人産業技術総合研究所 Organic compound separation method and apparatus, and analysis method and analysis apparatus
JP2004180551A (en) * 2002-12-02 2004-07-02 Arkray Inc Method for collecting microorganism and method for amplifying or detecting gene using the same
JP4136725B2 (en) * 2003-03-07 2008-08-20 ジーエルサイエンス株式会社 Chromatograph tube filter
GB0401288D0 (en) * 2004-01-21 2004-02-25 Orion Diagnostica Oy Sampling and assay device
JP2005214785A (en) * 2004-01-29 2005-08-11 Toyota Central Res & Dev Lab Inc Extraction/separation apparatus and extraction/separation member
AU2005211907A1 (en) * 2004-02-11 2005-08-25 Pamgene B.V. A device for analysing an interaction between target and probe molecules
EP1607134B1 (en) * 2004-05-27 2009-11-18 Gerstel Systemtechnik GmbH & Co. KG Polyorganosiloxane-based sorbent trap
JP2007007492A (en) * 2005-06-28 2007-01-18 Nokodai Tlo Kk Automatic extraction apparatus
US20080017577A1 (en) * 2006-07-21 2008-01-24 Becton, Dickinson And Company Membrane-based Double-layer Tube for Sample Collections
US7666667B2 (en) * 2006-09-06 2010-02-23 Yong Peter A K Safe self-contained bio-molecular sampling and transportation system utilizing a docking mechanism
US8715593B2 (en) * 2007-02-21 2014-05-06 William Brewer Pipette tips for extraction, sample collection and sample cleanup and methods for their use
US9108193B2 (en) * 2007-07-23 2015-08-18 Tecan Trading Ag Collection/extraction container for biological material in forensic samples

Also Published As

Publication number Publication date
JP2011033434A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
Kjelsen et al. Low-voltage electromembrane extraction of basic drugs from biological samples
Balchen et al. Fast, selective, and sensitive analysis of low-abundance peptides in human plasma by electromembrane extraction
Balchen et al. Fundamental studies on the electrokinetic transfer of net cationic peptides across supported liquid membranes
JPH05507025A (en) Method and apparatus capable of sequential chemical reactions
WO2001084140A3 (en) Method and device for the qualitative and/or quantitative analysis of a protein and/or peptide pattern of a liquid sample that is derived from the human or animal body
Hušek et al. Advances in amino acid analysis
CN107843672B (en) Method for detecting amino acid in serum by high performance liquid chromatography-tandem mass spectrometry
JP5330144B2 (en) Trace solid sample analyzer
CN106165059B (en) Extracted sample is analyzed using unmixing Extraction solvent
Tripp et al. Preparative separation of underivatized amino acids for compound‐specific stable isotope analysis and radiocarbon dating of hydrolyzed bone collagen
Liu et al. Determination of copper and cadmium in sea water by preconcentration and electrothermal atomic absorption spectrometry
CN110824076B (en) Solid phase micro-extraction swab device and method
CN106018602A (en) Compound detection reagent for detecting sulfonamide compound and detection method thereof
CN110208401A (en) Solid phase is dehydrated extraction-supercritical fluid chromatography-mass spectrum on-line analysis system and method
Nozal et al. In‐line liquid‐phase microextraction for selective enrichment and direct electrophoretic analysis of acidic drugs
US8313953B2 (en) Sample collection system and method
JP4129511B2 (en) Amino acid analysis by high-performance liquid chromatography
Bogdanov et al. Determination of organic compounds in human hair
Ji et al. Determination of berberine in Rhizoma coptidis and its preparations by non‐aqueous capillary electrophoresis
Chai et al. Determination of icariin in Chinese traditional medicine by capillary zone electrophoresis
JP2006250886A (en) Method for simple analysis of drug
Chen et al. On‐line conversion and determination of aspirin using a flow injection–capillary electrophoresis system
Veselý et al. Determination of α‐l‐aspartyl‐l‐phenylalanine methylester hydrochloride in soft drinks
Hansen Sample preparation and separation techniques for bioanalysis of morphine and related substances
Vergara-Barberán et al. On-line aptamer affinity solid-phase extraction capillary electrophoresis-mass spectrometry for the analysis of protein biomarkers in biological fluids and food: A tutorial

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R151 Written notification of patent or utility model registration

Ref document number: 5330144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees